| /* libs/pixelflinger/scanline.cpp |
| ** |
| ** Copyright 2006-2011, The Android Open Source Project |
| ** |
| ** Licensed under the Apache License, Version 2.0 (the "License"); |
| ** you may not use this file except in compliance with the License. |
| ** You may obtain a copy of the License at |
| ** |
| ** http://www.apache.org/licenses/LICENSE-2.0 |
| ** |
| ** Unless required by applicable law or agreed to in writing, software |
| ** distributed under the License is distributed on an "AS IS" BASIS, |
| ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| ** See the License for the specific language governing permissions and |
| ** limitations under the License. |
| */ |
| |
| |
| #define LOG_TAG "pixelflinger" |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <cutils/memory.h> |
| #include <cutils/log.h> |
| |
| #include "buffer.h" |
| #include "scanline.h" |
| |
| #include "codeflinger/CodeCache.h" |
| #include "codeflinger/GGLAssembler.h" |
| #include "codeflinger/ARMAssembler.h" |
| #if defined(__mips__) |
| #include "codeflinger/MIPSAssembler.h" |
| #endif |
| //#include "codeflinger/ARMAssemblerOptimizer.h" |
| |
| // ---------------------------------------------------------------------------- |
| |
| #define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline |
| #define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic |
| #define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic |
| #define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen |
| |
| #ifdef NDEBUG |
| # define ANDROID_RELEASE |
| # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED |
| #else |
| # define ANDROID_DEBUG |
| # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED |
| #endif |
| |
| #if defined(__arm__) || defined(__mips__) |
| # define ANDROID_ARM_CODEGEN 1 |
| #else |
| # define ANDROID_ARM_CODEGEN 0 |
| #endif |
| |
| #define DEBUG__CODEGEN_ONLY 0 |
| |
| /* Set to 1 to dump to the log the states that need a new |
| * code-generated scanline callback, i.e. those that don't |
| * have a corresponding shortcut function. |
| */ |
| #define DEBUG_NEEDS 0 |
| |
| #ifdef __mips__ |
| #define ASSEMBLY_SCRATCH_SIZE 4096 |
| #else |
| #define ASSEMBLY_SCRATCH_SIZE 2048 |
| #endif |
| |
| // ---------------------------------------------------------------------------- |
| namespace android { |
| // ---------------------------------------------------------------------------- |
| |
| static void init_y(context_t*, int32_t); |
| static void init_y_noop(context_t*, int32_t); |
| static void init_y_packed(context_t*, int32_t); |
| static void init_y_error(context_t*, int32_t); |
| |
| static void step_y__generic(context_t* c); |
| static void step_y__nop(context_t*); |
| static void step_y__smooth(context_t* c); |
| static void step_y__tmu(context_t* c); |
| static void step_y__w(context_t* c); |
| |
| static void scanline(context_t* c); |
| static void scanline_perspective(context_t* c); |
| static void scanline_perspective_single(context_t* c); |
| static void scanline_t32cb16blend(context_t* c); |
| static void scanline_t32cb16blend_dither(context_t* c); |
| static void scanline_t32cb16blend_srca(context_t* c); |
| static void scanline_t32cb16blend_clamp(context_t* c); |
| static void scanline_t32cb16blend_clamp_dither(context_t* c); |
| static void scanline_t32cb16blend_clamp_mod(context_t* c); |
| static void scanline_x32cb16blend_clamp_mod(context_t* c); |
| static void scanline_t32cb16blend_clamp_mod_dither(context_t* c); |
| static void scanline_x32cb16blend_clamp_mod_dither(context_t* c); |
| static void scanline_t32cb16(context_t* c); |
| static void scanline_t32cb16_dither(context_t* c); |
| static void scanline_t32cb16_clamp(context_t* c); |
| static void scanline_t32cb16_clamp_dither(context_t* c); |
| static void scanline_col32cb16blend(context_t* c); |
| static void scanline_t16cb16_clamp(context_t* c); |
| static void scanline_t16cb16blend_clamp_mod(context_t* c); |
| static void scanline_memcpy(context_t* c); |
| static void scanline_memset8(context_t* c); |
| static void scanline_memset16(context_t* c); |
| static void scanline_memset32(context_t* c); |
| static void scanline_noop(context_t* c); |
| static void scanline_set(context_t* c); |
| static void scanline_clear(context_t* c); |
| |
| static void rect_generic(context_t* c, size_t yc); |
| static void rect_memcpy(context_t* c, size_t yc); |
| |
| #if defined( __arm__) |
| extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t); |
| extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct); |
| extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct); |
| extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct); |
| #elif defined(__mips__) |
| extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t); |
| #endif |
| |
| // ---------------------------------------------------------------------------- |
| |
| static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix) |
| { |
| return uint16_t( ((pix << 8) & 0xf800) | |
| ((pix >> 5) & 0x07e0) | |
| ((pix >> 19) & 0x001f) ); |
| } |
| |
| struct shortcut_t { |
| needs_filter_t filter; |
| const char* desc; |
| void (*scanline)(context_t*); |
| void (*init_y)(context_t*, int32_t); |
| }; |
| |
| // Keep in sync with needs |
| |
| /* To understand the values here, have a look at: |
| * system/core/include/private/pixelflinger/ggl_context.h |
| * |
| * Especially the lines defining and using GGL_RESERVE_NEEDS |
| * |
| * Quick reminders: |
| * - the last nibble of the first value is the destination buffer format. |
| * - the last nibble of the third value is the source texture format |
| * - formats: 4=rgb565 1=abgr8888 2=xbgr8888 |
| * |
| * In the descriptions below: |
| * |
| * SRC means we copy the source pixels to the destination |
| * |
| * SRC_OVER means we blend the source pixels to the destination |
| * with dstFactor = 1-srcA, srcFactor=1 (premultiplied source). |
| * This mode is otherwise called 'blend'. |
| * |
| * SRCA_OVER means we blend the source pixels to the destination |
| * with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source). |
| * This mode is otherwise called 'blend_srca' |
| * |
| * clamp means we fetch source pixels from a texture with u/v clamping |
| * |
| * mod means the source pixels are modulated (multiplied) by the |
| * a/r/g/b of the current context's color. Typically used for |
| * fade-in / fade-out. |
| * |
| * dither means we dither 32 bit values to 16 bits |
| */ |
| static shortcut_t shortcuts[] = { |
| { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop }, |
| { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop }, |
| /* same as first entry, but with dithering */ |
| { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop }, |
| /* same as second entry, but with dithering */ |
| { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop }, |
| /* this is used during the boot animation - CHEAT: ignore dithering */ |
| { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop }, |
| /* special case for arbitrary texture coordinates (think scaling) */ |
| { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y }, |
| { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y }, |
| /* another case used during emulation */ |
| { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y }, |
| /* and this */ |
| { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y }, |
| { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y }, |
| { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y }, |
| { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, |
| { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, |
| { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, |
| { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, |
| { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y }, |
| { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, |
| "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y }, |
| { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } }, |
| { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } }, |
| "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed }, |
| { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, |
| { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } }, |
| "(nop) alpha test", scanline_noop, init_y_noop }, |
| { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, |
| { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } }, |
| "(nop) depth test", scanline_noop, init_y_noop }, |
| { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } }, |
| { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } }, |
| "(nop) logic_op", scanline_noop, init_y_noop }, |
| { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } }, |
| { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } }, |
| "(nop) color mask", scanline_noop, init_y_noop }, |
| { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } }, |
| { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, |
| "(set) logic_op", scanline_set, init_y_noop }, |
| { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } }, |
| { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, |
| "(clear) logic_op", scanline_clear, init_y_noop }, |
| { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } }, |
| { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } }, |
| "(clear) blending 0/0", scanline_clear, init_y_noop }, |
| { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, |
| { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } }, |
| "(error) invalid color-buffer format", scanline_noop, init_y_error }, |
| }; |
| static const needs_filter_t noblend1to1 = { |
| // (disregard dithering, see below) |
| { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } }, |
| { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } } |
| }; |
| static const needs_filter_t fill16noblend = { |
| { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } }, |
| { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } } |
| }; |
| |
| // ---------------------------------------------------------------------------- |
| |
| #if ANDROID_ARM_CODEGEN |
| |
| #if defined(__mips__) |
| static CodeCache gCodeCache(32 * 1024); |
| #else |
| static CodeCache gCodeCache(12 * 1024); |
| #endif |
| |
| class ScanlineAssembly : public Assembly { |
| AssemblyKey<needs_t> mKey; |
| public: |
| ScanlineAssembly(needs_t needs, size_t size) |
| : Assembly(size), mKey(needs) { } |
| const AssemblyKey<needs_t>& key() const { return mKey; } |
| }; |
| #endif |
| |
| // ---------------------------------------------------------------------------- |
| |
| void ggl_init_scanline(context_t* c) |
| { |
| c->init_y = init_y; |
| c->step_y = step_y__generic; |
| c->scanline = scanline; |
| } |
| |
| void ggl_uninit_scanline(context_t* c) |
| { |
| if (c->state.buffers.coverage) |
| free(c->state.buffers.coverage); |
| #if ANDROID_ARM_CODEGEN |
| if (c->scanline_as) |
| c->scanline_as->decStrong(c); |
| #endif |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| static void pick_scanline(context_t* c) |
| { |
| #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0)) |
| |
| #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC |
| c->init_y = init_y; |
| c->step_y = step_y__generic; |
| c->scanline = scanline; |
| return; |
| #endif |
| |
| //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n", |
| // c->state.needs.n, c->state.needs.p, |
| // c->state.needs.t[0], c->state.needs.t[1]); |
| |
| // first handle the special case that we cannot test with a filter |
| const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n); |
| if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) { |
| if (c->state.needs.match(noblend1to1)) { |
| // this will match regardless of dithering state, since both |
| // src and dest have the same format anyway, there is no dithering |
| // to be done. |
| const GGLFormat* f = |
| &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]); |
| if ((f->components == GGL_RGB) || |
| (f->components == GGL_RGBA) || |
| (f->components == GGL_LUMINANCE) || |
| (f->components == GGL_LUMINANCE_ALPHA)) |
| { |
| // format must have all of RGB components |
| // (so the current color doesn't show through) |
| c->scanline = scanline_memcpy; |
| c->init_y = init_y_noop; |
| return; |
| } |
| } |
| } |
| |
| if (c->state.needs.match(fill16noblend)) { |
| c->init_y = init_y_packed; |
| switch (c->formats[cb_format].size) { |
| case 1: c->scanline = scanline_memset8; return; |
| case 2: c->scanline = scanline_memset16; return; |
| case 4: c->scanline = scanline_memset32; return; |
| } |
| } |
| |
| const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t); |
| for (int i=0 ; i<numFilters ; i++) { |
| if (c->state.needs.match(shortcuts[i].filter)) { |
| c->scanline = shortcuts[i].scanline; |
| c->init_y = shortcuts[i].init_y; |
| return; |
| } |
| } |
| |
| #if DEBUG_NEEDS |
| ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x", |
| c->state.needs.n, c->state.needs.p, |
| c->state.needs.t[0], c->state.needs.t[1]); |
| #endif |
| |
| #endif // DEBUG__CODEGEN_ONLY |
| |
| c->init_y = init_y; |
| c->step_y = step_y__generic; |
| |
| #if ANDROID_ARM_CODEGEN |
| // we're going to have to generate some code... |
| // here, generate code for our pixel pipeline |
| const AssemblyKey<needs_t> key(c->state.needs); |
| sp<Assembly> assembly = gCodeCache.lookup(key); |
| if (assembly == 0) { |
| // create a new assembly region |
| sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs, |
| ASSEMBLY_SCRATCH_SIZE); |
| // initialize our assembler |
| #if defined(__arm__) |
| GGLAssembler assembler( new ARMAssembler(a) ); |
| //GGLAssembler assembler( |
| // new ARMAssemblerOptimizer(new ARMAssembler(a)) ); |
| #endif |
| #if defined(__mips__) |
| GGLAssembler assembler( new ArmToMipsAssembler(a) ); |
| #endif |
| // generate the scanline code for the given needs |
| int err = assembler.scanline(c->state.needs, c); |
| if (ggl_likely(!err)) { |
| // finally, cache this assembly |
| err = gCodeCache.cache(a->key(), a); |
| } |
| if (ggl_unlikely(err)) { |
| ALOGE("error generating or caching assembly. Reverting to NOP."); |
| c->scanline = scanline_noop; |
| c->init_y = init_y_noop; |
| c->step_y = step_y__nop; |
| return; |
| } |
| assembly = a; |
| } |
| |
| // release the previous assembly |
| if (c->scanline_as) { |
| c->scanline_as->decStrong(c); |
| } |
| |
| //ALOGI("using generated pixel-pipeline"); |
| c->scanline_as = assembly.get(); |
| c->scanline_as->incStrong(c); // hold on to assembly |
| c->scanline = (void(*)(context_t* c))assembly->base(); |
| #else |
| // ALOGW("using generic (slow) pixel-pipeline"); |
| c->scanline = scanline; |
| #endif |
| } |
| |
| void ggl_pick_scanline(context_t* c) |
| { |
| pick_scanline(c); |
| if ((c->state.enables & GGL_ENABLE_W) && |
| (c->state.enables & GGL_ENABLE_TMUS)) |
| { |
| c->span = c->scanline; |
| c->scanline = scanline_perspective; |
| if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) { |
| // only one TMU enabled |
| c->scanline = scanline_perspective_single; |
| } |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| static void blending(context_t* c, pixel_t* fragment, pixel_t* fb); |
| static void blend_factor(context_t* c, pixel_t* r, uint32_t factor, |
| const pixel_t* src, const pixel_t* dst); |
| static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv); |
| |
| #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) |
| |
| // no need to compile the generic-pipeline, it can't be reached |
| void scanline(context_t*) |
| { |
| } |
| |
| #else |
| |
| void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv) |
| { |
| if (su && sv) { |
| if (su > sv) { |
| v = ggl_expand(v, sv, su); |
| sv = su; |
| } else if (su < sv) { |
| u = ggl_expand(u, su, sv); |
| su = sv; |
| } |
| } |
| } |
| |
| void blending(context_t* c, pixel_t* fragment, pixel_t* fb) |
| { |
| rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]); |
| rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]); |
| rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]); |
| rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]); |
| |
| pixel_t sf, df; |
| blend_factor(c, &sf, c->state.blend.src, fragment, fb); |
| blend_factor(c, &df, c->state.blend.dst, fragment, fb); |
| |
| fragment->c[1] = |
| gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1])); |
| fragment->c[2] = |
| gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2])); |
| fragment->c[3] = |
| gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3])); |
| |
| if (c->state.blend.alpha_separate) { |
| blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb); |
| blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb); |
| } |
| |
| fragment->c[0] = |
| gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0])); |
| |
| // clamp to 1.0 |
| if (fragment->c[0] >= (1LU<<fragment->s[0])) |
| fragment->c[0] = (1<<fragment->s[0])-1; |
| if (fragment->c[1] >= (1LU<<fragment->s[1])) |
| fragment->c[1] = (1<<fragment->s[1])-1; |
| if (fragment->c[2] >= (1LU<<fragment->s[2])) |
| fragment->c[2] = (1<<fragment->s[2])-1; |
| if (fragment->c[3] >= (1LU<<fragment->s[3])) |
| fragment->c[3] = (1<<fragment->s[3])-1; |
| } |
| |
| static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0) |
| { |
| if (!size) |
| return def; |
| |
| // scale to 16 bits |
| if (size > 16) { |
| x >>= (size - 16); |
| } else if (size < 16) { |
| x = ggl_expand(x, size, 16); |
| } |
| x += x >> 15; |
| return x; |
| } |
| |
| void blend_factor(context_t* c, pixel_t* r, |
| uint32_t factor, const pixel_t* src, const pixel_t* dst) |
| { |
| switch (factor) { |
| case GGL_ZERO: |
| r->c[1] = |
| r->c[2] = |
| r->c[3] = |
| r->c[0] = 0; |
| break; |
| case GGL_ONE: |
| r->c[1] = |
| r->c[2] = |
| r->c[3] = |
| r->c[0] = FIXED_ONE; |
| break; |
| case GGL_DST_COLOR: |
| r->c[1] = blendfactor(dst->c[1], dst->s[1]); |
| r->c[2] = blendfactor(dst->c[2], dst->s[2]); |
| r->c[3] = blendfactor(dst->c[3], dst->s[3]); |
| r->c[0] = blendfactor(dst->c[0], dst->s[0]); |
| break; |
| case GGL_SRC_COLOR: |
| r->c[1] = blendfactor(src->c[1], src->s[1]); |
| r->c[2] = blendfactor(src->c[2], src->s[2]); |
| r->c[3] = blendfactor(src->c[3], src->s[3]); |
| r->c[0] = blendfactor(src->c[0], src->s[0]); |
| break; |
| case GGL_ONE_MINUS_DST_COLOR: |
| r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]); |
| r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]); |
| r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]); |
| r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]); |
| break; |
| case GGL_ONE_MINUS_SRC_COLOR: |
| r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]); |
| r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]); |
| r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]); |
| r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]); |
| break; |
| case GGL_SRC_ALPHA: |
| r->c[1] = |
| r->c[2] = |
| r->c[3] = |
| r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE); |
| break; |
| case GGL_ONE_MINUS_SRC_ALPHA: |
| r->c[1] = |
| r->c[2] = |
| r->c[3] = |
| r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE); |
| break; |
| case GGL_DST_ALPHA: |
| r->c[1] = |
| r->c[2] = |
| r->c[3] = |
| r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE); |
| break; |
| case GGL_ONE_MINUS_DST_ALPHA: |
| r->c[1] = |
| r->c[2] = |
| r->c[3] = |
| r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE); |
| break; |
| case GGL_SRC_ALPHA_SATURATE: |
| // XXX: GGL_SRC_ALPHA_SATURATE |
| break; |
| } |
| } |
| |
| static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap) |
| { |
| GGLfixed d; |
| if (tx_wrap == GGL_REPEAT) { |
| d = (uint32_t(coord)>>16) * size; |
| } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics |
| const GGLfixed clamp_min = FIXED_HALF; |
| const GGLfixed clamp_max = (size << 16) - FIXED_HALF; |
| if (coord < clamp_min) coord = clamp_min; |
| if (coord > clamp_max) coord = clamp_max; |
| d = coord; |
| } else { // 1:1 |
| const GGLfixed clamp_min = 0; |
| const GGLfixed clamp_max = (size << 16); |
| if (coord < clamp_min) coord = clamp_min; |
| if (coord > clamp_max) coord = clamp_max; |
| d = coord; |
| } |
| return d; |
| } |
| |
| static inline |
| GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len) |
| { |
| const int32_t end = dvdx * (len-1) + v; |
| if (end < 0) |
| v -= end; |
| v &= ~(v>>31); |
| return v; |
| } |
| |
| void scanline(context_t* c) |
| { |
| const uint32_t enables = c->state.enables; |
| const int xs = c->iterators.xl; |
| const int x1 = c->iterators.xr; |
| int xc = x1 - xs; |
| const int16_t* covPtr = c->state.buffers.coverage + xs; |
| |
| // All iterated values are sampled at the pixel center |
| |
| // reset iterators for that scanline... |
| GGLcolor r, g, b, a; |
| iterators_t& ci = c->iterators; |
| if (enables & GGL_ENABLE_SMOOTH) { |
| r = (xs * c->shade.drdx) + ci.ydrdy; |
| g = (xs * c->shade.dgdx) + ci.ydgdy; |
| b = (xs * c->shade.dbdx) + ci.ydbdy; |
| a = (xs * c->shade.dadx) + ci.ydady; |
| r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc); |
| g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc); |
| b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc); |
| a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc); |
| } else { |
| r = ci.ydrdy; |
| g = ci.ydgdy; |
| b = ci.ydbdy; |
| a = ci.ydady; |
| } |
| |
| // z iterators are 1.31 |
| GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy; |
| GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy; |
| |
| struct { |
| GGLfixed s, t; |
| } tc[GGL_TEXTURE_UNIT_COUNT]; |
| if (enables & GGL_ENABLE_TMUS) { |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { |
| if (c->state.texture[i].enable) { |
| texture_iterators_t& ti = c->state.texture[i].iterators; |
| if (enables & GGL_ENABLE_W) { |
| tc[i].s = ti.ydsdy; |
| tc[i].t = ti.ydtdy; |
| } else { |
| tc[i].s = (xs * ti.dsdx) + ti.ydsdy; |
| tc[i].t = (xs * ti.dtdx) + ti.ydtdy; |
| } |
| } |
| } |
| } |
| |
| pixel_t fragment; |
| pixel_t texel; |
| pixel_t fb; |
| |
| uint32_t x = xs; |
| uint32_t y = c->iterators.y; |
| |
| while (xc--) { |
| |
| { // just a scope |
| |
| // read color (convert to 8 bits by keeping only the integer part) |
| fragment.s[1] = fragment.s[2] = |
| fragment.s[3] = fragment.s[0] = 8; |
| fragment.c[1] = r >> (GGL_COLOR_BITS-8); |
| fragment.c[2] = g >> (GGL_COLOR_BITS-8); |
| fragment.c[3] = b >> (GGL_COLOR_BITS-8); |
| fragment.c[0] = a >> (GGL_COLOR_BITS-8); |
| |
| // texturing |
| if (enables & GGL_ENABLE_TMUS) { |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { |
| texture_t& tx = c->state.texture[i]; |
| if (!tx.enable) |
| continue; |
| texture_iterators_t& ti = tx.iterators; |
| int32_t u, v; |
| |
| // s-coordinate |
| if (tx.s_coord != GGL_ONE_TO_ONE) { |
| const int w = tx.surface.width; |
| u = wrapping(tc[i].s, w, tx.s_wrap); |
| tc[i].s += ti.dsdx; |
| } else { |
| u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF; |
| } |
| |
| // t-coordinate |
| if (tx.t_coord != GGL_ONE_TO_ONE) { |
| const int h = tx.surface.height; |
| v = wrapping(tc[i].t, h, tx.t_wrap); |
| tc[i].t += ti.dtdx; |
| } else { |
| v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF; |
| } |
| |
| // read texture |
| if (tx.mag_filter == GGL_NEAREST && |
| tx.min_filter == GGL_NEAREST) |
| { |
| u >>= 16; |
| v >>= 16; |
| tx.surface.read(&tx.surface, c, u, v, &texel); |
| } else { |
| const int w = tx.surface.width; |
| const int h = tx.surface.height; |
| u -= FIXED_HALF; |
| v -= FIXED_HALF; |
| int u0 = u >> 16; |
| int v0 = v >> 16; |
| int u1 = u0 + 1; |
| int v1 = v0 + 1; |
| if (tx.s_wrap == GGL_REPEAT) { |
| if (u0<0) u0 += w; |
| if (u1<0) u1 += w; |
| if (u0>=w) u0 -= w; |
| if (u1>=w) u1 -= w; |
| } else { |
| if (u0<0) u0 = 0; |
| if (u1<0) u1 = 0; |
| if (u0>=w) u0 = w-1; |
| if (u1>=w) u1 = w-1; |
| } |
| if (tx.t_wrap == GGL_REPEAT) { |
| if (v0<0) v0 += h; |
| if (v1<0) v1 += h; |
| if (v0>=h) v0 -= h; |
| if (v1>=h) v1 -= h; |
| } else { |
| if (v0<0) v0 = 0; |
| if (v1<0) v1 = 0; |
| if (v0>=h) v0 = h-1; |
| if (v1>=h) v1 = h-1; |
| } |
| pixel_t texels[4]; |
| uint32_t mm[4]; |
| tx.surface.read(&tx.surface, c, u0, v0, &texels[0]); |
| tx.surface.read(&tx.surface, c, u0, v1, &texels[1]); |
| tx.surface.read(&tx.surface, c, u1, v0, &texels[2]); |
| tx.surface.read(&tx.surface, c, u1, v1, &texels[3]); |
| u = (u >> 12) & 0xF; |
| v = (v >> 12) & 0xF; |
| u += u>>3; |
| v += v>>3; |
| mm[0] = (0x10 - u) * (0x10 - v); |
| mm[1] = (0x10 - u) * v; |
| mm[2] = u * (0x10 - v); |
| mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]); |
| for (int j=0 ; j<4 ; j++) { |
| texel.s[j] = texels[0].s[j]; |
| if (!texel.s[j]) continue; |
| texel.s[j] += 8; |
| texel.c[j] = texels[0].c[j]*mm[0] + |
| texels[1].c[j]*mm[1] + |
| texels[2].c[j]*mm[2] + |
| texels[3].c[j]*mm[3] ; |
| } |
| } |
| |
| // Texture environnement... |
| for (int j=0 ; j<4 ; j++) { |
| uint32_t& Cf = fragment.c[j]; |
| uint32_t& Ct = texel.c[j]; |
| uint8_t& sf = fragment.s[j]; |
| uint8_t& st = texel.s[j]; |
| uint32_t At = texel.c[0]; |
| uint8_t sat = texel.s[0]; |
| switch (tx.env) { |
| case GGL_REPLACE: |
| if (st) { |
| Cf = Ct; |
| sf = st; |
| } |
| break; |
| case GGL_MODULATE: |
| if (st) { |
| uint32_t factor = Ct + (Ct>>(st-1)); |
| Cf = (Cf * factor) >> st; |
| } |
| break; |
| case GGL_DECAL: |
| if (sat) { |
| rescale(Cf, sf, Ct, st); |
| Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat; |
| } |
| break; |
| case GGL_BLEND: |
| if (st) { |
| uint32_t Cc = tx.env_color[i]; |
| if (sf>8) Cc = (Cc * ((1<<sf)-1))>>8; |
| else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf); |
| uint32_t factor = Ct + (Ct>>(st-1)); |
| Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st; |
| } |
| break; |
| case GGL_ADD: |
| if (st) { |
| rescale(Cf, sf, Ct, st); |
| Cf += Ct; |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| // coverage application |
| if (enables & GGL_ENABLE_AA) { |
| int16_t cf = *covPtr++; |
| fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15; |
| } |
| |
| // alpha-test |
| if (enables & GGL_ENABLE_ALPHA_TEST) { |
| GGLcolor ref = c->state.alpha_test.ref; |
| GGLcolor alpha = (uint64_t(fragment.c[0]) * |
| ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1); |
| switch (c->state.alpha_test.func) { |
| case GGL_NEVER: goto discard; |
| case GGL_LESS: if (alpha<ref) break; goto discard; |
| case GGL_EQUAL: if (alpha==ref) break; goto discard; |
| case GGL_LEQUAL: if (alpha<=ref) break; goto discard; |
| case GGL_GREATER: if (alpha>ref) break; goto discard; |
| case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard; |
| case GGL_GEQUAL: if (alpha>=ref) break; goto discard; |
| } |
| } |
| |
| // depth test |
| if (c->state.buffers.depth.format) { |
| if (enables & GGL_ENABLE_DEPTH_TEST) { |
| surface_t* cb = &(c->state.buffers.depth); |
| uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y)); |
| uint16_t zz = uint32_t(z)>>(16); |
| uint16_t depth = *p; |
| switch (c->state.depth_test.func) { |
| case GGL_NEVER: goto discard; |
| case GGL_LESS: if (zz<depth) break; goto discard; |
| case GGL_EQUAL: if (zz==depth) break; goto discard; |
| case GGL_LEQUAL: if (zz<=depth) break; goto discard; |
| case GGL_GREATER: if (zz>depth) break; goto discard; |
| case GGL_NOTEQUAL: if (zz!=depth) break; goto discard; |
| case GGL_GEQUAL: if (zz>=depth) break; goto discard; |
| } |
| // depth buffer is not enabled, if depth-test is not enabled |
| /* |
| fragment.s[1] = fragment.s[2] = |
| fragment.s[3] = fragment.s[0] = 8; |
| fragment.c[1] = |
| fragment.c[2] = |
| fragment.c[3] = |
| fragment.c[0] = 255 - (zz>>8); |
| */ |
| if (c->state.mask.depth) { |
| *p = zz; |
| } |
| } |
| } |
| |
| // fog |
| if (enables & GGL_ENABLE_FOG) { |
| for (int i=1 ; i<=3 ; i++) { |
| GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF; |
| uint32_t& c = fragment.c[i]; |
| uint8_t& s = fragment.s[i]; |
| c = (c * 0x10000) / ((1<<s)-1); |
| c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f)); |
| s = 16; |
| } |
| } |
| |
| // blending |
| if (enables & GGL_ENABLE_BLENDING) { |
| fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind |
| fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0; |
| c->state.buffers.color.read( |
| &(c->state.buffers.color), c, x, y, &fb); |
| blending( c, &fragment, &fb ); |
| } |
| |
| // write |
| c->state.buffers.color.write( |
| &(c->state.buffers.color), c, x, y, &fragment); |
| } |
| |
| discard: |
| // iterate... |
| x += 1; |
| if (enables & GGL_ENABLE_SMOOTH) { |
| r += c->shade.drdx; |
| g += c->shade.dgdx; |
| b += c->shade.dbdx; |
| a += c->shade.dadx; |
| } |
| z += c->shade.dzdx; |
| f += c->shade.dfdx; |
| } |
| } |
| |
| #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) |
| |
| // ---------------------------------------------------------------------------- |
| #if 0 |
| #pragma mark - |
| #pragma mark Scanline |
| #endif |
| |
| /* Used to parse a 32-bit source texture linearly. Usage is: |
| * |
| * horz_iterator32 hi(context); |
| * while (...) { |
| * uint32_t src_pixel = hi.get_pixel32(); |
| * ... |
| * } |
| * |
| * Use only for one-to-one texture mapping. |
| */ |
| struct horz_iterator32 { |
| horz_iterator32(context_t* c) { |
| const int x = c->iterators.xl; |
| const int y = c->iterators.y; |
| texture_t& tx = c->state.texture[0]; |
| const int32_t u = (tx.shade.is0>>16) + x; |
| const int32_t v = (tx.shade.it0>>16) + y; |
| m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v)); |
| } |
| uint32_t get_pixel32() { |
| return *m_src++; |
| } |
| protected: |
| uint32_t* m_src; |
| }; |
| |
| /* A variant for 16-bit source textures. */ |
| struct horz_iterator16 { |
| horz_iterator16(context_t* c) { |
| const int x = c->iterators.xl; |
| const int y = c->iterators.y; |
| texture_t& tx = c->state.texture[0]; |
| const int32_t u = (tx.shade.is0>>16) + x; |
| const int32_t v = (tx.shade.it0>>16) + y; |
| m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v)); |
| } |
| uint16_t get_pixel16() { |
| return *m_src++; |
| } |
| protected: |
| uint16_t* m_src; |
| }; |
| |
| /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP. |
| * After initialization, call get_src16() or get_src32() to get the current |
| * texture pixel value. |
| */ |
| struct clamp_iterator { |
| clamp_iterator(context_t* c) { |
| const int xs = c->iterators.xl; |
| texture_t& tx = c->state.texture[0]; |
| texture_iterators_t& ti = tx.iterators; |
| m_s = (xs * ti.dsdx) + ti.ydsdy; |
| m_t = (xs * ti.dtdx) + ti.ydtdy; |
| m_ds = ti.dsdx; |
| m_dt = ti.dtdx; |
| m_width_m1 = tx.surface.width - 1; |
| m_height_m1 = tx.surface.height - 1; |
| m_data = tx.surface.data; |
| m_stride = tx.surface.stride; |
| } |
| uint16_t get_pixel16() { |
| int u, v; |
| get_uv(u, v); |
| uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v)); |
| return src[0]; |
| } |
| uint32_t get_pixel32() { |
| int u, v; |
| get_uv(u, v); |
| uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v)); |
| return src[0]; |
| } |
| private: |
| void get_uv(int& u, int& v) { |
| int uu = m_s >> 16; |
| int vv = m_t >> 16; |
| if (uu < 0) |
| uu = 0; |
| if (uu > m_width_m1) |
| uu = m_width_m1; |
| if (vv < 0) |
| vv = 0; |
| if (vv > m_height_m1) |
| vv = m_height_m1; |
| u = uu; |
| v = vv; |
| m_s += m_ds; |
| m_t += m_dt; |
| } |
| |
| GGLfixed m_s, m_t; |
| GGLfixed m_ds, m_dt; |
| int m_width_m1, m_height_m1; |
| uint8_t* m_data; |
| int m_stride; |
| }; |
| |
| /* |
| * The 'horizontal clamp iterator' variant corresponds to the case where |
| * the 'v' coordinate doesn't change. This is useful to avoid one mult and |
| * extra adds / checks per pixels, if the blending/processing operation after |
| * this is very fast. |
| */ |
| static int is_context_horizontal(const context_t* c) { |
| return (c->state.texture[0].iterators.dtdx == 0); |
| } |
| |
| struct horz_clamp_iterator { |
| uint16_t get_pixel16() { |
| int u = m_s >> 16; |
| m_s += m_ds; |
| if (u < 0) |
| u = 0; |
| if (u > m_width_m1) |
| u = m_width_m1; |
| const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data); |
| return src[u]; |
| } |
| uint32_t get_pixel32() { |
| int u = m_s >> 16; |
| m_s += m_ds; |
| if (u < 0) |
| u = 0; |
| if (u > m_width_m1) |
| u = m_width_m1; |
| const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data); |
| return src[u]; |
| } |
| protected: |
| void init(const context_t* c, int shift); |
| GGLfixed m_s; |
| GGLfixed m_ds; |
| int m_width_m1; |
| const uint8_t* m_data; |
| }; |
| |
| void horz_clamp_iterator::init(const context_t* c, int shift) |
| { |
| const int xs = c->iterators.xl; |
| const texture_t& tx = c->state.texture[0]; |
| const texture_iterators_t& ti = tx.iterators; |
| m_s = (xs * ti.dsdx) + ti.ydsdy; |
| m_ds = ti.dsdx; |
| m_width_m1 = tx.surface.width-1; |
| m_data = tx.surface.data; |
| |
| GGLfixed t = (xs * ti.dtdx) + ti.ydtdy; |
| int v = t >> 16; |
| if (v < 0) |
| v = 0; |
| else if (v >= (int)tx.surface.height) |
| v = (int)tx.surface.height-1; |
| |
| m_data += (tx.surface.stride*v) << shift; |
| } |
| |
| struct horz_clamp_iterator16 : horz_clamp_iterator { |
| horz_clamp_iterator16(const context_t* c) { |
| init(c,1); |
| }; |
| }; |
| |
| struct horz_clamp_iterator32 : horz_clamp_iterator { |
| horz_clamp_iterator32(context_t* c) { |
| init(c,2); |
| }; |
| }; |
| |
| /* This is used to perform dithering operations. |
| */ |
| struct ditherer { |
| ditherer(const context_t* c) { |
| const int x = c->iterators.xl; |
| const int y = c->iterators.y; |
| m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ]; |
| m_index = x & GGL_DITHER_MASK; |
| } |
| void step(void) { |
| m_index++; |
| } |
| int get_value(void) { |
| int ret = m_line[m_index & GGL_DITHER_MASK]; |
| m_index++; |
| return ret; |
| } |
| uint16_t abgr8888ToRgb565(uint32_t s) { |
| uint32_t r = s & 0xff; |
| uint32_t g = (s >> 8) & 0xff; |
| uint32_t b = (s >> 16) & 0xff; |
| return rgb888ToRgb565(r,g,b); |
| } |
| /* The following assumes that r/g/b are in the 0..255 range each */ |
| uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) { |
| int threshold = get_value(); |
| /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */ |
| r += (threshold >> (GGL_DITHER_BITS-8 +5)); |
| g += (threshold >> (GGL_DITHER_BITS-8 +6)); |
| b += (threshold >> (GGL_DITHER_BITS-8 +5)); |
| if (r > 0xff) |
| r = 0xff; |
| if (g > 0xff) |
| g = 0xff; |
| if (b > 0xff) |
| b = 0xff; |
| return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3)); |
| } |
| protected: |
| const uint8_t* m_line; |
| int m_index; |
| }; |
| |
| /* This structure is used to blend (SRC_OVER) 32-bit source pixels |
| * onto 16-bit destination ones. Usage is simply: |
| * |
| * blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>) |
| */ |
| struct blender_32to16 { |
| blender_32to16(context_t* c) { } |
| void write(uint32_t s, uint16_t* dst) { |
| if (s == 0) |
| return; |
| s = GGL_RGBA_TO_HOST(s); |
| int sA = (s>>24); |
| if (sA == 0xff) { |
| *dst = convertAbgr8888ToRgb565(s); |
| } else { |
| int f = 0x100 - (sA + (sA>>7)); |
| int sR = (s >> ( 3))&0x1F; |
| int sG = (s >> ( 8+2))&0x3F; |
| int sB = (s >> (16+3))&0x1F; |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR += (f*dR)>>8; |
| sG += (f*dG)>>8; |
| sB += (f*dB)>>8; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| } |
| void write(uint32_t s, uint16_t* dst, ditherer& di) { |
| if (s == 0) { |
| di.step(); |
| return; |
| } |
| s = GGL_RGBA_TO_HOST(s); |
| int sA = (s>>24); |
| if (sA == 0xff) { |
| *dst = di.abgr8888ToRgb565(s); |
| } else { |
| int threshold = di.get_value() << (8 - GGL_DITHER_BITS); |
| int f = 0x100 - (sA + (sA>>7)); |
| int sR = (s >> ( 3))&0x1F; |
| int sG = (s >> ( 8+2))&0x3F; |
| int sB = (s >> (16+3))&0x1F; |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR = ((sR << 8) + f*dR + threshold)>>8; |
| sG = ((sG << 8) + f*dG + threshold)>>8; |
| sB = ((sB << 8) + f*dB + threshold)>>8; |
| if (sR > 0x1f) sR = 0x1f; |
| if (sG > 0x3f) sG = 0x3f; |
| if (sB > 0x1f) sB = 0x1f; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| } |
| }; |
| |
| /* This blender does the same for the 'blend_srca' operation. |
| * where dstFactor=srcA*(1-srcA) srcFactor=srcA |
| */ |
| struct blender_32to16_srcA { |
| blender_32to16_srcA(const context_t* c) { } |
| void write(uint32_t s, uint16_t* dst) { |
| if (!s) { |
| return; |
| } |
| uint16_t d = *dst; |
| s = GGL_RGBA_TO_HOST(s); |
| int sR = (s >> ( 3))&0x1F; |
| int sG = (s >> ( 8+2))&0x3F; |
| int sB = (s >> (16+3))&0x1F; |
| int sA = (s>>24); |
| int f1 = (sA + (sA>>7)); |
| int f2 = 0x100-f1; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR = (f1*sR + f2*dR)>>8; |
| sG = (f1*sG + f2*dG)>>8; |
| sB = (f1*sB + f2*dB)>>8; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| }; |
| |
| /* Common init code the modulating blenders */ |
| struct blender_modulate { |
| void init(const context_t* c) { |
| const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8); |
| const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8); |
| const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8); |
| const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); |
| m_r = r + (r >> 7); |
| m_g = g + (g >> 7); |
| m_b = b + (b >> 7); |
| m_a = a + (a >> 7); |
| } |
| protected: |
| int m_r, m_g, m_b, m_a; |
| }; |
| |
| /* This blender does a normal blend after modulation. |
| */ |
| struct blender_32to16_modulate : blender_modulate { |
| blender_32to16_modulate(const context_t* c) { |
| init(c); |
| } |
| void write(uint32_t s, uint16_t* dst) { |
| // blend source and destination |
| if (!s) { |
| return; |
| } |
| s = GGL_RGBA_TO_HOST(s); |
| |
| /* We need to modulate s */ |
| uint32_t sA = (s >> 24); |
| uint32_t sB = (s >> 16) & 0xff; |
| uint32_t sG = (s >> 8) & 0xff; |
| uint32_t sR = s & 0xff; |
| |
| sA = (sA*m_a) >> 8; |
| /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */ |
| sR = (sR*m_r) >> (8 - 5); |
| sG = (sG*m_g) >> (8 - 6); |
| sB = (sB*m_b) >> (8 - 5); |
| |
| /* Now do a normal blend */ |
| int f = 0x100 - (sA + (sA>>7)); |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR = (sR + f*dR)>>8; |
| sG = (sG + f*dG)>>8; |
| sB = (sB + f*dB)>>8; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| void write(uint32_t s, uint16_t* dst, ditherer& di) { |
| // blend source and destination |
| if (!s) { |
| di.step(); |
| return; |
| } |
| s = GGL_RGBA_TO_HOST(s); |
| |
| /* We need to modulate s */ |
| uint32_t sA = (s >> 24); |
| uint32_t sB = (s >> 16) & 0xff; |
| uint32_t sG = (s >> 8) & 0xff; |
| uint32_t sR = s & 0xff; |
| |
| sA = (sA*m_a) >> 8; |
| /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */ |
| sR = (sR*m_r) >> (8 - 5); |
| sG = (sG*m_g) >> (8 - 6); |
| sB = (sB*m_b) >> (8 - 5); |
| |
| /* Scale threshold to 0.8 fixed float format */ |
| int threshold = di.get_value() << (8 - GGL_DITHER_BITS); |
| int f = 0x100 - (sA + (sA>>7)); |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR = (sR + f*dR + threshold)>>8; |
| sG = (sG + f*dG + threshold)>>8; |
| sB = (sB + f*dB + threshold)>>8; |
| if (sR > 0x1f) sR = 0x1f; |
| if (sG > 0x3f) sG = 0x3f; |
| if (sB > 0x1f) sB = 0x1f; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| }; |
| |
| /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */ |
| struct blender_x32to16_modulate : blender_modulate { |
| blender_x32to16_modulate(const context_t* c) { |
| init(c); |
| } |
| void write(uint32_t s, uint16_t* dst) { |
| s = GGL_RGBA_TO_HOST(s); |
| |
| uint32_t sB = (s >> 16) & 0xff; |
| uint32_t sG = (s >> 8) & 0xff; |
| uint32_t sR = s & 0xff; |
| |
| /* Keep R/G/B in 5.8 or 6.8 format */ |
| sR = (sR*m_r) >> (8 - 5); |
| sG = (sG*m_g) >> (8 - 6); |
| sB = (sB*m_b) >> (8 - 5); |
| |
| int f = 0x100 - m_a; |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR = (sR + f*dR)>>8; |
| sG = (sG + f*dG)>>8; |
| sB = (sB + f*dB)>>8; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| void write(uint32_t s, uint16_t* dst, ditherer& di) { |
| s = GGL_RGBA_TO_HOST(s); |
| |
| uint32_t sB = (s >> 16) & 0xff; |
| uint32_t sG = (s >> 8) & 0xff; |
| uint32_t sR = s & 0xff; |
| |
| sR = (sR*m_r) >> (8 - 5); |
| sG = (sG*m_g) >> (8 - 6); |
| sB = (sB*m_b) >> (8 - 5); |
| |
| /* Now do a normal blend */ |
| int threshold = di.get_value() << (8 - GGL_DITHER_BITS); |
| int f = 0x100 - m_a; |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR = (sR + f*dR + threshold)>>8; |
| sG = (sG + f*dG + threshold)>>8; |
| sB = (sB + f*dB + threshold)>>8; |
| if (sR > 0x1f) sR = 0x1f; |
| if (sG > 0x3f) sG = 0x3f; |
| if (sB > 0x1f) sB = 0x1f; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| }; |
| |
| /* Same as above, but source is 16bit rgb565 */ |
| struct blender_16to16_modulate : blender_modulate { |
| blender_16to16_modulate(const context_t* c) { |
| init(c); |
| } |
| void write(uint16_t s16, uint16_t* dst) { |
| uint32_t s = s16; |
| |
| uint32_t sR = s >> 11; |
| uint32_t sG = (s >> 5) & 0x3f; |
| uint32_t sB = s & 0x1f; |
| |
| sR = (sR*m_r); |
| sG = (sG*m_g); |
| sB = (sB*m_b); |
| |
| int f = 0x100 - m_a; |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| sR = (sR + f*dR)>>8; |
| sG = (sG + f*dG)>>8; |
| sB = (sB + f*dB)>>8; |
| *dst = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| }; |
| |
| /* This is used to iterate over a 16-bit destination color buffer. |
| * Usage is: |
| * |
| * dst_iterator16 di(context); |
| * while (di.count--) { |
| * <do stuff with dest pixel at di.dst> |
| * di.dst++; |
| * } |
| */ |
| struct dst_iterator16 { |
| dst_iterator16(const context_t* c) { |
| const int x = c->iterators.xl; |
| const int width = c->iterators.xr - x; |
| const int32_t y = c->iterators.y; |
| const surface_t* cb = &(c->state.buffers.color); |
| count = width; |
| dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); |
| } |
| int count; |
| uint16_t* dst; |
| }; |
| |
| |
| static void scanline_t32cb16_clamp(context_t* c) |
| { |
| dst_iterator16 di(c); |
| |
| if (is_context_horizontal(c)) { |
| /* Special case for simple horizontal scaling */ |
| horz_clamp_iterator32 ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| *di.dst++ = convertAbgr8888ToRgb565(s); |
| } |
| } else { |
| /* General case */ |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| *di.dst++ = convertAbgr8888ToRgb565(s); |
| } |
| } |
| } |
| |
| static void scanline_t32cb16_dither(context_t* c) |
| { |
| horz_iterator32 si(c); |
| dst_iterator16 di(c); |
| ditherer dither(c); |
| |
| while (di.count--) { |
| uint32_t s = si.get_pixel32(); |
| *di.dst++ = dither.abgr8888ToRgb565(s); |
| } |
| } |
| |
| static void scanline_t32cb16_clamp_dither(context_t* c) |
| { |
| dst_iterator16 di(c); |
| ditherer dither(c); |
| |
| if (is_context_horizontal(c)) { |
| /* Special case for simple horizontal scaling */ |
| horz_clamp_iterator32 ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| *di.dst++ = dither.abgr8888ToRgb565(s); |
| } |
| } else { |
| /* General case */ |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| *di.dst++ = dither.abgr8888ToRgb565(s); |
| } |
| } |
| } |
| |
| static void scanline_t32cb16blend_dither(context_t* c) |
| { |
| dst_iterator16 di(c); |
| ditherer dither(c); |
| blender_32to16 bl(c); |
| horz_iterator32 hi(c); |
| while (di.count--) { |
| uint32_t s = hi.get_pixel32(); |
| bl.write(s, di.dst, dither); |
| di.dst++; |
| } |
| } |
| |
| static void scanline_t32cb16blend_clamp(context_t* c) |
| { |
| dst_iterator16 di(c); |
| blender_32to16 bl(c); |
| |
| if (is_context_horizontal(c)) { |
| horz_clamp_iterator32 ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| bl.write(s, di.dst); |
| di.dst++; |
| } |
| } else { |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| bl.write(s, di.dst); |
| di.dst++; |
| } |
| } |
| } |
| |
| static void scanline_t32cb16blend_clamp_dither(context_t* c) |
| { |
| dst_iterator16 di(c); |
| ditherer dither(c); |
| blender_32to16 bl(c); |
| |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| bl.write(s, di.dst, dither); |
| di.dst++; |
| } |
| } |
| |
| void scanline_t32cb16blend_clamp_mod(context_t* c) |
| { |
| dst_iterator16 di(c); |
| blender_32to16_modulate bl(c); |
| |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| bl.write(s, di.dst); |
| di.dst++; |
| } |
| } |
| |
| void scanline_t32cb16blend_clamp_mod_dither(context_t* c) |
| { |
| dst_iterator16 di(c); |
| blender_32to16_modulate bl(c); |
| ditherer dither(c); |
| |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| bl.write(s, di.dst, dither); |
| di.dst++; |
| } |
| } |
| |
| /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */ |
| void scanline_x32cb16blend_clamp_mod(context_t* c) |
| { |
| dst_iterator16 di(c); |
| blender_x32to16_modulate bl(c); |
| |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| bl.write(s, di.dst); |
| di.dst++; |
| } |
| } |
| |
| void scanline_x32cb16blend_clamp_mod_dither(context_t* c) |
| { |
| dst_iterator16 di(c); |
| blender_x32to16_modulate bl(c); |
| ditherer dither(c); |
| |
| clamp_iterator ci(c); |
| while (di.count--) { |
| uint32_t s = ci.get_pixel32(); |
| bl.write(s, di.dst, dither); |
| di.dst++; |
| } |
| } |
| |
| void scanline_t16cb16_clamp(context_t* c) |
| { |
| dst_iterator16 di(c); |
| |
| /* Special case for simple horizontal scaling */ |
| if (is_context_horizontal(c)) { |
| horz_clamp_iterator16 ci(c); |
| while (di.count--) { |
| *di.dst++ = ci.get_pixel16(); |
| } |
| } else { |
| clamp_iterator ci(c); |
| while (di.count--) { |
| *di.dst++ = ci.get_pixel16(); |
| } |
| } |
| } |
| |
| |
| |
| template <typename T, typename U> |
| static inline __attribute__((const)) |
| T interpolate(int y, T v0, U dvdx, U dvdy) { |
| // interpolates in pixel's centers |
| // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx) |
| return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1)); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| #if 0 |
| #pragma mark - |
| #endif |
| |
| void init_y(context_t* c, int32_t ys) |
| { |
| const uint32_t enables = c->state.enables; |
| |
| // compute iterators... |
| iterators_t& ci = c->iterators; |
| |
| // sample in the center |
| ci.y = ys; |
| |
| if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) { |
| ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy); |
| ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy); |
| ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy); |
| } |
| |
| if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) { |
| ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy); |
| ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy); |
| ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy); |
| ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady); |
| c->step_y = step_y__smooth; |
| } else { |
| ci.ydrdy = c->shade.r0; |
| ci.ydgdy = c->shade.g0; |
| ci.ydbdy = c->shade.b0; |
| ci.ydady = c->shade.a0; |
| // XXX: do only if needed, or make sure this is fast |
| c->packed = ggl_pack_color(c, c->state.buffers.color.format, |
| ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); |
| c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, |
| ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); |
| } |
| |
| // initialize the variables we need in the shader |
| generated_vars_t& gen = c->generated_vars; |
| gen.argb[GGLFormat::ALPHA].c = ci.ydady; |
| gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx; |
| gen.argb[GGLFormat::RED ].c = ci.ydrdy; |
| gen.argb[GGLFormat::RED ].dx = c->shade.drdx; |
| gen.argb[GGLFormat::GREEN].c = ci.ydgdy; |
| gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx; |
| gen.argb[GGLFormat::BLUE ].c = ci.ydbdy; |
| gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx; |
| gen.dzdx = c->shade.dzdx; |
| gen.f = ci.ydfdy; |
| gen.dfdx = c->shade.dfdx; |
| |
| if (enables & GGL_ENABLE_TMUS) { |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { |
| texture_t& t = c->state.texture[i]; |
| if (!t.enable) continue; |
| |
| texture_iterators_t& ti = t.iterators; |
| if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) { |
| // we need to set all of these to 0 because in some cases |
| // step_y__generic() or step_y__tmu() will be used and |
| // therefore will update dtdy, however, in 1:1 mode |
| // this is always done by the scanline rasterizer. |
| ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0; |
| ti.ydsdy = t.shade.is0; |
| ti.ydtdy = t.shade.it0; |
| } else { |
| const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16); |
| const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16); |
| ti.sscale = t.shade.sscale + adjustSWrap; |
| ti.tscale = t.shade.tscale + adjustTWrap; |
| if (!(enables & GGL_ENABLE_W)) { |
| // S coordinate |
| const int32_t sscale = ti.sscale; |
| const int32_t sy = interpolate(ys, |
| t.shade.is0, t.shade.idsdx, t.shade.idsdy); |
| if (sscale>=0) { |
| ti.ydsdy= sy << sscale; |
| ti.dsdx = t.shade.idsdx << sscale; |
| ti.dsdy = t.shade.idsdy << sscale; |
| } else { |
| ti.ydsdy= sy >> -sscale; |
| ti.dsdx = t.shade.idsdx >> -sscale; |
| ti.dsdy = t.shade.idsdy >> -sscale; |
| } |
| // T coordinate |
| const int32_t tscale = ti.tscale; |
| const int32_t ty = interpolate(ys, |
| t.shade.it0, t.shade.idtdx, t.shade.idtdy); |
| if (tscale>=0) { |
| ti.ydtdy= ty << tscale; |
| ti.dtdx = t.shade.idtdx << tscale; |
| ti.dtdy = t.shade.idtdy << tscale; |
| } else { |
| ti.ydtdy= ty >> -tscale; |
| ti.dtdx = t.shade.idtdx >> -tscale; |
| ti.dtdy = t.shade.idtdy >> -tscale; |
| } |
| } |
| } |
| // mirror for generated code... |
| generated_tex_vars_t& gen = c->generated_vars.texture[i]; |
| gen.width = t.surface.width; |
| gen.height = t.surface.height; |
| gen.stride = t.surface.stride; |
| gen.data = int32_t(t.surface.data); |
| gen.dsdx = ti.dsdx; |
| gen.dtdx = ti.dtdx; |
| } |
| } |
| |
| // choose the y-stepper |
| c->step_y = step_y__nop; |
| if (enables & GGL_ENABLE_FOG) { |
| c->step_y = step_y__generic; |
| } else if (enables & GGL_ENABLE_TMUS) { |
| if (enables & GGL_ENABLE_SMOOTH) { |
| c->step_y = step_y__generic; |
| } else if (enables & GGL_ENABLE_W) { |
| c->step_y = step_y__w; |
| } else { |
| c->step_y = step_y__tmu; |
| } |
| } else { |
| if (enables & GGL_ENABLE_SMOOTH) { |
| c->step_y = step_y__smooth; |
| } |
| } |
| |
| // choose the rectangle blitter |
| c->rect = rect_generic; |
| if ((c->step_y == step_y__nop) && |
| (c->scanline == scanline_memcpy)) |
| { |
| c->rect = rect_memcpy; |
| } |
| } |
| |
| void init_y_packed(context_t* c, int32_t y0) |
| { |
| uint8_t f = c->state.buffers.color.format; |
| c->packed = ggl_pack_color(c, f, |
| c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); |
| c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, |
| c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); |
| c->iterators.y = y0; |
| c->step_y = step_y__nop; |
| // choose the rectangle blitter |
| c->rect = rect_generic; |
| if (c->scanline == scanline_memcpy) { |
| c->rect = rect_memcpy; |
| } |
| } |
| |
| void init_y_noop(context_t* c, int32_t y0) |
| { |
| c->iterators.y = y0; |
| c->step_y = step_y__nop; |
| // choose the rectangle blitter |
| c->rect = rect_generic; |
| if (c->scanline == scanline_memcpy) { |
| c->rect = rect_memcpy; |
| } |
| } |
| |
| void init_y_error(context_t* c, int32_t y0) |
| { |
| // woooops, shoud never happen, |
| // fail gracefully (don't display anything) |
| init_y_noop(c, y0); |
| ALOGE("color-buffer has an invalid format!"); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| #if 0 |
| #pragma mark - |
| #endif |
| |
| void step_y__generic(context_t* c) |
| { |
| const uint32_t enables = c->state.enables; |
| |
| // iterate... |
| iterators_t& ci = c->iterators; |
| ci.y += 1; |
| |
| if (enables & GGL_ENABLE_SMOOTH) { |
| ci.ydrdy += c->shade.drdy; |
| ci.ydgdy += c->shade.dgdy; |
| ci.ydbdy += c->shade.dbdy; |
| ci.ydady += c->shade.dady; |
| } |
| |
| const uint32_t mask = |
| GGL_ENABLE_DEPTH_TEST | |
| GGL_ENABLE_W | |
| GGL_ENABLE_FOG; |
| if (enables & mask) { |
| ci.ydzdy += c->shade.dzdy; |
| ci.ydwdy += c->shade.dwdy; |
| ci.ydfdy += c->shade.dfdy; |
| } |
| |
| if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) { |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { |
| if (c->state.texture[i].enable) { |
| texture_iterators_t& ti = c->state.texture[i].iterators; |
| ti.ydsdy += ti.dsdy; |
| ti.ydtdy += ti.dtdy; |
| } |
| } |
| } |
| } |
| |
| void step_y__nop(context_t* c) |
| { |
| c->iterators.y += 1; |
| c->iterators.ydzdy += c->shade.dzdy; |
| } |
| |
| void step_y__smooth(context_t* c) |
| { |
| iterators_t& ci = c->iterators; |
| ci.y += 1; |
| ci.ydrdy += c->shade.drdy; |
| ci.ydgdy += c->shade.dgdy; |
| ci.ydbdy += c->shade.dbdy; |
| ci.ydady += c->shade.dady; |
| ci.ydzdy += c->shade.dzdy; |
| } |
| |
| void step_y__w(context_t* c) |
| { |
| iterators_t& ci = c->iterators; |
| ci.y += 1; |
| ci.ydzdy += c->shade.dzdy; |
| ci.ydwdy += c->shade.dwdy; |
| } |
| |
| void step_y__tmu(context_t* c) |
| { |
| iterators_t& ci = c->iterators; |
| ci.y += 1; |
| ci.ydzdy += c->shade.dzdy; |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { |
| if (c->state.texture[i].enable) { |
| texture_iterators_t& ti = c->state.texture[i].iterators; |
| ti.ydsdy += ti.dsdy; |
| ti.ydtdy += ti.dtdy; |
| } |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| #if 0 |
| #pragma mark - |
| #endif |
| |
| void scanline_perspective(context_t* c) |
| { |
| struct { |
| union { |
| struct { |
| int32_t s, sq; |
| int32_t t, tq; |
| } sqtq; |
| struct { |
| int32_t v, q; |
| } st[2]; |
| }; |
| } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16))); |
| |
| // XXX: we should have a special case when dwdx = 0 |
| |
| // 32 pixels spans works okay. 16 is a lot better, |
| // but hey, it's a software renderer... |
| const uint32_t SPAN_BITS = 5; |
| const uint32_t ys = c->iterators.y; |
| const uint32_t xs = c->iterators.xl; |
| const uint32_t x1 = c->iterators.xr; |
| const uint32_t xc = x1 - xs; |
| uint32_t remainder = xc & ((1<<SPAN_BITS)-1); |
| uint32_t numSpans = xc >> SPAN_BITS; |
| |
| const iterators_t& ci = c->iterators; |
| int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy; |
| int32_t q0 = gglRecipQ(w0, 30); |
| const int iwscale = 32 - gglClz(q0); |
| |
| const int32_t dwdx = c->shade.dwdx << SPAN_BITS; |
| int32_t xl = c->iterators.xl; |
| |
| // We process s & t with a loop to reduce the code size |
| // (and i-cache pressure). |
| |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { |
| const texture_t& tmu = c->state.texture[i]; |
| if (!tmu.enable) continue; |
| int32_t s = tmu.shade.is0 + |
| (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + |
| ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); |
| int32_t t = tmu.shade.it0 + |
| (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + |
| ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); |
| tc[i].sqtq.s = s; |
| tc[i].sqtq.t = t; |
| tc[i].sqtq.sq = gglMulx(s, q0, iwscale); |
| tc[i].sqtq.tq = gglMulx(t, q0, iwscale); |
| } |
| |
| int32_t span = 0; |
| do { |
| int32_t w1; |
| if (ggl_likely(numSpans)) { |
| w1 = w0 + dwdx; |
| } else { |
| if (remainder) { |
| // finish off the scanline... |
| span = remainder; |
| w1 = (c->shade.dwdx * span) + w0; |
| } else { |
| break; |
| } |
| } |
| int32_t q1 = gglRecipQ(w1, 30); |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { |
| texture_t& tmu = c->state.texture[i]; |
| if (!tmu.enable) continue; |
| texture_iterators_t& ti = tmu.iterators; |
| |
| for (int j=0 ; j<2 ; j++) { |
| int32_t v = tc[i].st[j].v; |
| if (span) v += (tmu.shade.st[j].dx)*span; |
| else v += (tmu.shade.st[j].dx)<<SPAN_BITS; |
| const int32_t v0 = tc[i].st[j].q; |
| const int32_t v1 = gglMulx(v, q1, iwscale); |
| int32_t dvdx = v1 - v0; |
| if (span) dvdx /= span; |
| else dvdx >>= SPAN_BITS; |
| tc[i].st[j].v = v; |
| tc[i].st[j].q = v1; |
| |
| const int scale = ti.st[j].scale + (iwscale - 30); |
| if (scale >= 0) { |
| ti.st[j].ydvdy = v0 << scale; |
| ti.st[j].dvdx = dvdx << scale; |
| } else { |
| ti.st[j].ydvdy = v0 >> -scale; |
| ti.st[j].dvdx = dvdx >> -scale; |
| } |
| } |
| generated_tex_vars_t& gen = c->generated_vars.texture[i]; |
| gen.dsdx = ti.st[0].dvdx; |
| gen.dtdx = ti.st[1].dvdx; |
| } |
| c->iterators.xl = xl; |
| c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS)); |
| w0 = w1; |
| q0 = q1; |
| c->span(c); |
| } while(numSpans--); |
| } |
| |
| void scanline_perspective_single(context_t* c) |
| { |
| // 32 pixels spans works okay. 16 is a lot better, |
| // but hey, it's a software renderer... |
| const uint32_t SPAN_BITS = 5; |
| const uint32_t ys = c->iterators.y; |
| const uint32_t xs = c->iterators.xl; |
| const uint32_t x1 = c->iterators.xr; |
| const uint32_t xc = x1 - xs; |
| |
| const iterators_t& ci = c->iterators; |
| int32_t w = (xs * c->shade.dwdx) + ci.ydwdy; |
| int32_t iw = gglRecipQ(w, 30); |
| const int iwscale = 32 - gglClz(iw); |
| |
| const int i = 31 - gglClz(c->state.enabled_tmu); |
| generated_tex_vars_t& gen = c->generated_vars.texture[i]; |
| texture_t& tmu = c->state.texture[i]; |
| texture_iterators_t& ti = tmu.iterators; |
| const int sscale = ti.sscale + (iwscale - 30); |
| const int tscale = ti.tscale + (iwscale - 30); |
| int32_t s = tmu.shade.is0 + |
| (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + |
| ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); |
| int32_t t = tmu.shade.it0 + |
| (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + |
| ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); |
| int32_t s0 = gglMulx(s, iw, iwscale); |
| int32_t t0 = gglMulx(t, iw, iwscale); |
| int32_t xl = c->iterators.xl; |
| |
| int32_t sq, tq, dsdx, dtdx; |
| int32_t premainder = xc & ((1<<SPAN_BITS)-1); |
| uint32_t numSpans = xc >> SPAN_BITS; |
| if (c->shade.dwdx == 0) { |
| // XXX: we could choose to do this if the error is small enough |
| numSpans = 0; |
| premainder = xc; |
| goto no_perspective; |
| } |
| |
| if (premainder) { |
| w += c->shade.dwdx * premainder; |
| iw = gglRecipQ(w, 30); |
| no_perspective: |
| s += tmu.shade.idsdx * premainder; |
| t += tmu.shade.idtdx * premainder; |
| sq = gglMulx(s, iw, iwscale); |
| tq = gglMulx(t, iw, iwscale); |
| dsdx = (sq - s0) / premainder; |
| dtdx = (tq - t0) / premainder; |
| c->iterators.xl = xl; |
| c->iterators.xr = xl = xl + premainder; |
| goto finish; |
| } |
| |
| while (numSpans--) { |
| w += c->shade.dwdx << SPAN_BITS; |
| s += tmu.shade.idsdx << SPAN_BITS; |
| t += tmu.shade.idtdx << SPAN_BITS; |
| iw = gglRecipQ(w, 30); |
| sq = gglMulx(s, iw, iwscale); |
| tq = gglMulx(t, iw, iwscale); |
| dsdx = (sq - s0) >> SPAN_BITS; |
| dtdx = (tq - t0) >> SPAN_BITS; |
| c->iterators.xl = xl; |
| c->iterators.xr = xl = xl + (1<<SPAN_BITS); |
| finish: |
| if (sscale >= 0) { |
| ti.ydsdy = s0 << sscale; |
| ti.dsdx = dsdx << sscale; |
| } else { |
| ti.ydsdy = s0 >>-sscale; |
| ti.dsdx = dsdx >>-sscale; |
| } |
| if (tscale >= 0) { |
| ti.ydtdy = t0 << tscale; |
| ti.dtdx = dtdx << tscale; |
| } else { |
| ti.ydtdy = t0 >>-tscale; |
| ti.dtdx = dtdx >>-tscale; |
| } |
| s0 = sq; |
| t0 = tq; |
| gen.dsdx = ti.dsdx; |
| gen.dtdx = ti.dtdx; |
| c->span(c); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void scanline_col32cb16blend(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| union { |
| uint16_t* dst; |
| uint32_t* dst32; |
| }; |
| dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); |
| |
| #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__)) |
| #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN |
| scanline_col32cb16blend_neon(dst, &(c->packed8888), ct); |
| #else // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN |
| scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct); |
| #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN |
| #else |
| uint32_t s = GGL_RGBA_TO_HOST(c->packed8888); |
| int sA = (s>>24); |
| int f = 0x100 - (sA + (sA>>7)); |
| while (ct--) { |
| uint16_t d = *dst; |
| int dR = (d>>11)&0x1f; |
| int dG = (d>>5)&0x3f; |
| int dB = (d)&0x1f; |
| int sR = (s >> ( 3))&0x1F; |
| int sG = (s >> ( 8+2))&0x3F; |
| int sB = (s >> (16+3))&0x1F; |
| sR += (f*dR)>>8; |
| sG += (f*dG)>>8; |
| sB += (f*dB)>>8; |
| *dst++ = uint16_t((sR<<11)|(sG<<5)|sB); |
| } |
| #endif |
| |
| } |
| |
| void scanline_t32cb16(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| union { |
| uint16_t* dst; |
| uint32_t* dst32; |
| }; |
| dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); |
| |
| surface_t* tex = &(c->state.texture[0].surface); |
| const int32_t u = (c->state.texture[0].shade.is0>>16) + x; |
| const int32_t v = (c->state.texture[0].shade.it0>>16) + y; |
| uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v)); |
| int sR, sG, sB; |
| uint32_t s, d; |
| |
| if (ct==1 || uint32_t(dst)&2) { |
| last_one: |
| s = GGL_RGBA_TO_HOST( *src++ ); |
| *dst++ = convertAbgr8888ToRgb565(s); |
| ct--; |
| } |
| |
| while (ct >= 2) { |
| #if BYTE_ORDER == BIG_ENDIAN |
| s = GGL_RGBA_TO_HOST( *src++ ); |
| d = convertAbgr8888ToRgb565_hi16(s); |
| |
| s = GGL_RGBA_TO_HOST( *src++ ); |
| d |= convertAbgr8888ToRgb565(s); |
| #else |
| s = GGL_RGBA_TO_HOST( *src++ ); |
| d = convertAbgr8888ToRgb565(s); |
| |
| s = GGL_RGBA_TO_HOST( *src++ ); |
| d |= convertAbgr8888ToRgb565(s) << 16; |
| #endif |
| *dst32++ = d; |
| ct -= 2; |
| } |
| |
| if (ct > 0) { |
| goto last_one; |
| } |
| } |
| |
| void scanline_t32cb16blend(context_t* c) |
| { |
| #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || defined(__mips))) |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); |
| |
| surface_t* tex = &(c->state.texture[0].surface); |
| const int32_t u = (c->state.texture[0].shade.is0>>16) + x; |
| const int32_t v = (c->state.texture[0].shade.it0>>16) + y; |
| uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v)); |
| |
| #ifdef __arm__ |
| scanline_t32cb16blend_arm(dst, src, ct); |
| #else |
| scanline_t32cb16blend_mips(dst, src, ct); |
| #endif |
| #else |
| dst_iterator16 di(c); |
| horz_iterator32 hi(c); |
| blender_32to16 bl(c); |
| while (di.count--) { |
| uint32_t s = hi.get_pixel32(); |
| bl.write(s, di.dst); |
| di.dst++; |
| } |
| #endif |
| } |
| |
| void scanline_t32cb16blend_srca(context_t* c) |
| { |
| dst_iterator16 di(c); |
| horz_iterator32 hi(c); |
| blender_32to16_srcA blender(c); |
| |
| while (di.count--) { |
| uint32_t s = hi.get_pixel32(); |
| blender.write(s,di.dst); |
| di.dst++; |
| } |
| } |
| |
| void scanline_t16cb16blend_clamp_mod(context_t* c) |
| { |
| const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); |
| if (a == 0) { |
| return; |
| } |
| |
| if (a == 255) { |
| scanline_t16cb16_clamp(c); |
| return; |
| } |
| |
| dst_iterator16 di(c); |
| blender_16to16_modulate blender(c); |
| clamp_iterator ci(c); |
| |
| while (di.count--) { |
| uint16_t s = ci.get_pixel16(); |
| blender.write(s, di.dst); |
| di.dst++; |
| } |
| } |
| |
| void scanline_memcpy(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| const GGLFormat* fp = &(c->formats[cb->format]); |
| uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + |
| (x + (cb->stride * y)) * fp->size; |
| |
| surface_t* tex = &(c->state.texture[0].surface); |
| const int32_t u = (c->state.texture[0].shade.is0>>16) + x; |
| const int32_t v = (c->state.texture[0].shade.it0>>16) + y; |
| uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) + |
| (u + (tex->stride * v)) * fp->size; |
| |
| const size_t size = ct * fp->size; |
| memcpy(dst, src, size); |
| } |
| |
| void scanline_memset8(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y)); |
| uint32_t packed = c->packed; |
| memset(dst, packed, ct); |
| } |
| |
| void scanline_memset16(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); |
| uint32_t packed = c->packed; |
| android_memset16(dst, packed, ct*2); |
| } |
| |
| void scanline_memset32(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y)); |
| uint32_t packed = GGL_HOST_TO_RGBA(c->packed); |
| android_memset32(dst, packed, ct*4); |
| } |
| |
| void scanline_clear(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| const GGLFormat* fp = &(c->formats[cb->format]); |
| uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + |
| (x + (cb->stride * y)) * fp->size; |
| const size_t size = ct * fp->size; |
| memset(dst, 0, size); |
| } |
| |
| void scanline_set(context_t* c) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| const GGLFormat* fp = &(c->formats[cb->format]); |
| uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + |
| (x + (cb->stride * y)) * fp->size; |
| const size_t size = ct * fp->size; |
| memset(dst, 0xFF, size); |
| } |
| |
| void scanline_noop(context_t* c) |
| { |
| } |
| |
| void rect_generic(context_t* c, size_t yc) |
| { |
| do { |
| c->scanline(c); |
| c->step_y(c); |
| } while (--yc); |
| } |
| |
| void rect_memcpy(context_t* c, size_t yc) |
| { |
| int32_t x = c->iterators.xl; |
| size_t ct = c->iterators.xr - x; |
| int32_t y = c->iterators.y; |
| surface_t* cb = &(c->state.buffers.color); |
| const GGLFormat* fp = &(c->formats[cb->format]); |
| uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + |
| (x + (cb->stride * y)) * fp->size; |
| |
| surface_t* tex = &(c->state.texture[0].surface); |
| const int32_t u = (c->state.texture[0].shade.is0>>16) + x; |
| const int32_t v = (c->state.texture[0].shade.it0>>16) + y; |
| uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) + |
| (u + (tex->stride * v)) * fp->size; |
| |
| if (cb->stride == tex->stride && ct == size_t(cb->stride)) { |
| memcpy(dst, src, ct * fp->size * yc); |
| } else { |
| const size_t size = ct * fp->size; |
| const size_t dbpr = cb->stride * fp->size; |
| const size_t sbpr = tex->stride * fp->size; |
| do { |
| memcpy(dst, src, size); |
| dst += dbpr; |
| src += sbpr; |
| } while (--yc); |
| } |
| } |
| // ---------------------------------------------------------------------------- |
| }; // namespace android |
| |