| /* |
| ** This file is in the public domain, so clarified as of |
| ** 1996-06-05 by Arthur David Olson. |
| */ |
| |
| #include <stdio.h> |
| |
| #ifndef lint |
| #ifndef NOID |
| static char elsieid[] = "@(#)localtime.c 8.3"; |
| #endif /* !defined NOID */ |
| #endif /* !defined lint */ |
| |
| /* |
| ** Leap second handling from Bradley White. |
| ** POSIX-style TZ environment variable handling from Guy Harris. |
| */ |
| |
| /*LINTLIBRARY*/ |
| |
| #include "private.h" |
| #include "tzfile.h" |
| #include "fcntl.h" |
| #include "float.h" /* for FLT_MAX and DBL_MAX */ |
| |
| #ifndef TZ_ABBR_MAX_LEN |
| #define TZ_ABBR_MAX_LEN 16 |
| #endif /* !defined TZ_ABBR_MAX_LEN */ |
| |
| #ifndef TZ_ABBR_CHAR_SET |
| #define TZ_ABBR_CHAR_SET \ |
| "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" |
| #endif /* !defined TZ_ABBR_CHAR_SET */ |
| |
| #ifndef TZ_ABBR_ERR_CHAR |
| #define TZ_ABBR_ERR_CHAR '_' |
| #endif /* !defined TZ_ABBR_ERR_CHAR */ |
| |
| #define INDEXFILE "/system/usr/share/zoneinfo/zoneinfo.idx" |
| #define DATAFILE "/system/usr/share/zoneinfo/zoneinfo.dat" |
| #define NAMELEN 40 |
| #define INTLEN 4 |
| #define READLEN (NAMELEN + 3 * INTLEN) |
| |
| /* |
| ** SunOS 4.1.1 headers lack O_BINARY. |
| */ |
| |
| #ifdef O_BINARY |
| #define OPEN_MODE (O_RDONLY | O_BINARY) |
| #endif /* defined O_BINARY */ |
| #ifndef O_BINARY |
| #define OPEN_MODE O_RDONLY |
| #endif /* !defined O_BINARY */ |
| |
| #ifndef WILDABBR |
| /* |
| ** Someone might make incorrect use of a time zone abbreviation: |
| ** 1. They might reference tzname[0] before calling tzset (explicitly |
| ** or implicitly). |
| ** 2. They might reference tzname[1] before calling tzset (explicitly |
| ** or implicitly). |
| ** 3. They might reference tzname[1] after setting to a time zone |
| ** in which Daylight Saving Time is never observed. |
| ** 4. They might reference tzname[0] after setting to a time zone |
| ** in which Standard Time is never observed. |
| ** 5. They might reference tm.TM_ZONE after calling offtime. |
| ** What's best to do in the above cases is open to debate; |
| ** for now, we just set things up so that in any of the five cases |
| ** WILDABBR is used. Another possibility: initialize tzname[0] to the |
| ** string "tzname[0] used before set", and similarly for the other cases. |
| ** And another: initialize tzname[0] to "ERA", with an explanation in the |
| ** manual page of what this "time zone abbreviation" means (doing this so |
| ** that tzname[0] has the "normal" length of three characters). |
| */ |
| #define WILDABBR " " |
| #endif /* !defined WILDABBR */ |
| |
| static char wildabbr[] = WILDABBR; |
| |
| static const char gmt[] = "GMT"; |
| |
| /* |
| ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. |
| ** We default to US rules as of 1999-08-17. |
| ** POSIX 1003.1 section 8.1.1 says that the default DST rules are |
| ** implementation dependent; for historical reasons, US rules are a |
| ** common default. |
| */ |
| #ifndef TZDEFRULESTRING |
| #define TZDEFRULESTRING ",M4.1.0,M10.5.0" |
| #endif /* !defined TZDEFDST */ |
| |
| struct ttinfo { /* time type information */ |
| long tt_gmtoff; /* UTC offset in seconds */ |
| int tt_isdst; /* used to set tm_isdst */ |
| int tt_abbrind; /* abbreviation list index */ |
| int tt_ttisstd; /* TRUE if transition is std time */ |
| int tt_ttisgmt; /* TRUE if transition is UTC */ |
| }; |
| |
| struct lsinfo { /* leap second information */ |
| time_t ls_trans; /* transition time */ |
| long ls_corr; /* correction to apply */ |
| }; |
| |
| #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) |
| |
| #ifdef TZNAME_MAX |
| #define MY_TZNAME_MAX TZNAME_MAX |
| #endif /* defined TZNAME_MAX */ |
| #ifndef TZNAME_MAX |
| #define MY_TZNAME_MAX 255 |
| #endif /* !defined TZNAME_MAX */ |
| |
| struct state { |
| int leapcnt; |
| int timecnt; |
| int typecnt; |
| int charcnt; |
| int goback; |
| int goahead; |
| time_t ats[TZ_MAX_TIMES]; |
| unsigned char types[TZ_MAX_TIMES]; |
| struct ttinfo ttis[TZ_MAX_TYPES]; |
| char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), |
| (2 * (MY_TZNAME_MAX + 1)))]; |
| struct lsinfo lsis[TZ_MAX_LEAPS]; |
| }; |
| |
| struct rule { |
| int r_type; /* type of rule--see below */ |
| int r_day; /* day number of rule */ |
| int r_week; /* week number of rule */ |
| int r_mon; /* month number of rule */ |
| long r_time; /* transition time of rule */ |
| }; |
| |
| #define JULIAN_DAY 0 /* Jn - Julian day */ |
| #define DAY_OF_YEAR 1 /* n - day of year */ |
| #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ |
| |
| /* |
| ** Prototypes for static functions. |
| */ |
| |
| static long detzcode P((const char * codep)); |
| static time_t detzcode64 P((const char * codep)); |
| static int differ_by_repeat P((time_t t1, time_t t0)); |
| static const char * getzname P((const char * strp)); |
| static const char * getqzname P((const char * strp, const int delim)); |
| static const char * getnum P((const char * strp, int * nump, int min, |
| int max)); |
| static const char * getsecs P((const char * strp, long * secsp)); |
| static const char * getoffset P((const char * strp, long * offsetp)); |
| static const char * getrule P((const char * strp, struct rule * rulep)); |
| static void gmtload P((struct state * sp)); |
| static struct tm * gmtsub P((const time_t * timep, long offset, |
| struct tm * tmp)); |
| static struct tm * localsub P((const time_t * timep, long offset, |
| struct tm * tmp, struct state *sp)); |
| static int increment_overflow P((int * number, int delta)); |
| static int leaps_thru_end_of P((int y)); |
| static int long_increment_overflow P((long * number, int delta)); |
| static int long_normalize_overflow P((long * tensptr, |
| int * unitsptr, int base)); |
| static int normalize_overflow P((int * tensptr, int * unitsptr, |
| int base)); |
| static void settzname P((void)); |
| static time_t time1 P((struct tm * tmp, |
| struct tm * (*funcp) P((const time_t *, |
| long, struct tm *, const struct state* sp)), |
| long offset, const struct state * sp)); |
| static time_t time2 P((struct tm *tmp, |
| struct tm * (*funcp) P((const time_t *, |
| long, struct tm*, const struct state* sp)), |
| long offset, int * okayp, const struct state * sp)); |
| static time_t time2sub P((struct tm *tmp, |
| struct tm * (*funcp) P((const time_t*, long, struct tm*,const struct state *sp)), |
| long offset, int * okayp, int do_norm_secs, |
| const struct state *sp)); |
| static struct tm * timesub P((const time_t * timep, long offset, |
| const struct state * sp, struct tm * tmp)); |
| static int tmcomp P((const struct tm * atmp, |
| const struct tm * btmp)); |
| static time_t transtime P((time_t janfirst, int year, |
| const struct rule * rulep, long offset)); |
| static int tzload P((const char * name, struct state * sp, |
| int doextend)); |
| static int tzload_uncached P((const char * name, struct state * sp, |
| int doextend)); |
| static int tzparse P((const char * name, struct state * sp, |
| int lastditch)); |
| |
| #ifdef ALL_STATE |
| static struct state * gmtptr; |
| #endif /* defined ALL_STATE */ |
| |
| #ifndef ALL_STATE |
| static struct state gmtmem; |
| #define gmtptr (&gmtmem) |
| #endif /* State Farm */ |
| |
| #define CACHE_COUNT 4 |
| static char * g_cacheNames[CACHE_COUNT] = {0,0}; |
| static struct state g_cacheStates[CACHE_COUNT]; |
| static int g_lastCache = 0; |
| static struct state g_utc; |
| unsigned char g_utcSet = 0; |
| |
| |
| #ifndef TZ_STRLEN_MAX |
| #define TZ_STRLEN_MAX 255 |
| #endif /* !defined TZ_STRLEN_MAX */ |
| |
| static char lcl_TZname[TZ_STRLEN_MAX + 1]; |
| static int lcl_is_set; |
| static int gmt_is_set; |
| |
| char * tzname[2] = { |
| wildabbr, |
| wildabbr |
| }; |
| |
| /* |
| ** Section 4.12.3 of X3.159-1989 requires that |
| ** Except for the strftime function, these functions [asctime, |
| ** ctime, gmtime, localtime] return values in one of two static |
| ** objects: a broken-down time structure and an array of char. |
| ** Thanks to Paul Eggert for noting this. |
| */ |
| |
| static struct tm tm; |
| |
| #ifdef USG_COMPAT |
| time_t timezone = 0; |
| int daylight = 0; |
| #endif /* defined USG_COMPAT */ |
| |
| #ifdef ALTZONE |
| time_t altzone = 0; |
| #endif /* defined ALTZONE */ |
| |
| static long |
| detzcode(codep) |
| const char * const codep; |
| { |
| register long result; |
| register int i; |
| |
| result = (codep[0] & 0x80) ? ~0L : 0; |
| for (i = 0; i < 4; ++i) |
| result = (result << 8) | (codep[i] & 0xff); |
| return result; |
| } |
| |
| static time_t |
| detzcode64(codep) |
| const char * const codep; |
| { |
| register time_t result; |
| register int i; |
| |
| result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0; |
| for (i = 0; i < 8; ++i) |
| result = result * 256 + (codep[i] & 0xff); |
| return result; |
| } |
| |
| static int |
| differ_by_repeat(t1, t0) |
| const time_t t1; |
| const time_t t0; |
| { |
| if (TYPE_INTEGRAL(time_t) && |
| TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) |
| return 0; |
| return t1 - t0 == SECSPERREPEAT; |
| } |
| |
| static int toint(unsigned char *s) { |
| return (s[0] << 24) | (s[1] << 16) | (s[2] << 8) | s[3]; |
| } |
| |
| static int |
| tzload(const char *name, struct state * const sp, const int doextend) |
| { |
| if (name) { |
| int i, err; |
| if (0 == strcmp(name, "UTC")) { |
| if (!g_utcSet) { |
| tzload_uncached(name, &g_utc, 1); |
| g_utcSet = 1; |
| } |
| //printf("tzload: utc\n"); |
| *sp = g_utc; |
| return 0; |
| } |
| for (i=0; i<CACHE_COUNT; i++) { |
| if (g_cacheNames[i] && 0 == strcmp(name, g_cacheNames[i])) { |
| *sp = g_cacheStates[i]; |
| //printf("tzload: hit: %s\n", name); |
| return 0; |
| } |
| } |
| //printf("tzload: miss: %s\n", name); |
| g_lastCache++; |
| if (g_lastCache >= CACHE_COUNT) { |
| g_lastCache = 0; |
| } |
| i = g_lastCache; |
| if (g_cacheNames[i]) { |
| free(g_cacheNames[i]); |
| } |
| err = tzload_uncached(name, &(g_cacheStates[i]), 1); |
| if (err == 0) { |
| g_cacheNames[i] = strdup(name); |
| *sp = g_cacheStates[i]; |
| return 0; |
| } else { |
| g_cacheNames[i] = NULL; |
| return err; |
| } |
| } |
| return tzload_uncached(name, sp, doextend); |
| } |
| |
| static int |
| tzload_uncached(name, sp, doextend) |
| register const char * name; |
| register struct state * const sp; |
| register const int doextend; |
| { |
| register const char * p; |
| register int i; |
| register int fid; |
| register int stored; |
| register int nread; |
| union { |
| struct tzhead tzhead; |
| char buf[2 * sizeof(struct tzhead) + |
| 2 * sizeof *sp + |
| 4 * TZ_MAX_TIMES]; |
| } u; |
| int toread = sizeof u.buf; |
| |
| if (name == NULL && (name = TZDEFAULT) == NULL) |
| return -1; |
| { |
| register int doaccess; |
| /* |
| ** Section 4.9.1 of the C standard says that |
| ** "FILENAME_MAX expands to an integral constant expression |
| ** that is the size needed for an array of char large enough |
| ** to hold the longest file name string that the implementation |
| ** guarantees can be opened." |
| */ |
| char fullname[FILENAME_MAX + 1]; |
| const char *origname = name; |
| |
| if (name[0] == ':') |
| ++name; |
| doaccess = name[0] == '/'; |
| if (!doaccess) { |
| if ((p = TZDIR) == NULL) |
| return -1; |
| if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) |
| return -1; |
| (void) strcpy(fullname, p); |
| (void) strcat(fullname, "/"); |
| (void) strcat(fullname, name); |
| /* |
| ** Set doaccess if '.' (as in "../") shows up in name. |
| */ |
| if (strchr(name, '.') != NULL) |
| doaccess = TRUE; |
| name = fullname; |
| } |
| if (doaccess && access(name, R_OK) != 0) |
| return -1; |
| if ((fid = open(name, OPEN_MODE)) == -1) { |
| char buf[READLEN]; |
| char name[NAMELEN + 1]; |
| int fidix = open(INDEXFILE, OPEN_MODE); |
| int off = -1; |
| |
| if (fidix < 0) { |
| return -1; |
| } |
| |
| while (read(fidix, buf, sizeof(buf)) == sizeof(buf)) { |
| memcpy(name, buf, NAMELEN); |
| name[NAMELEN] = '\0'; |
| |
| if (strcmp(name, origname) == 0) { |
| off = toint((unsigned char *) buf + NAMELEN); |
| toread = toint((unsigned char *) buf + NAMELEN + INTLEN); |
| break; |
| } |
| } |
| |
| close(fidix); |
| |
| if (off < 0) |
| return -1; |
| |
| fid = open(DATAFILE, OPEN_MODE); |
| |
| if (fid < 0) { |
| return -1; |
| } |
| |
| if (lseek(fid, off, SEEK_SET) < 0) { |
| return -1; |
| } |
| } |
| } |
| nread = read(fid, u.buf, toread); |
| if (close(fid) < 0 || nread <= 0) |
| return -1; |
| for (stored = 4; stored <= 8; stored *= 2) { |
| int ttisstdcnt; |
| int ttisgmtcnt; |
| |
| ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt); |
| ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt); |
| sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt); |
| sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt); |
| sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt); |
| sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt); |
| p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt; |
| if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || |
| sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || |
| sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || |
| sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || |
| (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || |
| (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) |
| return -1; |
| if (nread - (p - u.buf) < |
| sp->timecnt * stored + /* ats */ |
| sp->timecnt + /* types */ |
| sp->typecnt * 6 + /* ttinfos */ |
| sp->charcnt + /* chars */ |
| sp->leapcnt * (stored + 4) + /* lsinfos */ |
| ttisstdcnt + /* ttisstds */ |
| ttisgmtcnt) /* ttisgmts */ |
| return -1; |
| for (i = 0; i < sp->timecnt; ++i) { |
| sp->ats[i] = (stored == 4) ? |
| detzcode(p) : detzcode64(p); |
| p += stored; |
| } |
| for (i = 0; i < sp->timecnt; ++i) { |
| sp->types[i] = (unsigned char) *p++; |
| if (sp->types[i] >= sp->typecnt) |
| return -1; |
| } |
| for (i = 0; i < sp->typecnt; ++i) { |
| register struct ttinfo * ttisp; |
| |
| ttisp = &sp->ttis[i]; |
| ttisp->tt_gmtoff = detzcode(p); |
| p += 4; |
| ttisp->tt_isdst = (unsigned char) *p++; |
| if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) |
| return -1; |
| ttisp->tt_abbrind = (unsigned char) *p++; |
| if (ttisp->tt_abbrind < 0 || |
| ttisp->tt_abbrind > sp->charcnt) |
| return -1; |
| } |
| for (i = 0; i < sp->charcnt; ++i) |
| sp->chars[i] = *p++; |
| sp->chars[i] = '\0'; /* ensure '\0' at end */ |
| for (i = 0; i < sp->leapcnt; ++i) { |
| register struct lsinfo * lsisp; |
| |
| lsisp = &sp->lsis[i]; |
| lsisp->ls_trans = (stored == 4) ? |
| detzcode(p) : detzcode64(p); |
| p += stored; |
| lsisp->ls_corr = detzcode(p); |
| p += 4; |
| } |
| for (i = 0; i < sp->typecnt; ++i) { |
| register struct ttinfo * ttisp; |
| |
| ttisp = &sp->ttis[i]; |
| if (ttisstdcnt == 0) |
| ttisp->tt_ttisstd = FALSE; |
| else { |
| ttisp->tt_ttisstd = *p++; |
| if (ttisp->tt_ttisstd != TRUE && |
| ttisp->tt_ttisstd != FALSE) |
| return -1; |
| } |
| } |
| for (i = 0; i < sp->typecnt; ++i) { |
| register struct ttinfo * ttisp; |
| |
| ttisp = &sp->ttis[i]; |
| if (ttisgmtcnt == 0) |
| ttisp->tt_ttisgmt = FALSE; |
| else { |
| ttisp->tt_ttisgmt = *p++; |
| if (ttisp->tt_ttisgmt != TRUE && |
| ttisp->tt_ttisgmt != FALSE) |
| return -1; |
| } |
| } |
| /* |
| ** Out-of-sort ats should mean we're running on a |
| ** signed time_t system but using a data file with |
| ** unsigned values (or vice versa). |
| */ |
| for (i = 0; i < sp->timecnt - 2; ++i) |
| if (sp->ats[i] > sp->ats[i + 1]) { |
| ++i; |
| if (TYPE_SIGNED(time_t)) { |
| /* |
| ** Ignore the end (easy). |
| */ |
| sp->timecnt = i; |
| } else { |
| /* |
| ** Ignore the beginning (harder). |
| */ |
| register int j; |
| |
| for (j = 0; j + i < sp->timecnt; ++j) { |
| sp->ats[j] = sp->ats[j + i]; |
| sp->types[j] = sp->types[j + i]; |
| } |
| sp->timecnt = j; |
| } |
| break; |
| } |
| /* |
| ** If this is an old file, we're done. |
| */ |
| if (u.tzhead.tzh_version[0] == '\0') |
| break; |
| nread -= p - u.buf; |
| for (i = 0; i < nread; ++i) |
| u.buf[i] = p[i]; |
| /* |
| ** If this is a narrow integer time_t system, we're done. |
| */ |
| if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t)) |
| break; |
| } |
| if (doextend && nread > 2 && |
| u.buf[0] == '\n' && u.buf[nread - 1] == '\n' && |
| sp->typecnt + 2 <= TZ_MAX_TYPES) { |
| struct state ts; |
| register int result; |
| |
| u.buf[nread - 1] = '\0'; |
| result = tzparse(&u.buf[1], &ts, FALSE); |
| if (result == 0 && ts.typecnt == 2 && |
| sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { |
| for (i = 0; i < 2; ++i) |
| ts.ttis[i].tt_abbrind += |
| sp->charcnt; |
| for (i = 0; i < ts.charcnt; ++i) |
| sp->chars[sp->charcnt++] = |
| ts.chars[i]; |
| i = 0; |
| while (i < ts.timecnt && |
| ts.ats[i] <= |
| sp->ats[sp->timecnt - 1]) |
| ++i; |
| while (i < ts.timecnt && |
| sp->timecnt < TZ_MAX_TIMES) { |
| sp->ats[sp->timecnt] = |
| ts.ats[i]; |
| sp->types[sp->timecnt] = |
| sp->typecnt + |
| ts.types[i]; |
| ++sp->timecnt; |
| ++i; |
| } |
| sp->ttis[sp->typecnt++] = ts.ttis[0]; |
| sp->ttis[sp->typecnt++] = ts.ttis[1]; |
| } |
| } |
| i = 2 * YEARSPERREPEAT; |
| sp->goback = sp->goahead = sp->timecnt > i; |
| sp->goback &= sp->types[i] == sp->types[0] && |
| differ_by_repeat(sp->ats[i], sp->ats[0]); |
| sp->goahead &= |
| sp->types[sp->timecnt - 1] == sp->types[sp->timecnt - 1 - i] && |
| differ_by_repeat(sp->ats[sp->timecnt - 1], |
| sp->ats[sp->timecnt - 1 - i]); |
| return 0; |
| } |
| |
| static const int mon_lengths[2][MONSPERYEAR] = { |
| { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
| { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } |
| }; |
| |
| static const int year_lengths[2] = { |
| DAYSPERNYEAR, DAYSPERLYEAR |
| }; |
| |
| /* |
| ** Given a pointer into a time zone string, scan until a character that is not |
| ** a valid character in a zone name is found. Return a pointer to that |
| ** character. |
| */ |
| |
| static const char * |
| getzname(strp) |
| register const char * strp; |
| { |
| register char c; |
| |
| while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && |
| c != '+') |
| ++strp; |
| return strp; |
| } |
| |
| /* |
| ** Given a pointer into an extended time zone string, scan until the ending |
| ** delimiter of the zone name is located. Return a pointer to the delimiter. |
| ** |
| ** As with getzname above, the legal character set is actually quite |
| ** restricted, with other characters producing undefined results. |
| ** We don't do any checking here; checking is done later in common-case code. |
| */ |
| |
| static const char * |
| getqzname(register const char *strp, const int delim) |
| { |
| register int c; |
| |
| while ((c = *strp) != '\0' && c != delim) |
| ++strp; |
| return strp; |
| } |
| |
| /* |
| ** Given a pointer into a time zone string, extract a number from that string. |
| ** Check that the number is within a specified range; if it is not, return |
| ** NULL. |
| ** Otherwise, return a pointer to the first character not part of the number. |
| */ |
| |
| static const char * |
| getnum(strp, nump, min, max) |
| register const char * strp; |
| int * const nump; |
| const int min; |
| const int max; |
| { |
| register char c; |
| register int num; |
| |
| if (strp == NULL || !is_digit(c = *strp)) |
| return NULL; |
| num = 0; |
| do { |
| num = num * 10 + (c - '0'); |
| if (num > max) |
| return NULL; /* illegal value */ |
| c = *++strp; |
| } while (is_digit(c)); |
| if (num < min) |
| return NULL; /* illegal value */ |
| *nump = num; |
| return strp; |
| } |
| |
| /* |
| ** Given a pointer into a time zone string, extract a number of seconds, |
| ** in hh[:mm[:ss]] form, from the string. |
| ** If any error occurs, return NULL. |
| ** Otherwise, return a pointer to the first character not part of the number |
| ** of seconds. |
| */ |
| |
| static const char * |
| getsecs(strp, secsp) |
| register const char * strp; |
| long * const secsp; |
| { |
| int num; |
| |
| /* |
| ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like |
| ** "M10.4.6/26", which does not conform to Posix, |
| ** but which specifies the equivalent of |
| ** ``02:00 on the first Sunday on or after 23 Oct''. |
| */ |
| strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); |
| if (strp == NULL) |
| return NULL; |
| *secsp = num * (long) SECSPERHOUR; |
| if (*strp == ':') { |
| ++strp; |
| strp = getnum(strp, &num, 0, MINSPERHOUR - 1); |
| if (strp == NULL) |
| return NULL; |
| *secsp += num * SECSPERMIN; |
| if (*strp == ':') { |
| ++strp; |
| /* `SECSPERMIN' allows for leap seconds. */ |
| strp = getnum(strp, &num, 0, SECSPERMIN); |
| if (strp == NULL) |
| return NULL; |
| *secsp += num; |
| } |
| } |
| return strp; |
| } |
| |
| /* |
| ** Given a pointer into a time zone string, extract an offset, in |
| ** [+-]hh[:mm[:ss]] form, from the string. |
| ** If any error occurs, return NULL. |
| ** Otherwise, return a pointer to the first character not part of the time. |
| */ |
| |
| static const char * |
| getoffset(strp, offsetp) |
| register const char * strp; |
| long * const offsetp; |
| { |
| register int neg = 0; |
| |
| if (*strp == '-') { |
| neg = 1; |
| ++strp; |
| } else if (*strp == '+') |
| ++strp; |
| strp = getsecs(strp, offsetp); |
| if (strp == NULL) |
| return NULL; /* illegal time */ |
| if (neg) |
| *offsetp = -*offsetp; |
| return strp; |
| } |
| |
| /* |
| ** Given a pointer into a time zone string, extract a rule in the form |
| ** date[/time]. See POSIX section 8 for the format of "date" and "time". |
| ** If a valid rule is not found, return NULL. |
| ** Otherwise, return a pointer to the first character not part of the rule. |
| */ |
| |
| static const char * |
| getrule(strp, rulep) |
| const char * strp; |
| register struct rule * const rulep; |
| { |
| if (*strp == 'J') { |
| /* |
| ** Julian day. |
| */ |
| rulep->r_type = JULIAN_DAY; |
| ++strp; |
| strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); |
| } else if (*strp == 'M') { |
| /* |
| ** Month, week, day. |
| */ |
| rulep->r_type = MONTH_NTH_DAY_OF_WEEK; |
| ++strp; |
| strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); |
| if (strp == NULL) |
| return NULL; |
| if (*strp++ != '.') |
| return NULL; |
| strp = getnum(strp, &rulep->r_week, 1, 5); |
| if (strp == NULL) |
| return NULL; |
| if (*strp++ != '.') |
| return NULL; |
| strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); |
| } else if (is_digit(*strp)) { |
| /* |
| ** Day of year. |
| */ |
| rulep->r_type = DAY_OF_YEAR; |
| strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); |
| } else return NULL; /* invalid format */ |
| if (strp == NULL) |
| return NULL; |
| if (*strp == '/') { |
| /* |
| ** Time specified. |
| */ |
| ++strp; |
| strp = getsecs(strp, &rulep->r_time); |
| } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ |
| return strp; |
| } |
| |
| /* |
| ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the |
| ** year, a rule, and the offset from UTC at the time that rule takes effect, |
| ** calculate the Epoch-relative time that rule takes effect. |
| */ |
| |
| static time_t |
| transtime(janfirst, year, rulep, offset) |
| const time_t janfirst; |
| const int year; |
| register const struct rule * const rulep; |
| const long offset; |
| { |
| register int leapyear; |
| register time_t value; |
| register int i; |
| int d, m1, yy0, yy1, yy2, dow; |
| |
| INITIALIZE(value); |
| leapyear = isleap(year); |
| switch (rulep->r_type) { |
| |
| case JULIAN_DAY: |
| /* |
| ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap |
| ** years. |
| ** In non-leap years, or if the day number is 59 or less, just |
| ** add SECSPERDAY times the day number-1 to the time of |
| ** January 1, midnight, to get the day. |
| */ |
| value = janfirst + (rulep->r_day - 1) * SECSPERDAY; |
| if (leapyear && rulep->r_day >= 60) |
| value += SECSPERDAY; |
| break; |
| |
| case DAY_OF_YEAR: |
| /* |
| ** n - day of year. |
| ** Just add SECSPERDAY times the day number to the time of |
| ** January 1, midnight, to get the day. |
| */ |
| value = janfirst + rulep->r_day * SECSPERDAY; |
| break; |
| |
| case MONTH_NTH_DAY_OF_WEEK: |
| /* |
| ** Mm.n.d - nth "dth day" of month m. |
| */ |
| value = janfirst; |
| for (i = 0; i < rulep->r_mon - 1; ++i) |
| value += mon_lengths[leapyear][i] * SECSPERDAY; |
| |
| /* |
| ** Use Zeller's Congruence to get day-of-week of first day of |
| ** month. |
| */ |
| m1 = (rulep->r_mon + 9) % 12 + 1; |
| yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; |
| yy1 = yy0 / 100; |
| yy2 = yy0 % 100; |
| dow = ((26 * m1 - 2) / 10 + |
| 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; |
| if (dow < 0) |
| dow += DAYSPERWEEK; |
| |
| /* |
| ** "dow" is the day-of-week of the first day of the month. Get |
| ** the day-of-month (zero-origin) of the first "dow" day of the |
| ** month. |
| */ |
| d = rulep->r_day - dow; |
| if (d < 0) |
| d += DAYSPERWEEK; |
| for (i = 1; i < rulep->r_week; ++i) { |
| if (d + DAYSPERWEEK >= |
| mon_lengths[leapyear][rulep->r_mon - 1]) |
| break; |
| d += DAYSPERWEEK; |
| } |
| |
| /* |
| ** "d" is the day-of-month (zero-origin) of the day we want. |
| */ |
| value += d * SECSPERDAY; |
| break; |
| } |
| |
| /* |
| ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in |
| ** question. To get the Epoch-relative time of the specified local |
| ** time on that day, add the transition time and the current offset |
| ** from UTC. |
| */ |
| return value + rulep->r_time + offset; |
| } |
| |
| /* |
| ** Given a POSIX section 8-style TZ string, fill in the rule tables as |
| ** appropriate. |
| */ |
| |
| static int |
| tzparse(name, sp, lastditch) |
| const char * name; |
| register struct state * const sp; |
| const int lastditch; |
| { |
| const char * stdname; |
| const char * dstname; |
| size_t stdlen; |
| size_t dstlen; |
| long stdoffset; |
| long dstoffset; |
| register time_t * atp; |
| register unsigned char * typep; |
| register char * cp; |
| register int load_result; |
| |
| INITIALIZE(dstname); |
| stdname = name; |
| if (lastditch) { |
| stdlen = strlen(name); /* length of standard zone name */ |
| name += stdlen; |
| if (stdlen >= sizeof sp->chars) |
| stdlen = (sizeof sp->chars) - 1; |
| stdoffset = 0; |
| } else { |
| if (*name == '<') { |
| name++; |
| stdname = name; |
| name = getqzname(name, '>'); |
| if (*name != '>') |
| return (-1); |
| stdlen = name - stdname; |
| name++; |
| } else { |
| name = getzname(name); |
| stdlen = name - stdname; |
| } |
| if (*name == '\0') |
| return -1; |
| name = getoffset(name, &stdoffset); |
| if (name == NULL) |
| return -1; |
| } |
| load_result = tzload(TZDEFRULES, sp, FALSE); |
| if (load_result != 0) |
| sp->leapcnt = 0; /* so, we're off a little */ |
| sp->timecnt = 0; |
| if (*name != '\0') { |
| if (*name == '<') { |
| dstname = ++name; |
| name = getqzname(name, '>'); |
| if (*name != '>') |
| return -1; |
| dstlen = name - dstname; |
| name++; |
| } else { |
| dstname = name; |
| name = getzname(name); |
| dstlen = name - dstname; /* length of DST zone name */ |
| } |
| if (*name != '\0' && *name != ',' && *name != ';') { |
| name = getoffset(name, &dstoffset); |
| if (name == NULL) |
| return -1; |
| } else dstoffset = stdoffset - SECSPERHOUR; |
| if (*name == '\0' && load_result != 0) |
| name = TZDEFRULESTRING; |
| if (*name == ',' || *name == ';') { |
| struct rule start; |
| struct rule end; |
| register int year; |
| register time_t janfirst; |
| time_t starttime; |
| time_t endtime; |
| |
| ++name; |
| if ((name = getrule(name, &start)) == NULL) |
| return -1; |
| if (*name++ != ',') |
| return -1; |
| if ((name = getrule(name, &end)) == NULL) |
| return -1; |
| if (*name != '\0') |
| return -1; |
| sp->typecnt = 2; /* standard time and DST */ |
| /* |
| ** Two transitions per year, from EPOCH_YEAR forward. |
| */ |
| sp->ttis[0].tt_gmtoff = -dstoffset; |
| sp->ttis[0].tt_isdst = 1; |
| sp->ttis[0].tt_abbrind = stdlen + 1; |
| sp->ttis[1].tt_gmtoff = -stdoffset; |
| sp->ttis[1].tt_isdst = 0; |
| sp->ttis[1].tt_abbrind = 0; |
| atp = sp->ats; |
| typep = sp->types; |
| janfirst = 0; |
| for (year = EPOCH_YEAR; |
| sp->timecnt + 2 <= TZ_MAX_TIMES; |
| ++year) { |
| time_t newfirst; |
| |
| starttime = transtime(janfirst, year, &start, |
| stdoffset); |
| endtime = transtime(janfirst, year, &end, |
| dstoffset); |
| if (starttime > endtime) { |
| *atp++ = endtime; |
| *typep++ = 1; /* DST ends */ |
| *atp++ = starttime; |
| *typep++ = 0; /* DST begins */ |
| } else { |
| *atp++ = starttime; |
| *typep++ = 0; /* DST begins */ |
| *atp++ = endtime; |
| *typep++ = 1; /* DST ends */ |
| } |
| sp->timecnt += 2; |
| newfirst = janfirst; |
| newfirst += year_lengths[isleap(year)] * |
| SECSPERDAY; |
| if (newfirst <= janfirst) |
| break; |
| janfirst = newfirst; |
| } |
| } else { |
| register long theirstdoffset; |
| register long theirdstoffset; |
| register long theiroffset; |
| register int isdst; |
| register int i; |
| register int j; |
| |
| if (*name != '\0') |
| return -1; |
| /* |
| ** Initial values of theirstdoffset and theirdstoffset. |
| */ |
| theirstdoffset = 0; |
| for (i = 0; i < sp->timecnt; ++i) { |
| j = sp->types[i]; |
| if (!sp->ttis[j].tt_isdst) { |
| theirstdoffset = |
| -sp->ttis[j].tt_gmtoff; |
| break; |
| } |
| } |
| theirdstoffset = 0; |
| for (i = 0; i < sp->timecnt; ++i) { |
| j = sp->types[i]; |
| if (sp->ttis[j].tt_isdst) { |
| theirdstoffset = |
| -sp->ttis[j].tt_gmtoff; |
| break; |
| } |
| } |
| /* |
| ** Initially we're assumed to be in standard time. |
| */ |
| isdst = FALSE; |
| theiroffset = theirstdoffset; |
| /* |
| ** Now juggle transition times and types |
| ** tracking offsets as you do. |
| */ |
| for (i = 0; i < sp->timecnt; ++i) { |
| j = sp->types[i]; |
| sp->types[i] = sp->ttis[j].tt_isdst; |
| if (sp->ttis[j].tt_ttisgmt) { |
| /* No adjustment to transition time */ |
| } else { |
| /* |
| ** If summer time is in effect, and the |
| ** transition time was not specified as |
| ** standard time, add the summer time |
| ** offset to the transition time; |
| ** otherwise, add the standard time |
| ** offset to the transition time. |
| */ |
| /* |
| ** Transitions from DST to DDST |
| ** will effectively disappear since |
| ** POSIX provides for only one DST |
| ** offset. |
| */ |
| if (isdst && !sp->ttis[j].tt_ttisstd) { |
| sp->ats[i] += dstoffset - |
| theirdstoffset; |
| } else { |
| sp->ats[i] += stdoffset - |
| theirstdoffset; |
| } |
| } |
| theiroffset = -sp->ttis[j].tt_gmtoff; |
| if (sp->ttis[j].tt_isdst) |
| theirdstoffset = theiroffset; |
| else theirstdoffset = theiroffset; |
| } |
| /* |
| ** Finally, fill in ttis. |
| ** ttisstd and ttisgmt need not be handled. |
| */ |
| sp->ttis[0].tt_gmtoff = -stdoffset; |
| sp->ttis[0].tt_isdst = FALSE; |
| sp->ttis[0].tt_abbrind = 0; |
| sp->ttis[1].tt_gmtoff = -dstoffset; |
| sp->ttis[1].tt_isdst = TRUE; |
| sp->ttis[1].tt_abbrind = stdlen + 1; |
| sp->typecnt = 2; |
| } |
| } else { |
| dstlen = 0; |
| sp->typecnt = 1; /* only standard time */ |
| sp->timecnt = 0; |
| sp->ttis[0].tt_gmtoff = -stdoffset; |
| sp->ttis[0].tt_isdst = 0; |
| sp->ttis[0].tt_abbrind = 0; |
| } |
| sp->charcnt = stdlen + 1; |
| if (dstlen != 0) |
| sp->charcnt += dstlen + 1; |
| if ((size_t) sp->charcnt > sizeof sp->chars) |
| return -1; |
| cp = sp->chars; |
| (void) strncpy(cp, stdname, stdlen); |
| cp += stdlen; |
| *cp++ = '\0'; |
| if (dstlen != 0) { |
| (void) strncpy(cp, dstname, dstlen); |
| *(cp + dstlen) = '\0'; |
| } |
| return 0; |
| } |
| |
| static void |
| gmtload(sp) |
| struct state * const sp; |
| { |
| if (tzload(gmt, sp, TRUE) != 0) |
| (void) tzparse(gmt, sp, TRUE); |
| } |
| |
| /* |
| ** The easy way to behave "as if no library function calls" localtime |
| ** is to not call it--so we drop its guts into "localsub", which can be |
| ** freely called. (And no, the PANS doesn't require the above behavior-- |
| ** but it *is* desirable.) |
| ** |
| ** The unused offset argument is for the benefit of mktime variants. |
| */ |
| |
| /*ARGSUSED*/ |
| static struct tm * |
| localsub(timep, offset, tmp, sp) |
| const time_t * const timep; |
| const long offset; |
| struct tm * const tmp; |
| struct state * sp; |
| { |
| register const struct ttinfo * ttisp; |
| register int i; |
| register struct tm * result; |
| const time_t t = *timep; |
| |
| #ifdef ALL_STATE |
| if (sp == NULL) |
| return gmtsub(timep, offset, tmp); |
| #endif /* defined ALL_STATE */ |
| if ((sp->goback && t < sp->ats[0]) || |
| (sp->goahead && t > sp->ats[sp->timecnt - 1])) { |
| time_t newt = t; |
| register time_t seconds; |
| register time_t tcycles; |
| register int_fast64_t icycles; |
| |
| if (t < sp->ats[0]) |
| seconds = sp->ats[0] - t; |
| else seconds = t - sp->ats[sp->timecnt - 1]; |
| --seconds; |
| tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; |
| ++tcycles; |
| icycles = tcycles; |
| if (tcycles - icycles >= 1 || icycles - tcycles >= 1) |
| return NULL; |
| seconds = icycles; |
| seconds *= YEARSPERREPEAT; |
| seconds *= AVGSECSPERYEAR; |
| if (t < sp->ats[0]) |
| newt += seconds; |
| else newt -= seconds; |
| if (newt < sp->ats[0] || |
| newt > sp->ats[sp->timecnt - 1]) |
| return NULL; /* "cannot happen" */ |
| result = localsub(&newt, offset, tmp, sp); |
| if (result == tmp) { |
| register time_t newy; |
| |
| newy = tmp->tm_year; |
| if (t < sp->ats[0]) |
| newy -= icycles * YEARSPERREPEAT; |
| else newy += icycles * YEARSPERREPEAT; |
| tmp->tm_year = newy; |
| if (tmp->tm_year != newy) |
| return NULL; |
| } |
| return result; |
| } |
| if (sp->timecnt == 0 || t < sp->ats[0]) { |
| i = 0; |
| while (sp->ttis[i].tt_isdst) |
| if (++i >= sp->typecnt) { |
| i = 0; |
| break; |
| } |
| } else { |
| register int lo = 1; |
| register int hi = sp->timecnt; |
| |
| while (lo < hi) { |
| register int mid = (lo + hi) >> 1; |
| |
| if (t < sp->ats[mid]) |
| hi = mid; |
| else lo = mid + 1; |
| } |
| i = (int) sp->types[lo - 1]; |
| } |
| ttisp = &sp->ttis[i]; |
| /* |
| ** To get (wrong) behavior that's compatible with System V Release 2.0 |
| ** you'd replace the statement below with |
| ** t += ttisp->tt_gmtoff; |
| ** timesub(&t, 0L, sp, tmp); |
| */ |
| result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); |
| tmp->tm_isdst = ttisp->tt_isdst; |
| #ifdef HAVE_TM_GMTOFF |
| tmp->tm_gmtoff = ttisp->tt_gmtoff; |
| #endif |
| tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; |
| #ifdef TM_ZONE |
| tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; |
| #endif /* defined TM_ZONE */ |
| return result; |
| } |
| |
| |
| // ============================================================================ |
| #if 0 |
| struct tm * |
| localtime(timep) |
| const time_t * const timep; |
| { |
| tzset(); |
| return localsub(timep, 0L, &tm); |
| } |
| #endif |
| |
| /* |
| ** Re-entrant version of localtime. |
| */ |
| |
| // ============================================================================ |
| void |
| localtime_tz(const time_t * const timep, struct tm * tmp, const char* tz) |
| { |
| struct state st; |
| if (tzload(tz, &st, TRUE) != 0) { |
| // not sure what's best here, but for now, we fall back to gmt |
| gmtload(&st); |
| } |
| |
| localsub(timep, 0L, tmp, &st); |
| } |
| |
| /* |
| ** gmtsub is to gmtime as localsub is to localtime. |
| */ |
| |
| static struct tm * |
| gmtsub(timep, offset, tmp) |
| const time_t * const timep; |
| const long offset; |
| struct tm * const tmp; |
| { |
| register struct tm * result; |
| |
| if (!gmt_is_set) { |
| gmt_is_set = TRUE; |
| #ifdef ALL_STATE |
| gmtptr = (struct state *) malloc(sizeof *gmtptr); |
| if (gmtptr != NULL) |
| #endif /* defined ALL_STATE */ |
| gmtload(gmtptr); |
| } |
| result = timesub(timep, offset, gmtptr, tmp); |
| #ifdef TM_ZONE |
| /* |
| ** Could get fancy here and deliver something such as |
| ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, |
| ** but this is no time for a treasure hunt. |
| */ |
| if (offset != 0) |
| tmp->TM_ZONE = wildabbr; |
| else { |
| #ifdef ALL_STATE |
| if (gmtptr == NULL) |
| tmp->TM_ZONE = gmt; |
| else tmp->TM_ZONE = gmtptr->chars; |
| #endif /* defined ALL_STATE */ |
| #ifndef ALL_STATE |
| tmp->TM_ZONE = gmtptr->chars; |
| #endif /* State Farm */ |
| } |
| #endif /* defined TM_ZONE */ |
| return result; |
| } |
| |
| // ============================================================================ |
| #if 0 |
| struct tm * |
| gmtime(timep) |
| const time_t * const timep; |
| { |
| return gmtsub(timep, 0L, &tm); |
| } |
| #endif |
| |
| /* |
| * Re-entrant version of gmtime. |
| */ |
| |
| // ============================================================================ |
| #if 0 |
| struct tm * |
| gmtime_r(timep, tmp) |
| const time_t * const timep; |
| struct tm * tmp; |
| { |
| return gmtsub(timep, 0L, tmp); |
| } |
| #endif |
| |
| #ifdef STD_INSPIRED |
| |
| // ============================================================================ |
| #if 0 |
| struct tm * |
| offtime(timep, offset) |
| const time_t * const timep; |
| const long offset; |
| { |
| return gmtsub(timep, offset, &tm); |
| } |
| #endif |
| |
| #endif /* defined STD_INSPIRED */ |
| |
| /* |
| ** Return the number of leap years through the end of the given year |
| ** where, to make the math easy, the answer for year zero is defined as zero. |
| */ |
| |
| static int |
| leaps_thru_end_of(y) |
| register const int y; |
| { |
| return (y >= 0) ? (y / 4 - y / 100 + y / 400) : |
| -(leaps_thru_end_of(-(y + 1)) + 1); |
| } |
| |
| static struct tm * |
| timesub(timep, offset, sp, tmp) |
| const time_t * const timep; |
| const long offset; |
| register const struct state * const sp; |
| register struct tm * const tmp; |
| { |
| register const struct lsinfo * lp; |
| register time_t tdays; |
| register int idays; /* unsigned would be so 2003 */ |
| register long rem; |
| int y; |
| register const int * ip; |
| register long corr; |
| register int hit; |
| register int i; |
| |
| corr = 0; |
| hit = 0; |
| #ifdef ALL_STATE |
| i = (sp == NULL) ? 0 : sp->leapcnt; |
| #endif /* defined ALL_STATE */ |
| #ifndef ALL_STATE |
| i = sp->leapcnt; |
| #endif /* State Farm */ |
| while (--i >= 0) { |
| lp = &sp->lsis[i]; |
| if (*timep >= lp->ls_trans) { |
| if (*timep == lp->ls_trans) { |
| hit = ((i == 0 && lp->ls_corr > 0) || |
| lp->ls_corr > sp->lsis[i - 1].ls_corr); |
| if (hit) |
| while (i > 0 && |
| sp->lsis[i].ls_trans == |
| sp->lsis[i - 1].ls_trans + 1 && |
| sp->lsis[i].ls_corr == |
| sp->lsis[i - 1].ls_corr + 1) { |
| ++hit; |
| --i; |
| } |
| } |
| corr = lp->ls_corr; |
| break; |
| } |
| } |
| y = EPOCH_YEAR; |
| tdays = *timep / SECSPERDAY; |
| rem = *timep - tdays * SECSPERDAY; |
| while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { |
| int newy; |
| register time_t tdelta; |
| register int idelta; |
| register int leapdays; |
| |
| tdelta = tdays / DAYSPERLYEAR; |
| idelta = tdelta; |
| if (tdelta - idelta >= 1 || idelta - tdelta >= 1) |
| return NULL; |
| if (idelta == 0) |
| idelta = (tdays < 0) ? -1 : 1; |
| newy = y; |
| if (increment_overflow(&newy, idelta)) |
| return NULL; |
| leapdays = leaps_thru_end_of(newy - 1) - |
| leaps_thru_end_of(y - 1); |
| tdays -= ((time_t) newy - y) * DAYSPERNYEAR; |
| tdays -= leapdays; |
| y = newy; |
| } |
| { |
| register long seconds; |
| |
| seconds = tdays * SECSPERDAY + 0.5; |
| tdays = seconds / SECSPERDAY; |
| rem += seconds - tdays * SECSPERDAY; |
| } |
| /* |
| ** Given the range, we can now fearlessly cast... |
| */ |
| idays = tdays; |
| rem += offset - corr; |
| while (rem < 0) { |
| rem += SECSPERDAY; |
| --idays; |
| } |
| while (rem >= SECSPERDAY) { |
| rem -= SECSPERDAY; |
| ++idays; |
| } |
| while (idays < 0) { |
| if (increment_overflow(&y, -1)) |
| return NULL; |
| idays += year_lengths[isleap(y)]; |
| } |
| while (idays >= year_lengths[isleap(y)]) { |
| idays -= year_lengths[isleap(y)]; |
| if (increment_overflow(&y, 1)) |
| return NULL; |
| } |
| tmp->tm_year = y; |
| if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) |
| return NULL; |
| tmp->tm_yday = idays; |
| /* |
| ** The "extra" mods below avoid overflow problems. |
| */ |
| tmp->tm_wday = EPOCH_WDAY + |
| ((y - EPOCH_YEAR) % DAYSPERWEEK) * |
| (DAYSPERNYEAR % DAYSPERWEEK) + |
| leaps_thru_end_of(y - 1) - |
| leaps_thru_end_of(EPOCH_YEAR - 1) + |
| idays; |
| tmp->tm_wday %= DAYSPERWEEK; |
| if (tmp->tm_wday < 0) |
| tmp->tm_wday += DAYSPERWEEK; |
| tmp->tm_hour = (int) (rem / SECSPERHOUR); |
| rem %= SECSPERHOUR; |
| tmp->tm_min = (int) (rem / SECSPERMIN); |
| /* |
| ** A positive leap second requires a special |
| ** representation. This uses "... ??:59:60" et seq. |
| */ |
| tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; |
| ip = mon_lengths[isleap(y)]; |
| for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) |
| idays -= ip[tmp->tm_mon]; |
| tmp->tm_mday = (int) (idays + 1); |
| tmp->tm_isdst = 0; |
| #ifdef TM_GMTOFF |
| tmp->TM_GMTOFF = offset; |
| #endif /* defined TM_GMTOFF */ |
| return tmp; |
| } |
| |
| // ============================================================================ |
| #if 0 |
| char * |
| ctime(timep) |
| const time_t * const timep; |
| { |
| /* |
| ** Section 4.12.3.2 of X3.159-1989 requires that |
| ** The ctime function converts the calendar time pointed to by timer |
| ** to local time in the form of a string. It is equivalent to |
| ** asctime(localtime(timer)) |
| */ |
| return asctime(localtime(timep)); |
| } |
| #endif |
| |
| // ============================================================================ |
| #if 0 |
| char * |
| ctime_r(timep, buf) |
| const time_t * const timep; |
| char * buf; |
| { |
| struct tm mytm; |
| |
| return asctime_r(localtime_r(timep, &mytm), buf); |
| } |
| #endif |
| |
| /* |
| ** Adapted from code provided by Robert Elz, who writes: |
| ** The "best" way to do mktime I think is based on an idea of Bob |
| ** Kridle's (so its said...) from a long time ago. |
| ** It does a binary search of the time_t space. Since time_t's are |
| ** just 32 bits, its a max of 32 iterations (even at 64 bits it |
| ** would still be very reasonable). |
| */ |
| |
| #ifndef WRONG |
| #define WRONG (-1) |
| #endif /* !defined WRONG */ |
| |
| /* |
| ** Simplified normalize logic courtesy Paul Eggert. |
| */ |
| |
| static int |
| increment_overflow(number, delta) |
| int * number; |
| int delta; |
| { |
| int number0; |
| |
| number0 = *number; |
| *number += delta; |
| return (*number < number0) != (delta < 0); |
| } |
| |
| static int |
| long_increment_overflow(number, delta) |
| long * number; |
| int delta; |
| { |
| long number0; |
| |
| number0 = *number; |
| *number += delta; |
| return (*number < number0) != (delta < 0); |
| } |
| |
| static int |
| normalize_overflow(tensptr, unitsptr, base) |
| int * const tensptr; |
| int * const unitsptr; |
| const int base; |
| { |
| register int tensdelta; |
| |
| tensdelta = (*unitsptr >= 0) ? |
| (*unitsptr / base) : |
| (-1 - (-1 - *unitsptr) / base); |
| *unitsptr -= tensdelta * base; |
| return increment_overflow(tensptr, tensdelta); |
| } |
| |
| static int |
| long_normalize_overflow(tensptr, unitsptr, base) |
| long * const tensptr; |
| int * const unitsptr; |
| const int base; |
| { |
| register int tensdelta; |
| |
| tensdelta = (*unitsptr >= 0) ? |
| (*unitsptr / base) : |
| (-1 - (-1 - *unitsptr) / base); |
| *unitsptr -= tensdelta * base; |
| return long_increment_overflow(tensptr, tensdelta); |
| } |
| |
| static int |
| tmcomp(atmp, btmp) |
| register const struct tm * const atmp; |
| register const struct tm * const btmp; |
| { |
| register int result; |
| |
| if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && |
| (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && |
| (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && |
| (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && |
| (result = (atmp->tm_min - btmp->tm_min)) == 0) |
| result = atmp->tm_sec - btmp->tm_sec; |
| return result; |
| } |
| |
| static time_t |
| time2sub(tmp, funcp, offset, okayp, do_norm_secs, sp) |
| struct tm * const tmp; |
| struct tm * (* const funcp) P((const time_t*, long, struct tm*,const struct state *sp)); |
| const long offset; |
| int * const okayp; |
| const int do_norm_secs; |
| const struct state * sp; |
| { |
| register int dir; |
| register int i, j; |
| register int saved_seconds; |
| register long li; |
| register time_t lo; |
| register time_t hi; |
| long y; |
| time_t newt; |
| time_t t; |
| struct tm yourtm, mytm; |
| |
| *okayp = FALSE; |
| yourtm = *tmp; |
| if (do_norm_secs) { |
| if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, |
| SECSPERMIN)) |
| return WRONG; |
| } |
| if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) |
| return WRONG; |
| if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) |
| return WRONG; |
| y = yourtm.tm_year; |
| if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) |
| return WRONG; |
| /* |
| ** Turn y into an actual year number for now. |
| ** It is converted back to an offset from TM_YEAR_BASE later. |
| */ |
| if (long_increment_overflow(&y, TM_YEAR_BASE)) |
| return WRONG; |
| while (yourtm.tm_mday <= 0) { |
| if (long_increment_overflow(&y, -1)) |
| return WRONG; |
| li = y + (1 < yourtm.tm_mon); |
| yourtm.tm_mday += year_lengths[isleap(li)]; |
| } |
| while (yourtm.tm_mday > DAYSPERLYEAR) { |
| li = y + (1 < yourtm.tm_mon); |
| yourtm.tm_mday -= year_lengths[isleap(li)]; |
| if (long_increment_overflow(&y, 1)) |
| return WRONG; |
| } |
| for ( ; ; ) { |
| i = mon_lengths[isleap(y)][yourtm.tm_mon]; |
| if (yourtm.tm_mday <= i) |
| break; |
| yourtm.tm_mday -= i; |
| if (++yourtm.tm_mon >= MONSPERYEAR) { |
| yourtm.tm_mon = 0; |
| if (long_increment_overflow(&y, 1)) |
| return WRONG; |
| } |
| } |
| if (long_increment_overflow(&y, -TM_YEAR_BASE)) |
| return WRONG; |
| yourtm.tm_year = y; |
| if (yourtm.tm_year != y) |
| return WRONG; |
| if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) |
| saved_seconds = 0; |
| else if (y + TM_YEAR_BASE < EPOCH_YEAR) { |
| /* |
| ** We can't set tm_sec to 0, because that might push the |
| ** time below the minimum representable time. |
| ** Set tm_sec to 59 instead. |
| ** This assumes that the minimum representable time is |
| ** not in the same minute that a leap second was deleted from, |
| ** which is a safer assumption than using 58 would be. |
| */ |
| if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) |
| return WRONG; |
| saved_seconds = yourtm.tm_sec; |
| yourtm.tm_sec = SECSPERMIN - 1; |
| } else { |
| saved_seconds = yourtm.tm_sec; |
| yourtm.tm_sec = 0; |
| } |
| /* |
| ** Do a binary search (this works whatever time_t's type is). |
| */ |
| if (!TYPE_SIGNED(time_t)) { |
| lo = 0; |
| hi = lo - 1; |
| } else if (!TYPE_INTEGRAL(time_t)) { |
| if (sizeof(time_t) > sizeof(float)) |
| hi = (time_t) DBL_MAX; |
| else hi = (time_t) FLT_MAX; |
| lo = -hi; |
| } else { |
| lo = 1; |
| for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) |
| lo *= 2; |
| hi = -(lo + 1); |
| } |
| for ( ; ; ) { |
| t = lo / 2 + hi / 2; |
| if (t < lo) |
| t = lo; |
| else if (t > hi) |
| t = hi; |
| if ((*funcp)(&t, offset, &mytm, sp) == NULL) { |
| /* |
| ** Assume that t is too extreme to be represented in |
| ** a struct tm; arrange things so that it is less |
| ** extreme on the next pass. |
| */ |
| dir = (t > 0) ? 1 : -1; |
| } else dir = tmcomp(&mytm, &yourtm); |
| if (dir != 0) { |
| if (t == lo) { |
| ++t; |
| if (t <= lo) |
| return WRONG; |
| ++lo; |
| } else if (t == hi) { |
| --t; |
| if (t >= hi) |
| return WRONG; |
| --hi; |
| } |
| if (lo > hi) |
| return WRONG; |
| if (dir > 0) |
| hi = t; |
| else lo = t; |
| continue; |
| } |
| if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) |
| break; |
| /* |
| ** Right time, wrong type. |
| ** Hunt for right time, right type. |
| ** It's okay to guess wrong since the guess |
| ** gets checked. |
| */ |
| /* |
| ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. |
| */ |
| #ifdef ALL_STATE |
| if (sp == NULL) |
| return WRONG; |
| #endif /* defined ALL_STATE */ |
| for (i = sp->typecnt - 1; i >= 0; --i) { |
| if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) |
| continue; |
| for (j = sp->typecnt - 1; j >= 0; --j) { |
| if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) |
| continue; |
| newt = t + sp->ttis[j].tt_gmtoff - |
| sp->ttis[i].tt_gmtoff; |
| if ((*funcp)(&newt, offset, &mytm, sp) == NULL) |
| continue; |
| if (tmcomp(&mytm, &yourtm) != 0) |
| continue; |
| if (mytm.tm_isdst != yourtm.tm_isdst) |
| continue; |
| /* |
| ** We have a match. |
| */ |
| t = newt; |
| goto label; |
| } |
| } |
| return WRONG; |
| } |
| label: |
| newt = t + saved_seconds; |
| if ((newt < t) != (saved_seconds < 0)) |
| return WRONG; |
| t = newt; |
| if ((*funcp)(&t, offset, tmp, sp)) |
| *okayp = TRUE; |
| return t; |
| } |
| |
| static time_t |
| time2(tmp, funcp, offset, okayp, sp) |
| struct tm * const tmp; |
| struct tm * (* const funcp) P((const time_t*, long, struct tm*, |
| const struct state* sp)); |
| const long offset; |
| int * const okayp; |
| const struct state * sp; |
| { |
| time_t t; |
| |
| /* |
| ** First try without normalization of seconds |
| ** (in case tm_sec contains a value associated with a leap second). |
| ** If that fails, try with normalization of seconds. |
| */ |
| t = time2sub(tmp, funcp, offset, okayp, FALSE, sp); |
| return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE, sp); |
| } |
| |
| static time_t |
| time1(tmp, funcp, offset, sp) |
| struct tm * const tmp; |
| struct tm * (* const funcp) P((const time_t *, long, struct tm *, const struct state* sp)); |
| const long offset; |
| const struct state * sp; |
| { |
| register time_t t; |
| register int samei, otheri; |
| register int sameind, otherind; |
| register int i; |
| register int nseen; |
| int seen[TZ_MAX_TYPES]; |
| int types[TZ_MAX_TYPES]; |
| int okay; |
| |
| if (tmp->tm_isdst > 1) |
| tmp->tm_isdst = 1; |
| t = time2(tmp, funcp, offset, &okay, sp); |
| #define PCTS 1 |
| #ifdef PCTS |
| /* |
| ** PCTS code courtesy Grant Sullivan. |
| */ |
| if (okay) |
| return t; |
| if (tmp->tm_isdst < 0) |
| tmp->tm_isdst = 0; /* reset to std and try again */ |
| #endif /* defined PCTS */ |
| #ifndef PCTS |
| if (okay || tmp->tm_isdst < 0) |
| return t; |
| #endif /* !defined PCTS */ |
| /* |
| ** We're supposed to assume that somebody took a time of one type |
| ** and did some math on it that yielded a "struct tm" that's bad. |
| ** We try to divine the type they started from and adjust to the |
| ** type they need. |
| */ |
| /* |
| ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. |
| */ |
| #ifdef ALL_STATE |
| if (sp == NULL) |
| return WRONG; |
| #endif /* defined ALL_STATE */ |
| for (i = 0; i < sp->typecnt; ++i) |
| seen[i] = FALSE; |
| nseen = 0; |
| for (i = sp->timecnt - 1; i >= 0; --i) |
| if (!seen[sp->types[i]]) { |
| seen[sp->types[i]] = TRUE; |
| types[nseen++] = sp->types[i]; |
| } |
| for (sameind = 0; sameind < nseen; ++sameind) { |
| samei = types[sameind]; |
| if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) |
| continue; |
| for (otherind = 0; otherind < nseen; ++otherind) { |
| otheri = types[otherind]; |
| if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) |
| continue; |
| tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - |
| sp->ttis[samei].tt_gmtoff; |
| tmp->tm_isdst = !tmp->tm_isdst; |
| t = time2(tmp, funcp, offset, &okay, sp); |
| if (okay) |
| return t; |
| tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - |
| sp->ttis[samei].tt_gmtoff; |
| tmp->tm_isdst = !tmp->tm_isdst; |
| } |
| } |
| return WRONG; |
| } |
| |
| // ============================================================================ |
| time_t |
| mktime_tz(struct tm * const tmp, char const * tz) |
| { |
| struct state st; |
| if (tzload(tz, &st, TRUE) != 0) { |
| // not sure what's best here, but for now, we fall back to gmt |
| gmtload(&st); |
| } |
| return time1(tmp, localsub, 0L, &st); |
| } |