blob: 9c1e23bba153af5c15aa6c401a296ce1daa8a299 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <libgen.h>
#include <paths.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/mount.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/un.h>
#include <sys/wait.h>
#include <unistd.h>
#include <selinux/selinux.h>
#include <selinux/label.h>
#include <selinux/android.h>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <cutils/fs.h>
#include <cutils/iosched_policy.h>
#include <cutils/list.h>
#include <cutils/sockets.h>
#include <private/android_filesystem_config.h>
#include <fstream>
#include <memory>
#include "action.h"
#include "bootchart.h"
#include "devices.h"
#include "fs_mgr.h"
#include "import_parser.h"
#include "init.h"
#include "init_parser.h"
#include "keychords.h"
#include "log.h"
#include "property_service.h"
#include "service.h"
#include "signal_handler.h"
#include "ueventd.h"
#include "util.h"
#include "watchdogd.h"
using android::base::StringPrintf;
struct selabel_handle *sehandle;
struct selabel_handle *sehandle_prop;
static int property_triggers_enabled = 0;
static char qemu[32];
std::string default_console = "/dev/console";
static time_t process_needs_restart_at;
const char *ENV[32];
static std::unique_ptr<Timer> waiting_for_exec(nullptr);
static int epoll_fd = -1;
static std::unique_ptr<Timer> waiting_for_prop(nullptr);
static std::string wait_prop_name;
static std::string wait_prop_value;
void register_epoll_handler(int fd, void (*fn)()) {
epoll_event ev;
ev.events = EPOLLIN;
ev.data.ptr = reinterpret_cast<void*>(fn);
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, fd, &ev) == -1) {
PLOG(ERROR) << "epoll_ctl failed";
}
}
/* add_environment - add "key=value" to the current environment */
int add_environment(const char *key, const char *val)
{
size_t n;
size_t key_len = strlen(key);
/* The last environment entry is reserved to terminate the list */
for (n = 0; n < (arraysize(ENV) - 1); n++) {
/* Delete any existing entry for this key */
if (ENV[n] != NULL) {
size_t entry_key_len = strcspn(ENV[n], "=");
if ((entry_key_len == key_len) && (strncmp(ENV[n], key, entry_key_len) == 0)) {
free((char*)ENV[n]);
ENV[n] = NULL;
}
}
/* Add entry if a free slot is available */
if (ENV[n] == NULL) {
char* entry;
asprintf(&entry, "%s=%s", key, val);
ENV[n] = entry;
return 0;
}
}
LOG(ERROR) << "No env. room to store: '" << key << "':'" << val << "'";
return -1;
}
bool start_waiting_for_exec()
{
if (waiting_for_exec) {
return false;
}
waiting_for_exec.reset(new Timer());
return true;
}
void stop_waiting_for_exec()
{
if (waiting_for_exec) {
LOG(INFO) << "Wait for exec took " << *waiting_for_exec;
waiting_for_exec.reset();
}
}
bool start_waiting_for_property(const char *name, const char *value)
{
if (waiting_for_prop) {
return false;
}
if (property_get(name) != value) {
// Current property value is not equal to expected value
wait_prop_name = name;
wait_prop_value = value;
waiting_for_prop.reset(new Timer());
} else {
LOG(INFO) << "start_waiting_for_property(\""
<< name << "\", \"" << value << "\"): already set";
}
return true;
}
void property_changed(const char *name, const char *value)
{
if (property_triggers_enabled)
ActionManager::GetInstance().QueuePropertyTrigger(name, value);
if (waiting_for_prop) {
if (wait_prop_name == name && wait_prop_value == value) {
wait_prop_name.clear();
wait_prop_value.clear();
LOG(INFO) << "Wait for property took " << *waiting_for_prop;
waiting_for_prop.reset();
}
}
}
static void restart_processes()
{
process_needs_restart_at = 0;
ServiceManager::GetInstance().ForEachServiceWithFlags(SVC_RESTARTING, [](Service* s) {
s->RestartIfNeeded(&process_needs_restart_at);
});
}
void handle_control_message(const std::string& msg, const std::string& name) {
Service* svc = ServiceManager::GetInstance().FindServiceByName(name);
if (svc == nullptr) {
LOG(ERROR) << "no such service '" << name << "'";
return;
}
if (msg == "start") {
svc->Start();
} else if (msg == "stop") {
svc->Stop();
} else if (msg == "restart") {
svc->Restart();
} else {
LOG(ERROR) << "unknown control msg '" << msg << "'";
}
}
static int wait_for_coldboot_done_action(const std::vector<std::string>& args) {
Timer t;
LOG(VERBOSE) << "Waiting for " COLDBOOT_DONE "...";
// Historically we had a 1s timeout here because we weren't otherwise
// tracking boot time, and many OEMs made their sepolicy regular
// expressions too expensive (http://b/19899875).
// Now we're tracking boot time, just log the time taken to a system
// property. We still panic if it takes more than a minute though,
// because any build that slow isn't likely to boot at all, and we'd
// rather any test lab devices fail back to the bootloader.
if (wait_for_file(COLDBOOT_DONE, 60s) < 0) {
LOG(ERROR) << "Timed out waiting for " COLDBOOT_DONE;
panic();
}
property_set("ro.boottime.init.cold_boot_wait", std::to_string(t.duration_ms()).c_str());
return 0;
}
/*
* Writes 512 bytes of output from Hardware RNG (/dev/hw_random, backed
* by Linux kernel's hw_random framework) into Linux RNG's via /dev/urandom.
* Does nothing if Hardware RNG is not present.
*
* Since we don't yet trust the quality of Hardware RNG, these bytes are not
* mixed into the primary pool of Linux RNG and the entropy estimate is left
* unmodified.
*
* If the HW RNG device /dev/hw_random is present, we require that at least
* 512 bytes read from it are written into Linux RNG. QA is expected to catch
* devices/configurations where these I/O operations are blocking for a long
* time. We do not reboot or halt on failures, as this is a best-effort
* attempt.
*/
static int mix_hwrng_into_linux_rng_action(const std::vector<std::string>& args)
{
int result = -1;
int hwrandom_fd = -1;
int urandom_fd = -1;
char buf[512];
ssize_t chunk_size;
size_t total_bytes_written = 0;
hwrandom_fd = TEMP_FAILURE_RETRY(
open("/dev/hw_random", O_RDONLY | O_NOFOLLOW | O_CLOEXEC));
if (hwrandom_fd == -1) {
if (errno == ENOENT) {
LOG(ERROR) << "/dev/hw_random not found";
// It's not an error to not have a Hardware RNG.
result = 0;
} else {
PLOG(ERROR) << "Failed to open /dev/hw_random";
}
goto ret;
}
urandom_fd = TEMP_FAILURE_RETRY(
open("/dev/urandom", O_WRONLY | O_NOFOLLOW | O_CLOEXEC));
if (urandom_fd == -1) {
PLOG(ERROR) << "Failed to open /dev/urandom";
goto ret;
}
while (total_bytes_written < sizeof(buf)) {
chunk_size = TEMP_FAILURE_RETRY(
read(hwrandom_fd, buf, sizeof(buf) - total_bytes_written));
if (chunk_size == -1) {
PLOG(ERROR) << "Failed to read from /dev/hw_random";
goto ret;
} else if (chunk_size == 0) {
LOG(ERROR) << "Failed to read from /dev/hw_random: EOF";
goto ret;
}
chunk_size = TEMP_FAILURE_RETRY(write(urandom_fd, buf, chunk_size));
if (chunk_size == -1) {
PLOG(ERROR) << "Failed to write to /dev/urandom";
goto ret;
}
total_bytes_written += chunk_size;
}
LOG(INFO) << "Mixed " << total_bytes_written << " bytes from /dev/hw_random into /dev/urandom";
result = 0;
ret:
if (hwrandom_fd != -1) {
close(hwrandom_fd);
}
if (urandom_fd != -1) {
close(urandom_fd);
}
return result;
}
static void security_failure() {
LOG(ERROR) << "Security failure...";
panic();
}
static bool set_highest_available_option_value(std::string path, int min, int max)
{
std::ifstream inf(path, std::fstream::in);
if (!inf) {
LOG(ERROR) << "Cannot open for reading: " << path;
return false;
}
int current = max;
while (current >= min) {
// try to write out new value
std::string str_val = std::to_string(current);
std::ofstream of(path, std::fstream::out);
if (!of) {
LOG(ERROR) << "Cannot open for writing: " << path;
return false;
}
of << str_val << std::endl;
of.close();
// check to make sure it was recorded
inf.seekg(0);
std::string str_rec;
inf >> str_rec;
if (str_val.compare(str_rec) == 0) {
break;
}
current--;
}
inf.close();
if (current < min) {
LOG(ERROR) << "Unable to set minimum option value " << min << " in " << path;
return false;
}
return true;
}
#define MMAP_RND_PATH "/proc/sys/vm/mmap_rnd_bits"
#define MMAP_RND_COMPAT_PATH "/proc/sys/vm/mmap_rnd_compat_bits"
/* __attribute__((unused)) due to lack of mips support: see mips block
* in set_mmap_rnd_bits_action */
static bool __attribute__((unused)) set_mmap_rnd_bits_min(int start, int min, bool compat) {
std::string path;
if (compat) {
path = MMAP_RND_COMPAT_PATH;
} else {
path = MMAP_RND_PATH;
}
return set_highest_available_option_value(path, min, start);
}
/*
* Set /proc/sys/vm/mmap_rnd_bits and potentially
* /proc/sys/vm/mmap_rnd_compat_bits to the maximum supported values.
* Returns -1 if unable to set these to an acceptable value.
*
* To support this sysctl, the following upstream commits are needed:
*
* d07e22597d1d mm: mmap: add new /proc tunable for mmap_base ASLR
* e0c25d958f78 arm: mm: support ARCH_MMAP_RND_BITS
* 8f0d3aa9de57 arm64: mm: support ARCH_MMAP_RND_BITS
* 9e08f57d684a x86: mm: support ARCH_MMAP_RND_BITS
* ec9ee4acd97c drivers: char: random: add get_random_long()
* 5ef11c35ce86 mm: ASLR: use get_random_long()
*/
static int set_mmap_rnd_bits_action(const std::vector<std::string>& args)
{
int ret = -1;
/* values are arch-dependent */
#if defined(__aarch64__)
/* arm64 supports 18 - 33 bits depending on pagesize and VA_SIZE */
if (set_mmap_rnd_bits_min(33, 24, false)
&& set_mmap_rnd_bits_min(16, 16, true)) {
ret = 0;
}
#elif defined(__x86_64__)
/* x86_64 supports 28 - 32 bits */
if (set_mmap_rnd_bits_min(32, 32, false)
&& set_mmap_rnd_bits_min(16, 16, true)) {
ret = 0;
}
#elif defined(__arm__) || defined(__i386__)
/* check to see if we're running on 64-bit kernel */
bool h64 = !access(MMAP_RND_COMPAT_PATH, F_OK);
/* supported 32-bit architecture must have 16 bits set */
if (set_mmap_rnd_bits_min(16, 16, h64)) {
ret = 0;
}
#elif defined(__mips__) || defined(__mips64__)
// TODO: add mips support b/27788820
ret = 0;
#else
LOG(ERROR) << "Unknown architecture";
#endif
if (ret == -1) {
LOG(ERROR) << "Unable to set adequate mmap entropy value!";
security_failure();
}
return ret;
}
#define KPTR_RESTRICT_PATH "/proc/sys/kernel/kptr_restrict"
#define KPTR_RESTRICT_MINVALUE 2
#define KPTR_RESTRICT_MAXVALUE 4
/* Set kptr_restrict to the highest available level.
*
* Aborts if unable to set this to an acceptable value.
*/
static int set_kptr_restrict_action(const std::vector<std::string>& args)
{
std::string path = KPTR_RESTRICT_PATH;
if (!set_highest_available_option_value(path, KPTR_RESTRICT_MINVALUE, KPTR_RESTRICT_MAXVALUE)) {
LOG(ERROR) << "Unable to set adequate kptr_restrict value!";
security_failure();
}
return 0;
}
static int keychord_init_action(const std::vector<std::string>& args)
{
keychord_init();
return 0;
}
static int console_init_action(const std::vector<std::string>& args)
{
std::string console = property_get("ro.boot.console");
if (!console.empty()) {
default_console = "/dev/" + console;
}
return 0;
}
static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) {
if (key.empty()) return;
if (for_emulator) {
// In the emulator, export any kernel option with the "ro.kernel." prefix.
property_set(StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str());
return;
}
if (key == "qemu") {
strlcpy(qemu, value.c_str(), sizeof(qemu));
} else if (android::base::StartsWith(key, "androidboot.")) {
property_set(StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(), value.c_str());
}
}
static void export_oem_lock_status() {
if (property_get("ro.oem_unlock_supported") != "1") {
return;
}
std::string value = property_get("ro.boot.verifiedbootstate");
if (!value.empty()) {
property_set("ro.boot.flash.locked", value == "orange" ? "0" : "1");
}
}
static void export_kernel_boot_props() {
struct {
const char *src_prop;
const char *dst_prop;
const char *default_value;
} prop_map[] = {
{ "ro.boot.serialno", "ro.serialno", "", },
{ "ro.boot.mode", "ro.bootmode", "unknown", },
{ "ro.boot.baseband", "ro.baseband", "unknown", },
{ "ro.boot.bootloader", "ro.bootloader", "unknown", },
{ "ro.boot.hardware", "ro.hardware", "unknown", },
{ "ro.boot.revision", "ro.revision", "0", },
};
for (size_t i = 0; i < arraysize(prop_map); i++) {
std::string value = property_get(prop_map[i].src_prop);
property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value);
}
}
static constexpr char android_dt_dir[] = "/proc/device-tree/firmware/android";
static bool is_dt_compatible() {
std::string dt_value;
std::string file_name = StringPrintf("%s/compatible", android_dt_dir);
android::base::ReadFileToString(file_name, &dt_value);
if (!dt_value.compare("android,firmware")) {
LOG(ERROR) << "firmware/android is not compatible with 'android,firmware'";
return false;
}
return true;
}
static bool is_dt_fstab_compatible() {
std::string dt_value;
std::string file_name = StringPrintf("%s/%s/compatible", android_dt_dir, "fstab");
android::base::ReadFileToString(file_name, &dt_value);
if (!dt_value.compare("android,fstab")) {
LOG(ERROR) << "firmware/android/fstab is not compatible with 'android,fstab'";
return false;
}
return true;
}
static void process_kernel_dt() {
if (!is_dt_compatible()) return;
std::unique_ptr<DIR, int(*)(DIR*)>dir(opendir(android_dt_dir), closedir);
if (!dir) return;
std::string dt_file;
struct dirent *dp;
while ((dp = readdir(dir.get())) != NULL) {
if (dp->d_type != DT_REG || !strcmp(dp->d_name, "compatible") || !strcmp(dp->d_name, "name")) {
continue;
}
std::string file_name = StringPrintf("%s/%s", android_dt_dir, dp->d_name);
android::base::ReadFileToString(file_name, &dt_file);
std::replace(dt_file.begin(), dt_file.end(), ',', '.');
std::string property_name = StringPrintf("ro.boot.%s", dp->d_name);
property_set(property_name.c_str(), dt_file.c_str());
}
}
static void process_kernel_cmdline() {
// The first pass does the common stuff, and finds if we are in qemu.
// The second pass is only necessary for qemu to export all kernel params
// as properties.
import_kernel_cmdline(false, import_kernel_nv);
if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv);
}
static int property_enable_triggers_action(const std::vector<std::string>& args)
{
/* Enable property triggers. */
property_triggers_enabled = 1;
return 0;
}
static int queue_property_triggers_action(const std::vector<std::string>& args)
{
ActionManager::GetInstance().QueueBuiltinAction(property_enable_triggers_action, "enable_property_trigger");
ActionManager::GetInstance().QueueAllPropertyTriggers();
return 0;
}
static void selinux_init_all_handles(void)
{
sehandle = selinux_android_file_context_handle();
selinux_android_set_sehandle(sehandle);
sehandle_prop = selinux_android_prop_context_handle();
}
enum selinux_enforcing_status { SELINUX_PERMISSIVE, SELINUX_ENFORCING };
static selinux_enforcing_status selinux_status_from_cmdline() {
selinux_enforcing_status status = SELINUX_ENFORCING;
import_kernel_cmdline(false, [&](const std::string& key, const std::string& value, bool in_qemu) {
if (key == "androidboot.selinux" && value == "permissive") {
status = SELINUX_PERMISSIVE;
}
});
return status;
}
static bool selinux_is_enforcing(void)
{
if (ALLOW_PERMISSIVE_SELINUX) {
return selinux_status_from_cmdline() == SELINUX_ENFORCING;
}
return true;
}
static int audit_callback(void *data, security_class_t /*cls*/, char *buf, size_t len) {
property_audit_data *d = reinterpret_cast<property_audit_data*>(data);
if (!d || !d->name || !d->cr) {
LOG(ERROR) << "audit_callback invoked with null data arguments!";
return 0;
}
snprintf(buf, len, "property=%s pid=%d uid=%d gid=%d", d->name,
d->cr->pid, d->cr->uid, d->cr->gid);
return 0;
}
static void selinux_initialize(bool in_kernel_domain) {
Timer t;
selinux_callback cb;
cb.func_log = selinux_klog_callback;
selinux_set_callback(SELINUX_CB_LOG, cb);
cb.func_audit = audit_callback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
if (in_kernel_domain) {
LOG(INFO) << "Loading SELinux policy...";
if (selinux_android_load_policy() < 0) {
PLOG(ERROR) << "failed to load policy";
security_failure();
}
bool kernel_enforcing = (security_getenforce() == 1);
bool is_enforcing = selinux_is_enforcing();
if (kernel_enforcing != is_enforcing) {
if (security_setenforce(is_enforcing)) {
PLOG(ERROR) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false");
security_failure();
}
}
if (!write_file("/sys/fs/selinux/checkreqprot", "0")) {
security_failure();
}
// init's first stage can't set properties, so pass the time to the second stage.
setenv("INIT_SELINUX_TOOK", std::to_string(t.duration_ms()).c_str(), 1);
} else {
selinux_init_all_handles();
}
}
// Set the UDC controller for the ConfigFS USB Gadgets.
// Read the UDC controller in use from "/sys/class/udc".
// In case of multiple UDC controllers select the first one.
static void set_usb_controller() {
std::unique_ptr<DIR, decltype(&closedir)>dir(opendir("/sys/class/udc"), closedir);
if (!dir) return;
dirent* dp;
while ((dp = readdir(dir.get())) != nullptr) {
if (dp->d_name[0] == '.') continue;
property_set("sys.usb.controller", dp->d_name);
break;
}
}
static std::string import_dt_fstab() {
std::string fstab;
if (!is_dt_compatible() || !is_dt_fstab_compatible()) {
return fstab;
}
std::string fstabdir_name = StringPrintf("%s/fstab", android_dt_dir);
std::unique_ptr<DIR, int (*)(DIR*)> fstabdir(opendir(fstabdir_name.c_str()), closedir);
if (!fstabdir) return fstab;
dirent* dp;
while ((dp = readdir(fstabdir.get())) != NULL) {
// skip over name and compatible
if (dp->d_type != DT_DIR) {
continue;
}
// skip if its not 'vendor', 'odm' or 'system'
if (strcmp(dp->d_name, "odm") && strcmp(dp->d_name, "system") &&
strcmp(dp->d_name, "vendor")) {
continue;
}
// create <dev> <mnt_point> <type> <mnt_flags> <fsmgr_flags>\n
std::vector<std::string> fstab_entry;
std::string file_name;
std::string value;
file_name = StringPrintf("%s/%s/dev", fstabdir_name.c_str(), dp->d_name);
if (!android::base::ReadFileToString(file_name, &value)) {
LOG(ERROR) << "dt_fstab: Failed to find device for partition " << dp->d_name;
fstab.clear();
break;
}
// trim the terminating '\0' out
value.resize(value.size() - 1);
fstab_entry.push_back(value);
fstab_entry.push_back(StringPrintf("/%s", dp->d_name));
file_name = StringPrintf("%s/%s/type", fstabdir_name.c_str(), dp->d_name);
if (!android::base::ReadFileToString(file_name, &value)) {
LOG(ERROR) << "dt_fstab: Failed to find type for partition " << dp->d_name;
fstab.clear();
break;
}
value.resize(value.size() - 1);
fstab_entry.push_back(value);
file_name = StringPrintf("%s/%s/mnt_flags", fstabdir_name.c_str(), dp->d_name);
if (!android::base::ReadFileToString(file_name, &value)) {
LOG(ERROR) << "dt_fstab: Failed to find type for partition " << dp->d_name;
fstab.clear();
break;
}
value.resize(value.size() - 1);
fstab_entry.push_back(value);
file_name = StringPrintf("%s/%s/fsmgr_flags", fstabdir_name.c_str(), dp->d_name);
if (!android::base::ReadFileToString(file_name, &value)) {
LOG(ERROR) << "dt_fstab: Failed to find type for partition " << dp->d_name;
fstab.clear();
break;
}
value.resize(value.size() - 1);
fstab_entry.push_back(value);
fstab += android::base::Join(fstab_entry, " ");
fstab += '\n';
}
return fstab;
}
/* Early mount vendor and ODM partitions. The fstab is read from device-tree. */
static bool early_mount() {
std::string fstab = import_dt_fstab();
if (fstab.empty()) {
LOG(INFO) << "Early mount skipped (missing fstab in device tree)";
return true;
}
std::unique_ptr<FILE, decltype(&fclose)> fstab_file(
fmemopen(static_cast<void*>(const_cast<char*>(fstab.c_str())), fstab.length(), "r"), fclose);
if (!fstab_file) {
PLOG(ERROR) << "Early mount failed to open fstab file in memory";
return false;
}
std::unique_ptr<struct fstab, decltype(&fs_mgr_free_fstab)> tab(
fs_mgr_read_fstab_file(fstab_file.get()), fs_mgr_free_fstab);
if (!tab) {
LOG(ERROR) << "Early mount fsmgr failed to load fstab from kernel:" << std::endl << fstab;
return false;
}
// find out fstab records for odm, system and vendor
fstab_rec* odm_rec = fs_mgr_get_entry_for_mount_point(tab.get(), "/odm");
fstab_rec* system_rec = fs_mgr_get_entry_for_mount_point(tab.get(), "/system");
fstab_rec* vendor_rec = fs_mgr_get_entry_for_mount_point(tab.get(), "/vendor");
if (!odm_rec && !system_rec && !vendor_rec) {
// nothing to early mount
return true;
}
// assume A/B device if we find 'slotselect' in any fstab entry
bool is_ab = ((odm_rec && fs_mgr_is_slotselect(odm_rec)) ||
(system_rec && fs_mgr_is_slotselect(system_rec)) ||
(vendor_rec && fs_mgr_is_slotselect(vendor_rec)));
bool found_odm = !odm_rec;
bool found_system = !system_rec;
bool found_vendor = !vendor_rec;
int count_odm = 0, count_vendor = 0, count_system = 0;
// create the devices we need..
device_init(nullptr, [&](uevent* uevent) -> coldboot_action_t {
if (!strncmp(uevent->subsystem, "firmware", 8)) {
return COLDBOOT_CONTINUE;
}
// we need platform devices to create symlinks
if (!strncmp(uevent->subsystem, "platform", 8)) {
return COLDBOOT_CREATE;
}
// Ignore everything that is not a block device
if (strncmp(uevent->subsystem, "block", 5)) {
return COLDBOOT_CONTINUE;
}
coldboot_action_t ret;
bool create_this_node = false;
if (uevent->partition_name) {
// prefix match partition names so we create device nodes for
// A/B-ed partitions
if (!found_odm && !strncmp(uevent->partition_name, "odm", 3)) {
LOG(VERBOSE) << "early_mount: found (" << uevent->partition_name << ") partition";
// wait twice for A/B-ed partitions
count_odm++;
if (!is_ab) {
found_odm = true;
} else if (count_odm == 2) {
found_odm = true;
}
create_this_node = true;
} else if (!found_system && !strncmp(uevent->partition_name, "system", 6)) {
LOG(VERBOSE) << "early_mount: found (" << uevent->partition_name << ") partition";
count_system++;
if (!is_ab) {
found_system = true;
} else if (count_system == 2) {
found_system = true;
}
create_this_node = true;
} else if (!found_vendor && !strncmp(uevent->partition_name, "vendor", 6)) {
LOG(VERBOSE) << "early_mount: found (" << uevent->partition_name << ") partition";
count_vendor++;
if (!is_ab) {
found_vendor = true;
} else if (count_vendor == 2) {
found_vendor = true;
}
create_this_node = true;
}
}
// if we found all other partitions already, create this
// node and stop coldboot. If this is a prefix matched
// partition, create device node and continue. For everything
// else skip the device node
if (found_odm && found_system && found_vendor) {
ret = COLDBOOT_STOP;
} else if (create_this_node) {
ret = COLDBOOT_CREATE;
} else {
ret = COLDBOOT_CONTINUE;
}
return ret;
});
// TODO: add support to mount partitions w/ verity
int ret = 0;
if (odm_rec &&
(ret = fs_mgr_do_mount(tab.get(), odm_rec->mount_point, odm_rec->blk_device, NULL))) {
PLOG(ERROR) << "early_mount: fs_mgr_do_mount returned error for mounting odm";
return false;
}
if (vendor_rec &&
(ret = fs_mgr_do_mount(tab.get(), vendor_rec->mount_point, vendor_rec->blk_device, NULL))) {
PLOG(ERROR) << "early_mount: fs_mgr_do_mount returned error for mounting vendor";
return false;
}
device_close();
return true;
}
int main(int argc, char** argv) {
if (!strcmp(basename(argv[0]), "ueventd")) {
return ueventd_main(argc, argv);
}
if (!strcmp(basename(argv[0]), "watchdogd")) {
return watchdogd_main(argc, argv);
}
boot_clock::time_point start_time = boot_clock::now();
// Clear the umask.
umask(0);
add_environment("PATH", _PATH_DEFPATH);
bool is_first_stage = (getenv("INIT_SECOND_STAGE") == nullptr);
// Don't expose the raw commandline to unprivileged processes.
chmod("/proc/cmdline", 0440);
// Get the basic filesystem setup we need put together in the initramdisk
// on / and then we'll let the rc file figure out the rest.
if (is_first_stage) {
mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
mkdir("/dev/pts", 0755);
mkdir("/dev/socket", 0755);
mount("devpts", "/dev/pts", "devpts", 0, NULL);
#define MAKE_STR(x) __STRING(x)
mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC));
gid_t groups[] = { AID_READPROC };
setgroups(arraysize(groups), groups);
mount("sysfs", "/sys", "sysfs", 0, NULL);
mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL);
mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11));
mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));
mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));
}
// Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
// talk to the outside world...
InitKernelLogging(argv);
LOG(INFO) << "init " << (is_first_stage ? "first" : "second") << " stage started!";
if (is_first_stage) {
if (!early_mount()) {
LOG(ERROR) << "Failed to mount required partitions early ...";
panic();
}
// Set up SELinux, loading the SELinux policy.
selinux_initialize(true);
// We're in the kernel domain, so re-exec init to transition to the init domain now
// that the SELinux policy has been loaded.
if (restorecon("/init") == -1) {
PLOG(ERROR) << "restorecon failed";
security_failure();
}
setenv("INIT_SECOND_STAGE", "true", 1);
static constexpr uint32_t kNanosecondsPerMillisecond = 1e6;
uint64_t start_ms = start_time.time_since_epoch().count() / kNanosecondsPerMillisecond;
setenv("INIT_STARTED_AT", StringPrintf("%" PRIu64, start_ms).c_str(), 1);
char* path = argv[0];
char* args[] = { path, nullptr };
if (execv(path, args) == -1) {
PLOG(ERROR) << "execv(\"" << path << "\") failed";
security_failure();
}
} else {
// Indicate that booting is in progress to background fw loaders, etc.
close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
property_init();
// If arguments are passed both on the command line and in DT,
// properties set in DT always have priority over the command-line ones.
process_kernel_dt();
process_kernel_cmdline();
// Propagate the kernel variables to internal variables
// used by init as well as the current required properties.
export_kernel_boot_props();
// Make the time that init started available for bootstat to log.
property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));
property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));
// Clean up our environment.
unsetenv("INIT_SECOND_STAGE");
unsetenv("INIT_STARTED_AT");
unsetenv("INIT_SELINUX_TOOK");
// Now set up SELinux for second stage.
selinux_initialize(false);
}
// These directories were necessarily created before initial policy load
// and therefore need their security context restored to the proper value.
// This must happen before /dev is populated by ueventd.
LOG(INFO) << "Running restorecon...";
restorecon("/dev");
restorecon("/dev/kmsg");
restorecon("/dev/socket");
restorecon("/dev/random");
restorecon("/dev/urandom");
restorecon("/dev/__properties__");
restorecon("/plat_property_contexts");
restorecon("/nonplat_property_contexts");
restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
restorecon("/dev/device-mapper");
epoll_fd = epoll_create1(EPOLL_CLOEXEC);
if (epoll_fd == -1) {
PLOG(ERROR) << "epoll_create1 failed";
exit(1);
}
signal_handler_init();
property_load_boot_defaults();
export_oem_lock_status();
start_property_service();
set_usb_controller();
const BuiltinFunctionMap function_map;
Action::set_function_map(&function_map);
Parser& parser = Parser::GetInstance();
parser.AddSectionParser("service",std::make_unique<ServiceParser>());
parser.AddSectionParser("on", std::make_unique<ActionParser>());
parser.AddSectionParser("import", std::make_unique<ImportParser>());
std::string bootscript = property_get("ro.boot.init_rc");
if (bootscript.empty()) {
parser.ParseConfig("/init.rc");
} else {
parser.ParseConfig(bootscript);
}
ActionManager& am = ActionManager::GetInstance();
am.QueueEventTrigger("early-init");
// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
// ... so that we can start queuing up actions that require stuff from /dev.
am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
am.QueueBuiltinAction(set_mmap_rnd_bits_action, "set_mmap_rnd_bits");
am.QueueBuiltinAction(set_kptr_restrict_action, "set_kptr_restrict");
am.QueueBuiltinAction(keychord_init_action, "keychord_init");
am.QueueBuiltinAction(console_init_action, "console_init");
// Trigger all the boot actions to get us started.
am.QueueEventTrigger("init");
// Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
// wasn't ready immediately after wait_for_coldboot_done
am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
// Don't mount filesystems or start core system services in charger mode.
std::string bootmode = property_get("ro.bootmode");
if (bootmode == "charger") {
am.QueueEventTrigger("charger");
} else {
am.QueueEventTrigger("late-init");
}
// Run all property triggers based on current state of the properties.
am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");
while (true) {
if (!(waiting_for_exec || waiting_for_prop)) {
am.ExecuteOneCommand();
restart_processes();
}
// By default, sleep until something happens.
int epoll_timeout_ms = -1;
// If there's a process that needs restarting, wake up in time for that.
if (process_needs_restart_at != 0) {
epoll_timeout_ms = (process_needs_restart_at - time(nullptr)) * 1000;
if (epoll_timeout_ms < 0) epoll_timeout_ms = 0;
}
// If there's more work to do, wake up again immediately.
if (am.HasMoreCommands()) epoll_timeout_ms = 0;
epoll_event ev;
int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));
if (nr == -1) {
PLOG(ERROR) << "epoll_wait failed";
} else if (nr == 1) {
((void (*)()) ev.data.ptr)();
}
}
return 0;
}