| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdint.h> |
| |
| #include <unwindstack/DwarfLocation.h> |
| #include <unwindstack/DwarfMemory.h> |
| #include <unwindstack/DwarfSection.h> |
| #include <unwindstack/DwarfStructs.h> |
| #include <unwindstack/Log.h> |
| #include <unwindstack/Memory.h> |
| #include <unwindstack/Regs.h> |
| |
| #include "DwarfCfa.h" |
| #include "DwarfEncoding.h" |
| #include "DwarfError.h" |
| #include "DwarfOp.h" |
| |
| namespace unwindstack { |
| |
| DwarfSection::DwarfSection(Memory* memory) : memory_(memory), last_error_(DWARF_ERROR_NONE) {} |
| |
| const DwarfFde* DwarfSection::GetFdeFromPc(uint64_t pc) { |
| uint64_t fde_offset; |
| if (!GetFdeOffsetFromPc(pc, &fde_offset)) { |
| return nullptr; |
| } |
| const DwarfFde* fde = GetFdeFromOffset(fde_offset); |
| // Guaranteed pc >= pc_start, need to check pc in the fde range. |
| if (pc < fde->pc_end) { |
| return fde; |
| } |
| last_error_ = DWARF_ERROR_ILLEGAL_STATE; |
| return nullptr; |
| } |
| |
| bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) { |
| last_error_ = DWARF_ERROR_NONE; |
| const DwarfFde* fde = GetFdeFromPc(pc); |
| if (fde == nullptr || fde->cie == nullptr) { |
| last_error_ = DWARF_ERROR_ILLEGAL_STATE; |
| return false; |
| } |
| |
| // Now get the location information for this pc. |
| dwarf_loc_regs_t loc_regs; |
| if (!GetCfaLocationInfo(pc, fde, &loc_regs)) { |
| return false; |
| } |
| |
| // Now eval the actual registers. |
| return Eval(fde->cie, process_memory, loc_regs, regs, finished); |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::EvalExpression(const DwarfLocation& loc, uint8_t version, |
| Memory* regular_memory, AddressType* value) { |
| DwarfOp<AddressType> op(&memory_, regular_memory); |
| |
| // Need to evaluate the op data. |
| uint64_t start = loc.values[1]; |
| uint64_t end = start + loc.values[0]; |
| if (!op.Eval(start, end, version)) { |
| last_error_ = op.last_error(); |
| return false; |
| } |
| if (op.StackSize() == 0) { |
| last_error_ = DWARF_ERROR_ILLEGAL_STATE; |
| return false; |
| } |
| // We don't support an expression that evaluates to a register number. |
| if (op.is_register()) { |
| last_error_ = DWARF_ERROR_NOT_IMPLEMENTED; |
| return false; |
| } |
| *value = op.StackAt(0); |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::Eval(const DwarfCie* cie, Memory* regular_memory, |
| const dwarf_loc_regs_t& loc_regs, Regs* regs, |
| bool* finished) { |
| RegsImpl<AddressType>* cur_regs = reinterpret_cast<RegsImpl<AddressType>*>(regs); |
| if (cie->return_address_register >= cur_regs->total_regs()) { |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| // Get the cfa value; |
| auto cfa_entry = loc_regs.find(CFA_REG); |
| if (cfa_entry == loc_regs.end()) { |
| last_error_ = DWARF_ERROR_CFA_NOT_DEFINED; |
| return false; |
| } |
| |
| AddressType prev_pc = regs->pc(); |
| AddressType prev_cfa = regs->sp(); |
| |
| AddressType cfa; |
| const DwarfLocation* loc = &cfa_entry->second; |
| // Only a few location types are valid for the cfa. |
| switch (loc->type) { |
| case DWARF_LOCATION_REGISTER: |
| if (loc->values[0] >= cur_regs->total_regs()) { |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| // If the stack pointer register is the CFA, and the stack |
| // pointer register does not have any associated location |
| // information, use the current cfa value. |
| if (regs->sp_reg() == loc->values[0] && loc_regs.count(regs->sp_reg()) == 0) { |
| cfa = prev_cfa; |
| } else { |
| cfa = (*cur_regs)[loc->values[0]]; |
| } |
| cfa += loc->values[1]; |
| break; |
| case DWARF_LOCATION_EXPRESSION: |
| case DWARF_LOCATION_VAL_EXPRESSION: { |
| AddressType value; |
| if (!EvalExpression(*loc, cie->version, regular_memory, &value)) { |
| return false; |
| } |
| if (loc->type == DWARF_LOCATION_EXPRESSION) { |
| if (!regular_memory->Read(value, &cfa, sizeof(AddressType))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| } else { |
| cfa = value; |
| } |
| break; |
| } |
| default: |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| // This code is not guaranteed to work in cases where a register location |
| // is a double indirection to the actual value. For example, if r3 is set |
| // to r5 + 4, and r5 is set to CFA + 4, then this won't necessarily work |
| // because it does not guarantee that r5 is evaluated before r3. |
| // Check that this case does not exist, and error if it does. |
| bool return_address_undefined = false; |
| for (const auto& entry : loc_regs) { |
| uint16_t reg = entry.first; |
| // Already handled the CFA register. |
| if (reg == CFA_REG) continue; |
| |
| if (reg >= cur_regs->total_regs()) { |
| // Skip this unknown register. |
| continue; |
| } |
| |
| const DwarfLocation* loc = &entry.second; |
| switch (loc->type) { |
| case DWARF_LOCATION_OFFSET: |
| if (!regular_memory->Read(cfa + loc->values[0], &(*cur_regs)[reg], sizeof(AddressType))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| break; |
| case DWARF_LOCATION_VAL_OFFSET: |
| (*cur_regs)[reg] = cfa + loc->values[0]; |
| break; |
| case DWARF_LOCATION_REGISTER: { |
| uint16_t cur_reg = loc->values[0]; |
| if (cur_reg >= cur_regs->total_regs()) { |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| if (loc_regs.find(cur_reg) != loc_regs.end()) { |
| // This is a double indirection, a register definition references |
| // another register which is also defined as something other |
| // than a register. |
| log(0, |
| "Invalid indirection: register %d references register %d which is " |
| "not a plain register.\n", |
| reg, cur_reg); |
| last_error_ = DWARF_ERROR_ILLEGAL_STATE; |
| return false; |
| } |
| (*cur_regs)[reg] = (*cur_regs)[cur_reg] + loc->values[1]; |
| break; |
| } |
| case DWARF_LOCATION_EXPRESSION: |
| case DWARF_LOCATION_VAL_EXPRESSION: { |
| AddressType value; |
| if (!EvalExpression(*loc, cie->version, regular_memory, &value)) { |
| return false; |
| } |
| if (loc->type == DWARF_LOCATION_EXPRESSION) { |
| if (!regular_memory->Read(value, &(*cur_regs)[reg], sizeof(AddressType))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| } else { |
| (*cur_regs)[reg] = value; |
| } |
| break; |
| } |
| case DWARF_LOCATION_UNDEFINED: |
| if (reg == cie->return_address_register) { |
| return_address_undefined = true; |
| } |
| default: |
| break; |
| } |
| } |
| |
| // Find the return address location. |
| if (return_address_undefined) { |
| cur_regs->set_pc(0); |
| *finished = true; |
| } else { |
| cur_regs->set_pc((*cur_regs)[cie->return_address_register]); |
| *finished = false; |
| } |
| cur_regs->set_sp(cfa); |
| // Return false if the unwind is not finished or the cfa and pc didn't change. |
| return *finished || prev_cfa != cfa || prev_pc != cur_regs->pc(); |
| } |
| |
| template <typename AddressType> |
| const DwarfCie* DwarfSectionImpl<AddressType>::GetCie(uint64_t offset) { |
| auto cie_entry = cie_entries_.find(offset); |
| if (cie_entry != cie_entries_.end()) { |
| return &cie_entry->second; |
| } |
| DwarfCie* cie = &cie_entries_[offset]; |
| memory_.set_cur_offset(offset); |
| if (!FillInCie(cie)) { |
| // Erase the cached entry. |
| cie_entries_.erase(offset); |
| return nullptr; |
| } |
| return cie; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::FillInCie(DwarfCie* cie) { |
| uint32_t length32; |
| if (!memory_.ReadBytes(&length32, sizeof(length32))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| // Set the default for the lsda encoding. |
| cie->lsda_encoding = DW_EH_PE_omit; |
| |
| if (length32 == static_cast<uint32_t>(-1)) { |
| // 64 bit Cie |
| uint64_t length64; |
| if (!memory_.ReadBytes(&length64, sizeof(length64))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| |
| cie->cfa_instructions_end = memory_.cur_offset() + length64; |
| cie->fde_address_encoding = DW_EH_PE_sdata8; |
| |
| uint64_t cie_id; |
| if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| if (!IsCie64(cie_id)) { |
| // This is not a Cie, something has gone horribly wrong. |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| } else { |
| // 32 bit Cie |
| cie->cfa_instructions_end = memory_.cur_offset() + length32; |
| cie->fde_address_encoding = DW_EH_PE_sdata4; |
| |
| uint32_t cie_id; |
| if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| if (!IsCie32(cie_id)) { |
| // This is not a Cie, something has gone horribly wrong. |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| } |
| |
| if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| |
| if (cie->version != 1 && cie->version != 3 && cie->version != 4) { |
| // Unrecognized version. |
| last_error_ = DWARF_ERROR_UNSUPPORTED_VERSION; |
| return false; |
| } |
| |
| // Read the augmentation string. |
| char aug_value; |
| do { |
| if (!memory_.ReadBytes(&aug_value, 1)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| cie->augmentation_string.push_back(aug_value); |
| } while (aug_value != '\0'); |
| |
| if (cie->version == 4) { |
| // Skip the Address Size field since we only use it for validation. |
| memory_.set_cur_offset(memory_.cur_offset() + 1); |
| |
| // Segment Size |
| if (!memory_.ReadBytes(&cie->segment_size, 1)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| } |
| |
| // Code Alignment Factor |
| if (!memory_.ReadULEB128(&cie->code_alignment_factor)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| |
| // Data Alignment Factor |
| if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| |
| if (cie->version == 1) { |
| // Return Address is a single byte. |
| uint8_t return_address_register; |
| if (!memory_.ReadBytes(&return_address_register, 1)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| cie->return_address_register = return_address_register; |
| } else if (!memory_.ReadULEB128(&cie->return_address_register)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| |
| if (cie->augmentation_string[0] != 'z') { |
| cie->cfa_instructions_offset = memory_.cur_offset(); |
| return true; |
| } |
| |
| uint64_t aug_length; |
| if (!memory_.ReadULEB128(&aug_length)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| cie->cfa_instructions_offset = memory_.cur_offset() + aug_length; |
| |
| for (size_t i = 1; i < cie->augmentation_string.size(); i++) { |
| switch (cie->augmentation_string[i]) { |
| case 'L': |
| if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| break; |
| case 'P': { |
| uint8_t encoding; |
| if (!memory_.ReadBytes(&encoding, 1)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| if (!memory_.ReadEncodedValue<AddressType>(encoding, &cie->personality_handler)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| } break; |
| case 'R': |
| if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| break; |
| } |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromOffset(uint64_t offset) { |
| auto fde_entry = fde_entries_.find(offset); |
| if (fde_entry != fde_entries_.end()) { |
| return &fde_entry->second; |
| } |
| DwarfFde* fde = &fde_entries_[offset]; |
| memory_.set_cur_offset(offset); |
| if (!FillInFde(fde)) { |
| fde_entries_.erase(offset); |
| return nullptr; |
| } |
| return fde; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::FillInFde(DwarfFde* fde) { |
| uint32_t length32; |
| if (!memory_.ReadBytes(&length32, sizeof(length32))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| |
| if (length32 == static_cast<uint32_t>(-1)) { |
| // 64 bit Fde. |
| uint64_t length64; |
| if (!memory_.ReadBytes(&length64, sizeof(length64))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| fde->cfa_instructions_end = memory_.cur_offset() + length64; |
| |
| uint64_t value64; |
| if (!memory_.ReadBytes(&value64, sizeof(value64))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| if (IsCie64(value64)) { |
| // This is a Cie, this means something has gone wrong. |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| // Get the Cie pointer, which is necessary to properly read the rest of |
| // of the Fde information. |
| fde->cie_offset = GetCieOffsetFromFde64(value64); |
| } else { |
| // 32 bit Fde. |
| fde->cfa_instructions_end = memory_.cur_offset() + length32; |
| |
| uint32_t value32; |
| if (!memory_.ReadBytes(&value32, sizeof(value32))) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| if (IsCie32(value32)) { |
| // This is a Cie, this means something has gone wrong. |
| last_error_ = DWARF_ERROR_ILLEGAL_VALUE; |
| return false; |
| } |
| |
| // Get the Cie pointer, which is necessary to properly read the rest of |
| // of the Fde information. |
| fde->cie_offset = GetCieOffsetFromFde32(value32); |
| } |
| uint64_t cur_offset = memory_.cur_offset(); |
| |
| const DwarfCie* cie = GetCie(fde->cie_offset); |
| if (cie == nullptr) { |
| return false; |
| } |
| fde->cie = cie; |
| |
| if (cie->segment_size != 0) { |
| // Skip over the segment selector for now. |
| cur_offset += cie->segment_size; |
| } |
| memory_.set_cur_offset(cur_offset); |
| |
| if (!memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding & 0xf, &fde->pc_start)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| fde->pc_start = AdjustPcFromFde(fde->pc_start); |
| |
| if (!memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding & 0xf, &fde->pc_end)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| fde->pc_end += fde->pc_start; |
| if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') { |
| // Augmentation Size |
| uint64_t aug_length; |
| if (!memory_.ReadULEB128(&aug_length)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| uint64_t cur_offset = memory_.cur_offset(); |
| |
| if (!memory_.ReadEncodedValue<AddressType>(cie->lsda_encoding, &fde->lsda_address)) { |
| last_error_ = DWARF_ERROR_MEMORY_INVALID; |
| return false; |
| } |
| |
| // Set our position to after all of the augmentation data. |
| memory_.set_cur_offset(cur_offset + aug_length); |
| } |
| fde->cfa_instructions_offset = memory_.cur_offset(); |
| |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde, |
| dwarf_loc_regs_t* loc_regs) { |
| DwarfCfa<AddressType> cfa(&memory_, fde); |
| |
| // Look for the cached copy of the cie data. |
| auto reg_entry = cie_loc_regs_.find(fde->cie_offset); |
| if (reg_entry == cie_loc_regs_.end()) { |
| if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end, |
| loc_regs)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| cie_loc_regs_[fde->cie_offset] = *loc_regs; |
| } |
| cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]); |
| if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| return true; |
| } |
| |
| template <typename AddressType> |
| bool DwarfSectionImpl<AddressType>::Log(uint8_t indent, uint64_t pc, uint64_t load_bias, |
| const DwarfFde* fde) { |
| DwarfCfa<AddressType> cfa(&memory_, fde); |
| |
| // Always print the cie information. |
| const DwarfCie* cie = fde->cie; |
| if (!cfa.Log(indent, pc, load_bias, cie->cfa_instructions_offset, cie->cfa_instructions_end)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| if (!cfa.Log(indent, pc, load_bias, fde->cfa_instructions_offset, fde->cfa_instructions_end)) { |
| last_error_ = cfa.last_error(); |
| return false; |
| } |
| return true; |
| } |
| |
| // Explicitly instantiate DwarfSectionImpl |
| template class DwarfSectionImpl<uint32_t>; |
| template class DwarfSectionImpl<uint64_t>; |
| |
| } // namespace unwindstack |