blob: c53fbb4ff152ee095be53ed41fbf71afa9d76b42 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG SOCKETS
#include "sysdeps.h"
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <algorithm>
#include <mutex>
#include <string>
#include <vector>
#if !ADB_HOST
#include <android-base/properties.h>
#include <log/log_properties.h>
#endif
#include "adb.h"
#include "adb_io.h"
#include "transport.h"
static std::recursive_mutex& local_socket_list_lock = *new std::recursive_mutex();
static unsigned local_socket_next_id = 1;
static asocket local_socket_list = {
.next = &local_socket_list, .prev = &local_socket_list,
};
/* the the list of currently closing local sockets.
** these have no peer anymore, but still packets to
** write to their fd.
*/
static asocket local_socket_closing_list = {
.next = &local_socket_closing_list, .prev = &local_socket_closing_list,
};
// Parse the global list of sockets to find one with id |local_id|.
// If |peer_id| is not 0, also check that it is connected to a peer
// with id |peer_id|. Returns an asocket handle on success, NULL on failure.
asocket* find_local_socket(unsigned local_id, unsigned peer_id) {
asocket* s;
asocket* result = NULL;
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
for (s = local_socket_list.next; s != &local_socket_list; s = s->next) {
if (s->id != local_id) {
continue;
}
if (peer_id == 0 || (s->peer && s->peer->id == peer_id)) {
result = s;
}
break;
}
return result;
}
static void insert_local_socket(asocket* s, asocket* list) {
s->next = list;
s->prev = s->next->prev;
s->prev->next = s;
s->next->prev = s;
}
void install_local_socket(asocket* s) {
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
s->id = local_socket_next_id++;
// Socket ids should never be 0.
if (local_socket_next_id == 0) {
fatal("local socket id overflow");
}
insert_local_socket(s, &local_socket_list);
}
void remove_socket(asocket* s) {
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
if (s->prev && s->next) {
s->prev->next = s->next;
s->next->prev = s->prev;
s->next = 0;
s->prev = 0;
s->id = 0;
}
}
void close_all_sockets(atransport* t) {
asocket* s;
/* this is a little gross, but since s->close() *will* modify
** the list out from under you, your options are limited.
*/
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
restart:
for (s = local_socket_list.next; s != &local_socket_list; s = s->next) {
if (s->transport == t || (s->peer && s->peer->transport == t)) {
s->close(s);
goto restart;
}
}
}
static int local_socket_enqueue(asocket* s, apacket* p) {
D("LS(%d): enqueue %zu", s->id, p->len);
p->ptr = p->data;
/* if there is already data queue'd, we will receive
** events when it's time to write. just add this to
** the tail
*/
if (s->pkt_first) {
goto enqueue;
}
/* write as much as we can, until we
** would block or there is an error/eof
*/
while (p->len > 0) {
int r = adb_write(s->fd, p->ptr, p->len);
if (r > 0) {
p->len -= r;
p->ptr += r;
continue;
}
if ((r == 0) || (errno != EAGAIN)) {
D("LS(%d): not ready, errno=%d: %s", s->id, errno, strerror(errno));
put_apacket(p);
s->has_write_error = true;
s->close(s);
return 1; /* not ready (error) */
} else {
break;
}
}
if (p->len == 0) {
put_apacket(p);
return 0; /* ready for more data */
}
enqueue:
p->next = 0;
if (s->pkt_first) {
s->pkt_last->next = p;
} else {
s->pkt_first = p;
}
s->pkt_last = p;
/* make sure we are notified when we can drain the queue */
fdevent_add(&s->fde, FDE_WRITE);
return 1; /* not ready (backlog) */
}
static void local_socket_ready(asocket* s) {
/* far side is ready for data, pay attention to
readable events */
fdevent_add(&s->fde, FDE_READ);
}
// be sure to hold the socket list lock when calling this
static void local_socket_destroy(asocket* s) {
apacket *p, *n;
int exit_on_close = s->exit_on_close;
D("LS(%d): destroying fde.fd=%d", s->id, s->fde.fd);
/* IMPORTANT: the remove closes the fd
** that belongs to this socket
*/
fdevent_remove(&s->fde);
/* dispose of any unwritten data */
for (p = s->pkt_first; p; p = n) {
D("LS(%d): discarding %zu bytes", s->id, p->len);
n = p->next;
put_apacket(p);
}
remove_socket(s);
free(s);
if (exit_on_close) {
D("local_socket_destroy: exiting");
exit(1);
}
}
static void local_socket_close(asocket* s) {
D("entered local_socket_close. LS(%d) fd=%d", s->id, s->fd);
std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock);
if (s->peer) {
D("LS(%d): closing peer. peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd);
/* Note: it's important to call shutdown before disconnecting from
* the peer, this ensures that remote sockets can still get the id
* of the local socket they're connected to, to send a CLOSE()
* protocol event. */
if (s->peer->shutdown) {
s->peer->shutdown(s->peer);
}
s->peer->peer = nullptr;
s->peer->close(s->peer);
s->peer = nullptr;
}
/* If we are already closing, or if there are no
** pending packets, destroy immediately
*/
if (s->closing || s->has_write_error || s->pkt_first == NULL) {
int id = s->id;
local_socket_destroy(s);
D("LS(%d): closed", id);
return;
}
/* otherwise, put on the closing list
*/
D("LS(%d): closing", s->id);
s->closing = 1;
fdevent_del(&s->fde, FDE_READ);
remove_socket(s);
D("LS(%d): put on socket_closing_list fd=%d", s->id, s->fd);
insert_local_socket(s, &local_socket_closing_list);
CHECK_EQ(FDE_WRITE, s->fde.state & FDE_WRITE);
}
static void local_socket_event_func(int fd, unsigned ev, void* _s) {
asocket* s = reinterpret_cast<asocket*>(_s);
D("LS(%d): event_func(fd=%d(==%d), ev=%04x)", s->id, s->fd, fd, ev);
/* put the FDE_WRITE processing before the FDE_READ
** in order to simplify the code.
*/
if (ev & FDE_WRITE) {
apacket* p;
while ((p = s->pkt_first) != nullptr) {
while (p->len > 0) {
int r = adb_write(fd, p->ptr, p->len);
if (r == -1) {
/* returning here is ok because FDE_READ will
** be processed in the next iteration loop
*/
if (errno == EAGAIN) {
return;
}
} else if (r > 0) {
p->ptr += r;
p->len -= r;
continue;
}
D(" closing after write because r=%d and errno is %d", r, errno);
s->has_write_error = true;
s->close(s);
return;
}
if (p->len == 0) {
s->pkt_first = p->next;
if (s->pkt_first == 0) {
s->pkt_last = 0;
}
put_apacket(p);
}
}
/* if we sent the last packet of a closing socket,
** we can now destroy it.
*/
if (s->closing) {
D(" closing because 'closing' is set after write");
s->close(s);
return;
}
/* no more packets queued, so we can ignore
** writable events again and tell our peer
** to resume writing
*/
fdevent_del(&s->fde, FDE_WRITE);
s->peer->ready(s->peer);
}
if (ev & FDE_READ) {
apacket* p = get_apacket();
char* x = p->data;
const size_t max_payload = s->get_max_payload();
size_t avail = max_payload;
int r = 0;
int is_eof = 0;
while (avail > 0) {
r = adb_read(fd, x, avail);
D("LS(%d): post adb_read(fd=%d,...) r=%d (errno=%d) avail=%zu", s->id, s->fd, r,
r < 0 ? errno : 0, avail);
if (r == -1) {
if (errno == EAGAIN) {
break;
}
} else if (r > 0) {
avail -= r;
x += r;
continue;
}
/* r = 0 or unhandled error */
is_eof = 1;
break;
}
D("LS(%d): fd=%d post avail loop. r=%d is_eof=%d forced_eof=%d", s->id, s->fd, r, is_eof,
s->fde.force_eof);
if ((avail == max_payload) || (s->peer == 0)) {
put_apacket(p);
} else {
p->len = max_payload - avail;
// s->peer->enqueue() may call s->close() and free s,
// so save variables for debug printing below.
unsigned saved_id = s->id;
int saved_fd = s->fd;
r = s->peer->enqueue(s->peer, p);
D("LS(%u): fd=%d post peer->enqueue(). r=%d", saved_id, saved_fd, r);
if (r < 0) {
/* error return means they closed us as a side-effect
** and we must return immediately.
**
** note that if we still have buffered packets, the
** socket will be placed on the closing socket list.
** this handler function will be called again
** to process FDE_WRITE events.
*/
return;
}
if (r > 0) {
/* if the remote cannot accept further events,
** we disable notification of READs. They'll
** be enabled again when we get a call to ready()
*/
fdevent_del(&s->fde, FDE_READ);
}
}
/* Don't allow a forced eof if data is still there */
if ((s->fde.force_eof && !r) || is_eof) {
D(" closing because is_eof=%d r=%d s->fde.force_eof=%d", is_eof, r, s->fde.force_eof);
s->close(s);
return;
}
}
if (ev & FDE_ERROR) {
/* this should be caught be the next read or write
** catching it here means we may skip the last few
** bytes of readable data.
*/
D("LS(%d): FDE_ERROR (fd=%d)", s->id, s->fd);
return;
}
}
asocket* create_local_socket(int fd) {
asocket* s = reinterpret_cast<asocket*>(calloc(1, sizeof(asocket)));
if (s == NULL) {
fatal("cannot allocate socket");
}
s->fd = fd;
s->enqueue = local_socket_enqueue;
s->ready = local_socket_ready;
s->shutdown = NULL;
s->close = local_socket_close;
install_local_socket(s);
fdevent_install(&s->fde, fd, local_socket_event_func, s);
D("LS(%d): created (fd=%d)", s->id, s->fd);
return s;
}
asocket* create_local_service_socket(const char* name, const atransport* transport) {
#if !ADB_HOST
if (!strcmp(name, "jdwp")) {
return create_jdwp_service_socket();
}
if (!strcmp(name, "track-jdwp")) {
return create_jdwp_tracker_service_socket();
}
#endif
int fd = service_to_fd(name, transport);
if (fd < 0) {
return nullptr;
}
asocket* s = create_local_socket(fd);
D("LS(%d): bound to '%s' via %d", s->id, name, fd);
#if !ADB_HOST
if ((!strncmp(name, "root:", 5) && getuid() != 0 && __android_log_is_debuggable()) ||
(!strncmp(name, "unroot:", 7) && getuid() == 0) ||
!strncmp(name, "usb:", 4) ||
!strncmp(name, "tcpip:", 6)) {
D("LS(%d): enabling exit_on_close", s->id);
s->exit_on_close = 1;
}
#endif
return s;
}
#if ADB_HOST
static asocket* create_host_service_socket(const char* name, const char* serial,
TransportId transport_id) {
asocket* s;
s = host_service_to_socket(name, serial, transport_id);
if (s != NULL) {
D("LS(%d) bound to '%s'", s->id, name);
return s;
}
return s;
}
#endif /* ADB_HOST */
static int remote_socket_enqueue(asocket* s, apacket* p) {
D("entered remote_socket_enqueue RS(%d) WRITE fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd);
p->msg.command = A_WRTE;
p->msg.arg0 = s->peer->id;
p->msg.arg1 = s->id;
p->msg.data_length = p->len;
send_packet(p, s->transport);
return 1;
}
static void remote_socket_ready(asocket* s) {
D("entered remote_socket_ready RS(%d) OKAY fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd);
apacket* p = get_apacket();
p->msg.command = A_OKAY;
p->msg.arg0 = s->peer->id;
p->msg.arg1 = s->id;
send_packet(p, s->transport);
}
static void remote_socket_shutdown(asocket* s) {
D("entered remote_socket_shutdown RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd,
s->peer ? s->peer->fd : -1);
apacket* p = get_apacket();
p->msg.command = A_CLSE;
if (s->peer) {
p->msg.arg0 = s->peer->id;
}
p->msg.arg1 = s->id;
send_packet(p, s->transport);
}
static void remote_socket_close(asocket* s) {
if (s->peer) {
s->peer->peer = 0;
D("RS(%d) peer->close()ing peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd);
s->peer->close(s->peer);
}
D("entered remote_socket_close RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd,
s->peer ? s->peer->fd : -1);
D("RS(%d): closed", s->id);
free(s);
}
// Create a remote socket to exchange packets with a remote service through transport
// |t|. Where |id| is the socket id of the corresponding service on the other
// side of the transport (it is allocated by the remote side and _cannot_ be 0).
// Returns a new non-NULL asocket handle.
asocket* create_remote_socket(unsigned id, atransport* t) {
if (id == 0) {
fatal("invalid remote socket id (0)");
}
asocket* s = reinterpret_cast<asocket*>(calloc(1, sizeof(asocket)));
if (s == NULL) {
fatal("cannot allocate socket");
}
s->id = id;
s->enqueue = remote_socket_enqueue;
s->ready = remote_socket_ready;
s->shutdown = remote_socket_shutdown;
s->close = remote_socket_close;
s->transport = t;
D("RS(%d): created", s->id);
return s;
}
void connect_to_remote(asocket* s, const char* destination) {
D("Connect_to_remote call RS(%d) fd=%d", s->id, s->fd);
apacket* p = get_apacket();
size_t len = strlen(destination) + 1;
if (len > (s->get_max_payload() - 1)) {
fatal("destination oversized");
}
D("LS(%d): connect('%s')", s->id, destination);
p->msg.command = A_OPEN;
p->msg.arg0 = s->id;
p->msg.data_length = len;
strcpy((char*)p->data, destination);
send_packet(p, s->transport);
}
/* this is used by magic sockets to rig local sockets to
send the go-ahead message when they connect */
static void local_socket_ready_notify(asocket* s) {
s->ready = local_socket_ready;
s->shutdown = NULL;
s->close = local_socket_close;
SendOkay(s->fd);
s->ready(s);
}
/* this is used by magic sockets to rig local sockets to
send the failure message if they are closed before
connected (to avoid closing them without a status message) */
static void local_socket_close_notify(asocket* s) {
s->ready = local_socket_ready;
s->shutdown = NULL;
s->close = local_socket_close;
SendFail(s->fd, "closed");
s->close(s);
}
static unsigned unhex(char* s, int len) {
unsigned n = 0, c;
while (len-- > 0) {
switch ((c = *s++)) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
c -= '0';
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
break;
default:
return 0xffffffff;
}
n = (n << 4) | c;
}
return n;
}
#if ADB_HOST
namespace internal {
// Returns the position in |service| following the target serial parameter. Serial format can be
// any of:
// * [tcp:|udp:]<serial>[:<port>]:<command>
// * <prefix>:<serial>:<command>
// Where <port> must be a base-10 number and <prefix> may be any of {usb,product,model,device}.
//
// The returned pointer will point to the ':' just before <command>, or nullptr if not found.
char* skip_host_serial(char* service) {
static const std::vector<std::string>& prefixes =
*(new std::vector<std::string>{"usb:", "product:", "model:", "device:"});
for (const std::string& prefix : prefixes) {
if (!strncmp(service, prefix.c_str(), prefix.length())) {
return strchr(service + prefix.length(), ':');
}
}
// For fastboot compatibility, ignore protocol prefixes.
if (!strncmp(service, "tcp:", 4) || !strncmp(service, "udp:", 4)) {
service += 4;
}
// Check for an IPv6 address. `adb connect` creates the serial number from the canonical
// network address so it will always have the [] delimiters.
if (service[0] == '[') {
char* ipv6_end = strchr(service, ']');
if (ipv6_end != nullptr) {
service = ipv6_end;
}
}
// The next colon we find must either begin the port field or the command field.
char* colon_ptr = strchr(service, ':');
if (!colon_ptr) {
// No colon in service string.
return nullptr;
}
// If the next field is only decimal digits and ends with another colon, it's a port.
char* serial_end = colon_ptr;
if (isdigit(serial_end[1])) {
serial_end++;
while (*serial_end && isdigit(*serial_end)) {
serial_end++;
}
if (*serial_end != ':') {
// Something other than "<port>:" was found, this must be the command field instead.
serial_end = colon_ptr;
}
}
return serial_end;
}
} // namespace internal
#endif // ADB_HOST
static int smart_socket_enqueue(asocket* s, apacket* p) {
unsigned len;
#if ADB_HOST
char* service = nullptr;
char* serial = nullptr;
TransportId transport_id = 0;
TransportType type = kTransportAny;
#endif
D("SS(%d): enqueue %zu", s->id, p->len);
if (s->pkt_first == 0) {
s->pkt_first = p;
s->pkt_last = p;
} else {
if ((s->pkt_first->len + p->len) > s->get_max_payload()) {
D("SS(%d): overflow", s->id);
put_apacket(p);
goto fail;
}
memcpy(s->pkt_first->data + s->pkt_first->len, p->data, p->len);
s->pkt_first->len += p->len;
put_apacket(p);
p = s->pkt_first;
}
/* don't bother if we can't decode the length */
if (p->len < 4) {
return 0;
}
len = unhex(p->data, 4);
if ((len < 1) || (len > MAX_PAYLOAD)) {
D("SS(%d): bad size (%d)", s->id, len);
goto fail;
}
D("SS(%d): len is %d", s->id, len);
/* can't do anything until we have the full header */
if ((len + 4) > p->len) {
D("SS(%d): waiting for %zu more bytes", s->id, len + 4 - p->len);
return 0;
}
p->data[len + 4] = 0;
D("SS(%d): '%s'", s->id, (char*)(p->data + 4));
#if ADB_HOST
service = (char*)p->data + 4;
if (!strncmp(service, "host-serial:", strlen("host-serial:"))) {
char* serial_end;
service += strlen("host-serial:");
// serial number should follow "host:" and could be a host:port string.
serial_end = internal::skip_host_serial(service);
if (serial_end) {
*serial_end = 0; // terminate string
serial = service;
service = serial_end + 1;
}
} else if (!strncmp(service, "host-transport-id:", strlen("host-transport-id:"))) {
service += strlen("host-transport-id:");
transport_id = strtoll(service, &service, 10);
if (*service != ':') {
return -1;
}
service++;
} else if (!strncmp(service, "host-usb:", strlen("host-usb:"))) {
type = kTransportUsb;
service += strlen("host-usb:");
} else if (!strncmp(service, "host-local:", strlen("host-local:"))) {
type = kTransportLocal;
service += strlen("host-local:");
} else if (!strncmp(service, "host:", strlen("host:"))) {
type = kTransportAny;
service += strlen("host:");
} else {
service = nullptr;
}
if (service) {
asocket* s2;
/* some requests are handled immediately -- in that
** case the handle_host_request() routine has sent
** the OKAY or FAIL message and all we have to do
** is clean up.
*/
if (handle_host_request(service, type, serial, transport_id, s->peer->fd, s) == 0) {
/* XXX fail message? */
D("SS(%d): handled host service '%s'", s->id, service);
goto fail;
}
if (!strncmp(service, "transport", strlen("transport"))) {
D("SS(%d): okay transport", s->id);
p->len = 0;
return 0;
}
/* try to find a local service with this name.
** if no such service exists, we'll fail out
** and tear down here.
*/
s2 = create_host_service_socket(service, serial, transport_id);
if (s2 == 0) {
D("SS(%d): couldn't create host service '%s'", s->id, service);
SendFail(s->peer->fd, "unknown host service");
goto fail;
}
/* we've connected to a local host service,
** so we make our peer back into a regular
** local socket and bind it to the new local
** service socket, acknowledge the successful
** connection, and close this smart socket now
** that its work is done.
*/
SendOkay(s->peer->fd);
s->peer->ready = local_socket_ready;
s->peer->shutdown = nullptr;
s->peer->close = local_socket_close;
s->peer->peer = s2;
s2->peer = s->peer;
s->peer = 0;
D("SS(%d): okay", s->id);
s->close(s);
/* initial state is "ready" */
s2->ready(s2);
return 0;
}
#else /* !ADB_HOST */
if (s->transport == nullptr) {
std::string error_msg = "unknown failure";
s->transport = acquire_one_transport(kTransportAny, nullptr, 0, nullptr, &error_msg);
if (s->transport == nullptr) {
SendFail(s->peer->fd, error_msg);
goto fail;
}
}
#endif
if (!s->transport) {
SendFail(s->peer->fd, "device offline (no transport)");
goto fail;
} else if (s->transport->GetConnectionState() == kCsOffline) {
/* if there's no remote we fail the connection
** right here and terminate it
*/
SendFail(s->peer->fd, "device offline (transport offline)");
goto fail;
}
/* instrument our peer to pass the success or fail
** message back once it connects or closes, then
** detach from it, request the connection, and
** tear down
*/
s->peer->ready = local_socket_ready_notify;
s->peer->shutdown = nullptr;
s->peer->close = local_socket_close_notify;
s->peer->peer = 0;
/* give him our transport and upref it */
s->peer->transport = s->transport;
connect_to_remote(s->peer, (char*)(p->data + 4));
s->peer = 0;
s->close(s);
return 1;
fail:
/* we're going to close our peer as a side-effect, so
** return -1 to signal that state to the local socket
** who is enqueueing against us
*/
s->close(s);
return -1;
}
static void smart_socket_ready(asocket* s) {
D("SS(%d): ready", s->id);
}
static void smart_socket_close(asocket* s) {
D("SS(%d): closed", s->id);
if (s->pkt_first) {
put_apacket(s->pkt_first);
}
if (s->peer) {
s->peer->peer = 0;
s->peer->close(s->peer);
s->peer = 0;
}
free(s);
}
static asocket* create_smart_socket(void) {
D("Creating smart socket");
asocket* s = reinterpret_cast<asocket*>(calloc(1, sizeof(asocket)));
if (s == NULL) fatal("cannot allocate socket");
s->enqueue = smart_socket_enqueue;
s->ready = smart_socket_ready;
s->shutdown = NULL;
s->close = smart_socket_close;
D("SS(%d)", s->id);
return s;
}
void connect_to_smartsocket(asocket* s) {
D("Connecting to smart socket");
asocket* ss = create_smart_socket();
s->peer = ss;
ss->peer = s;
s->ready(s);
}
size_t asocket::get_max_payload() const {
size_t max_payload = MAX_PAYLOAD;
if (transport) {
max_payload = std::min(max_payload, transport->get_max_payload());
}
if (peer && peer->transport) {
max_payload = std::min(max_payload, peer->transport->get_max_payload());
}
return max_payload;
}