| /****************************************************************************** |
| * |
| * Copyright (C) 1999-2012 Broadcom Corporation |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at: |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| * |
| * This file contains security manager protocol utility functions |
| * |
| ******************************************************************************/ |
| #include "bt_target.h" |
| |
| #if (SMP_DEBUG == TRUE) |
| #include <stdio.h> |
| #endif |
| #include <base/bind.h> |
| #include <string.h> |
| #include "aes.h" |
| #include "bt_utils.h" |
| #include "btm_ble_api.h" |
| #include "btm_ble_int.h" |
| #include "btm_int.h" |
| #include "device/include/controller.h" |
| #include "hcimsgs.h" |
| #include "osi/include/osi.h" |
| #include "p_256_ecc_pp.h" |
| #include "smp_int.h" |
| |
| using base::Bind; |
| |
| #ifndef SMP_MAX_ENC_REPEAT |
| #define SMP_MAX_ENC_REPEAT 3 |
| #endif |
| |
| static void smp_process_stk(tSMP_CB* p_cb, tSMP_ENC* p); |
| static bool smp_calculate_legacy_short_term_key(tSMP_CB* p_cb, |
| tSMP_ENC* output); |
| static void smp_process_private_key(tSMP_CB* p_cb); |
| |
| #define SMP_PASSKEY_MASK 0xfff00000 |
| |
| void smp_debug_print_nbyte_little_endian(uint8_t* p, const char* key_name, |
| uint8_t len) { |
| #if (SMP_DEBUG == TRUE) |
| int ind; |
| int col_count = 32; |
| int row_count; |
| uint8_t p_buf[512]; |
| |
| SMP_TRACE_DEBUG("%s(LSB ~ MSB):", key_name); |
| memset(p_buf, 0, sizeof(p_buf)); |
| row_count = len % col_count ? len / col_count + 1 : len / col_count; |
| |
| ind = 0; |
| for (int row = 0; row < row_count; row++) { |
| for (int column = 0, x = 0; (ind < len) && (column < col_count); |
| column++, ind++) { |
| x += snprintf((char*)&p_buf[x], sizeof(p_buf) - x, "%02x ", p[ind]); |
| } |
| SMP_TRACE_DEBUG(" [%03d]: %s", row * col_count, p_buf); |
| } |
| #endif |
| } |
| |
| void smp_debug_print_nbyte_big_endian(uint8_t* p, const char* key_name, |
| uint8_t len) { |
| #if (SMP_DEBUG == TRUE) |
| uint8_t p_buf[512]; |
| |
| SMP_TRACE_DEBUG("%s(MSB ~ LSB):", key_name); |
| memset(p_buf, 0, sizeof(p_buf)); |
| |
| int ind = 0; |
| int ncols = 32; /* num entries in one line */ |
| int nrows; /* num lines */ |
| |
| nrows = len % ncols ? len / ncols + 1 : len / ncols; |
| for (int row = 0; row < nrows; row++) { |
| for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++) { |
| x += snprintf((char*)&p_buf[len - x - 1], sizeof(p_buf) - (len - x - 1), |
| "%02x ", p[ind]); |
| } |
| SMP_TRACE_DEBUG("[%03d]: %s", row * ncols, p_buf); |
| } |
| #endif |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_encrypt_data |
| * |
| * Description This function is called to encrypt data. |
| * It uses AES-128 encryption algorithm. |
| * Plain_text is encrypted using key, the result is at p_out. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| bool smp_encrypt_data(uint8_t* key, uint8_t key_len, uint8_t* plain_text, |
| uint8_t pt_len, tSMP_ENC* p_out) { |
| aes_context ctx; |
| uint8_t* p_start = NULL; |
| uint8_t* p = NULL; |
| uint8_t* p_rev_data = NULL; /* input data in big endilan format */ |
| uint8_t* p_rev_key = NULL; /* input key in big endilan format */ |
| uint8_t* p_rev_output = NULL; /* encrypted output in big endilan format */ |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| if ((p_out == NULL) || (key_len != SMP_ENCRYT_KEY_SIZE)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| return false; |
| } |
| |
| p_start = (uint8_t*)osi_calloc(SMP_ENCRYT_DATA_SIZE * 4); |
| |
| if (pt_len > SMP_ENCRYT_DATA_SIZE) pt_len = SMP_ENCRYT_DATA_SIZE; |
| |
| p = p_start; |
| ARRAY_TO_STREAM(p, plain_text, pt_len); /* byte 0 to byte 15 */ |
| p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */ |
| REVERSE_ARRAY_TO_STREAM(p, p_start, |
| SMP_ENCRYT_DATA_SIZE); /* byte 16 to byte 31 */ |
| p_rev_key = p; /* start at byte 32 */ |
| REVERSE_ARRAY_TO_STREAM(p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */ |
| |
| #if (SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE) |
| smp_debug_print_nbyte_little_endian(key, "Key", SMP_ENCRYT_KEY_SIZE); |
| smp_debug_print_nbyte_little_endian(p_start, "Plain text", |
| SMP_ENCRYT_DATA_SIZE); |
| #endif |
| p_rev_output = p; |
| aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx); |
| aes_encrypt(p_rev_data, p, &ctx); /* outputs in byte 48 to byte 63 */ |
| |
| p = p_out->param_buf; |
| REVERSE_ARRAY_TO_STREAM(p, p_rev_output, SMP_ENCRYT_DATA_SIZE); |
| #if (SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE) |
| smp_debug_print_nbyte_little_endian(p_out->param_buf, "Encrypted text", |
| SMP_ENCRYT_KEY_SIZE); |
| #endif |
| |
| p_out->param_len = SMP_ENCRYT_KEY_SIZE; |
| p_out->status = HCI_SUCCESS; |
| p_out->opcode = HCI_BLE_ENCRYPT; |
| |
| osi_free(p_start); |
| |
| return true; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_proc_passkey |
| * |
| * Description This function is called to process a passkey. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_proc_passkey(tSMP_CB* p_cb, BT_OCTET8 rand) { |
| uint8_t* tt = p_cb->tk; |
| tSMP_KEY key; |
| uint32_t passkey; /* 19655 test number; */ |
| uint8_t* pp = rand; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| STREAM_TO_UINT32(passkey, pp); |
| passkey &= ~SMP_PASSKEY_MASK; |
| |
| /* truncate by maximum value */ |
| while (passkey > BTM_MAX_PASSKEY_VAL) passkey >>= 1; |
| |
| /* save the TK */ |
| memset(p_cb->tk, 0, BT_OCTET16_LEN); |
| UINT32_TO_STREAM(tt, passkey); |
| |
| key.key_type = SMP_KEY_TYPE_TK; |
| key.p_data = p_cb->tk; |
| |
| if (p_cb->p_callback) { |
| (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, |
| (tSMP_EVT_DATA*)&passkey); |
| } |
| |
| if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP) { |
| smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey); |
| } else { |
| smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA*)&key); |
| } |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_generate_passkey |
| * |
| * Description This function is called to generate passkey. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_generate_passkey(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| /* generate MRand or SRand */ |
| btsnd_hcic_ble_rand(Bind(&smp_proc_passkey, p_cb)); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_generate_stk |
| * |
| * Description This function is called to generate STK calculated by |
| * running AES with the TK value as key and a concatenation of |
| * the random values. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_generate_stk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { |
| tSMP_ENC output; |
| tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| if (p_cb->le_secure_connections_mode_is_used) { |
| SMP_TRACE_WARNING("FOR LE SC LTK IS USED INSTEAD OF STK"); |
| output.param_len = SMP_ENCRYT_KEY_SIZE; |
| output.status = HCI_SUCCESS; |
| output.opcode = HCI_BLE_ENCRYPT; |
| memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE); |
| } else if (!smp_calculate_legacy_short_term_key(p_cb, &output)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); |
| return; |
| } |
| |
| smp_process_stk(p_cb, &output); |
| } |
| |
| /** |
| * This function is called to calculate CSRK |
| */ |
| void smp_compute_csrk(uint16_t div, tSMP_CB* p_cb) { |
| BT_OCTET16 er; |
| uint8_t buffer[4]; /* for (r || DIV) r=1*/ |
| uint16_t r = 1; |
| uint8_t* p = buffer; |
| tSMP_ENC output; |
| tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; |
| |
| p_cb->div = div; |
| |
| SMP_TRACE_DEBUG("%s: div=%x", __func__, p_cb->div); |
| BTM_GetDeviceEncRoot(er); |
| /* CSRK = d1(ER, DIV, 1) */ |
| UINT16_TO_STREAM(p, p_cb->div); |
| UINT16_TO_STREAM(p, r); |
| |
| if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output)) { |
| SMP_TRACE_ERROR("smp_generate_csrk failed"); |
| if (p_cb->smp_over_br) { |
| smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status); |
| } else { |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); |
| } |
| } else { |
| memcpy((void*)p_cb->csrk, output.param_buf, BT_OCTET16_LEN); |
| smp_send_csrk_info(p_cb, NULL); |
| } |
| } |
| |
| /** |
| * This function is called to calculate CSRK, starting with DIV generation. |
| */ |
| void smp_generate_csrk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { |
| bool div_status; |
| |
| SMP_TRACE_DEBUG("smp_generate_csrk"); |
| |
| div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); |
| if (div_status) { |
| smp_compute_csrk(p_cb->div, p_cb); |
| } else { |
| SMP_TRACE_DEBUG("Generate DIV for CSRK"); |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| uint16_t div; |
| STREAM_TO_UINT16(div, rand); |
| smp_compute_csrk(div, p_cb); |
| }, |
| p_cb)); |
| } |
| } |
| |
| /******************************************************************************* |
| * Function smp_concatenate_peer - LSB first |
| * add pairing command sent from local device into p1. |
| ******************************************************************************/ |
| void smp_concatenate_local(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) { |
| uint8_t* p = *p_data; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| UINT8_TO_STREAM(p, op_code); |
| UINT8_TO_STREAM(p, p_cb->local_io_capability); |
| UINT8_TO_STREAM(p, p_cb->loc_oob_flag); |
| UINT8_TO_STREAM(p, p_cb->loc_auth_req); |
| UINT8_TO_STREAM(p, p_cb->loc_enc_size); |
| UINT8_TO_STREAM(p, p_cb->local_i_key); |
| UINT8_TO_STREAM(p, p_cb->local_r_key); |
| |
| *p_data = p; |
| } |
| |
| /******************************************************************************* |
| * Function smp_concatenate_peer - LSB first |
| * add pairing command received from peer device into p1. |
| ******************************************************************************/ |
| void smp_concatenate_peer(tSMP_CB* p_cb, uint8_t** p_data, uint8_t op_code) { |
| uint8_t* p = *p_data; |
| |
| SMP_TRACE_DEBUG("smp_concatenate_peer "); |
| UINT8_TO_STREAM(p, op_code); |
| UINT8_TO_STREAM(p, p_cb->peer_io_caps); |
| UINT8_TO_STREAM(p, p_cb->peer_oob_flag); |
| UINT8_TO_STREAM(p, p_cb->peer_auth_req); |
| UINT8_TO_STREAM(p, p_cb->peer_enc_size); |
| UINT8_TO_STREAM(p, p_cb->peer_i_key); |
| UINT8_TO_STREAM(p, p_cb->peer_r_key); |
| |
| *p_data = p; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_gen_p1_4_confirm |
| * |
| * Description Generate Confirm/Compare Step1: |
| * p1 = (MSB) pres || preq || rat' || iat' (LSB) |
| * Fill in values LSB first thus |
| * p1 = iat' || rat' || preq || pres |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_gen_p1_4_confirm(tSMP_CB* p_cb, tBLE_ADDR_TYPE remote_bd_addr_type, |
| BT_OCTET16 p1) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| uint8_t* p = (uint8_t*)p1; |
| if (p_cb->role == HCI_ROLE_MASTER) { |
| /* iat': initiator's (local) address type */ |
| UINT8_TO_STREAM(p, p_cb->addr_type); |
| /* rat': responder's (remote) address type */ |
| UINT8_TO_STREAM(p, remote_bd_addr_type); |
| /* preq : Pairing Request (local) command */ |
| smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ); |
| /* pres : Pairing Response (remote) command */ |
| smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP); |
| } else { |
| /* iat': initiator's (remote) address type */ |
| UINT8_TO_STREAM(p, remote_bd_addr_type); |
| /* rat': responder's (local) address type */ |
| UINT8_TO_STREAM(p, p_cb->addr_type); |
| /* preq : Pairing Request (remote) command */ |
| smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ); |
| /* pres : Pairing Response (local) command */ |
| smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP); |
| } |
| smp_debug_print_nbyte_little_endian((uint8_t*)p1, |
| "p1 = iat' || rat' || preq || pres", 16); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_gen_p2_4_confirm |
| * |
| * Description Generate Confirm/Compare Step2: |
| * p2 = (MSB) padding || ia || ra (LSB) |
| * Fill values LSB first and thus: |
| * p2 = ra || ia || padding |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_gen_p2_4_confirm(tSMP_CB* p_cb, const bt_bdaddr_t& remote_bda, |
| BT_OCTET16 p2) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| uint8_t* p = (uint8_t*)p2; |
| /* 32-bit Padding */ |
| memset(p, 0, sizeof(BT_OCTET16)); |
| if (p_cb->role == HCI_ROLE_MASTER) { |
| /* ra : Responder's (remote) address */ |
| BDADDR_TO_STREAM(p, to_BD_ADDR(remote_bda)); |
| /* ia : Initiator's (local) address */ |
| BDADDR_TO_STREAM(p, to_BD_ADDR(p_cb->local_bda)); |
| } else { |
| /* ra : Responder's (local) address */ |
| BDADDR_TO_STREAM(p, to_BD_ADDR(p_cb->local_bda)); |
| /* ia : Initiator's (remote) address */ |
| BDADDR_TO_STREAM(p, to_BD_ADDR(remote_bda)); |
| } |
| smp_debug_print_nbyte_little_endian(p2, "p2 = ra || ia || padding", 16); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_comfirm |
| * |
| * Description This function (c1) is called to calculate Confirm value. |
| * |
| * Returns tSMP_STATUS status of confirmation calculation |
| * |
| ******************************************************************************/ |
| tSMP_STATUS smp_calculate_comfirm(tSMP_CB* p_cb, BT_OCTET16 rand, |
| tSMP_ENC* output) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| bt_bdaddr_t remote_bda; |
| tBLE_ADDR_TYPE remote_bd_addr_type = 0; |
| /* get remote connection specific bluetooth address */ |
| if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, |
| &remote_bd_addr_type)) { |
| SMP_TRACE_ERROR("%s: cannot obtain remote device address", __func__); |
| return SMP_PAIR_FAIL_UNKNOWN; |
| } |
| /* get local connection specific bluetooth address */ |
| BTM_ReadConnectionAddr(p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type); |
| /* generate p1 = pres || preq || rat' || iat' */ |
| BT_OCTET16 p1; |
| smp_gen_p1_4_confirm(p_cb, remote_bd_addr_type, p1); |
| /* p1' = rand XOR p1 */ |
| smp_xor_128(p1, rand); |
| smp_debug_print_nbyte_little_endian((uint8_t*)p1, "p1' = p1 XOR r", 16); |
| /* calculate e1 = e(k, p1'), where k = TK */ |
| smp_debug_print_nbyte_little_endian(p_cb->tk, "TK", 16); |
| memset(output, 0, sizeof(tSMP_ENC)); |
| if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, output)) { |
| SMP_TRACE_ERROR("%s: failed encryption at e1 = e(k, p1')"); |
| return SMP_PAIR_FAIL_UNKNOWN; |
| } |
| smp_debug_print_nbyte_little_endian(output->param_buf, "e1 = e(k, p1')", 16); |
| /* generate p2 = padding || ia || ra */ |
| BT_OCTET16 p2; |
| smp_gen_p2_4_confirm(p_cb, remote_bda, p2); |
| /* calculate p2' = (p2 XOR e1) */ |
| smp_xor_128(p2, output->param_buf); |
| smp_debug_print_nbyte_little_endian((uint8_t*)p2, "p2' = p2 XOR e1", 16); |
| /* calculate: c1 = e(k, p2') */ |
| memset(output, 0, sizeof(tSMP_ENC)); |
| if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, output)) { |
| SMP_TRACE_ERROR("%s: failed encryption at e1 = e(k, p2')"); |
| return SMP_PAIR_FAIL_UNKNOWN; |
| } |
| return SMP_SUCCESS; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_generate_confirm |
| * |
| * Description This function is called when random number (MRand or SRand) |
| * is generated by the controller and the stack needs to |
| * calculate c1 value (MConfirm or SConfirm) for the first time |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| static void smp_generate_confirm(tSMP_CB* p_cb) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| smp_debug_print_nbyte_little_endian((uint8_t*)p_cb->rand, "local_rand", 16); |
| tSMP_ENC output; |
| tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rand, &output); |
| if (status != SMP_SUCCESS) { |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); |
| return; |
| } |
| tSMP_KEY key; |
| memcpy(p_cb->confirm, output.param_buf, BT_OCTET16_LEN); |
| smp_debug_print_nbyte_little_endian(p_cb->confirm, "Local Confirm generated", |
| 16); |
| key.key_type = SMP_KEY_TYPE_CFM; |
| key.p_data = output.param_buf; |
| smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_generate_srand_mrand_confirm |
| * |
| * Description This function is called to start the second pairing phase by |
| * start generating random number. |
| * |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_generate_srand_mrand_confirm(tSMP_CB* p_cb, |
| UNUSED_ATTR tSMP_INT_DATA* p_data) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| /* generate MRand or SRand */ |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)p_cb->rand, rand, 8); |
| |
| /* generate 64 MSB of MRand or SRand */ |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN); |
| smp_generate_confirm(p_cb); |
| }, |
| p_cb)); |
| }, |
| p_cb)); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_generate_compare |
| * |
| * Description This function is called when random number (MRand or SRand) |
| * is received from remote device and the c1 value (MConfirm |
| * or SConfirm) needs to be generated to authenticate remote |
| * device. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_generate_compare(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { |
| SMP_TRACE_DEBUG("smp_generate_compare "); |
| smp_debug_print_nbyte_little_endian((uint8_t*)p_cb->rrand, "peer rand", 16); |
| tSMP_ENC output; |
| tSMP_STATUS status = smp_calculate_comfirm(p_cb, p_cb->rrand, &output); |
| if (status != SMP_SUCCESS) { |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); |
| return; |
| } |
| tSMP_KEY key; |
| smp_debug_print_nbyte_little_endian(output.param_buf, |
| "Remote Confirm generated", 16); |
| key.key_type = SMP_KEY_TYPE_CMP; |
| key.p_data = output.param_buf; |
| smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_process_stk |
| * |
| * Description This function is called when STK is generated |
| * proceed to send the encrypt the link using STK. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| static void smp_process_stk(tSMP_CB* p_cb, tSMP_ENC* p) { |
| tSMP_KEY key; |
| |
| SMP_TRACE_DEBUG("smp_process_stk "); |
| #if (SMP_DEBUG == TRUE) |
| SMP_TRACE_ERROR("STK Generated"); |
| #endif |
| smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf); |
| |
| key.key_type = SMP_KEY_TYPE_STK; |
| key.p_data = p->param_buf; |
| |
| smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); |
| } |
| |
| /** |
| * This function is to calculate EDIV = Y xor DIV |
| */ |
| static void smp_process_ediv(tSMP_CB* p_cb, tSMP_ENC* p) { |
| tSMP_KEY key; |
| uint8_t* pp = p->param_buf; |
| uint16_t y; |
| |
| SMP_TRACE_DEBUG("smp_process_ediv "); |
| STREAM_TO_UINT16(y, pp); |
| |
| /* EDIV = Y xor DIV */ |
| p_cb->ediv = p_cb->div ^ y; |
| /* send LTK ready */ |
| SMP_TRACE_ERROR("LTK ready"); |
| key.key_type = SMP_KEY_TYPE_LTK; |
| key.p_data = p->param_buf; |
| |
| smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key); |
| } |
| |
| /** |
| * This function is to proceed generate Y = E(DHK, Rand) |
| */ |
| static void smp_generate_y(tSMP_CB* p_cb, BT_OCTET8 rand) { |
| SMP_TRACE_DEBUG("%s ", __func__); |
| |
| BT_OCTET16 dhk; |
| BTM_GetDeviceDHK(dhk); |
| |
| memcpy(p_cb->enc_rand, rand, BT_OCTET8_LEN); |
| tSMP_ENC output; |
| if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, rand, BT_OCTET8_LEN, &output)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); |
| } else { |
| smp_process_ediv(p_cb, &output); |
| } |
| } |
| |
| /** |
| * Calculate LTK = d1(ER, DIV, 0)= e(ER, DIV) |
| */ |
| static void smp_generate_ltk_cont(uint16_t div, tSMP_CB* p_cb) { |
| p_cb->div = div; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| BT_OCTET16 er; |
| BTM_GetDeviceEncRoot(er); |
| |
| tSMP_ENC output; |
| /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/ |
| if (!SMP_Encrypt(er, BT_OCTET16_LEN, (uint8_t*)&p_cb->div, sizeof(uint16_t), |
| &output)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); |
| } else { |
| /* mask the LTK */ |
| smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf); |
| memcpy((void*)p_cb->ltk, output.param_buf, BT_OCTET16_LEN); |
| |
| /* generate EDIV and rand now */ |
| btsnd_hcic_ble_rand(Bind(&smp_generate_y, p_cb)); |
| } |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_generate_ltk |
| * |
| * Description This function is called: |
| * - in legacy pairing - to calculate LTK, starting with DIV |
| * generation; |
| * - in LE Secure Connections pairing over LE transport - to |
| * process LTK already generated to encrypt LE link; |
| * - in LE Secure Connections pairing over BR/EDR transport - |
| * to start BR/EDR Link Key processing. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_generate_ltk(tSMP_CB* p_cb, UNUSED_ATTR tSMP_INT_DATA* p_data) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING) { |
| smp_br_process_link_key(p_cb, NULL); |
| return; |
| } else if (p_cb->le_secure_connections_mode_is_used) { |
| smp_process_secure_connection_long_term_key(); |
| return; |
| } |
| |
| bool div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div); |
| |
| if (div_status) { |
| smp_generate_ltk_cont(p_cb->div, p_cb); |
| } else { |
| SMP_TRACE_DEBUG("%s: Generate DIV for LTK", __func__); |
| |
| /* generate MRand or SRand */ |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| uint16_t div; |
| STREAM_TO_UINT16(div, rand); |
| smp_generate_ltk_cont(div, p_cb); |
| }, |
| p_cb)); |
| } |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_legacy_short_term_key |
| * |
| * Description The function calculates legacy STK. |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_legacy_short_term_key(tSMP_CB* p_cb, tSMP_ENC* output) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| BT_OCTET16 ptext; |
| uint8_t* p = ptext; |
| memset(p, 0, BT_OCTET16_LEN); |
| if (p_cb->role == HCI_ROLE_MASTER) { |
| memcpy(p, p_cb->rand, BT_OCTET8_LEN); |
| memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN); |
| } else { |
| memcpy(p, p_cb->rrand, BT_OCTET8_LEN); |
| memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN); |
| } |
| |
| /* generate STK = Etk(rand|rrand)*/ |
| bool encrypted = |
| SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output); |
| if (!encrypted) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| } |
| return encrypted; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_create_private_key |
| * |
| * Description This function is called to create private key used to |
| * calculate public key and DHKey. |
| * The function starts private key creation requesting |
| * for the controller to generate [0-7] octets of private key. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_create_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)p_cb->private_key, rand, BT_OCTET8_LEN); |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)&p_cb->private_key[8], rand, BT_OCTET8_LEN); |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)&p_cb->private_key[16], rand, BT_OCTET8_LEN); |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)&p_cb->private_key[24], rand, |
| BT_OCTET8_LEN); |
| smp_process_private_key(p_cb); |
| }, |
| p_cb)); |
| }, |
| p_cb)); |
| }, |
| p_cb)); |
| }, |
| p_cb)); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_use_oob_private_key |
| * |
| * Description This function is called |
| * - to save the secret key used to calculate the public key |
| * used in calculations of commitment sent OOB to a peer |
| * - to use this secret key to recalculate the public key and |
| * start the process of sending this public key to the peer |
| * if secret/public keys have to be reused. |
| * If the keys aren't supposed to be reused, continue from the |
| * point from which request for OOB data was issued. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_use_oob_private_key(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { |
| SMP_TRACE_DEBUG("%s req_oob_type: %d, role: %d", __func__, p_cb->req_oob_type, |
| p_cb->role); |
| |
| switch (p_cb->req_oob_type) { |
| case SMP_OOB_BOTH: |
| case SMP_OOB_LOCAL: |
| SMP_TRACE_DEBUG("%s restore secret key", __func__) |
| memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, |
| BT_OCTET32_LEN); |
| smp_process_private_key(p_cb); |
| break; |
| default: |
| SMP_TRACE_DEBUG("%s create secret key anew", __func__); |
| smp_set_state(SMP_STATE_PAIR_REQ_RSP); |
| smp_decide_association_model(p_cb, NULL); |
| break; |
| } |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_process_private_key |
| * |
| * Description This function processes private key. |
| * It calculates public key and notifies SM that private key / |
| * public key pair is created. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_process_private_key(tSMP_CB* p_cb) { |
| Point public_key; |
| BT_OCTET32 private_key; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); |
| ECC_PointMult(&public_key, &(curve_p256.G), (uint32_t*)private_key, |
| KEY_LENGTH_DWORDS_P256); |
| memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN); |
| memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN); |
| |
| smp_debug_print_nbyte_little_endian(p_cb->private_key, "private", |
| BT_OCTET32_LEN); |
| smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.x, "local public(x)", |
| BT_OCTET32_LEN); |
| smp_debug_print_nbyte_little_endian(p_cb->loc_publ_key.y, "local public(y)", |
| BT_OCTET32_LEN); |
| p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY; |
| smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_compute_dhkey |
| * |
| * Description The function: |
| * - calculates a new public key using as input local private |
| * key and peer public key; |
| * - saves the new public key x-coordinate as DHKey. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_compute_dhkey(tSMP_CB* p_cb) { |
| Point peer_publ_key, new_publ_key; |
| BT_OCTET32 private_key; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN); |
| memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN); |
| memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN); |
| |
| ECC_PointMult(&new_publ_key, &peer_publ_key, (uint32_t*)private_key, |
| KEY_LENGTH_DWORDS_P256); |
| |
| memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN); |
| |
| smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Old DHKey", BT_OCTET32_LEN); |
| |
| smp_debug_print_nbyte_little_endian(p_cb->private_key, "private", |
| BT_OCTET32_LEN); |
| smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.x, "rem public(x)", |
| BT_OCTET32_LEN); |
| smp_debug_print_nbyte_little_endian(p_cb->peer_publ_key.y, "rem public(y)", |
| BT_OCTET32_LEN); |
| smp_debug_print_nbyte_little_endian(p_cb->dhkey, "Reverted DHKey", |
| BT_OCTET32_LEN); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_local_commitment |
| * |
| * Description The function calculates and saves local commmitment in CB. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_calculate_local_commitment(tSMP_CB* p_cb) { |
| uint8_t random_input; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| switch (p_cb->selected_association_model) { |
| case SMP_MODEL_SEC_CONN_JUSTWORKS: |
| case SMP_MODEL_SEC_CONN_NUM_COMP: |
| if (p_cb->role == HCI_ROLE_MASTER) |
| SMP_TRACE_WARNING( |
| "local commitment calc on master is not expected " |
| "for Just Works/Numeric Comparison models"); |
| smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, |
| 0, p_cb->commitment); |
| break; |
| case SMP_MODEL_SEC_CONN_PASSKEY_ENT: |
| case SMP_MODEL_SEC_CONN_PASSKEY_DISP: |
| random_input = |
| smp_calculate_random_input(p_cb->local_random, p_cb->round); |
| smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, |
| random_input, p_cb->commitment); |
| break; |
| case SMP_MODEL_SEC_CONN_OOB: |
| SMP_TRACE_WARNING( |
| "local commitment calc is expected for OOB model BEFORE pairing"); |
| smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, |
| p_cb->local_random, 0, p_cb->commitment); |
| break; |
| default: |
| SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", |
| p_cb->selected_association_model); |
| return; |
| } |
| |
| SMP_TRACE_EVENT("local commitment calculation is completed"); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_peer_commitment |
| * |
| * Description The function calculates and saves peer commmitment at the |
| * provided output buffer. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_calculate_peer_commitment(tSMP_CB* p_cb, BT_OCTET16 output_buf) { |
| uint8_t ri; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| switch (p_cb->selected_association_model) { |
| case SMP_MODEL_SEC_CONN_JUSTWORKS: |
| case SMP_MODEL_SEC_CONN_NUM_COMP: |
| if (p_cb->role == HCI_ROLE_SLAVE) |
| SMP_TRACE_WARNING( |
| "peer commitment calc on slave is not expected " |
| "for Just Works/Numeric Comparison models"); |
| smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, |
| 0, output_buf); |
| break; |
| case SMP_MODEL_SEC_CONN_PASSKEY_ENT: |
| case SMP_MODEL_SEC_CONN_PASSKEY_DISP: |
| ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round); |
| smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, |
| ri, output_buf); |
| break; |
| case SMP_MODEL_SEC_CONN_OOB: |
| smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, |
| p_cb->peer_random, 0, output_buf); |
| break; |
| default: |
| SMP_TRACE_ERROR("Association Model = %d is not used in LE SC", |
| p_cb->selected_association_model); |
| return; |
| } |
| |
| SMP_TRACE_EVENT("peer commitment calculation is completed"); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_f4 |
| * |
| * Description The function calculates |
| * C = f4(U, V, X, Z) = AES-CMAC (U||V||Z) |
| * X |
| * where |
| * input: U is 256 bit, |
| * V is 256 bit, |
| * X is 128 bit, |
| * Z is 8 bit, |
| * output: C is 128 bit. |
| * |
| * Returns void |
| * |
| * Note The LSB is the first octet, the MSB is the last octet of |
| * the AES-CMAC input/output stream. |
| * |
| ******************************************************************************/ |
| void smp_calculate_f4(uint8_t* u, uint8_t* v, uint8_t* x, uint8_t z, |
| uint8_t* c) { |
| uint8_t msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + |
| 1 /* Z size */; |
| uint8_t msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1]; |
| uint8_t key[BT_OCTET16_LEN]; |
| uint8_t cmac[BT_OCTET16_LEN]; |
| uint8_t* p = NULL; |
| #if (SMP_DEBUG == TRUE) |
| uint8_t* p_prnt = NULL; |
| #endif |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = u; |
| smp_debug_print_nbyte_little_endian(p_prnt, "U", BT_OCTET32_LEN); |
| p_prnt = v; |
| smp_debug_print_nbyte_little_endian(p_prnt, "V", BT_OCTET32_LEN); |
| p_prnt = x; |
| smp_debug_print_nbyte_little_endian(p_prnt, "X", BT_OCTET16_LEN); |
| p_prnt = &z; |
| smp_debug_print_nbyte_little_endian(p_prnt, "Z", 1); |
| #endif |
| |
| p = msg; |
| UINT8_TO_STREAM(p, z); |
| ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN); |
| ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = msg; |
| smp_debug_print_nbyte_little_endian(p_prnt, "M", msg_len); |
| #endif |
| |
| p = key; |
| ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = key; |
| smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); |
| #endif |
| |
| aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = cmac; |
| smp_debug_print_nbyte_little_endian(p_prnt, "AES_CMAC", BT_OCTET16_LEN); |
| #endif |
| |
| p = c; |
| ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_numeric_comparison_display_number |
| * |
| * Description The function calculates and saves number to display in |
| * numeric comparison association mode. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_calculate_numeric_comparison_display_number(tSMP_CB* p_cb, |
| tSMP_INT_DATA* p_data) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| if (p_cb->role == HCI_ROLE_MASTER) { |
| p_cb->number_to_display = smp_calculate_g2( |
| p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, p_cb->rrand); |
| } else { |
| p_cb->number_to_display = smp_calculate_g2( |
| p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, p_cb->rand); |
| } |
| |
| if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1)) { |
| uint8_t reason; |
| reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN; |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason); |
| return; |
| } |
| |
| SMP_TRACE_EVENT("Number to display in numeric comparison = %d", |
| p_cb->number_to_display); |
| p_cb->cb_evt = SMP_NC_REQ_EVT; |
| smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display); |
| return; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_g2 |
| * |
| * Description The function calculates |
| * g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6 |
| * X |
| * and |
| * Vres = g2(U, V, X, Y) mod 10**6 |
| * where |
| * input: U is 256 bit, |
| * V is 256 bit, |
| * X is 128 bit, |
| * Y is 128 bit, |
| * |
| * Returns Vres. |
| * Expected value has to be in the range [0 - 999999] i.e. |
| * [0 - 0xF423F]. |
| * Vres = 1000000 means that the calculation fails. |
| * |
| * Note The LSB is the first octet, the MSB is the last octet of |
| * the AES-CMAC input/output stream. |
| * |
| ******************************************************************************/ |
| uint32_t smp_calculate_g2(uint8_t* u, uint8_t* v, uint8_t* x, uint8_t* y) { |
| uint8_t msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ |
| + BT_OCTET16_LEN /* Y size */; |
| uint8_t msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN]; |
| uint8_t key[BT_OCTET16_LEN]; |
| uint8_t cmac[BT_OCTET16_LEN]; |
| uint8_t* p = NULL; |
| uint32_t vres; |
| #if (SMP_DEBUG == TRUE) |
| uint8_t* p_prnt = NULL; |
| #endif |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| p = msg; |
| ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN); |
| ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN); |
| ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = u; |
| smp_debug_print_nbyte_little_endian(p_prnt, "U", BT_OCTET32_LEN); |
| p_prnt = v; |
| smp_debug_print_nbyte_little_endian(p_prnt, "V", BT_OCTET32_LEN); |
| p_prnt = x; |
| smp_debug_print_nbyte_little_endian(p_prnt, "X", BT_OCTET16_LEN); |
| p_prnt = y; |
| smp_debug_print_nbyte_little_endian(p_prnt, "Y", BT_OCTET16_LEN); |
| #endif |
| |
| p = key; |
| ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = key; |
| smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); |
| #endif |
| |
| if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| return (BTM_MAX_PASSKEY_VAL + 1); |
| } |
| |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = cmac; |
| smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN); |
| #endif |
| |
| /* vres = cmac mod 2**32 mod 10**6 */ |
| p = &cmac[0]; |
| STREAM_TO_UINT32(vres, p); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = (uint8_t*)&vres; |
| smp_debug_print_nbyte_little_endian(p_prnt, "cmac mod 2**32", 4); |
| #endif |
| |
| while (vres > BTM_MAX_PASSKEY_VAL) vres -= (BTM_MAX_PASSKEY_VAL + 1); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = (uint8_t*)&vres; |
| smp_debug_print_nbyte_little_endian(p_prnt, "cmac mod 2**32 mod 10**6", 4); |
| #endif |
| |
| SMP_TRACE_ERROR("Value for numeric comparison = %d", vres); |
| return vres; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_f5 |
| * |
| * Description The function provides two AES-CMAC that are supposed to be |
| * used as |
| * - MacKey (used in pairing DHKey check calculation); |
| * - LTK (used to ecrypt the link after completion of Phase 2 |
| * and on reconnection, to derive BR/EDR LK). |
| * The function inputs are W, N1, N2, A1, A2. |
| * F5 rules: |
| * - the value used as key in MacKey/LTK (T) is calculated |
| * (function smp_calculate_f5_key(...)); |
| * The formula is: |
| * T = AES-CMAC (W) |
| * salt |
| * where salt is internal parameter of |
| * smp_calculate_f5_key(...). |
| * - MacKey and LTK are calculated as AES-MAC values received |
| * with the key T calculated in the previous step and the |
| * plaintext message built from the external parameters N1, |
| * N2, A1, A2 and the internal parameters counter, keyID, |
| * length. |
| * The function smp_calculate_f5_mackey_or_long_term_key(...) |
| * is used in the calculations. |
| * The same formula is used in calculation of MacKey and LTK |
| * and the same parameter values except the value of the |
| * internal parameter counter: |
| * - in MacKey calculations the value is 0; |
| * - in LTK calculations the value is 1. |
| * MacKey = |
| * AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256) |
| * T |
| * LTK = |
| * AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256) |
| * T |
| * The parameters are |
| * input: |
| * W is 256 bits, |
| * N1 is 128 bits, |
| * N2 is 128 bits, |
| * A1 is 56 bit, |
| * A2 is 56 bit. |
| * internal: |
| * Counter is 8 bits, its value is 0 for MacKey, |
| * 1 for LTK; |
| * KeyId is 32 bits, its value is |
| * 0x62746c65 (MSB~LSB); |
| * Length is 16 bits, its value is 0x0100 |
| * (MSB~LSB). |
| * output: |
| * MacKey is 128 bits; |
| * LTK is 128 bits |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| * Note The LSB is the first octet, the MSB is the last octet of |
| * the AES-CMAC input/output stream. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_f5(uint8_t* w, uint8_t* n1, uint8_t* n2, uint8_t* a1, |
| uint8_t* a2, uint8_t* mac_key, uint8_t* ltk) { |
| BT_OCTET16 t; /* AES-CMAC output in smp_calculate_f5_key(...), key in */ |
| /* smp_calculate_f5_mackey_or_long_term_key(...) */ |
| #if (SMP_DEBUG == TRUE) |
| uint8_t* p_prnt = NULL; |
| #endif |
| /* internal parameters: */ |
| |
| /* |
| counter is 0 for MacKey, |
| is 1 for LTK |
| */ |
| uint8_t counter_mac_key[1] = {0}; |
| uint8_t counter_ltk[1] = {1}; |
| /* |
| keyID 62746c65 |
| */ |
| uint8_t key_id[4] = {0x65, 0x6c, 0x74, 0x62}; |
| /* |
| length 0100 |
| */ |
| uint8_t length[2] = {0x00, 0x01}; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = w; |
| smp_debug_print_nbyte_little_endian(p_prnt, "W", BT_OCTET32_LEN); |
| p_prnt = n1; |
| smp_debug_print_nbyte_little_endian(p_prnt, "N1", BT_OCTET16_LEN); |
| p_prnt = n2; |
| smp_debug_print_nbyte_little_endian(p_prnt, "N2", BT_OCTET16_LEN); |
| p_prnt = a1; |
| smp_debug_print_nbyte_little_endian(p_prnt, "A1", 7); |
| p_prnt = a2; |
| smp_debug_print_nbyte_little_endian(p_prnt, "A2", 7); |
| #endif |
| |
| if (!smp_calculate_f5_key(w, t)) { |
| SMP_TRACE_ERROR("%s failed to calc T", __func__); |
| return false; |
| } |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = t; |
| smp_debug_print_nbyte_little_endian(p_prnt, "T", BT_OCTET16_LEN); |
| #endif |
| |
| if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, |
| n2, a1, a2, length, mac_key)) { |
| SMP_TRACE_ERROR("%s failed to calc MacKey", __func__); |
| return false; |
| } |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = mac_key; |
| smp_debug_print_nbyte_little_endian(p_prnt, "MacKey", BT_OCTET16_LEN); |
| #endif |
| |
| if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, |
| a1, a2, length, ltk)) { |
| SMP_TRACE_ERROR("%s failed to calc LTK", __func__); |
| return false; |
| } |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = ltk; |
| smp_debug_print_nbyte_little_endian(p_prnt, "LTK", BT_OCTET16_LEN); |
| #endif |
| |
| return true; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_f5_mackey_or_long_term_key |
| * |
| * Description The function calculates the value of MacKey or LTK by the |
| * rules defined for f5 function. |
| * At the moment exactly the same formula is used to calculate |
| * LTK and MacKey. |
| * The difference is the value of input parameter Counter: |
| * - in MacKey calculations the value is 0; |
| * - in LTK calculations the value is 1. |
| * The formula: |
| * mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length) |
| * T |
| * where |
| * input: T is 256 bits; |
| * Counter is 8 bits, its value is 0 for MacKey, |
| * 1 for LTK; |
| * keyID is 32 bits, its value is 0x62746c65; |
| * N1 is 128 bits; |
| * N2 is 128 bits; |
| * A1 is 56 bits; |
| * A2 is 56 bits; |
| * Length is 16 bits, its value is 0x0100 |
| * output: LTK is 128 bit. |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| * Note The LSB is the first octet, the MSB is the last octet of |
| * the AES-CMAC input/output stream. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_f5_mackey_or_long_term_key(uint8_t* t, uint8_t* counter, |
| uint8_t* key_id, uint8_t* n1, |
| uint8_t* n2, uint8_t* a1, |
| uint8_t* a2, uint8_t* length, |
| uint8_t* mac) { |
| uint8_t* p = NULL; |
| uint8_t cmac[BT_OCTET16_LEN]; |
| uint8_t key[BT_OCTET16_LEN]; |
| uint8_t msg_len = 1 /* Counter size */ + 4 /* keyID size */ + |
| BT_OCTET16_LEN /* N1 size */ + |
| BT_OCTET16_LEN /* N2 size */ + 7 /* A1 size*/ + |
| 7 /* A2 size*/ + 2 /* Length size */; |
| uint8_t msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2]; |
| bool ret = true; |
| #if (SMP_DEBUG == TRUE) |
| uint8_t* p_prnt = NULL; |
| #endif |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = t; |
| smp_debug_print_nbyte_little_endian(p_prnt, "T", BT_OCTET16_LEN); |
| p_prnt = counter; |
| smp_debug_print_nbyte_little_endian(p_prnt, "Counter", 1); |
| p_prnt = key_id; |
| smp_debug_print_nbyte_little_endian(p_prnt, "KeyID", 4); |
| p_prnt = n1; |
| smp_debug_print_nbyte_little_endian(p_prnt, "N1", BT_OCTET16_LEN); |
| p_prnt = n2; |
| smp_debug_print_nbyte_little_endian(p_prnt, "N2", BT_OCTET16_LEN); |
| p_prnt = a1; |
| smp_debug_print_nbyte_little_endian(p_prnt, "A1", 7); |
| p_prnt = a2; |
| smp_debug_print_nbyte_little_endian(p_prnt, "A2", 7); |
| p_prnt = length; |
| smp_debug_print_nbyte_little_endian(p_prnt, "Length", 2); |
| #endif |
| |
| p = key; |
| ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = key; |
| smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); |
| #endif |
| p = msg; |
| ARRAY_TO_STREAM(p, length, 2); |
| ARRAY_TO_STREAM(p, a2, 7); |
| ARRAY_TO_STREAM(p, a1, 7); |
| ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN); |
| ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN); |
| ARRAY_TO_STREAM(p, key_id, 4); |
| ARRAY_TO_STREAM(p, counter, 1); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = msg; |
| smp_debug_print_nbyte_little_endian(p_prnt, "M", msg_len); |
| #endif |
| |
| if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| ret = false; |
| } |
| |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = cmac; |
| smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN); |
| #endif |
| |
| p = mac; |
| ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); |
| return ret; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_f5_key |
| * |
| * Description The function calculates key T used in calculation of |
| * MacKey and LTK (f5 output is defined as MacKey || LTK). |
| * T = AES-CMAC (W) |
| * salt |
| * where |
| * Internal: salt is 128 bit. |
| * input: W is 256 bit. |
| * Output: T is 128 bit. |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| * Note The LSB is the first octet, the MSB is the last octet of |
| * the AES-CMAC input/output stream. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_f5_key(uint8_t* w, uint8_t* t) { |
| uint8_t* p = NULL; |
| /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */ |
| /* |
| salt: 6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE |
| */ |
| BT_OCTET16 salt = {0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60, |
| 0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C}; |
| #if (SMP_DEBUG == TRUE) |
| uint8_t* p_prnt = NULL; |
| #endif |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = salt; |
| smp_debug_print_nbyte_little_endian(p_prnt, "salt", BT_OCTET16_LEN); |
| p_prnt = w; |
| smp_debug_print_nbyte_little_endian(p_prnt, "W", BT_OCTET32_LEN); |
| #endif |
| |
| BT_OCTET16 key; |
| BT_OCTET32 msg; |
| |
| p = key; |
| ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN); |
| p = msg; |
| ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = key; |
| smp_debug_print_nbyte_little_endian(p_prnt, "K", BT_OCTET16_LEN); |
| p_prnt = msg; |
| smp_debug_print_nbyte_little_endian(p_prnt, "M", BT_OCTET32_LEN); |
| #endif |
| |
| BT_OCTET16 cmac; |
| bool ret = true; |
| if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, |
| cmac)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| ret = false; |
| } |
| |
| #if (SMP_DEBUG == TRUE) |
| p_prnt = cmac; |
| smp_debug_print_nbyte_little_endian(p_prnt, "AES-CMAC", BT_OCTET16_LEN); |
| #endif |
| |
| p = t; |
| ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); |
| return ret; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_local_dhkey_check |
| * |
| * Description The function calculates and saves local device DHKey check |
| * value in CB. |
| * Before doing this it calls |
| * smp_calculate_f5_mackey_and_long_term_key(...). |
| * to calculate MacKey and LTK. |
| * MacKey is used in dhkey calculation. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_calculate_local_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { |
| uint8_t iocap[3], a[7], b[7]; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| smp_calculate_f5_mackey_and_long_term_key(p_cb); |
| |
| smp_collect_local_io_capabilities(iocap, p_cb); |
| |
| smp_collect_local_ble_address(a, p_cb); |
| smp_collect_peer_ble_address(b, p_cb); |
| smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, |
| iocap, a, b, p_cb->dhkey_check); |
| |
| SMP_TRACE_EVENT("local DHKey check calculation is completed"); |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_peer_dhkey_check |
| * |
| * Description The function calculates peer device DHKey check value. |
| * |
| * Returns void |
| * |
| ******************************************************************************/ |
| void smp_calculate_peer_dhkey_check(tSMP_CB* p_cb, tSMP_INT_DATA* p_data) { |
| uint8_t iocap[3], a[7], b[7]; |
| BT_OCTET16 param_buf; |
| bool ret; |
| tSMP_KEY key; |
| tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| smp_collect_peer_io_capabilities(iocap, p_cb); |
| |
| smp_collect_local_ble_address(a, p_cb); |
| smp_collect_peer_ble_address(b, p_cb); |
| ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, |
| p_cb->local_random, iocap, b, a, param_buf); |
| |
| if (ret) { |
| SMP_TRACE_EVENT("peer DHKey check calculation is completed"); |
| #if (SMP_DEBUG == TRUE) |
| smp_debug_print_nbyte_little_endian(param_buf, "peer DHKey check", |
| BT_OCTET16_LEN); |
| #endif |
| key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK; |
| key.p_data = param_buf; |
| smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key); |
| } else { |
| SMP_TRACE_EVENT("peer DHKey check calculation failed"); |
| smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status); |
| } |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_f6 |
| * |
| * Description The function calculates |
| * C = f6(W, N1, N2, R, IOcap, A1, A2) = |
| * AES-CMAC (N1||N2||R||IOcap||A1||A2) |
| * W |
| * where |
| * input: W is 128 bit, |
| * N1 is 128 bit, |
| * N2 is 128 bit, |
| * R is 128 bit, |
| * IOcap is 24 bit, |
| * A1 is 56 bit, |
| * A2 is 56 bit, |
| * output: C is 128 bit. |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| * Note The LSB is the first octet, the MSB is the last octet of |
| * the AES-CMAC input/output stream. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_f6(uint8_t* w, uint8_t* n1, uint8_t* n2, uint8_t* r, |
| uint8_t* iocap, uint8_t* a1, uint8_t* a2, uint8_t* c) { |
| uint8_t* p = NULL; |
| uint8_t msg_len = BT_OCTET16_LEN /* N1 size */ + |
| BT_OCTET16_LEN /* N2 size */ + BT_OCTET16_LEN /* R size */ + |
| 3 /* IOcap size */ + 7 /* A1 size*/ |
| + 7 /* A2 size*/; |
| uint8_t msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7]; |
| #if (SMP_DEBUG == TRUE) |
| uint8_t* p_print = NULL; |
| #endif |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| #if (SMP_DEBUG == TRUE) |
| p_print = w; |
| smp_debug_print_nbyte_little_endian(p_print, "W", BT_OCTET16_LEN); |
| p_print = n1; |
| smp_debug_print_nbyte_little_endian(p_print, "N1", BT_OCTET16_LEN); |
| p_print = n2; |
| smp_debug_print_nbyte_little_endian(p_print, "N2", BT_OCTET16_LEN); |
| p_print = r; |
| smp_debug_print_nbyte_little_endian(p_print, "R", BT_OCTET16_LEN); |
| p_print = iocap; |
| smp_debug_print_nbyte_little_endian(p_print, "IOcap", 3); |
| p_print = a1; |
| smp_debug_print_nbyte_little_endian(p_print, "A1", 7); |
| p_print = a2; |
| smp_debug_print_nbyte_little_endian(p_print, "A2", 7); |
| #endif |
| |
| uint8_t cmac[BT_OCTET16_LEN]; |
| uint8_t key[BT_OCTET16_LEN]; |
| |
| p = key; |
| ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_print = key; |
| smp_debug_print_nbyte_little_endian(p_print, "K", BT_OCTET16_LEN); |
| #endif |
| |
| p = msg; |
| ARRAY_TO_STREAM(p, a2, 7); |
| ARRAY_TO_STREAM(p, a1, 7); |
| ARRAY_TO_STREAM(p, iocap, 3); |
| ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN); |
| ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN); |
| ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN); |
| #if (SMP_DEBUG == TRUE) |
| p_print = msg; |
| smp_debug_print_nbyte_little_endian(p_print, "M", msg_len); |
| #endif |
| |
| bool ret = true; |
| if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| ret = false; |
| } |
| |
| #if (SMP_DEBUG == TRUE) |
| p_print = cmac; |
| smp_debug_print_nbyte_little_endian(p_print, "AES-CMAC", BT_OCTET16_LEN); |
| #endif |
| |
| p = c; |
| ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); |
| return ret; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_link_key_from_long_term_key |
| * |
| * Description The function calculates and saves BR/EDR link key derived |
| * from LE SC LTK. |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_link_key_from_long_term_key(tSMP_CB* p_cb) { |
| tBTM_SEC_DEV_REC* p_dev_rec; |
| bt_bdaddr_t bda_for_lk; |
| tBLE_ADDR_TYPE conn_addr_type; |
| BT_OCTET16 salt = {0x31, 0x70, 0x6D, 0x74, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC) { |
| SMP_TRACE_DEBUG( |
| "Use rcvd identity address as BD_ADDR of LK rcvd identity address"); |
| bda_for_lk = p_cb->id_addr; |
| } else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, |
| &conn_addr_type)) && |
| conn_addr_type == BLE_ADDR_PUBLIC) { |
| SMP_TRACE_DEBUG("Use rcvd connection address as BD_ADDR of LK"); |
| } else { |
| SMP_TRACE_WARNING("Don't have peer public address to associate with LK"); |
| return false; |
| } |
| |
| p_dev_rec = btm_find_dev(p_cb->pairing_bda); |
| if (p_dev_rec == NULL) { |
| SMP_TRACE_ERROR("%s failed to find Security Record", __func__); |
| return false; |
| } |
| |
| BT_OCTET16 intermediate_link_key; |
| bool ret = true; |
| |
| if (p_cb->key_derivation_h7_used) |
| ret = smp_calculate_h7((uint8_t*)salt, p_cb->ltk, intermediate_link_key); |
| else |
| ret = smp_calculate_h6(p_cb->ltk, (uint8_t*)"1pmt" /* reversed "tmp1" */, |
| intermediate_link_key); |
| if (!ret) { |
| SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__); |
| return ret; |
| } |
| |
| BT_OCTET16 link_key; |
| ret = smp_calculate_h6(intermediate_link_key, |
| (uint8_t*)"rbel" /* reversed "lebr" */, link_key); |
| if (!ret) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| } else { |
| uint8_t link_key_type; |
| if (btm_cb.security_mode == BTM_SEC_MODE_SC) { |
| /* Secure Connections Only Mode */ |
| link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; |
| } else if (controller_get_interface()->supports_secure_connections()) { |
| /* both transports are SC capable */ |
| if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) |
| link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256; |
| else |
| link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256; |
| } else if (btm_cb.security_mode == BTM_SEC_MODE_SP) { |
| /* BR/EDR transport is SSP capable */ |
| if (p_cb->sec_level == SMP_SEC_AUTHENTICATED) |
| link_key_type = BTM_LKEY_TYPE_AUTH_COMB; |
| else |
| link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB; |
| } else { |
| SMP_TRACE_ERROR( |
| "%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x", __func__, |
| btm_cb.security_mode, p_dev_rec->sm4); |
| return false; |
| } |
| |
| link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET; |
| |
| uint8_t* p; |
| BT_OCTET16 notif_link_key; |
| p = notif_link_key; |
| ARRAY16_TO_STREAM(p, link_key); |
| |
| btm_sec_link_key_notification(bda_for_lk, notif_link_key, link_key_type); |
| |
| SMP_TRACE_EVENT("%s is completed", __func__); |
| } |
| |
| return ret; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_long_term_key_from_link_key |
| * |
| * Description The function calculates and saves SC LTK derived from BR/EDR |
| * link key. |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_long_term_key_from_link_key(tSMP_CB* p_cb) { |
| bool ret = true; |
| tBTM_SEC_DEV_REC* p_dev_rec; |
| uint8_t rev_link_key[16]; |
| BT_OCTET16 salt = {0x32, 0x70, 0x6D, 0x74, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| |
| p_dev_rec = btm_find_dev(p_cb->pairing_bda); |
| if (p_dev_rec == NULL) { |
| SMP_TRACE_ERROR("%s failed to find Security Record", __func__); |
| return false; |
| } |
| |
| uint8_t br_link_key_type; |
| br_link_key_type = BTM_SecGetDeviceLinkKeyType(p_cb->pairing_bda); |
| if (br_link_key_type == BTM_LKEY_TYPE_IGNORE) { |
| SMP_TRACE_ERROR("%s failed to retrieve BR link type", __func__); |
| return false; |
| } |
| |
| if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) && |
| (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256)) { |
| SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d", __func__, |
| br_link_key_type); |
| return false; |
| } |
| |
| uint8_t* p1; |
| uint8_t* p2; |
| p1 = rev_link_key; |
| p2 = p_dev_rec->link_key; |
| REVERSE_ARRAY_TO_STREAM(p1, p2, 16); |
| |
| BT_OCTET16 intermediate_long_term_key; |
| if (p_cb->key_derivation_h7_used) { |
| ret = smp_calculate_h7((uint8_t*)salt, rev_link_key, |
| intermediate_long_term_key); |
| } else { |
| /* "tmp2" obtained from the spec */ |
| ret = smp_calculate_h6(rev_link_key, (uint8_t*)"2pmt" /* reversed "tmp2" */, |
| intermediate_long_term_key); |
| } |
| |
| if (!ret) { |
| SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key", __func__); |
| return ret; |
| } |
| |
| /* "brle" obtained from the spec */ |
| ret = smp_calculate_h6(intermediate_long_term_key, |
| (uint8_t*)"elrb" /* reversed "brle" */, p_cb->ltk); |
| |
| if (!ret) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| } else { |
| p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256) |
| ? SMP_SEC_AUTHENTICATED |
| : SMP_SEC_UNAUTHENTICATE; |
| SMP_TRACE_EVENT("%s is completed", __func__); |
| } |
| |
| return ret; |
| } |
| |
| /******************************************************************************* |
| * |
| * Function smp_calculate_h6 |
| * |
| * Description The function calculates |
| * C = h6(W, KeyID) = AES-CMAC (KeyID) |
| * W |
| * where |
| * input: W is 128 bit, |
| * KeyId is 32 bit, |
| * output: C is 128 bit. |
| * |
| * Returns false if out of resources, true in other cases. |
| * |
| * Note The LSB is the first octet, the MSB is the last octet of |
| * the AES-CMAC input/output stream. |
| * |
| ******************************************************************************/ |
| bool smp_calculate_h6(uint8_t* w, uint8_t* keyid, uint8_t* c) { |
| #if (SMP_DEBUG == TRUE) |
| uint8_t* p_print = NULL; |
| #endif |
| |
| SMP_TRACE_DEBUG("%s", __func__); |
| #if (SMP_DEBUG == TRUE) |
| p_print = w; |
| smp_debug_print_nbyte_little_endian(p_print, "W", BT_OCTET16_LEN); |
| p_print = keyid; |
| smp_debug_print_nbyte_little_endian(p_print, "keyID", 4); |
| #endif |
| |
| uint8_t* p = NULL; |
| uint8_t key[BT_OCTET16_LEN]; |
| |
| p = key; |
| ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); |
| |
| #if (SMP_DEBUG == TRUE) |
| p_print = key; |
| smp_debug_print_nbyte_little_endian(p_print, "K", BT_OCTET16_LEN); |
| #endif |
| |
| uint8_t msg_len = 4 /* KeyID size */; |
| uint8_t msg[4]; |
| |
| p = msg; |
| ARRAY_TO_STREAM(p, keyid, 4); |
| |
| #if (SMP_DEBUG == TRUE) |
| p_print = msg; |
| smp_debug_print_nbyte_little_endian(p_print, "M", msg_len); |
| #endif |
| |
| bool ret = true; |
| uint8_t cmac[BT_OCTET16_LEN]; |
| if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { |
| SMP_TRACE_ERROR("%s failed", __func__); |
| ret = false; |
| } |
| |
| #if (SMP_DEBUG == TRUE) |
| p_print = cmac; |
| smp_debug_print_nbyte_little_endian(p_print, "AES-CMAC", BT_OCTET16_LEN); |
| #endif |
| |
| p = c; |
| ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); |
| return ret; |
| } |
| |
| /******************************************************************************* |
| ** |
| ** Function smp_calculate_h7 |
| ** |
| ** Description The function calculates |
| ** C = h7(SALT, W) = AES-CMAC (W) |
| ** SALT |
| ** where |
| ** input: W is 128 bit, |
| ** SALT is 128 bit, |
| ** output: C is 128 bit. |
| ** |
| ** Returns FALSE if out of resources, TRUE in other cases. |
| ** |
| ** Note The LSB is the first octet, the MSB is the last octet of |
| ** the AES-CMAC input/output stream. |
| ** |
| *******************************************************************************/ |
| bool smp_calculate_h7(uint8_t* salt, uint8_t* w, uint8_t* c) { |
| SMP_TRACE_DEBUG("%s", __FUNCTION__); |
| |
| uint8_t key[BT_OCTET16_LEN]; |
| uint8_t* p = key; |
| ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN); |
| |
| uint8_t msg_len = BT_OCTET16_LEN /* msg size */; |
| uint8_t msg[BT_OCTET16_LEN]; |
| p = msg; |
| ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN); |
| |
| bool ret = true; |
| uint8_t cmac[BT_OCTET16_LEN]; |
| if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac)) { |
| SMP_TRACE_ERROR("%s failed", __FUNCTION__); |
| ret = false; |
| } |
| |
| p = c; |
| ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN); |
| return ret; |
| } |
| |
| /** |
| * This function generates nonce. |
| */ |
| void smp_start_nonce_generation(tSMP_CB* p_cb) { |
| SMP_TRACE_DEBUG("%s", __func__); |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)p_cb->rand, rand, BT_OCTET8_LEN); |
| btsnd_hcic_ble_rand(Bind( |
| [](tSMP_CB* p_cb, BT_OCTET8 rand) { |
| memcpy((void*)&p_cb->rand[8], rand, BT_OCTET8_LEN); |
| SMP_TRACE_DEBUG("%s round %d", __func__, p_cb->round); |
| /* notifies SM that it has new nonce. */ |
| smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL); |
| }, |
| p_cb)); |
| }, |
| p_cb)); |
| } |