blob: 1b13b21261a73ac8dcf8369a02f369c6396f92dc [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// The bootstat command provides options to persist boot events with the current
// timestamp, dump the persisted events, and log all events to EventLog to be
// uploaded to Android log storage via Tron.
#include <getopt.h>
#include <sys/klog.h>
#include <unistd.h>
#include <chrono>
#include <cmath>
#include <cstddef>
#include <cstdio>
#include <ctime>
#include <map>
#include <memory>
#include <regex>
#include <string>
#include <utility>
#include <vector>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#include <android/log.h>
#include <cutils/android_reboot.h>
#include <cutils/properties.h>
#include <log/logcat.h>
#include <metricslogger/metrics_logger.h>
#include "boot_event_record_store.h"
namespace {
// Scans the boot event record store for record files and logs each boot event
// via EventLog.
void LogBootEvents() {
BootEventRecordStore boot_event_store;
auto events = boot_event_store.GetAllBootEvents();
for (auto i = events.cbegin(); i != events.cend(); ++i) {
android::metricslogger::LogHistogram(i->first, i->second);
}
}
// Records the named boot |event| to the record store. If |value| is non-empty
// and is a proper string representation of an integer value, the converted
// integer value is associated with the boot event.
void RecordBootEventFromCommandLine(const std::string& event, const std::string& value_str) {
BootEventRecordStore boot_event_store;
if (!value_str.empty()) {
int32_t value = 0;
if (android::base::ParseInt(value_str, &value)) {
boot_event_store.AddBootEventWithValue(event, value);
}
} else {
boot_event_store.AddBootEvent(event);
}
}
void PrintBootEvents() {
printf("Boot events:\n");
printf("------------\n");
BootEventRecordStore boot_event_store;
auto events = boot_event_store.GetAllBootEvents();
for (auto i = events.cbegin(); i != events.cend(); ++i) {
printf("%s\t%d\n", i->first.c_str(), i->second);
}
}
void ShowHelp(const char* cmd) {
fprintf(stderr, "Usage: %s [options]\n", cmd);
fprintf(stderr,
"options include:\n"
" -h, --help Show this help\n"
" -l, --log Log all metrics to logstorage\n"
" -p, --print Dump the boot event records to the console\n"
" -r, --record Record the timestamp of a named boot event\n"
" --value Optional value to associate with the boot event\n"
" --record_boot_complete Record metrics related to the time for the device boot\n"
" --record_boot_reason Record the reason why the device booted\n"
" --record_time_since_factory_reset Record the time since the device was reset\n");
}
// Constructs a readable, printable string from the givencommand line
// arguments.
std::string GetCommandLine(int argc, char** argv) {
std::string cmd;
for (int i = 0; i < argc; ++i) {
cmd += argv[i];
cmd += " ";
}
return cmd;
}
// Convenience wrapper over the property API that returns an
// std::string.
std::string GetProperty(const char* key) {
std::vector<char> temp(PROPERTY_VALUE_MAX);
const int len = property_get(key, &temp[0], nullptr);
if (len < 0) {
return "";
}
return std::string(&temp[0], len);
}
void SetProperty(const char* key, const std::string& val) {
property_set(key, val.c_str());
}
void SetProperty(const char* key, const char* val) {
property_set(key, val);
}
constexpr int32_t kEmptyBootReason = 0;
constexpr int32_t kUnknownBootReason = 1;
// A mapping from boot reason string, as read from the ro.boot.bootreason
// system property, to a unique integer ID. Viewers of log data dashboards for
// the boot_reason metric may refer to this mapping to discern the histogram
// values.
const std::map<std::string, int32_t> kBootReasonMap = {
{"empty", kEmptyBootReason},
{"__BOOTSTAT_UNKNOWN__", kUnknownBootReason},
{"normal", 2},
{"recovery", 3},
{"reboot", 4},
{"PowerKey", 5},
{"hard_reset", 6},
{"kernel_panic", 7},
{"rpm_err", 8},
{"hw_reset", 9},
{"tz_err", 10},
{"adsp_err", 11},
{"modem_err", 12},
{"mba_err", 13},
{"Watchdog", 14},
{"Panic", 15},
{"power_key", 16},
{"power_on", 17},
{"Reboot", 18},
{"rtc", 19},
{"edl", 20},
{"oem_pon1", 21},
{"oem_powerkey", 22},
{"oem_unknown_reset", 23},
{"srto: HWWDT reset SC", 24},
{"srto: HWWDT reset platform", 25},
{"srto: bootloader", 26},
{"srto: kernel panic", 27},
{"srto: kernel watchdog reset", 28},
{"srto: normal", 29},
{"srto: reboot", 30},
{"srto: reboot-bootloader", 31},
{"srto: security watchdog reset", 32},
{"srto: wakesrc", 33},
{"srto: watchdog", 34},
{"srto:1-1", 35},
{"srto:omap_hsmm", 36},
{"srto:phy0", 37},
{"srto:rtc0", 38},
{"srto:touchpad", 39},
{"watchdog", 40},
{"watchdogr", 41},
{"wdog_bark", 42},
{"wdog_bite", 43},
{"wdog_reset", 44},
{"shutdown,", 45}, // Trailing comma is intentional.
{"shutdown,userrequested", 46},
{"reboot,bootloader", 47},
{"reboot,cold", 48},
{"reboot,recovery", 49},
{"thermal_shutdown", 50},
{"s3_wakeup", 51},
{"kernel_panic,sysrq", 52},
{"kernel_panic,NULL", 53},
{"kernel_panic,null", 53},
{"kernel_panic,BUG", 54},
{"kernel_panic,bug", 54},
{"bootloader", 55},
{"cold", 56},
{"hard", 57},
{"warm", 58},
// {"recovery", 59}, // Duplicate of enum 3 above. Immediate reuse possible.
{"thermal-shutdown", 60},
{"shutdown,thermal", 61},
{"shutdown,battery", 62},
{"reboot,ota", 63},
{"reboot,factory_reset", 64},
{"reboot,", 65},
{"reboot,shell", 66},
{"reboot,adb", 67},
{"reboot,userrequested", 68},
{"shutdown,container", 69}, // Host OS asking Android Container to shutdown
{"cold,powerkey", 70},
{"warm,s3_wakeup", 71},
{"hard,hw_reset", 72},
{"shutdown,suspend", 73}, // Suspend to RAM
{"shutdown,hibernate", 74}, // Suspend to DISK
{"power_on_key", 75},
{"reboot_by_key", 76},
{"wdt_by_pass_pwk", 77},
{"reboot_longkey", 78},
{"powerkey", 79},
{"usb", 80},
{"wdt", 81},
{"tool_by_pass_pwk", 82},
{"2sec_reboot", 83},
{"reboot,by_key", 84},
{"reboot,longkey", 85},
{"reboot,2sec", 86},
{"shutdown,thermal,battery", 87},
{"reboot,its_just_so_hard", 88}, // produced by boot_reason_test
{"reboot,Its Just So Hard", 89}, // produced by boot_reason_test
{"reboot,rescueparty", 90},
{"charge", 91},
{"oem_tz_crash", 92},
{"uvlo", 93},
{"oem_ps_hold", 94},
{"abnormal_reset", 95},
{"oemerr_unknown", 96},
{"reboot_fastboot_mode", 97},
{"watchdog_apps_bite", 98},
{"xpu_err", 99},
{"power_on_usb", 100},
{"watchdog_rpm", 101},
{"watchdog_nonsec", 102},
{"watchdog_apps_bark", 103},
{"reboot_dmverity_corrupted", 104},
{"reboot_smpl", 105},
{"watchdog_sdi_apps_reset", 106},
{"smpl", 107},
{"oem_modem_failed_to_powerup", 108},
{"reboot_normal", 109},
{"oem_lpass_cfg", 110},
{"oem_xpu_ns_error", 111},
{"power_key_press", 112},
{"hardware_reset", 113},
{"reboot_by_powerkey", 114},
{"reboot_verity", 115},
{"oem_rpm_undef_error", 116},
{"oem_crash_on_the_lk", 117},
{"oem_rpm_reset", 118},
{"oem_lpass_cfg", 119},
{"oem_xpu_ns_error", 120},
{"factory_cable", 121},
{"oem_ar6320_failed_to_powerup", 122},
{"watchdog_rpm_bite", 123},
{"power_on_cable", 124},
{"reboot_unknown", 125},
{"wireless_charger", 126},
{"0x776655ff", 127},
{"oem_thermal_bite_reset", 128},
{"charger", 129},
{"pon1", 130},
{"unknown", 131},
{"reboot_rtc", 132},
{"cold_boot", 133},
{"hard_rst", 134},
{"power-on", 135},
{"oem_adsp_resetting_the_soc", 136},
{"kpdpwr", 137},
{"oem_modem_timeout_waiting", 138},
{"usb_chg", 139},
{"warm_reset_0x02", 140},
{"warm_reset_0x80", 141},
{"pon_reason_0xb0", 142},
{"reboot_download", 143},
{"reboot_recovery_mode", 144},
{"oem_sdi_err_fatal", 145},
{"pmic_watchdog", 146},
{"software_master", 147},
{"cold,charger", 148},
{"cold,rtc", 149},
{"cold,rtc,2sec", 150},
{"reboot,tool", 151},
{"reboot,wdt", 152},
{"reboot,unknown", 153},
{"kernel_panic,audit", 154},
{"kernel_panic,atomic", 155},
{"kernel_panic,hung", 156},
{"kernel_panic,hung,rcu", 157},
{"kernel_panic,init", 158},
{"kernel_panic,oom", 159},
{"kernel_panic,stack", 160},
{"kernel_panic,sysrq,livelock,alarm", 161}, // llkd
{"kernel_panic,sysrq,livelock,driver", 162}, // llkd
{"kernel_panic,sysrq,livelock,zombie", 163}, // llkd
};
// Converts a string value representing the reason the system booted to an
// integer representation. This is necessary for logging the boot_reason metric
// via Tron, which does not accept non-integer buckets in histograms.
int32_t BootReasonStrToEnum(const std::string& boot_reason) {
auto mapping = kBootReasonMap.find(boot_reason);
if (mapping != kBootReasonMap.end()) {
return mapping->second;
}
if (boot_reason.empty()) {
return kEmptyBootReason;
}
LOG(INFO) << "Unknown boot reason: " << boot_reason;
return kUnknownBootReason;
}
// Canonical list of supported primary reboot reasons.
const std::vector<const std::string> knownReasons = {
// clang-format off
// kernel
"watchdog",
"kernel_panic",
// strong
"recovery", // Should not happen from ro.boot.bootreason
"bootloader", // Should not happen from ro.boot.bootreason
// blunt
"cold",
"hard",
"warm",
// super blunt
"shutdown", // Can not happen from ro.boot.bootreason
"reboot", // Default catch-all for anything unknown
// clang-format on
};
// Returns true if the supplied reason prefix is considered detailed enough.
bool isStrongRebootReason(const std::string& r) {
for (auto& s : knownReasons) {
if (s == "cold") break;
// Prefix defined as terminated by a nul or comma (,).
if (android::base::StartsWith(r, s) && ((r.length() == s.length()) || (r[s.length()] == ','))) {
return true;
}
}
return false;
}
// Returns true if the supplied reason prefix is associated with the kernel.
bool isKernelRebootReason(const std::string& r) {
for (auto& s : knownReasons) {
if (s == "recovery") break;
// Prefix defined as terminated by a nul or comma (,).
if (android::base::StartsWith(r, s) && ((r.length() == s.length()) || (r[s.length()] == ','))) {
return true;
}
}
return false;
}
// Returns true if the supplied reason prefix is considered known.
bool isKnownRebootReason(const std::string& r) {
for (auto& s : knownReasons) {
// Prefix defined as terminated by a nul or comma (,).
if (android::base::StartsWith(r, s) && ((r.length() == s.length()) || (r[s.length()] == ','))) {
return true;
}
}
return false;
}
// If the reboot reason should be improved, report true if is too blunt.
bool isBluntRebootReason(const std::string& r) {
if (isStrongRebootReason(r)) return false;
if (!isKnownRebootReason(r)) return true; // Can not support unknown as detail
size_t pos = 0;
while ((pos = r.find(',', pos)) != std::string::npos) {
++pos;
std::string next(r.substr(pos));
if (next.length() == 0) break;
if (next[0] == ',') continue;
if (!isKnownRebootReason(next)) return false; // Unknown subreason is good.
if (isStrongRebootReason(next)) return false; // eg: reboot,reboot
}
return true;
}
bool readPstoreConsole(std::string& console) {
if (android::base::ReadFileToString("/sys/fs/pstore/console-ramoops-0", &console)) {
return true;
}
return android::base::ReadFileToString("/sys/fs/pstore/console-ramoops", &console);
}
// Implement a variant of std::string::rfind that is resilient to errors in
// the data stream being inspected.
class pstoreConsole {
private:
const size_t kBitErrorRate = 8; // number of bits per error
const std::string& console;
// Number of bits that differ between the two arguments l and r.
// Returns zero if the values for l and r are identical.
size_t numError(uint8_t l, uint8_t r) const { return std::bitset<8>(l ^ r).count(); }
// A string comparison function, reports the number of errors discovered
// in the match to a maximum of the bitLength / kBitErrorRate, at that
// point returning npos to indicate match is too poor.
//
// Since called in rfind which works backwards, expect cache locality will
// help if we check in reverse here as well for performance.
//
// Assumption: l (from console.c_str() + pos) is long enough to house
// _r.length(), checked in rfind caller below.
//
size_t numError(size_t pos, const std::string& _r) const {
const char* l = console.c_str() + pos;
const char* r = _r.c_str();
size_t n = _r.length();
const uint8_t* le = reinterpret_cast<const uint8_t*>(l) + n;
const uint8_t* re = reinterpret_cast<const uint8_t*>(r) + n;
size_t count = 0;
n = 0;
do {
// individual character bit error rate > threshold + slop
size_t num = numError(*--le, *--re);
if (num > ((8 + kBitErrorRate) / kBitErrorRate)) return std::string::npos;
// total bit error rate > threshold + slop
count += num;
++n;
if (count > ((n * 8 + kBitErrorRate - (n > 2)) / kBitErrorRate)) {
return std::string::npos;
}
} while (le != reinterpret_cast<const uint8_t*>(l));
return count;
}
public:
explicit pstoreConsole(const std::string& console) : console(console) {}
// scope of argument must be equal to or greater than scope of pstoreConsole
explicit pstoreConsole(const std::string&& console) = delete;
explicit pstoreConsole(std::string&& console) = delete;
// Our implementation of rfind, use exact match first, then resort to fuzzy.
size_t rfind(const std::string& needle) const {
size_t pos = console.rfind(needle); // exact match?
if (pos != std::string::npos) return pos;
// Check to make sure needle fits in console string.
pos = console.length();
if (needle.length() > pos) return std::string::npos;
pos -= needle.length();
// fuzzy match to maximum kBitErrorRate
for (;;) {
if (numError(pos, needle) != std::string::npos) return pos;
if (pos == 0) break;
--pos;
}
return std::string::npos;
}
// Our implementation of find, use only fuzzy match.
size_t find(const std::string& needle, size_t start = 0) const {
// Check to make sure needle fits in console string.
if (needle.length() > console.length()) return std::string::npos;
const size_t last_pos = console.length() - needle.length();
// fuzzy match to maximum kBitErrorRate
for (size_t pos = start; pos <= last_pos; ++pos) {
if (numError(pos, needle) != std::string::npos) return pos;
}
return std::string::npos;
}
operator const std::string&() const { return console; }
};
// If bit error match to needle, correct it.
// Return true if any corrections were discovered and applied.
bool correctForBitError(std::string& reason, const std::string& needle) {
bool corrected = false;
if (reason.length() < needle.length()) return corrected;
const pstoreConsole console(reason);
const size_t last_pos = reason.length() - needle.length();
for (size_t pos = 0; pos <= last_pos; pos += needle.length()) {
pos = console.find(needle, pos);
if (pos == std::string::npos) break;
// exact match has no malice
if (needle == reason.substr(pos, needle.length())) continue;
corrected = true;
reason = reason.substr(0, pos) + needle + reason.substr(pos + needle.length());
}
return corrected;
}
// If bit error match to needle, correct it.
// Return true if any corrections were discovered and applied.
// Try again if we can replace underline with spaces.
bool correctForBitErrorOrUnderline(std::string& reason, const std::string& needle) {
bool corrected = correctForBitError(reason, needle);
std::string _needle(needle);
std::transform(_needle.begin(), _needle.end(), _needle.begin(),
[](char c) { return (c == '_') ? ' ' : c; });
if (needle != _needle) {
corrected |= correctForBitError(reason, _needle);
}
return corrected;
}
// Converts a string value representing the reason the system booted to a
// string complying with Android system standard reason.
void transformReason(std::string& reason) {
std::transform(reason.begin(), reason.end(), reason.begin(), ::tolower);
std::transform(reason.begin(), reason.end(), reason.begin(),
[](char c) { return ::isblank(c) ? '_' : c; });
std::transform(reason.begin(), reason.end(), reason.begin(),
[](char c) { return ::isprint(c) ? c : '?'; });
}
// Check subreasons for reboot,<subreason> kernel_panic,sysrq,<subreason> or
// kernel_panic,<subreason>.
//
// If quoted flag is set, pull out and correct single quoted ('), newline (\n)
// or unprintable character terminated subreason, pos is supplied just beyond
// first quote. if quoted false, pull out and correct newline (\n) or
// unprintable character terminated subreason.
//
// Heuristics to find termination is painted into a corner:
// single bit error for quote ' that we can block. It is acceptable for
// the others 7, g in reason. 2/9 chance will miss the terminating quote,
// but there is always the terminating newline that usually immediately
// follows to fortify our chances.
bool likely_single_quote(char c) {
switch (static_cast<uint8_t>(c)) {
case '\'': // '\''
case '\'' ^ 0x01: // '&'
case '\'' ^ 0x02: // '%'
case '\'' ^ 0x04: // '#'
case '\'' ^ 0x08: // '/'
return true;
case '\'' ^ 0x10: // '7'
break;
case '\'' ^ 0x20: // '\a' (unprintable)
return true;
case '\'' ^ 0x40: // 'g'
break;
case '\'' ^ 0x80: // 0xA7 (unprintable)
return true;
}
return false;
}
// ::isprint(c) and likely_space() will prevent us from being called for
// fundamentally printable entries, except for '\r' and '\b'.
//
// Except for * and J, single bit errors for \n, all others are non-
// printable so easy catch. It is _acceptable_ for *, J or j to exist in
// the reason string, so 2/9 chance we will miss the terminating newline.
//
// NB: J might not be acceptable, except if at the beginning or preceded
// with a space, '(' or any of the quotes and their BER aliases.
// NB: * might not be acceptable, except if at the beginning or preceded
// with a space, another *, or any of the quotes or their BER aliases.
//
// To reduce the chances to closer to 1/9 is too complicated for the gain.
bool likely_newline(char c) {
switch (static_cast<uint8_t>(c)) {
case '\n': // '\n' (unprintable)
case '\n' ^ 0x01: // '\r' (unprintable)
case '\n' ^ 0x02: // '\b' (unprintable)
case '\n' ^ 0x04: // 0x0E (unprintable)
case '\n' ^ 0x08: // 0x02 (unprintable)
case '\n' ^ 0x10: // 0x1A (unprintable)
return true;
case '\n' ^ 0x20: // '*'
case '\n' ^ 0x40: // 'J'
break;
case '\n' ^ 0x80: // 0x8A (unprintable)
return true;
}
return false;
}
// ::isprint(c) will prevent us from being called for all the printable
// matches below. If we let unprintables through because of this, they
// get converted to underscore (_) by the validation phase.
bool likely_space(char c) {
switch (static_cast<uint8_t>(c)) {
case ' ': // ' '
case ' ' ^ 0x01: // '!'
case ' ' ^ 0x02: // '"'
case ' ' ^ 0x04: // '$'
case ' ' ^ 0x08: // '('
case ' ' ^ 0x10: // '0'
case ' ' ^ 0x20: // '\0' (unprintable)
case ' ' ^ 0x40: // 'P'
case ' ' ^ 0x80: // 0xA0 (unprintable)
case '\t': // '\t'
case '\t' ^ 0x01: // '\b' (unprintable) (likely_newline counters)
case '\t' ^ 0x02: // '\v' (unprintable)
case '\t' ^ 0x04: // '\r' (unprintable) (likely_newline counters)
case '\t' ^ 0x08: // 0x01 (unprintable)
case '\t' ^ 0x10: // 0x19 (unprintable)
case '\t' ^ 0x20: // ')'
case '\t' ^ 0x40: // '1'
case '\t' ^ 0x80: // 0x89 (unprintable)
return true;
}
return false;
}
std::string getSubreason(const std::string& content, size_t pos, bool quoted) {
static constexpr size_t max_reason_length = 256;
std::string subReason(content.substr(pos, max_reason_length));
// Correct against any known strings that Bit Error Match
for (const auto& s : knownReasons) {
correctForBitErrorOrUnderline(subReason, s);
}
std::string terminator(quoted ? "'" : "");
for (const auto& m : kBootReasonMap) {
if (m.first.length() <= strlen("cold")) continue; // too short?
if (correctForBitErrorOrUnderline(subReason, m.first + terminator)) continue;
if (m.first.length() <= strlen("reboot,cold")) continue; // short?
if (android::base::StartsWith(m.first, "reboot,")) {
correctForBitErrorOrUnderline(subReason, m.first.substr(strlen("reboot,")) + terminator);
} else if (android::base::StartsWith(m.first, "kernel_panic,sysrq,")) {
correctForBitErrorOrUnderline(subReason,
m.first.substr(strlen("kernel_panic,sysrq,")) + terminator);
} else if (android::base::StartsWith(m.first, "kernel_panic,")) {
correctForBitErrorOrUnderline(subReason, m.first.substr(strlen("kernel_panic,")) + terminator);
}
}
for (pos = 0; pos < subReason.length(); ++pos) {
char c = subReason[pos];
if (!(::isprint(c) || likely_space(c)) || likely_newline(c) ||
(quoted && likely_single_quote(c))) {
subReason.erase(pos);
break;
}
}
transformReason(subReason);
return subReason;
}
bool addKernelPanicSubReason(const pstoreConsole& console, std::string& ret) {
// Check for kernel panic types to refine information
if ((console.rfind("SysRq : Trigger a crash") != std::string::npos) ||
(console.rfind("PC is at sysrq_handle_crash+") != std::string::npos)) {
ret = "kernel_panic,sysrq";
// Invented for Android to allow daemons that specifically trigger sysrq
// to communicate more accurate boot subreasons via last console messages.
static constexpr char sysrqSubreason[] = "SysRq : Trigger a crash : '";
auto pos = console.rfind(sysrqSubreason);
if (pos != std::string::npos) {
ret += "," + getSubreason(console, pos + strlen(sysrqSubreason), /* quoted */ true);
}
return true;
}
if (console.rfind("Unable to handle kernel NULL pointer dereference at virtual address") !=
std::string::npos) {
ret = "kernel_panic,null";
return true;
}
if (console.rfind("Kernel BUG at ") != std::string::npos) {
ret = "kernel_panic,bug";
return true;
}
std::string panic("Kernel panic - not syncing: ");
auto pos = console.rfind(panic);
if (pos != std::string::npos) {
static const std::vector<std::pair<const std::string, const std::string>> panicReasons = {
{"Out of memory", "oom"},
{"out of memory", "oom"},
{"Oh boy, that early out of memory", "oom"}, // omg
{"BUG!", "bug"},
{"hung_task: blocked tasks", "hung"},
{"audit: ", "audit"},
{"scheduling while atomic", "atomic"},
{"Attempted to kill init!", "init"},
{"Requested init", "init"},
{"No working init", "init"},
{"Could not decompress init", "init"},
{"RCU Stall", "hung,rcu"},
{"stack-protector", "stack"},
{"kernel stack overflow", "stack"},
{"Corrupt kernel stack", "stack"},
{"low stack detected", "stack"},
{"corrupted stack end", "stack"},
};
ret = "kernel_panic";
for (auto& s : panicReasons) {
if (console.find(panic + s.first, pos) != std::string::npos) {
ret += "," + s.second;
return true;
}
}
auto reason = getSubreason(console, pos + panic.length(), /* newline */ false);
if (reason.length() > 3) {
ret += "," + reason;
}
return true;
}
return false;
}
bool addKernelPanicSubReason(const std::string& content, std::string& ret) {
return addKernelPanicSubReason(pstoreConsole(content), ret);
}
const char system_reboot_reason_property[] = "sys.boot.reason";
const char last_reboot_reason_property[] = LAST_REBOOT_REASON_PROPERTY;
const char bootloader_reboot_reason_property[] = "ro.boot.bootreason";
// Scrub, Sanitize, Standardize and Enhance the boot reason string supplied.
std::string BootReasonStrToReason(const std::string& boot_reason) {
std::string ret(GetProperty(system_reboot_reason_property));
std::string reason(boot_reason);
// If sys.boot.reason == ro.boot.bootreason, let's re-evaluate
if (reason == ret) ret = "";
transformReason(reason);
// Is the current system boot reason sys.boot.reason valid?
if (!isKnownRebootReason(ret)) ret = "";
if (ret == "") {
// Is the bootloader boot reason ro.boot.bootreason known?
std::vector<std::string> words(android::base::Split(reason, ",_-"));
for (auto& s : knownReasons) {
std::string blunt;
for (auto& r : words) {
if (r == s) {
if (isBluntRebootReason(s)) {
blunt = s;
} else {
ret = s;
break;
}
}
}
if (ret == "") ret = blunt;
if (ret != "") break;
}
}
if (ret == "") {
// A series of checks to take some officially unsupported reasons
// reported by the bootloader and find some logical and canonical
// sense. In an ideal world, we would require those bootloaders
// to behave and follow our CTS standards.
//
// first member is the output
// second member is an unanchored regex for an alias
//
// If output has a prefix of <bang> '!', we do not use it as a
// match needle (and drop the <bang> prefix when landing in output),
// otherwise look for it as well. This helps keep the scale of the
// following table smaller.
static const std::vector<std::pair<const std::string, const std::string>> aliasReasons = {
{"watchdog", "wdog"},
{"cold,powerkey", "powerkey|power_key|PowerKey"},
{"kernel_panic", "panic"},
{"shutdown,thermal", "thermal"},
{"warm,s3_wakeup", "s3_wakeup"},
{"hard,hw_reset", "hw_reset"},
{"cold,charger", "usb"},
{"cold,rtc", "rtc"},
{"reboot,2sec", "2sec_reboot"},
{"bootloader", ""},
};
for (auto& s : aliasReasons) {
size_t firstHasNot = s.first[0] == '!';
if (!firstHasNot && (reason.find(s.first) != std::string::npos)) {
ret = s.first;
break;
}
if (s.second.size() && std::regex_search(reason, std::regex(s.second))) {
ret = s.first.substr(firstHasNot);
break;
}
}
}
// If watchdog is the reason, see if there is a security angle?
if (ret == "watchdog") {
if (reason.find("sec") != std::string::npos) {
ret += ",security";
}
}
if (ret == "kernel_panic") {
// Check to see if last klog has some refinement hints.
std::string content;
if (readPstoreConsole(content)) {
addKernelPanicSubReason(content, ret);
}
} else if (isBluntRebootReason(ret)) {
// Check the other available reason resources if the reason is still blunt.
// Check to see if last klog has some refinement hints.
std::string content;
if (readPstoreConsole(content)) {
const pstoreConsole console(content);
// The toybox reboot command used directly (unlikely)? But also
// catches init's response to Android's more controlled reboot command.
if (console.rfind("reboot: Power down") != std::string::npos) {
ret = "shutdown"; // Still too blunt, but more accurate.
// ToDo: init should record the shutdown reason to kernel messages ala:
// init: shutdown system with command 'last_reboot_reason'
// so that if pstore has persistence we can get some details
// that could be missing in last_reboot_reason_property.
}
static const char cmd[] = "reboot: Restarting system with command '";
size_t pos = console.rfind(cmd);
if (pos != std::string::npos) {
std::string subReason(getSubreason(content, pos + strlen(cmd), /* quoted */ true));
if (subReason != "") { // Will not land "reboot" as that is too blunt.
if (isKernelRebootReason(subReason)) {
ret = "reboot," + subReason; // User space can't talk kernel reasons.
} else if (isKnownRebootReason(subReason)) {
ret = subReason;
} else {
ret = "reboot," + subReason; // legitimize unknown reasons
}
}
}
// Check for kernel panics, allowed to override reboot command.
if (!addKernelPanicSubReason(console, ret) &&
// check for long-press power down
((console.rfind("Power held for ") != std::string::npos) ||
(console.rfind("charger: [") != std::string::npos))) {
ret = "cold";
}
}
// The following battery test should migrate to a default system health HAL
// Let us not worry if the reboot command was issued, for the cases of
// reboot -p, reboot <no reason>, reboot cold, reboot warm and reboot hard.
// Same for bootloader and ro.boot.bootreasons of this set, but a dead
// battery could conceivably lead to these, so worthy of override.
if (isBluntRebootReason(ret)) {
// Heuristic to determine if shutdown possibly because of a dead battery?
// Really a hail-mary pass to find it in last klog content ...
static const int battery_dead_threshold = 2; // percent
static const char battery[] = "healthd: battery l=";
const pstoreConsole console(content);
size_t pos = console.rfind(battery); // last one
std::string digits;
if (pos != std::string::npos) {
digits = content.substr(pos + strlen(battery), strlen("100 "));
// correct common errors
correctForBitError(digits, "100 ");
if (digits[0] == '!') digits[0] = '1';
if (digits[1] == '!') digits[1] = '1';
}
const char* endptr = digits.c_str();
unsigned level = 0;
while (::isdigit(*endptr)) {
level *= 10;
level += *endptr++ - '0';
// make sure no leading zeros, except zero itself, and range check.
if ((level == 0) || (level > 100)) break;
}
// example bit error rate issues for 10%
// 'l=10 ' no bits in error
// 'l=00 ' single bit error (fails above)
// 'l=1 ' single bit error
// 'l=0 ' double bit error
// There are others, not typically critical because of 2%
// battery_dead_threshold. KISS check, make sure second
// character after digit sequence is not a space.
if ((level <= 100) && (endptr != digits.c_str()) && (endptr[0] == ' ') && (endptr[1] != ' ')) {
LOG(INFO) << "Battery level at shutdown " << level << "%";
if (level <= battery_dead_threshold) {
ret = "shutdown,battery";
}
} else { // Most likely
digits = ""; // reset digits
// Content buffer no longer will have console data. Beware if more
// checks added below, that depend on parsing console content.
content = "";
LOG(DEBUG) << "Can not find last low battery in last console messages";
android_logcat_context ctx = create_android_logcat();
FILE* fp = android_logcat_popen(&ctx, "logcat -b kernel -v brief -d");
if (fp != nullptr) {
android::base::ReadFdToString(fileno(fp), &content);
}
android_logcat_pclose(&ctx, fp);
static const char logcat_battery[] = "W/healthd ( 0): battery l=";
const char* match = logcat_battery;
if (content == "") {
// Service logd.klog not running, go to smaller buffer in the kernel.
int rc = klogctl(KLOG_SIZE_BUFFER, nullptr, 0);
if (rc > 0) {
ssize_t len = rc + 1024; // 1K Margin should it grow between calls.
std::unique_ptr<char[]> buf(new char[len]);
rc = klogctl(KLOG_READ_ALL, buf.get(), len);
if (rc < len) {
len = rc + 1;
}
buf[--len] = '\0';
content = buf.get();
}
match = battery;
}
pos = content.find(match); // The first one it finds.
if (pos != std::string::npos) {
digits = content.substr(pos + strlen(match), strlen("100 "));
}
endptr = digits.c_str();
level = 0;
while (::isdigit(*endptr)) {
level *= 10;
level += *endptr++ - '0';
// make sure no leading zeros, except zero itself, and range check.
if ((level == 0) || (level > 100)) break;
}
if ((level <= 100) && (endptr != digits.c_str()) && (*endptr == ' ')) {
LOG(INFO) << "Battery level at startup " << level << "%";
if (level <= battery_dead_threshold) {
ret = "shutdown,battery";
}
} else {
LOG(DEBUG) << "Can not find first battery level in dmesg or logcat";
}
}
}
// Is there a controlled shutdown hint in last_reboot_reason_property?
if (isBluntRebootReason(ret)) {
// Content buffer no longer will have console data. Beware if more
// checks added below, that depend on parsing console content.
content = GetProperty(last_reboot_reason_property);
transformReason(content);
// Anything in last is better than 'super-blunt' reboot or shutdown.
if ((ret == "") || (ret == "reboot") || (ret == "shutdown") || !isBluntRebootReason(content)) {
ret = content;
}
}
// Other System Health HAL reasons?
// ToDo: /proc/sys/kernel/boot_reason needs a HAL interface to
// possibly offer hardware-specific clues from the PMIC.
}
// If unknown left over from above, make it "reboot,<boot_reason>"
if (ret == "") {
ret = "reboot";
if (android::base::StartsWith(reason, "reboot")) {
reason = reason.substr(strlen("reboot"));
while ((reason[0] == ',') || (reason[0] == '_')) {
reason = reason.substr(1);
}
}
if (reason != "") {
ret += ",";
ret += reason;
}
}
LOG(INFO) << "Canonical boot reason: " << ret;
if (isKernelRebootReason(ret) && (GetProperty(last_reboot_reason_property) != "")) {
// Rewrite as it must be old news, kernel reasons trump user space.
SetProperty(last_reboot_reason_property, ret);
}
return ret;
}
// Returns the appropriate metric key prefix for the boot_complete metric such
// that boot metrics after a system update are labeled as ota_boot_complete;
// otherwise, they are labeled as boot_complete. This method encapsulates the
// bookkeeping required to track when a system update has occurred by storing
// the UTC timestamp of the system build date and comparing against the current
// system build date.
std::string CalculateBootCompletePrefix() {
static const std::string kBuildDateKey = "build_date";
std::string boot_complete_prefix = "boot_complete";
std::string build_date_str = GetProperty("ro.build.date.utc");
int32_t build_date;
if (!android::base::ParseInt(build_date_str, &build_date)) {
return std::string();
}
BootEventRecordStore boot_event_store;
BootEventRecordStore::BootEventRecord record;
if (!boot_event_store.GetBootEvent(kBuildDateKey, &record)) {
boot_complete_prefix = "factory_reset_" + boot_complete_prefix;
boot_event_store.AddBootEventWithValue(kBuildDateKey, build_date);
LOG(INFO) << "Canonical boot reason: reboot,factory_reset";
SetProperty(system_reboot_reason_property, "reboot,factory_reset");
} else if (build_date != record.second) {
boot_complete_prefix = "ota_" + boot_complete_prefix;
boot_event_store.AddBootEventWithValue(kBuildDateKey, build_date);
LOG(INFO) << "Canonical boot reason: reboot,ota";
SetProperty(system_reboot_reason_property, "reboot,ota");
}
return boot_complete_prefix;
}
// Records the value of a given ro.boottime.init property in milliseconds.
void RecordInitBootTimeProp(BootEventRecordStore* boot_event_store, const char* property) {
std::string value = GetProperty(property);
int32_t time_in_ms;
if (android::base::ParseInt(value, &time_in_ms)) {
boot_event_store->AddBootEventWithValue(property, time_in_ms);
}
}
// A map from bootloader timing stage to the time that stage took during boot.
typedef std::map<std::string, int32_t> BootloaderTimingMap;
// Returns a mapping from bootloader stage names to the time those stages
// took to boot.
const BootloaderTimingMap GetBootLoaderTimings() {
BootloaderTimingMap timings;
// |ro.boot.boottime| is of the form 'stage1:time1,...,stageN:timeN',
// where timeN is in milliseconds.
std::string value = GetProperty("ro.boot.boottime");
if (value.empty()) {
// ro.boot.boottime is not reported on all devices.
return BootloaderTimingMap();
}
auto stages = android::base::Split(value, ",");
for (const auto& stageTiming : stages) {
// |stageTiming| is of the form 'stage:time'.
auto stageTimingValues = android::base::Split(stageTiming, ":");
DCHECK_EQ(2U, stageTimingValues.size());
std::string stageName = stageTimingValues[0];
int32_t time_ms;
if (android::base::ParseInt(stageTimingValues[1], &time_ms)) {
timings[stageName] = time_ms;
}
}
return timings;
}
// Parses and records the set of bootloader stages and associated boot times
// from the ro.boot.boottime system property.
void RecordBootloaderTimings(BootEventRecordStore* boot_event_store,
const BootloaderTimingMap& bootloader_timings) {
int32_t total_time = 0;
for (const auto& timing : bootloader_timings) {
total_time += timing.second;
boot_event_store->AddBootEventWithValue("boottime.bootloader." + timing.first, timing.second);
}
boot_event_store->AddBootEventWithValue("boottime.bootloader.total", total_time);
}
// Records the closest estimation to the absolute device boot time, i.e.,
// from power on to boot_complete, including bootloader times.
void RecordAbsoluteBootTime(BootEventRecordStore* boot_event_store,
const BootloaderTimingMap& bootloader_timings,
std::chrono::milliseconds uptime) {
int32_t bootloader_time_ms = 0;
for (const auto& timing : bootloader_timings) {
if (timing.first.compare("SW") != 0) {
bootloader_time_ms += timing.second;
}
}
auto bootloader_duration = std::chrono::milliseconds(bootloader_time_ms);
auto absolute_total =
std::chrono::duration_cast<std::chrono::seconds>(bootloader_duration + uptime);
boot_event_store->AddBootEventWithValue("absolute_boot_time", absolute_total.count());
}
// Gets the boot time offset. This is useful when Android is running in a
// container, because the boot_clock is not reset when Android reboots.
std::chrono::nanoseconds GetBootTimeOffset() {
static const int64_t boottime_offset =
android::base::GetIntProperty<int64_t>("ro.boot.boottime_offset", 0);
return std::chrono::nanoseconds(boottime_offset);
}
// Returns the current uptime, accounting for any offset in the CLOCK_BOOTTIME
// clock.
android::base::boot_clock::duration GetUptime() {
return android::base::boot_clock::now().time_since_epoch() - GetBootTimeOffset();
}
// Records several metrics related to the time it takes to boot the device,
// including disambiguating boot time on encrypted or non-encrypted devices.
void RecordBootComplete() {
BootEventRecordStore boot_event_store;
BootEventRecordStore::BootEventRecord record;
auto uptime_ns = GetUptime();
auto uptime_s = std::chrono::duration_cast<std::chrono::seconds>(uptime_ns);
time_t current_time_utc = time(nullptr);
if (boot_event_store.GetBootEvent("last_boot_time_utc", &record)) {
time_t last_boot_time_utc = record.second;
time_t time_since_last_boot = difftime(current_time_utc, last_boot_time_utc);
boot_event_store.AddBootEventWithValue("time_since_last_boot", time_since_last_boot);
}
boot_event_store.AddBootEventWithValue("last_boot_time_utc", current_time_utc);
// The boot_complete metric has two variants: boot_complete and
// ota_boot_complete. The latter signifies that the device is booting after
// a system update.
std::string boot_complete_prefix = CalculateBootCompletePrefix();
if (boot_complete_prefix.empty()) {
// The system is hosed because the build date property could not be read.
return;
}
// post_decrypt_time_elapsed is only logged on encrypted devices.
if (boot_event_store.GetBootEvent("post_decrypt_time_elapsed", &record)) {
// Log the amount of time elapsed until the device is decrypted, which
// includes the variable amount of time the user takes to enter the
// decryption password.
boot_event_store.AddBootEventWithValue("boot_decryption_complete", uptime_s.count());
// Subtract the decryption time to normalize the boot cycle timing.
std::chrono::seconds boot_complete = std::chrono::seconds(uptime_s.count() - record.second);
boot_event_store.AddBootEventWithValue(boot_complete_prefix + "_post_decrypt",
boot_complete.count());
} else {
boot_event_store.AddBootEventWithValue(boot_complete_prefix + "_no_encryption",
uptime_s.count());
}
// Record the total time from device startup to boot complete, regardless of
// encryption state.
boot_event_store.AddBootEventWithValue(boot_complete_prefix, uptime_s.count());
RecordInitBootTimeProp(&boot_event_store, "ro.boottime.init");
RecordInitBootTimeProp(&boot_event_store, "ro.boottime.init.selinux");
RecordInitBootTimeProp(&boot_event_store, "ro.boottime.init.cold_boot_wait");
const BootloaderTimingMap bootloader_timings = GetBootLoaderTimings();
RecordBootloaderTimings(&boot_event_store, bootloader_timings);
auto uptime_ms = std::chrono::duration_cast<std::chrono::milliseconds>(uptime_ns);
RecordAbsoluteBootTime(&boot_event_store, bootloader_timings, uptime_ms);
}
// Records the boot_reason metric by querying the ro.boot.bootreason system
// property.
void RecordBootReason() {
const std::string reason(GetProperty(bootloader_reboot_reason_property));
if (reason.empty()) {
// Log an empty boot reason value as '<EMPTY>' to ensure the value is intentional
// (and not corruption anywhere else in the reporting pipeline).
android::metricslogger::LogMultiAction(android::metricslogger::ACTION_BOOT,
android::metricslogger::FIELD_PLATFORM_REASON, "<EMPTY>");
} else {
android::metricslogger::LogMultiAction(android::metricslogger::ACTION_BOOT,
android::metricslogger::FIELD_PLATFORM_REASON, reason);
}
// Log the raw bootloader_boot_reason property value.
int32_t boot_reason = BootReasonStrToEnum(reason);
BootEventRecordStore boot_event_store;
boot_event_store.AddBootEventWithValue("boot_reason", boot_reason);
// Log the scrubbed system_boot_reason.
const std::string system_reason(BootReasonStrToReason(reason));
int32_t system_boot_reason = BootReasonStrToEnum(system_reason);
boot_event_store.AddBootEventWithValue("system_boot_reason", system_boot_reason);
// Record the scrubbed system_boot_reason to the property
SetProperty(system_reboot_reason_property, system_reason);
if (reason == "") {
SetProperty(bootloader_reboot_reason_property, system_reason);
}
}
// Records two metrics related to the user resetting a device: the time at
// which the device is reset, and the time since the user last reset the
// device. The former is only set once per-factory reset.
void RecordFactoryReset() {
BootEventRecordStore boot_event_store;
BootEventRecordStore::BootEventRecord record;
time_t current_time_utc = time(nullptr);
if (current_time_utc < 0) {
// UMA does not display negative values in buckets, so convert to positive.
android::metricslogger::LogHistogram("factory_reset_current_time_failure",
std::abs(current_time_utc));
// Logging via BootEventRecordStore to see if using android::metricslogger::LogHistogram
// is losing records somehow.
boot_event_store.AddBootEventWithValue("factory_reset_current_time_failure",
std::abs(current_time_utc));
return;
} else {
android::metricslogger::LogHistogram("factory_reset_current_time", current_time_utc);
// Logging via BootEventRecordStore to see if using android::metricslogger::LogHistogram
// is losing records somehow.
boot_event_store.AddBootEventWithValue("factory_reset_current_time", current_time_utc);
}
// The factory_reset boot event does not exist after the device is reset, so
// use this signal to mark the time of the factory reset.
if (!boot_event_store.GetBootEvent("factory_reset", &record)) {
boot_event_store.AddBootEventWithValue("factory_reset", current_time_utc);
// Don't log the time_since_factory_reset until some time has elapsed.
// The data is not meaningful yet and skews the histogram buckets.
return;
}
// Calculate and record the difference in time between now and the
// factory_reset time.
time_t factory_reset_utc = record.second;
android::metricslogger::LogHistogram("factory_reset_record_value", factory_reset_utc);
// Logging via BootEventRecordStore to see if using android::metricslogger::LogHistogram
// is losing records somehow.
boot_event_store.AddBootEventWithValue("factory_reset_record_value", factory_reset_utc);
time_t time_since_factory_reset = difftime(current_time_utc, factory_reset_utc);
boot_event_store.AddBootEventWithValue("time_since_factory_reset", time_since_factory_reset);
}
} // namespace
int main(int argc, char** argv) {
android::base::InitLogging(argv);
const std::string cmd_line = GetCommandLine(argc, argv);
LOG(INFO) << "Service started: " << cmd_line;
int option_index = 0;
static const char value_str[] = "value";
static const char boot_complete_str[] = "record_boot_complete";
static const char boot_reason_str[] = "record_boot_reason";
static const char factory_reset_str[] = "record_time_since_factory_reset";
static const struct option long_options[] = {
// clang-format off
{ "help", no_argument, NULL, 'h' },
{ "log", no_argument, NULL, 'l' },
{ "print", no_argument, NULL, 'p' },
{ "record", required_argument, NULL, 'r' },
{ value_str, required_argument, NULL, 0 },
{ boot_complete_str, no_argument, NULL, 0 },
{ boot_reason_str, no_argument, NULL, 0 },
{ factory_reset_str, no_argument, NULL, 0 },
{ NULL, 0, NULL, 0 }
// clang-format on
};
std::string boot_event;
std::string value;
int opt = 0;
while ((opt = getopt_long(argc, argv, "hlpr:", long_options, &option_index)) != -1) {
switch (opt) {
// This case handles long options which have no single-character mapping.
case 0: {
const std::string option_name = long_options[option_index].name;
if (option_name == value_str) {
// |optarg| is an external variable set by getopt representing
// the option argument.
value = optarg;
} else if (option_name == boot_complete_str) {
RecordBootComplete();
} else if (option_name == boot_reason_str) {
RecordBootReason();
} else if (option_name == factory_reset_str) {
RecordFactoryReset();
} else {
LOG(ERROR) << "Invalid option: " << option_name;
}
break;
}
case 'h': {
ShowHelp(argv[0]);
break;
}
case 'l': {
LogBootEvents();
break;
}
case 'p': {
PrintBootEvents();
break;
}
case 'r': {
// |optarg| is an external variable set by getopt representing
// the option argument.
boot_event = optarg;
break;
}
default: {
DCHECK_EQ(opt, '?');
// |optopt| is an external variable set by getopt representing
// the value of the invalid option.
LOG(ERROR) << "Invalid option: " << optopt;
ShowHelp(argv[0]);
return EXIT_FAILURE;
}
}
}
if (!boot_event.empty()) {
RecordBootEventFromCommandLine(boot_event, value);
}
return 0;
}