blob: dd9d1c7c7152b946f8a3197436a0ade8e093c345 [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "shill/wifi_service.h"
#include <string>
#include <base/logging.h>
#include <base/stringprintf.h>
#include <base/string_number_conversions.h>
#include <base/string_split.h>
#include <base/string_util.h>
#include <chromeos/dbus/service_constants.h>
#include <dbus/dbus.h>
#include <glib.h>
#include "shill/control_interface.h"
#include "shill/device.h"
#include "shill/error.h"
#include "shill/event_dispatcher.h"
#include "shill/ieee80211.h"
#include "shill/metrics.h"
#include "shill/property_accessor.h"
#include "shill/store_interface.h"
#include "shill/wifi.h"
#include "shill/wifi_endpoint.h"
#include "shill/wpa_supplicant.h"
using std::set;
using std::string;
using std::vector;
namespace shill {
const char WiFiService::kStorageHiddenSSID[] = "WiFi.HiddenSSID";
const char WiFiService::kStorageMode[] = "WiFi.Mode";
const char WiFiService::kStoragePassphrase[] = "Passphrase";
const char WiFiService::kStorageSecurity[] = "WiFi.Security";
const char WiFiService::kStorageSSID[] = "SSID";
WiFiService::WiFiService(ControlInterface *control_interface,
EventDispatcher *dispatcher,
Manager *manager,
const WiFiRefPtr &device,
const vector<uint8_t> &ssid,
const string &mode,
const string &security,
bool hidden_ssid)
: Service(control_interface, dispatcher, manager, Technology::kWifi),
need_passphrase_(false),
security_(security),
mode_(mode),
hidden_ssid_(hidden_ssid),
task_factory_(this),
wifi_(device),
ssid_(ssid) {
PropertyStore *store = this->mutable_store();
store->RegisterConstString(flimflam::kModeProperty, &mode_);
HelpRegisterDerivedString(store,
flimflam::kPassphraseProperty,
NULL,
&WiFiService::SetPassphrase);
store->RegisterBool(flimflam::kPassphraseRequiredProperty, &need_passphrase_);
store->RegisterConstString(flimflam::kSecurityProperty, &security_);
store->RegisterConstUint8(flimflam::kSignalStrengthProperty, &strength_);
store->RegisterConstString(flimflam::kWifiAuthMode, &auth_mode_);
store->RegisterConstBool(flimflam::kWifiHiddenSsid, &hidden_ssid_);
store->RegisterConstUint16(flimflam::kWifiFrequency, &frequency_);
store->RegisterConstUint16(flimflam::kWifiPhyMode, &physical_mode_);
hex_ssid_ = base::HexEncode(ssid_.data(), ssid_.size());
string ssid_string(
reinterpret_cast<const char *>(ssid_.data()), ssid_.size());
if (SanitizeSSID(&ssid_string)) {
// WifiHexSsid property should only be present if Name property
// has been munged.
store->RegisterConstString(flimflam::kWifiHexSsid, &hex_ssid_);
}
set_friendly_name(ssid_string);
// TODO(quiche): determine if it is okay to set EAP.KeyManagement for
// a service that is not 802.1x.
if (security_ == flimflam::kSecurity8021x) {
NOTIMPLEMENTED();
// XXX needs_passpharse_ = false ?
} else if (security_ == flimflam::kSecurityPsk) {
SetEAPKeyManagement("WPA-PSK");
need_passphrase_ = true;
} else if (security_ == flimflam::kSecurityRsn) {
SetEAPKeyManagement("WPA-PSK");
need_passphrase_ = true;
} else if (security_ == flimflam::kSecurityWpa) {
SetEAPKeyManagement("WPA-PSK");
need_passphrase_ = true;
} else if (security_ == flimflam::kSecurityWep) {
SetEAPKeyManagement("NONE");
need_passphrase_ = true;
} else if (security_ == flimflam::kSecurityNone) {
SetEAPKeyManagement("NONE");
need_passphrase_ = false;
} else {
LOG(ERROR) << "unsupported security method " << security_;
}
// Until we know better (at Profile load time), use the generic name.
storage_identifier_ = GetGenericStorageIdentifier();
UpdateConnectable();
}
WiFiService::~WiFiService() {
LOG(INFO) << __func__;
}
void WiFiService::AutoConnect() {
if (IsAutoConnectable()) {
// Execute immediately, for two reasons:
//
// 1. We need IsAutoConnectable to return the correct value for
// other WiFiServices, and that depends on WiFi's state.
//
// 2. We should probably limit the extent to which we queue up
// actions (such as AutoConnect) which depend on current state.
// If we queued AutoConnects, we could build a long queue of
// useless work (one AutoConnect per Service), which blocks
// more timely work.
ConnectTask();
}
}
void WiFiService::Connect(Error */*error*/) {
LOG(INFO) << __func__;
// Defer handling, since dbus-c++ does not permit us to send an
// outbound request while processing an inbound one.
dispatcher()->PostTask(
task_factory_.NewRunnableMethod(&WiFiService::ConnectTask));
}
void WiFiService::Disconnect(Error */*error*/) {
LOG(INFO) << __func__;
// Defer handling, since dbus-c++ does not permit us to send an
// outbound request while processing an inbound one.
dispatcher()->PostTask(
task_factory_.NewRunnableMethod(&WiFiService::DisconnectTask));
}
bool WiFiService::TechnologyIs(const Technology::Identifier type) const {
return wifi_->TechnologyIs(type);
}
bool WiFiService::IsAutoConnectable() const {
return connectable()
// Only auto-connect to Services which have visible Endpoints.
// (Needed because hidden Services may remain registered with
// Manager even without visible Endpoints.)
&& HasEndpoints()
// Do not preempt other connections (whether pending, or
// connected).
&& wifi_->IsIdle();
}
bool WiFiService::IsConnecting() const {
// WiFi does not move us into the associating state until it gets
// feedback from wpa_supplicant. So, to answer whether or
// not we're connecting, we consult with |wifi_|.
return wifi_->IsConnectingTo(*this);
}
void WiFiService::AddEndpoint(WiFiEndpointConstRefPtr endpoint) {
DCHECK(endpoint->ssid() == ssid());
endpoints_.insert(endpoint);
}
void WiFiService::RemoveEndpoint(WiFiEndpointConstRefPtr endpoint) {
set<WiFiEndpointConstRefPtr>::iterator i = endpoints_.find(endpoint);
DCHECK(i != endpoints_.end());
if (i == endpoints_.end()) {
LOG(WARNING) << "In " << __func__ << "(): "
<< "ignorning non-existent endpoint "
<< endpoint->bssid_string();
return;
}
endpoints_.erase(i);
}
string WiFiService::GetStorageIdentifier() const {
return storage_identifier_;
}
void WiFiService::SetPassphrase(const string &passphrase, Error *error) {
if (security_ == flimflam::kSecurityWep) {
ValidateWEPPassphrase(passphrase, error);
} else if (security_ == flimflam::kSecurityPsk ||
security_ == flimflam::kSecurityWpa ||
security_ == flimflam::kSecurityRsn) {
ValidateWPAPassphrase(passphrase, error);
} else {
error->Populate(Error::kNotSupported);
}
if (error->IsSuccess()) {
passphrase_ = passphrase;
need_passphrase_ = false;
}
UpdateConnectable();
}
bool WiFiService::IsLoadableFrom(StoreInterface *storage) const {
return storage->ContainsGroup(GetGenericStorageIdentifier()) ||
storage->ContainsGroup(GetSpecificStorageIdentifier());
}
bool WiFiService::IsVisible() const {
// WiFi Services should be displayed only if they are in range (have
// endpoints that have shown up in a scan) or if the service is actively
// being connected.
return HasEndpoints() || IsConnected() || IsConnecting();
}
bool WiFiService::Load(StoreInterface *storage) {
// First find out which storage identifier is available in priority order
// of specific, generic.
string id = GetSpecificStorageIdentifier();
if (!storage->ContainsGroup(id)) {
id = GetGenericStorageIdentifier();
if (!storage->ContainsGroup(id)) {
LOG(WARNING) << "Service is not available in the persistent store: "
<< id;
return false;
}
}
// Set our storage identifier to match the storage name in the Profile.
storage_identifier_ = id;
// Load properties common to all Services.
if (!Service::Load(storage)) {
return false;
}
// Load properties specific to WiFi services.
storage->GetBool(id, kStorageHiddenSSID, &hidden_ssid_);
// NB: mode, security and ssid parameters are never read in from
// Load() as they are provided from the scan.
string passphrase;
if (storage->GetCryptedString(id, kStoragePassphrase, &passphrase)) {
Error error;
SetPassphrase(passphrase, &error);
if (!error.IsSuccess()) {
LOG(ERROR) << "Passphrase could not be set: "
<< Error::GetName(error.type());
}
}
return true;
}
bool WiFiService::Save(StoreInterface *storage) {
// Save properties common to all Services.
if (!Service::Save(storage)) {
return false;
}
// Save properties specific to WiFi services.
const string id = GetStorageIdentifier();
storage->SetBool(id, kStorageHiddenSSID, hidden_ssid_);
storage->SetString(id, kStorageMode, mode_);
storage->SetCryptedString(id, kStoragePassphrase, passphrase_);
storage->SetString(id, kStorageSecurity, security_);
storage->SetString(id, kStorageSSID, hex_ssid_);
// TODO(quiche): Save Passphrase property. (crosbug.com/23467)
return true;
}
bool WiFiService::IsSecurityMatch(const string &security) const {
return GetSecurityClass(security) == GetSecurityClass(security_);
}
void WiFiService::InitializeCustomMetrics() const {
string histogram = metrics()->GetFullMetricName(
Metrics::kMetricTimeToJoinMilliseconds,
technology());
metrics()->AddServiceStateTransitionTimer(this,
histogram,
Service::kStateAssociating,
Service::kStateConfiguring);
}
void WiFiService::SendPostReadyStateMetrics() const {
// TODO(thieule): Send physical mode and security metrics.
// crosbug.com/24441
metrics()->SendEnumToUMA(
metrics()->GetFullMetricName(Metrics::kMetricNetworkChannel,
technology()),
Metrics::WiFiFrequencyToChannel(frequency_),
Metrics::kMetricNetworkChannelMax);
DCHECK(physical_mode_ < Metrics::kWiFiNetworkPhyModeMax);
metrics()->SendEnumToUMA(
metrics()->GetFullMetricName(Metrics::kMetricNetworkPhyMode,
technology()),
static_cast<Metrics::WiFiNetworkPhyMode>(physical_mode_),
Metrics::kWiFiNetworkPhyModeMax);
Metrics::WiFiSecurity security_uma =
Metrics::WiFiSecurityStringToEnum(security_);
DCHECK(security_uma != Metrics::kWiFiSecurityUnknown);
metrics()->SendEnumToUMA(
metrics()->GetFullMetricName(Metrics::kMetricNetworkSecurity,
technology()),
security_uma,
Metrics::kMetricNetworkSecurityMax);
}
// private methods
void WiFiService::HelpRegisterDerivedString(
PropertyStore *store,
const std::string &name,
std::string(WiFiService::*get)(Error *),
void(WiFiService::*set)(const std::string&, Error *)) {
store->RegisterDerivedString(
name,
StringAccessor(new CustomAccessor<WiFiService, string>(this, get, set)));
}
void WiFiService::ConnectTask() {
std::map<string, DBus::Variant> params;
DBus::MessageIter writer;
params[wpa_supplicant::kNetworkPropertyMode].writer().
append_uint32(WiFiEndpoint::ModeStringToUint(mode_));
if (security_ == flimflam::kSecurity8021x) {
NOTIMPLEMENTED();
} else if (security_ == flimflam::kSecurityPsk) {
const string psk_proto = StringPrintf("%s %s",
wpa_supplicant::kSecurityModeWPA,
wpa_supplicant::kSecurityModeRSN);
params[wpa_supplicant::kPropertySecurityProtocol].writer().
append_string(psk_proto.c_str());
params[wpa_supplicant::kPropertyPreSharedKey].writer().
append_string(passphrase_.c_str());
} else if (security_ == flimflam::kSecurityRsn) {
params[wpa_supplicant::kPropertySecurityProtocol].writer().
append_string(wpa_supplicant::kSecurityModeRSN);
params[wpa_supplicant::kPropertyPreSharedKey].writer().
append_string(passphrase_.c_str());
} else if (security_ == flimflam::kSecurityWpa) {
params[wpa_supplicant::kPropertySecurityProtocol].writer().
append_string(wpa_supplicant::kSecurityModeWPA);
params[wpa_supplicant::kPropertyPreSharedKey].writer().
append_string(passphrase_.c_str());
} else if (security_ == flimflam::kSecurityWep) {
params[wpa_supplicant::kPropertyAuthAlg].writer().
append_string(wpa_supplicant::kSecurityAuthAlg);
Error error;
int key_index;
std::vector<uint8> password_bytes;
ParseWEPPassphrase(passphrase_, &key_index, &password_bytes, &error);
writer = params[wpa_supplicant::kPropertyWEPKey +
base::IntToString(key_index)].writer();
writer << password_bytes;
params[wpa_supplicant::kPropertyWEPTxKeyIndex].writer().
append_uint32(key_index);
} else if (security_ == flimflam::kSecurityNone) {
// Nothing special to do here.
} else {
LOG(ERROR) << "Can't connect. Unsupported security method " << security_;
}
params[wpa_supplicant::kPropertyKeyManagement].writer().
append_string(key_management().c_str());
// See note in dbus_adaptor.cc on why we need to use a local.
writer = params[wpa_supplicant::kNetworkPropertySSID].writer();
writer << ssid_;
wifi_->ConnectTo(this, params);
}
void WiFiService::DisconnectTask() {
wifi_->DisconnectFrom(this);
}
string WiFiService::GetDeviceRpcId(Error */*error*/) {
return wifi_->GetRpcIdentifier();
}
void WiFiService::UpdateConnectable() {
if (security_ == flimflam::kSecurityNone) {
DCHECK(passphrase_.empty());
set_connectable(true);
} else if (security_ == flimflam::kSecurityWep ||
security_ == flimflam::kSecurityWpa ||
security_ == flimflam::kSecurityPsk ||
security_ == flimflam::kSecurityRsn) {
set_connectable(!passphrase_.empty());
} else {
// TODO(quiche): Handle connectability for 802.1x. (crosbug.com/23466)
set_connectable(false);
}
}
// static
void WiFiService::ValidateWEPPassphrase(const std::string &passphrase,
Error *error) {
ParseWEPPassphrase(passphrase, NULL, NULL, error);
}
// static
void WiFiService::ValidateWPAPassphrase(const std::string &passphrase,
Error *error) {
unsigned int length = passphrase.length();
vector<uint8> passphrase_bytes;
if (base::HexStringToBytes(passphrase, &passphrase_bytes)) {
if (length != IEEE_80211::kWPAHexLen &&
(length < IEEE_80211::kWPAAsciiMinLen ||
length > IEEE_80211::kWPAAsciiMaxLen)) {
error->Populate(Error::kInvalidPassphrase);
}
} else {
if (length < IEEE_80211::kWPAAsciiMinLen ||
length > IEEE_80211::kWPAAsciiMaxLen) {
error->Populate(Error::kInvalidPassphrase);
}
}
}
// static
void WiFiService::ParseWEPPassphrase(const string &passphrase,
int *key_index,
std::vector<uint8> *password_bytes,
Error *error) {
unsigned int length = passphrase.length();
int key_index_local;
std::string password_text;
bool is_hex = false;
switch (length) {
case IEEE_80211::kWEP40AsciiLen:
case IEEE_80211::kWEP104AsciiLen:
key_index_local = 0;
password_text = passphrase;
break;
case IEEE_80211::kWEP40AsciiLen + 2:
case IEEE_80211::kWEP104AsciiLen + 2:
if (CheckWEPKeyIndex(passphrase, error)) {
base::StringToInt(passphrase.substr(0,1), &key_index_local);
password_text = passphrase.substr(2);
}
break;
case IEEE_80211::kWEP40HexLen:
case IEEE_80211::kWEP104HexLen:
if (CheckWEPIsHex(passphrase, error)) {
key_index_local = 0;
password_text = passphrase;
is_hex = true;
}
break;
case IEEE_80211::kWEP40HexLen + 2:
case IEEE_80211::kWEP104HexLen + 2:
if(CheckWEPKeyIndex(passphrase, error) &&
CheckWEPIsHex(passphrase.substr(2), error)) {
base::StringToInt(passphrase.substr(0,1), &key_index_local);
password_text = passphrase.substr(2);
is_hex = true;
} else if (CheckWEPPrefix(passphrase, error) &&
CheckWEPIsHex(passphrase.substr(2), error)) {
key_index_local = 0;
password_text = passphrase.substr(2);
is_hex = true;
}
break;
case IEEE_80211::kWEP40HexLen + 4:
case IEEE_80211::kWEP104HexLen + 4:
if (CheckWEPKeyIndex(passphrase, error) &&
CheckWEPPrefix(passphrase.substr(2), error) &&
CheckWEPIsHex(passphrase.substr(4), error)) {
base::StringToInt(passphrase.substr(0,1), &key_index_local);
password_text = passphrase.substr(4);
is_hex = true;
}
break;
default:
error->Populate(Error::kInvalidPassphrase);
break;
}
if (error->IsSuccess()) {
if (key_index)
*key_index = key_index_local;
if (password_bytes) {
if (is_hex)
base::HexStringToBytes(password_text, password_bytes);
else
password_bytes->insert(password_bytes->end(),
password_text.begin(),
password_text.end());
}
}
}
// static
bool WiFiService::CheckWEPIsHex(const string &passphrase, Error *error) {
vector<uint8> passphrase_bytes;
if (base::HexStringToBytes(passphrase, &passphrase_bytes)) {
return true;
} else {
error->Populate(Error::kInvalidPassphrase);
return false;
}
}
// static
bool WiFiService::CheckWEPKeyIndex(const string &passphrase, Error *error) {
if (StartsWithASCII(passphrase, "0:", false) ||
StartsWithASCII(passphrase, "1:", false) ||
StartsWithASCII(passphrase, "2:", false) ||
StartsWithASCII(passphrase, "3:", false)) {
return true;
} else {
error->Populate(Error::kInvalidPassphrase);
return false;
}
}
// static
bool WiFiService::CheckWEPPrefix(const string &passphrase, Error *error) {
if (StartsWithASCII(passphrase, "0x", false)) {
return true;
} else {
error->Populate(Error::kInvalidPassphrase);
return false;
}
}
// static
bool WiFiService::SanitizeSSID(string *ssid) {
CHECK(ssid);
size_t ssid_len = ssid->length();
size_t i;
bool changed = false;
for (i=0; i < ssid_len; ++i) {
if (!g_ascii_isprint((*ssid)[i])) {
(*ssid)[i] = '?';
changed = true;
}
}
return changed;
}
// static
string WiFiService::GetSecurityClass(const string &security) {
if (security == flimflam::kSecurityRsn ||
security == flimflam::kSecurityWpa) {
return flimflam::kSecurityPsk;
} else {
return security;
}
}
// static
bool WiFiService::ParseStorageIdentifier(const string &storage_name,
string *address,
string *mode,
string *security) {
vector<string> wifi_parts;
base::SplitString(storage_name, '_', &wifi_parts);
if (wifi_parts.size() != 5 || wifi_parts[0] != flimflam::kTypeWifi) {
return false;
}
*address = wifi_parts[1];
*mode = wifi_parts[3];
*security = wifi_parts[4];
return true;
}
string WiFiService::GetGenericStorageIdentifier() const {
return GetStorageIdentifierForSecurity(GetSecurityClass(security_));
}
string WiFiService::GetSpecificStorageIdentifier() const {
return GetStorageIdentifierForSecurity(security_);
}
string WiFiService::GetStorageIdentifierForSecurity(
const string &security) const {
return StringToLowerASCII(base::StringPrintf("%s_%s_%s_%s_%s",
flimflam::kTypeWifi,
wifi_->address().c_str(),
hex_ssid_.c_str(),
mode_.c_str(),
security.c_str()));
}
} // namespace shill