| /* |
| * Copyright 2013 The Android Open Source Project |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * * Neither the name of Google Inc. nor the names of its contributors may |
| * be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
| * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| // This is an implementation of the P256 elliptic curve group. It's written to |
| // be portable 32-bit, although it's still constant-time. |
| // |
| // WARNING: Implementing these functions in a constant-time manner is far from |
| // obvious. Be careful when touching this code. |
| // |
| // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <string.h> |
| #include <stdio.h> |
| |
| #include "mincrypt/p256.h" |
| |
| const p256_int SECP256r1_n = // curve order |
| {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; |
| |
| const p256_int SECP256r1_p = // curve field size |
| {{-1, -1, -1, 0, 0, 0, 1, -1 }}; |
| |
| const p256_int SECP256r1_b = // curve b |
| {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0, |
| 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}}; |
| |
| static const p256_int p256_one = P256_ONE; |
| |
| void p256_init(p256_int* a) { |
| memset(a, 0, sizeof(*a)); |
| } |
| |
| void p256_clear(p256_int* a) { p256_init(a); } |
| |
| int p256_get_bit(const p256_int* scalar, int bit) { |
| return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT) |
| >> (bit & (P256_BITSPERDIGIT - 1))) & 1; |
| } |
| |
| int p256_is_zero(const p256_int* a) { |
| int i, result = 0; |
| for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i); |
| return !result; |
| } |
| |
| // top, c[] += a[] * b |
| // Returns new top |
| static p256_digit mulAdd(const p256_int* a, |
| p256_digit b, |
| p256_digit top, |
| p256_digit* c) { |
| int i; |
| p256_ddigit carry = 0; |
| |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| carry += *c; |
| carry += (p256_ddigit)P256_DIGIT(a, i) * b; |
| *c++ = (p256_digit)carry; |
| carry >>= P256_BITSPERDIGIT; |
| } |
| return top + (p256_digit)carry; |
| } |
| |
| // top, c[] -= top_a, a[] |
| static p256_digit subTop(p256_digit top_a, |
| const p256_digit* a, |
| p256_digit top_c, |
| p256_digit* c) { |
| int i; |
| p256_sddigit borrow = 0; |
| |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| borrow += *c; |
| borrow -= *a++; |
| *c++ = (p256_digit)borrow; |
| borrow >>= P256_BITSPERDIGIT; |
| } |
| borrow += top_c; |
| borrow -= top_a; |
| top_c = (p256_digit)borrow; |
| assert((borrow >> P256_BITSPERDIGIT) == 0); |
| return top_c; |
| } |
| |
| // top, c[] -= MOD[] & mask (0 or -1) |
| // returns new top. |
| static p256_digit subM(const p256_int* MOD, |
| p256_digit top, |
| p256_digit* c, |
| p256_digit mask) { |
| int i; |
| p256_sddigit borrow = 0; |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| borrow += *c; |
| borrow -= P256_DIGIT(MOD, i) & mask; |
| *c++ = (p256_digit)borrow; |
| borrow >>= P256_BITSPERDIGIT; |
| } |
| return top + (p256_digit)borrow; |
| } |
| |
| // top, c[] += MOD[] & mask (0 or -1) |
| // returns new top. |
| static p256_digit addM(const p256_int* MOD, |
| p256_digit top, |
| p256_digit* c, |
| p256_digit mask) { |
| int i; |
| p256_ddigit carry = 0; |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| carry += *c; |
| carry += P256_DIGIT(MOD, i) & mask; |
| *c++ = (p256_digit)carry; |
| carry >>= P256_BITSPERDIGIT; |
| } |
| return top + (p256_digit)carry; |
| } |
| |
| // c = a * b mod MOD. c can be a and/or b. |
| void p256_modmul(const p256_int* MOD, |
| const p256_int* a, |
| const p256_digit top_b, |
| const p256_int* b, |
| p256_int* c) { |
| p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 }; |
| p256_digit top = 0; |
| int i; |
| |
| // Multiply/add into tmp. |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| if (i) tmp[i + P256_NDIGITS - 1] = top; |
| top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i); |
| } |
| |
| // Multiply/add top digit |
| tmp[i + P256_NDIGITS - 1] = top; |
| top = mulAdd(a, top_b, 0, tmp + i); |
| |
| // Reduce tmp, digit by digit. |
| for (; i >= 0; --i) { |
| p256_digit reducer[P256_NDIGITS] = { 0 }; |
| p256_digit top_reducer; |
| |
| // top can be any value at this point. |
| // Guestimate reducer as top * MOD, since msw of MOD is -1. |
| top_reducer = mulAdd(MOD, top, 0, reducer); |
| |
| // Subtract reducer from top | tmp. |
| top = subTop(top_reducer, reducer, top, tmp + i); |
| |
| // top is now either 0 or 1. Make it 0, fixed-timing. |
| assert(top <= 1); |
| |
| top = subM(MOD, top, tmp + i, ~(top - 1)); |
| |
| assert(top == 0); |
| |
| // We have now reduced the top digit off tmp. Fetch new top digit. |
| top = tmp[i + P256_NDIGITS - 1]; |
| } |
| |
| // tmp might still be larger than MOD, yet same bit length. |
| // Make sure it is less, fixed-timing. |
| addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1)); |
| |
| memcpy(c, tmp, P256_NBYTES); |
| } |
| int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; } |
| int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); } |
| |
| p256_digit p256_shl(const p256_int* a, int n, p256_int* b) { |
| int i; |
| p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1); |
| |
| n %= P256_BITSPERDIGIT; |
| for (i = P256_NDIGITS - 1; i > 0; --i) { |
| p256_digit accu = (P256_DIGIT(a, i) << n); |
| accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n)); |
| P256_DIGIT(b, i) = accu; |
| } |
| P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n); |
| |
| top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT); |
| |
| return top; |
| } |
| |
| void p256_shr(const p256_int* a, int n, p256_int* b) { |
| int i; |
| |
| n %= P256_BITSPERDIGIT; |
| for (i = 0; i < P256_NDIGITS - 1; ++i) { |
| p256_digit accu = (P256_DIGIT(a, i) >> n); |
| accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n)); |
| P256_DIGIT(b, i) = accu; |
| } |
| P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n); |
| } |
| |
| static void p256_shr1(const p256_int* a, int highbit, p256_int* b) { |
| int i; |
| |
| for (i = 0; i < P256_NDIGITS - 1; ++i) { |
| p256_digit accu = (P256_DIGIT(a, i) >> 1); |
| accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1)); |
| P256_DIGIT(b, i) = accu; |
| } |
| P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) | |
| (highbit << (P256_BITSPERDIGIT - 1)); |
| } |
| |
| // Return -1, 0, 1 for a < b, a == b or a > b respectively. |
| int p256_cmp(const p256_int* a, const p256_int* b) { |
| int i; |
| p256_sddigit borrow = 0; |
| p256_digit notzero = 0; |
| |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); |
| // Track whether any result digit is ever not zero. |
| // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1. |
| notzero |= !!((p256_digit)borrow); |
| borrow >>= P256_BITSPERDIGIT; |
| } |
| return (int)borrow | notzero; |
| } |
| |
| // c = a - b. Returns borrow: 0 or -1. |
| int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) { |
| int i; |
| p256_sddigit borrow = 0; |
| |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); |
| if (c) P256_DIGIT(c, i) = (p256_digit)borrow; |
| borrow >>= P256_BITSPERDIGIT; |
| } |
| return (int)borrow; |
| } |
| |
| // c = a + b. Returns carry: 0 or 1. |
| int p256_add(const p256_int* a, const p256_int* b, p256_int* c) { |
| int i; |
| p256_ddigit carry = 0; |
| |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i); |
| if (c) P256_DIGIT(c, i) = (p256_digit)carry; |
| carry >>= P256_BITSPERDIGIT; |
| } |
| return (int)carry; |
| } |
| |
| // b = a + d. Returns carry, 0 or 1. |
| int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) { |
| int i; |
| p256_ddigit carry = d; |
| |
| for (i = 0; i < P256_NDIGITS; ++i) { |
| carry += (p256_ddigit)P256_DIGIT(a, i); |
| if (b) P256_DIGIT(b, i) = (p256_digit)carry; |
| carry >>= P256_BITSPERDIGIT; |
| } |
| return (int)carry; |
| } |
| |
| // b = 1/a mod MOD, binary euclid. |
| void p256_modinv_vartime(const p256_int* MOD, |
| const p256_int* a, |
| p256_int* b) { |
| p256_int R = P256_ZERO; |
| p256_int S = P256_ONE; |
| p256_int U = *MOD; |
| p256_int V = *a; |
| |
| for (;;) { |
| if (p256_is_even(&U)) { |
| p256_shr1(&U, 0, &U); |
| if (p256_is_even(&R)) { |
| p256_shr1(&R, 0, &R); |
| } else { |
| // R = (R+MOD)/2 |
| p256_shr1(&R, p256_add(&R, MOD, &R), &R); |
| } |
| } else if (p256_is_even(&V)) { |
| p256_shr1(&V, 0, &V); |
| if (p256_is_even(&S)) { |
| p256_shr1(&S, 0, &S); |
| } else { |
| // S = (S+MOD)/2 |
| p256_shr1(&S, p256_add(&S, MOD, &S) , &S); |
| } |
| } else { // U,V both odd. |
| if (!p256_sub(&V, &U, NULL)) { |
| p256_sub(&V, &U, &V); |
| if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S); |
| if (p256_is_zero(&V)) break; // done. |
| } else { |
| p256_sub(&U, &V, &U); |
| if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R); |
| } |
| } |
| } |
| |
| p256_mod(MOD, &R, b); |
| } |
| |
| void p256_mod(const p256_int* MOD, |
| const p256_int* in, |
| p256_int* out) { |
| if (out != in) *out = *in; |
| addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1)); |
| } |
| |
| // Verify y^2 == x^3 - 3x + b mod p |
| // and 0 < x < p and 0 < y < p |
| int p256_is_valid_point(const p256_int* x, const p256_int* y) { |
| p256_int y2, x3; |
| |
| if (p256_cmp(&SECP256r1_p, x) <= 0 || |
| p256_cmp(&SECP256r1_p, y) <= 0 || |
| p256_is_zero(x) || |
| p256_is_zero(y)) return 0; |
| |
| p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2 |
| |
| p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2 |
| p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3 |
| if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x |
| if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x |
| if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x |
| if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b |
| p256_sub(&x3, &SECP256r1_p, &x3); |
| |
| return p256_cmp(&y2, &x3) == 0; |
| } |
| |
| void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { |
| int i; |
| const uint8_t* p = &src[0]; |
| |
| for (i = P256_NDIGITS - 1; i >= 0; --i) { |
| P256_DIGIT(dst, i) = |
| (p[0] << 24) | |
| (p[1] << 16) | |
| (p[2] << 8) | |
| p[3]; |
| p += 4; |
| } |
| } |