blob: 366f74fac0e46367451d8d66e88650219673bfec [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "shill/device_info.h"
#include <arpa/inet.h>
#include <fcntl.h>
#include <linux/if_tun.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <netinet/ether.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <time.h>
#include <unistd.h>
#include <string>
#include <base/bind.h>
#include <base/file_util.h>
#include <base/logging.h>
#include <base/memory/scoped_ptr.h>
#include <base/stl_util.h>
#include <base/string_number_conversions.h>
#include <base/string_util.h>
#include <base/stringprintf.h>
#include "shill/control_interface.h"
#include "shill/device.h"
#include "shill/device_stub.h"
#include "shill/ethernet.h"
#include "shill/manager.h"
#include "shill/rtnl_handler.h"
#include "shill/rtnl_listener.h"
#include "shill/rtnl_message.h"
#include "shill/service.h"
#include "shill/wifi.h"
using base::Bind;
using base::Unretained;
using std::map;
using std::string;
using std::vector;
namespace shill {
// static
const char DeviceInfo::kInterfaceUevent[] = "/sys/class/net/%s/uevent";
// static
const char DeviceInfo::kInterfaceUeventWifiSignature[] = "DEVTYPE=wlan\n";
// static
const char DeviceInfo::kInterfaceDriver[] = "/sys/class/net/%s/device/driver";
// static
const char DeviceInfo::kInterfaceTunFlags[] = "/sys/class/net/%s/tun_flags";
// static
const char DeviceInfo::kInterfaceType[] = "/sys/class/net/%s/type";
// static
const char *DeviceInfo::kModemDrivers[] = {
"gobi",
"QCUSBNet2k",
"GobiNet",
"cdc_ether",
NULL
};
// static
const char DeviceInfo::kTunDeviceName[] = "/dev/net/tun";
DeviceInfo::DeviceInfo(ControlInterface *control_interface,
EventDispatcher *dispatcher,
Metrics *metrics,
Manager *manager)
: control_interface_(control_interface),
dispatcher_(dispatcher),
metrics_(metrics),
manager_(manager),
link_callback_(Bind(&DeviceInfo::LinkMsgHandler, Unretained(this))),
address_callback_(Bind(&DeviceInfo::AddressMsgHandler, Unretained(this))),
link_listener_(NULL),
address_listener_(NULL),
rtnl_handler_(RTNLHandler::GetInstance()) {
}
DeviceInfo::~DeviceInfo() {}
void DeviceInfo::AddDeviceToBlackList(const string &device_name) {
black_list_.insert(device_name);
}
bool DeviceInfo::IsDeviceBlackListed(const string &device_name) {
return ContainsKey(black_list_, device_name);
}
void DeviceInfo::Start() {
link_listener_.reset(
new RTNLListener(RTNLHandler::kRequestLink, link_callback_));
address_listener_.reset(
new RTNLListener(RTNLHandler::kRequestAddr, address_callback_));
rtnl_handler_->RequestDump(RTNLHandler::kRequestLink |
RTNLHandler::kRequestAddr);
}
void DeviceInfo::Stop() {
link_listener_.reset();
address_listener_.reset();
}
void DeviceInfo::RegisterDevice(const DeviceRefPtr &device) {
VLOG(2) << __func__ << "(" << device->link_name() << ", "
<< device->interface_index() << ")";
CHECK(!GetDevice(device->interface_index()).get());
infos_[device->interface_index()].device = device;
if (device->TechnologyIs(Technology::kCellular) ||
device->TechnologyIs(Technology::kEthernet) ||
device->TechnologyIs(Technology::kWifi)) {
manager_->RegisterDevice(device);
}
}
void DeviceInfo::DeregisterDevice(const DeviceRefPtr &device) {
int interface_index = device->interface_index();
VLOG(2) << __func__ << "(" << device->link_name() << ", "
<< interface_index << ")";
CHECK(device->TechnologyIs(Technology::kCellular));
// Release reference to the device
map<int, Info>::iterator iter = infos_.find(interface_index);
if (iter != infos_.end()) {
VLOG(2) << "Removing device from info for index: " << interface_index;
manager_->DeregisterDevice(device);
// Release the reference to the device, but maintain the mapping
// for the index. That will be cleaned up by an RTNL message.
iter->second.device = NULL;
}
}
Technology::Identifier DeviceInfo::GetDeviceTechnology(
const string &iface_name) {
FilePath uevent_file(StringPrintf(kInterfaceUevent, iface_name.c_str()));
string contents;
if (!file_util::ReadFileToString(uevent_file, &contents)) {
VLOG(2) << StringPrintf("%s: device %s has no uevent file",
__func__, iface_name.c_str());
return Technology::kUnknown;
}
/*
* If the "uevent" file contains the string "DEVTYPE=wlan\n" at the
* start of the file or after a newline, we can safely assume this
* is a wifi device.
*/
if (contents.find(kInterfaceUeventWifiSignature) != string::npos) {
VLOG(2) << StringPrintf("%s: device %s has wifi signature in uevent file",
__func__, iface_name.c_str());
FilePath type_file(StringPrintf(kInterfaceType, iface_name.c_str()));
string type_string;
int type_val = 0;
if (file_util::ReadFileToString(type_file, &type_string) &&
TrimString(type_string, "\n", &type_string) &&
base::StringToInt(type_string, &type_val) &&
type_val == ARPHRD_IEEE80211_RADIOTAP) {
VLOG(2) << StringPrintf("%s: wifi device %s is in monitor mode",
__func__, iface_name.c_str());
return Technology::kWiFiMonitor;
}
return Technology::kWifi;
}
FilePath driver_file(StringPrintf(kInterfaceDriver, iface_name.c_str()));
FilePath driver_path;
if (!file_util::ReadSymbolicLink(driver_file, &driver_path)) {
VLOG(2) << StringPrintf("%s: device %s has no device symlink",
__func__, iface_name.c_str());
FilePath tun_flags_file(StringPrintf(kInterfaceTunFlags,
iface_name.c_str()));
string tun_flags_string;
int tun_flags = 0;
if (file_util::ReadFileToString(tun_flags_file, &tun_flags_string) &&
TrimString(tun_flags_string, "\n", &tun_flags_string) &&
base::HexStringToInt(tun_flags_string, &tun_flags) &&
(tun_flags & IFF_TUN)) {
VLOG(2) << StringPrintf("%s: device %s is tun device",
__func__, iface_name.c_str());
return Technology::kTunnel;
}
return Technology::kUnknown;
}
string driver_name(driver_path.BaseName().value());
// See if driver for this interface is in a list of known modem driver names
for (int modem_idx = 0; kModemDrivers[modem_idx] != NULL; ++modem_idx) {
// TODO(ers): should have additional checks to make sure a cdc_ether
// device is really a modem. flimflam uses udev to make such checks,
// looking to see whether a ttyACM or ttyUSB device is associated.
if (driver_name == kModemDrivers[modem_idx]) {
VLOG(2) << StringPrintf("%s: device %s is matched with modem driver %s",
__func__, iface_name.c_str(),
driver_name.c_str());
return Technology::kCellular;
}
}
VLOG(2) << StringPrintf("%s: device %s is defaulted to type ethernet",
__func__, iface_name.c_str());
return Technology::kEthernet;
}
void DeviceInfo::AddLinkMsgHandler(const RTNLMessage &msg) {
DCHECK(msg.type() == RTNLMessage::kTypeLink &&
msg.mode() == RTNLMessage::kModeAdd);
int dev_index = msg.interface_index();
Technology::Identifier technology = Technology::kUnknown;
unsigned int flags = msg.link_status().flags;
unsigned int change = msg.link_status().change;
bool new_device = !ContainsKey(infos_, dev_index);
VLOG(2) << __func__ << "(index=" << dev_index
<< std::showbase << std::hex
<< ", flags=" << flags << ", change=" << change << ")"
<< std::dec << std::noshowbase
<< ", new_device=" << new_device;
infos_[dev_index].flags = flags;
DeviceRefPtr device = GetDevice(dev_index);
if (!device.get()) {
if (!msg.HasAttribute(IFLA_IFNAME)) {
LOG(ERROR) << "Add Link message does not have IFLA_IFNAME!";
return;
}
ByteString b(msg.GetAttribute(IFLA_IFNAME));
string link_name(reinterpret_cast<const char*>(b.GetConstData()));
VLOG(2) << "add link index " << dev_index << " name " << link_name;
if (!link_name.empty()) {
if (ContainsKey(black_list_, link_name)) {
technology = Technology::kBlacklisted;
} else {
technology = GetDeviceTechnology(link_name);
}
}
string address;
if (msg.HasAttribute(IFLA_ADDRESS)) {
infos_[dev_index].mac_address = msg.GetAttribute(IFLA_ADDRESS);
address = StringToLowerASCII(infos_[dev_index].mac_address.HexEncode());
VLOG(2) << "link index " << dev_index << " address "
<< infos_[dev_index].mac_address.HexEncode();
} else if (technology != Technology::kTunnel) {
LOG(ERROR) << "Add Link message does not have IFLA_ADDRESS!";
return;
}
switch (technology) {
case Technology::kCellular:
// Cellular devices are managed by ModemInfo.
VLOG(2) << "Cellular link " << link_name << " at index " << dev_index
<< " -- notifying ModemInfo.";
manager_->modem_info()->OnDeviceInfoAvailable(link_name);
return;
case Technology::kEthernet:
device = new Ethernet(control_interface_, dispatcher_, metrics_,
manager_, link_name, address, dev_index);
device->EnableIPv6Privacy();
break;
case Technology::kWifi:
device = new WiFi(control_interface_, dispatcher_, metrics_, manager_,
link_name, address, dev_index);
device->EnableIPv6Privacy();
break;
case Technology::kTunnel:
// Tunnel devices are managed by the VPN code. Notify the VPN Provider
// only if this is the first time we have seen this device index.
if (new_device) {
VLOG(2) << "Tunnel link " << link_name << " at index " << dev_index
<< " -- notifying VPNProvider.";
if (!manager_->vpn_provider()->OnDeviceInfoAvailable(link_name,
dev_index)) {
// If VPN does not know anything about this tunnel, it is probably
// left over from a previous instance and should not exist.
VLOG(2) << "Tunnel link is unused. Deleting.";
DeleteInterface(dev_index);
}
}
return;
default:
device = new DeviceStub(control_interface_, dispatcher_, metrics_,
manager_, link_name, address, dev_index,
technology);
break;
}
RegisterDevice(device);
}
device->LinkEvent(flags, change);
}
void DeviceInfo::DelLinkMsgHandler(const RTNLMessage &msg) {
VLOG(2) << __func__ << "(index=" << msg.interface_index() << ")";
DCHECK(msg.type() == RTNLMessage::kTypeLink &&
msg.mode() == RTNLMessage::kModeDelete);
VLOG(2) << __func__ << "(index=" << msg.interface_index()
<< std::showbase << std::hex
<< ", flags=" << msg.link_status().flags
<< ", change=" << msg.link_status().change << ")";
RemoveInfo(msg.interface_index());
}
DeviceRefPtr DeviceInfo::GetDevice(int interface_index) const {
const Info *info = GetInfo(interface_index);
return info ? info->device : NULL;
}
bool DeviceInfo::GetMACAddress(int interface_index, ByteString *address) const {
const Info *info = GetInfo(interface_index);
if (!info) {
return false;
}
*address = info->mac_address;
return true;
}
bool DeviceInfo::GetAddresses(int interface_index,
vector<AddressData> *addresses) const {
const Info *info = GetInfo(interface_index);
if (!info) {
return false;
}
*addresses = info->ip_addresses;
return true;
}
void DeviceInfo::FlushAddresses(int interface_index) const {
VLOG(2) << __func__ << "(" << interface_index << ")";
const Info *info = GetInfo(interface_index);
if (!info) {
return;
}
const vector<AddressData> &addresses = info->ip_addresses;
vector<AddressData>::const_iterator iter;
for (iter = addresses.begin(); iter != addresses.end(); ++iter) {
if (iter->address.family() == IPAddress::kFamilyIPv4 ||
(iter->scope == RT_SCOPE_UNIVERSE &&
(iter->flags & ~IFA_F_TEMPORARY) == 0)) {
VLOG(2) << __func__ << ": removing ip address from interface "
<< interface_index;
rtnl_handler_->RemoveInterfaceAddress(interface_index, iter->address);
}
}
}
bool DeviceInfo::GetFlags(int interface_index, unsigned int *flags) const {
const Info *info = GetInfo(interface_index);
if (!info) {
return false;
}
*flags = info->flags;
return true;
}
bool DeviceInfo::CreateTunnelInterface(string *interface_name) const {
int fd = HANDLE_EINTR(open(kTunDeviceName, O_RDWR));
if (fd < 0) {
PLOG(ERROR) << "failed to open " << kTunDeviceName;
return false;
}
file_util::ScopedFD scoped_fd(&fd);
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TUN | IFF_NO_PI;
if (HANDLE_EINTR(ioctl(fd, TUNSETIFF, &ifr))) {
PLOG(ERROR) << "failed to create tunnel interface";
return false;
}
if (HANDLE_EINTR(ioctl(fd, TUNSETPERSIST, 1))) {
PLOG(ERROR) << "failed to set tunnel interface to be persistent";
return false;
}
*interface_name = string(ifr.ifr_name);
return true;
}
bool DeviceInfo::DeleteInterface(int interface_index) const {
return rtnl_handler_->RemoveInterface(interface_index);
}
const DeviceInfo::Info *DeviceInfo::GetInfo(int interface_index) const {
map<int, Info>::const_iterator iter = infos_.find(interface_index);
if (iter == infos_.end()) {
return NULL;
}
return &iter->second;
}
void DeviceInfo::RemoveInfo(int interface_index) {
map<int, Info>::iterator iter = infos_.find(interface_index);
if (iter != infos_.end()) {
VLOG(2) << "Removing info for device index: " << interface_index;
if (iter->second.device.get()) {
manager_->DeregisterDevice(iter->second.device);
}
infos_.erase(iter);
} else {
VLOG(2) << __func__ << "unknown device index: " << interface_index;
}
}
void DeviceInfo::LinkMsgHandler(const RTNLMessage &msg) {
DCHECK(msg.type() == RTNLMessage::kTypeLink);
if (msg.mode() == RTNLMessage::kModeAdd) {
AddLinkMsgHandler(msg);
} else if (msg.mode() == RTNLMessage::kModeDelete) {
DelLinkMsgHandler(msg);
} else {
NOTREACHED();
}
}
void DeviceInfo::AddressMsgHandler(const RTNLMessage &msg) {
VLOG(2) << __func__;
DCHECK(msg.type() == RTNLMessage::kTypeAddress);
int interface_index = msg.interface_index();
if (!ContainsKey(infos_, interface_index)) {
LOG(ERROR) << "Got address type message for unknown index "
<< interface_index;
return;
}
const RTNLMessage::AddressStatus &status = msg.address_status();
IPAddress address(msg.family(),
msg.GetAttribute(IFA_ADDRESS),
status.prefix_len);
vector<AddressData> &address_list = infos_[interface_index].ip_addresses;
vector<AddressData>::iterator iter;
for (iter = address_list.begin(); iter != address_list.end(); ++iter) {
if (address.Equals(iter->address)) {
break;
}
}
if (iter != address_list.end()) {
if (msg.mode() == RTNLMessage::kModeDelete) {
VLOG(2) << "Delete address for interface " << interface_index;
address_list.erase(iter);
} else {
iter->flags = status.flags;
iter->scope = status.scope;
}
} else if (msg.mode() == RTNLMessage::kModeAdd) {
address_list.push_back(AddressData(address, status.flags, status.scope));
VLOG(2) << "Add address for interface " << interface_index;
}
}
} // namespace shill