blob: 3f7ad13e897e67e932050eca53f9451249f6a866 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This file contains the functions that initialize SELinux during boot as well as helper functions
// for SELinux operation for init.
// When the system boots, there is no SEPolicy present and init is running in the kernel domain.
// Init loads the SEPolicy from the file system, restores the context of /init based on this
// SEPolicy, and finally exec()'s itself to run in the proper domain.
// The SEPolicy on Android comes in two variants: monolithic and split.
// The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy
// file located at /sepolicy and is directly loaded into the kernel SELinux subsystem.
// The split policy is for supporting treble devices. It splits the SEPolicy across files on
// /system/etc/selinux (the 'plat' portion of the policy) and /vendor/etc/selinux (the 'nonplat'
// portion of the policy). This is necessary to allow the system image to be updated independently
// of the vendor image, while maintaining contributions from both partitions in the SEPolicy. This
// is especially important for VTS testing, where the SEPolicy on the Google System Image may not be
// identical to the system image shipped on a vendor's device.
// The split SEPolicy is loaded as described below:
// 1) There is a precompiled SEPolicy located at /vendor/etc/selinux/precompiled_sepolicy.
// Stored along with this file is the sha256 hash of the parts of the SEPolicy on /system that
// were used to compile this precompiled policy. The system partition contains a similar sha256
// of the parts of the SEPolicy that it currently contains. If these two hashes match, then the
// system loads this precompiled_sepolicy directly.
// 2) If these hashes do not match, then /system has been updated out of sync with /vendor and the
// init needs to compile the SEPolicy. /system contains the SEPolicy compiler, secilc, and it
// is used by the LoadSplitPolicy() function below to compile the SEPolicy to a temp directory
// and load it. That function contains even more documentation with the specific implementation
// details of how the SEPolicy is compiled if needed.
#include "selinux.h"
#include <fcntl.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include <android-base/chrono_utils.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/unique_fd.h>
#include <selinux/android.h>
#include "log.h"
#include "util.h"
using android::base::Timer;
using android::base::unique_fd;
namespace android {
namespace init {
namespace {
selabel_handle* sehandle = nullptr;
enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING };
EnforcingStatus StatusFromCmdline() {
EnforcingStatus status = SELINUX_ENFORCING;
import_kernel_cmdline(false,
[&](const std::string& key, const std::string& value, bool in_qemu) {
if (key == "androidboot.selinux" && value == "permissive") {
status = SELINUX_PERMISSIVE;
}
});
return status;
}
bool IsEnforcing() {
if (ALLOW_PERMISSIVE_SELINUX) {
return StatusFromCmdline() == SELINUX_ENFORCING;
}
return true;
}
// Forks, executes the provided program in the child, and waits for the completion in the parent.
// Child's stderr is captured and logged using LOG(ERROR).
bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) {
// Create a pipe used for redirecting child process's output.
// * pipe_fds[0] is the FD the parent will use for reading.
// * pipe_fds[1] is the FD the child will use for writing.
int pipe_fds[2];
if (pipe(pipe_fds) == -1) {
PLOG(ERROR) << "Failed to create pipe";
return false;
}
pid_t child_pid = fork();
if (child_pid == -1) {
PLOG(ERROR) << "Failed to fork for " << filename;
return false;
}
if (child_pid == 0) {
// fork succeeded -- this is executing in the child process
// Close the pipe FD not used by this process
TEMP_FAILURE_RETRY(close(pipe_fds[0]));
// Redirect stderr to the pipe FD provided by the parent
if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) {
PLOG(ERROR) << "Failed to redirect stderr of " << filename;
_exit(127);
return false;
}
TEMP_FAILURE_RETRY(close(pipe_fds[1]));
if (execv(filename, argv) == -1) {
PLOG(ERROR) << "Failed to execve " << filename;
return false;
}
// Unreachable because execve will have succeeded and replaced this code
// with child process's code.
_exit(127);
return false;
} else {
// fork succeeded -- this is executing in the original/parent process
// Close the pipe FD not used by this process
TEMP_FAILURE_RETRY(close(pipe_fds[1]));
// Log the redirected output of the child process.
// It's unfortunate that there's no standard way to obtain an istream for a file descriptor.
// As a result, we're buffering all output and logging it in one go at the end of the
// invocation, instead of logging it as it comes in.
const int child_out_fd = pipe_fds[0];
std::string child_output;
if (!android::base::ReadFdToString(child_out_fd, &child_output)) {
PLOG(ERROR) << "Failed to capture full output of " << filename;
}
TEMP_FAILURE_RETRY(close(child_out_fd));
if (!child_output.empty()) {
// Log captured output, line by line, because LOG expects to be invoked for each line
std::istringstream in(child_output);
std::string line;
while (std::getline(in, line)) {
LOG(ERROR) << filename << ": " << line;
}
}
// Wait for child to terminate
int status;
if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) {
PLOG(ERROR) << "Failed to wait for " << filename;
return false;
}
if (WIFEXITED(status)) {
int status_code = WEXITSTATUS(status);
if (status_code == 0) {
return true;
} else {
LOG(ERROR) << filename << " exited with status " << status_code;
}
} else if (WIFSIGNALED(status)) {
LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status);
} else if (WIFSTOPPED(status)) {
LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status);
} else {
LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status;
}
return false;
}
}
bool ReadFirstLine(const char* file, std::string* line) {
line->clear();
std::string contents;
if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) {
return false;
}
std::istringstream in(contents);
std::getline(in, *line);
return true;
}
bool FindPrecompiledSplitPolicy(std::string* file) {
file->clear();
// If there is an odm partition, precompiled_sepolicy will be in
// odm/etc/selinux. Otherwise it will be in vendor/etc/selinux.
static constexpr const char vendor_precompiled_sepolicy[] =
"/vendor/etc/selinux/precompiled_sepolicy";
static constexpr const char odm_precompiled_sepolicy[] =
"/odm/etc/selinux/precompiled_sepolicy";
if (access(odm_precompiled_sepolicy, R_OK) == 0) {
*file = odm_precompiled_sepolicy;
} else if (access(vendor_precompiled_sepolicy, R_OK) == 0) {
*file = vendor_precompiled_sepolicy;
} else {
PLOG(INFO) << "No precompiled sepolicy";
return false;
}
std::string actual_plat_id;
if (!ReadFirstLine("/system/etc/selinux/plat_and_mapping_sepolicy.cil.sha256", &actual_plat_id)) {
PLOG(INFO) << "Failed to read "
"/system/etc/selinux/plat_and_mapping_sepolicy.cil.sha256";
return false;
}
std::string precompiled_plat_id;
std::string precompiled_sha256 = *file + ".plat_and_mapping.sha256";
if (!ReadFirstLine(precompiled_sha256.c_str(), &precompiled_plat_id)) {
PLOG(INFO) << "Failed to read " << precompiled_sha256;
file->clear();
return false;
}
if ((actual_plat_id.empty()) || (actual_plat_id != precompiled_plat_id)) {
file->clear();
return false;
}
return true;
}
bool GetVendorMappingVersion(std::string* plat_vers) {
if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) {
PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt";
return false;
}
if (plat_vers->empty()) {
LOG(ERROR) << "No version present in plat_sepolicy_vers.txt";
return false;
}
return true;
}
constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil";
bool IsSplitPolicyDevice() {
return access(plat_policy_cil_file, R_OK) != -1;
}
bool LoadSplitPolicy() {
// IMPLEMENTATION NOTE: Split policy consists of three CIL files:
// * platform -- policy needed due to logic contained in the system image,
// * non-platform -- policy needed due to logic contained in the vendor image,
// * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy
// with newer versions of platform policy.
//
// secilc is invoked to compile the above three policy files into a single monolithic policy
// file. This file is then loaded into the kernel.
// Load precompiled policy from vendor image, if a matching policy is found there. The policy
// must match the platform policy on the system image.
std::string precompiled_sepolicy_file;
if (FindPrecompiledSplitPolicy(&precompiled_sepolicy_file)) {
unique_fd fd(open(precompiled_sepolicy_file.c_str(), O_RDONLY | O_CLOEXEC | O_BINARY));
if (fd != -1) {
if (selinux_android_load_policy_from_fd(fd, precompiled_sepolicy_file.c_str()) < 0) {
LOG(ERROR) << "Failed to load SELinux policy from " << precompiled_sepolicy_file;
return false;
}
return true;
}
}
// No suitable precompiled policy could be loaded
LOG(INFO) << "Compiling SELinux policy";
// Determine the highest policy language version supported by the kernel
set_selinuxmnt("/sys/fs/selinux");
int max_policy_version = security_policyvers();
if (max_policy_version == -1) {
PLOG(ERROR) << "Failed to determine highest policy version supported by kernel";
return false;
}
// We store the output of the compilation on /dev because this is the most convenient tmpfs
// storage mount available this early in the boot sequence.
char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX";
unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC));
if (compiled_sepolicy_fd < 0) {
PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy;
return false;
}
// Determine which mapping file to include
std::string vend_plat_vers;
if (!GetVendorMappingVersion(&vend_plat_vers)) {
return false;
}
std::string mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil");
// vendor_sepolicy.cil and nonplat_declaration.cil are the new design to replace
// nonplat_sepolicy.cil.
std::string nonplat_declaration_cil_file("/vendor/etc/selinux/nonplat_declaration.cil");
std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil");
if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) {
// For backward compatibility.
// TODO: remove this after no device is using nonplat_sepolicy.cil.
vendor_policy_cil_file = "/vendor/etc/selinux/nonplat_sepolicy.cil";
nonplat_declaration_cil_file.clear();
} else if (access(nonplat_declaration_cil_file.c_str(), F_OK) == -1) {
LOG(ERROR) << "Missing " << nonplat_declaration_cil_file;
return false;
}
// odm_sepolicy.cil is default but optional.
std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil");
if (access(odm_policy_cil_file.c_str(), F_OK) == -1) {
odm_policy_cil_file.clear();
}
const std::string version_as_string = std::to_string(max_policy_version);
// clang-format off
std::vector<const char*> compile_args {
"/system/bin/secilc",
plat_policy_cil_file,
"-M", "true", "-G", "-N",
// Target the highest policy language version supported by the kernel
"-c", version_as_string.c_str(),
mapping_file.c_str(),
"-o", compiled_sepolicy,
// We don't care about file_contexts output by the compiler
"-f", "/sys/fs/selinux/null", // /dev/null is not yet available
};
// clang-format on
if (!nonplat_declaration_cil_file.empty()) {
compile_args.push_back(nonplat_declaration_cil_file.c_str());
}
if (!vendor_policy_cil_file.empty()) {
compile_args.push_back(vendor_policy_cil_file.c_str());
}
if (!odm_policy_cil_file.empty()) {
compile_args.push_back(odm_policy_cil_file.c_str());
}
compile_args.push_back(nullptr);
if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) {
unlink(compiled_sepolicy);
return false;
}
unlink(compiled_sepolicy);
LOG(INFO) << "Loading compiled SELinux policy";
if (selinux_android_load_policy_from_fd(compiled_sepolicy_fd, compiled_sepolicy) < 0) {
LOG(ERROR) << "Failed to load SELinux policy from " << compiled_sepolicy;
return false;
}
return true;
}
bool LoadMonolithicPolicy() {
LOG(VERBOSE) << "Loading SELinux policy from monolithic file";
if (selinux_android_load_policy() < 0) {
PLOG(ERROR) << "Failed to load monolithic SELinux policy";
return false;
}
return true;
}
bool LoadPolicy() {
return IsSplitPolicyDevice() ? LoadSplitPolicy() : LoadMonolithicPolicy();
}
} // namespace
void SelinuxInitialize() {
Timer t;
LOG(INFO) << "Loading SELinux policy";
if (!LoadPolicy()) {
LOG(FATAL) << "Unable to load SELinux policy";
}
bool kernel_enforcing = (security_getenforce() == 1);
bool is_enforcing = IsEnforcing();
if (kernel_enforcing != is_enforcing) {
if (security_setenforce(is_enforcing)) {
PLOG(FATAL) << "security_setenforce(%s) failed" << (is_enforcing ? "true" : "false");
}
}
if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result) {
LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error();
}
// init's first stage can't set properties, so pass the time to the second stage.
setenv("INIT_SELINUX_TOOK", std::to_string(t.duration().count()).c_str(), 1);
}
// The files and directories that were created before initial sepolicy load or
// files on ramdisk need to have their security context restored to the proper
// value. This must happen before /dev is populated by ueventd.
void SelinuxRestoreContext() {
LOG(INFO) << "Running restorecon...";
selinux_android_restorecon("/dev", 0);
selinux_android_restorecon("/dev/kmsg", 0);
if constexpr (WORLD_WRITABLE_KMSG) {
selinux_android_restorecon("/dev/kmsg_debug", 0);
}
selinux_android_restorecon("/dev/socket", 0);
selinux_android_restorecon("/dev/random", 0);
selinux_android_restorecon("/dev/urandom", 0);
selinux_android_restorecon("/dev/__properties__", 0);
selinux_android_restorecon("/file_contexts.bin", 0);
selinux_android_restorecon("/plat_file_contexts", 0);
selinux_android_restorecon("/nonplat_file_contexts", 0);
selinux_android_restorecon("/plat_property_contexts", 0);
selinux_android_restorecon("/nonplat_property_contexts", 0);
selinux_android_restorecon("/plat_seapp_contexts", 0);
selinux_android_restorecon("/nonplat_seapp_contexts", 0);
selinux_android_restorecon("/plat_service_contexts", 0);
selinux_android_restorecon("/nonplat_service_contexts", 0);
selinux_android_restorecon("/plat_hwservice_contexts", 0);
selinux_android_restorecon("/nonplat_hwservice_contexts", 0);
selinux_android_restorecon("/sepolicy", 0);
selinux_android_restorecon("/vndservice_contexts", 0);
selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
selinux_android_restorecon("/dev/device-mapper", 0);
selinux_android_restorecon("/sbin/mke2fs_static", 0);
selinux_android_restorecon("/sbin/e2fsdroid_static", 0);
}
// This function sets up SELinux logging to be written to kmsg, to match init's logging.
void SelinuxSetupKernelLogging() {
selinux_callback cb;
cb.func_log = selinux_klog_callback;
selinux_set_callback(SELINUX_CB_LOG, cb);
}
// selinux_android_file_context_handle() takes on the order of 10+ms to run, so we want to cache
// its value. selinux_android_restorecon() also needs an sehandle for file context look up. It
// will create and store its own copy, but selinux_android_set_sehandle() can be used to provide
// one, thus eliminating an extra call to selinux_android_file_context_handle().
void SelabelInitialize() {
sehandle = selinux_android_file_context_handle();
selinux_android_set_sehandle(sehandle);
}
// A C++ wrapper around selabel_lookup() using the cached sehandle.
// If sehandle is null, this returns success with an empty context.
bool SelabelLookupFileContext(const std::string& key, int type, std::string* result) {
result->clear();
if (!sehandle) return true;
char* context;
if (selabel_lookup(sehandle, &context, key.c_str(), type) != 0) {
return false;
}
*result = context;
free(context);
return true;
}
// A C++ wrapper around selabel_lookup_best_match() using the cached sehandle.
// If sehandle is null, this returns success with an empty context.
bool SelabelLookupFileContextBestMatch(const std::string& key,
const std::vector<std::string>& aliases, int type,
std::string* result) {
result->clear();
if (!sehandle) return true;
std::vector<const char*> c_aliases;
for (const auto& alias : aliases) {
c_aliases.emplace_back(alias.c_str());
}
c_aliases.emplace_back(nullptr);
char* context;
if (selabel_lookup_best_match(sehandle, &context, key.c_str(), &c_aliases[0], type) != 0) {
return false;
}
*result = context;
free(context);
return true;
}
} // namespace init
} // namespace android