| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <inttypes.h> |
| #include <string.h> |
| |
| #include <functional> |
| #include <iomanip> |
| #include <mutex> |
| #include <sstream> |
| #include <string> |
| #include <unordered_map> |
| |
| #include <android-base/macros.h> |
| #include <backtrace.h> |
| |
| #include "Allocator.h" |
| #include "Binder.h" |
| #include "HeapWalker.h" |
| #include "Leak.h" |
| #include "LeakFolding.h" |
| #include "LeakPipe.h" |
| #include "ProcessMappings.h" |
| #include "PtracerThread.h" |
| #include "ScopedDisableMalloc.h" |
| #include "Semaphore.h" |
| #include "ThreadCapture.h" |
| |
| #include "bionic.h" |
| #include "log.h" |
| #include "memunreachable/memunreachable.h" |
| |
| using namespace std::chrono_literals; |
| |
| namespace android { |
| |
| const size_t Leak::contents_length; |
| |
| class MemUnreachable { |
| public: |
| MemUnreachable(pid_t pid, Allocator<void> allocator) |
| : pid_(pid), allocator_(allocator), heap_walker_(allocator_) {} |
| bool CollectAllocations(const allocator::vector<ThreadInfo>& threads, |
| const allocator::vector<Mapping>& mappings, |
| const allocator::vector<uintptr_t>& refs); |
| bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks, |
| size_t* leak_bytes); |
| size_t Allocations() { return heap_walker_.Allocations(); } |
| size_t AllocationBytes() { return heap_walker_.AllocationBytes(); } |
| |
| private: |
| bool ClassifyMappings(const allocator::vector<Mapping>& mappings, |
| allocator::vector<Mapping>& heap_mappings, |
| allocator::vector<Mapping>& anon_mappings, |
| allocator::vector<Mapping>& globals_mappings, |
| allocator::vector<Mapping>& stack_mappings); |
| DISALLOW_COPY_AND_ASSIGN(MemUnreachable); |
| pid_t pid_; |
| Allocator<void> allocator_; |
| HeapWalker heap_walker_; |
| }; |
| |
| static void HeapIterate(const Mapping& heap_mapping, |
| const std::function<void(uintptr_t, size_t)>& func) { |
| malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin, |
| [](uintptr_t base, size_t size, void* arg) { |
| auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg); |
| (*f)(base, size); |
| }, |
| const_cast<void*>(reinterpret_cast<const void*>(&func))); |
| } |
| |
| bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads, |
| const allocator::vector<Mapping>& mappings, |
| const allocator::vector<uintptr_t>& refs) { |
| MEM_ALOGI("searching process %d for allocations", pid_); |
| allocator::vector<Mapping> heap_mappings{mappings}; |
| allocator::vector<Mapping> anon_mappings{mappings}; |
| allocator::vector<Mapping> globals_mappings{mappings}; |
| allocator::vector<Mapping> stack_mappings{mappings}; |
| if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) { |
| return false; |
| } |
| |
| for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) { |
| MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); |
| HeapIterate(*it, |
| [&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); }); |
| } |
| |
| for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) { |
| MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); |
| heap_walker_.Allocation(it->begin, it->end); |
| } |
| |
| for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) { |
| MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); |
| heap_walker_.Root(it->begin, it->end); |
| } |
| |
| for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) { |
| for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) { |
| if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) { |
| MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name); |
| heap_walker_.Root(thread_it->stack.first, it->end); |
| } |
| } |
| heap_walker_.Root(thread_it->regs); |
| } |
| |
| heap_walker_.Root(refs); |
| |
| MEM_ALOGI("searching done"); |
| |
| return true; |
| } |
| |
| bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, |
| size_t* num_leaks, size_t* leak_bytes) { |
| MEM_ALOGI("sweeping process %d for unreachable memory", pid_); |
| leaks.clear(); |
| |
| if (!heap_walker_.DetectLeaks()) { |
| return false; |
| } |
| |
| allocator::vector<Range> leaked1{allocator_}; |
| heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes); |
| |
| MEM_ALOGI("sweeping done"); |
| |
| MEM_ALOGI("folding related leaks"); |
| |
| LeakFolding folding(allocator_, heap_walker_); |
| if (!folding.FoldLeaks()) { |
| return false; |
| } |
| |
| allocator::vector<LeakFolding::Leak> leaked{allocator_}; |
| |
| if (!folding.Leaked(leaked, num_leaks, leak_bytes)) { |
| return false; |
| } |
| |
| allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_}; |
| |
| // Prevent reallocations of backing memory so we can store pointers into it |
| // in backtrace_map. |
| leaks.reserve(leaked.size()); |
| |
| for (auto& it : leaked) { |
| leaks.emplace_back(); |
| Leak* leak = &leaks.back(); |
| |
| ssize_t num_backtrace_frames = malloc_backtrace( |
| reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames); |
| if (num_backtrace_frames > 0) { |
| leak->backtrace.num_frames = num_backtrace_frames; |
| |
| auto inserted = backtrace_map.emplace(leak->backtrace, leak); |
| if (!inserted.second) { |
| // Leak with same backtrace already exists, drop this one and |
| // increment similar counts on the existing one. |
| leaks.pop_back(); |
| Leak* similar_leak = inserted.first->second; |
| similar_leak->similar_count++; |
| similar_leak->similar_size += it.range.size(); |
| similar_leak->similar_referenced_count += it.referenced_count; |
| similar_leak->similar_referenced_size += it.referenced_size; |
| similar_leak->total_size += it.range.size(); |
| similar_leak->total_size += it.referenced_size; |
| continue; |
| } |
| } |
| |
| leak->begin = it.range.begin; |
| leak->size = it.range.size(); |
| leak->referenced_count = it.referenced_count; |
| leak->referenced_size = it.referenced_size; |
| leak->total_size = leak->size + leak->referenced_size; |
| memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin), |
| std::min(leak->size, Leak::contents_length)); |
| } |
| |
| MEM_ALOGI("folding done"); |
| |
| std::sort(leaks.begin(), leaks.end(), |
| [](const Leak& a, const Leak& b) { return a.total_size > b.total_size; }); |
| |
| if (leaks.size() > limit) { |
| leaks.resize(limit); |
| } |
| |
| return true; |
| } |
| |
| static bool has_prefix(const allocator::string& s, const char* prefix) { |
| int ret = s.compare(0, strlen(prefix), prefix); |
| return ret == 0; |
| } |
| |
| bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings, |
| allocator::vector<Mapping>& heap_mappings, |
| allocator::vector<Mapping>& anon_mappings, |
| allocator::vector<Mapping>& globals_mappings, |
| allocator::vector<Mapping>& stack_mappings) { |
| heap_mappings.clear(); |
| anon_mappings.clear(); |
| globals_mappings.clear(); |
| stack_mappings.clear(); |
| |
| allocator::string current_lib{allocator_}; |
| |
| for (auto it = mappings.begin(); it != mappings.end(); it++) { |
| if (it->execute) { |
| current_lib = it->name; |
| continue; |
| } |
| |
| if (!it->read) { |
| continue; |
| } |
| |
| const allocator::string mapping_name{it->name, allocator_}; |
| if (mapping_name == "[anon:.bss]") { |
| // named .bss section |
| globals_mappings.emplace_back(*it); |
| } else if (mapping_name == current_lib) { |
| // .rodata or .data section |
| globals_mappings.emplace_back(*it); |
| } else if (mapping_name == "[anon:libc_malloc]") { |
| // named malloc mapping |
| heap_mappings.emplace_back(*it); |
| } else if (has_prefix(mapping_name, "/dev/ashmem/dalvik")) { |
| // named dalvik heap mapping |
| globals_mappings.emplace_back(*it); |
| } else if (has_prefix(mapping_name, "[stack")) { |
| // named stack mapping |
| stack_mappings.emplace_back(*it); |
| } else if (mapping_name.size() == 0) { |
| globals_mappings.emplace_back(*it); |
| } else if (has_prefix(mapping_name, "[anon:") && |
| mapping_name != "[anon:leak_detector_malloc]") { |
| // TODO(ccross): it would be nice to treat named anonymous mappings as |
| // possible leaks, but naming something in a .bss or .data section makes |
| // it impossible to distinguish them from mmaped and then named mappings. |
| globals_mappings.emplace_back(*it); |
| } |
| } |
| |
| return true; |
| } |
| |
| template <typename T> |
| static inline const char* plural(T val) { |
| return (val == 1) ? "" : "s"; |
| } |
| |
| bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) { |
| int parent_pid = getpid(); |
| int parent_tid = gettid(); |
| |
| Heap heap; |
| |
| Semaphore continue_parent_sem; |
| LeakPipe pipe; |
| |
| PtracerThread thread{[&]() -> int { |
| ///////////////////////////////////////////// |
| // Collection thread |
| ///////////////////////////////////////////// |
| MEM_ALOGI("collecting thread info for process %d...", parent_pid); |
| |
| ThreadCapture thread_capture(parent_pid, heap); |
| allocator::vector<ThreadInfo> thread_info(heap); |
| allocator::vector<Mapping> mappings(heap); |
| allocator::vector<uintptr_t> refs(heap); |
| |
| // ptrace all the threads |
| if (!thread_capture.CaptureThreads()) { |
| continue_parent_sem.Post(); |
| return 1; |
| } |
| |
| // collect register contents and stacks |
| if (!thread_capture.CapturedThreadInfo(thread_info)) { |
| continue_parent_sem.Post(); |
| return 1; |
| } |
| |
| // snapshot /proc/pid/maps |
| if (!ProcessMappings(parent_pid, mappings)) { |
| continue_parent_sem.Post(); |
| return 1; |
| } |
| |
| if (!BinderReferences(refs)) { |
| continue_parent_sem.Post(); |
| return 1; |
| } |
| |
| // malloc must be enabled to call fork, at_fork handlers take the same |
| // locks as ScopedDisableMalloc. All threads are paused in ptrace, so |
| // memory state is still consistent. Unfreeze the original thread so it |
| // can drop the malloc locks, it will block until the collection thread |
| // exits. |
| thread_capture.ReleaseThread(parent_tid); |
| continue_parent_sem.Post(); |
| |
| // fork a process to do the heap walking |
| int ret = fork(); |
| if (ret < 0) { |
| return 1; |
| } else if (ret == 0) { |
| ///////////////////////////////////////////// |
| // Heap walker process |
| ///////////////////////////////////////////// |
| // Examine memory state in the child using the data collected above and |
| // the CoW snapshot of the process memory contents. |
| |
| if (!pipe.OpenSender()) { |
| _exit(1); |
| } |
| |
| MemUnreachable unreachable{parent_pid, heap}; |
| |
| if (!unreachable.CollectAllocations(thread_info, mappings, refs)) { |
| _exit(2); |
| } |
| size_t num_allocations = unreachable.Allocations(); |
| size_t allocation_bytes = unreachable.AllocationBytes(); |
| |
| allocator::vector<Leak> leaks{heap}; |
| |
| size_t num_leaks = 0; |
| size_t leak_bytes = 0; |
| bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes); |
| |
| ok = ok && pipe.Sender().Send(num_allocations); |
| ok = ok && pipe.Sender().Send(allocation_bytes); |
| ok = ok && pipe.Sender().Send(num_leaks); |
| ok = ok && pipe.Sender().Send(leak_bytes); |
| ok = ok && pipe.Sender().SendVector(leaks); |
| |
| if (!ok) { |
| _exit(3); |
| } |
| |
| _exit(0); |
| } else { |
| // Nothing left to do in the collection thread, return immediately, |
| // releasing all the captured threads. |
| MEM_ALOGI("collection thread done"); |
| return 0; |
| } |
| }}; |
| |
| ///////////////////////////////////////////// |
| // Original thread |
| ///////////////////////////////////////////// |
| |
| { |
| // Disable malloc to get a consistent view of memory |
| ScopedDisableMalloc disable_malloc; |
| |
| // Start the collection thread |
| thread.Start(); |
| |
| // Wait for the collection thread to signal that it is ready to fork the |
| // heap walker process. |
| continue_parent_sem.Wait(30s); |
| |
| // Re-enable malloc so the collection thread can fork. |
| } |
| |
| // Wait for the collection thread to exit |
| int ret = thread.Join(); |
| if (ret != 0) { |
| return false; |
| } |
| |
| // Get a pipe from the heap walker process. Transferring a new pipe fd |
| // ensures no other forked processes can have it open, so when the heap |
| // walker process dies the remote side of the pipe will close. |
| if (!pipe.OpenReceiver()) { |
| return false; |
| } |
| |
| bool ok = true; |
| ok = ok && pipe.Receiver().Receive(&info.num_allocations); |
| ok = ok && pipe.Receiver().Receive(&info.allocation_bytes); |
| ok = ok && pipe.Receiver().Receive(&info.num_leaks); |
| ok = ok && pipe.Receiver().Receive(&info.leak_bytes); |
| ok = ok && pipe.Receiver().ReceiveVector(info.leaks); |
| if (!ok) { |
| return false; |
| } |
| |
| MEM_ALOGI("unreachable memory detection done"); |
| MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s", |
| info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes, |
| info.num_allocations, plural(info.num_allocations)); |
| return true; |
| } |
| |
| std::string Leak::ToString(bool log_contents) const { |
| std::ostringstream oss; |
| |
| oss << " " << std::dec << size; |
| oss << " bytes unreachable at "; |
| oss << std::hex << begin; |
| oss << std::endl; |
| if (referenced_count > 0) { |
| oss << std::dec; |
| oss << " referencing " << referenced_size << " unreachable bytes"; |
| oss << " in " << referenced_count << " allocation" << plural(referenced_count); |
| oss << std::endl; |
| } |
| if (similar_count > 0) { |
| oss << std::dec; |
| oss << " and " << similar_size << " similar unreachable bytes"; |
| oss << " in " << similar_count << " allocation" << plural(similar_count); |
| oss << std::endl; |
| if (similar_referenced_count > 0) { |
| oss << " referencing " << similar_referenced_size << " unreachable bytes"; |
| oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count); |
| oss << std::endl; |
| } |
| } |
| |
| if (log_contents) { |
| const int bytes_per_line = 16; |
| const size_t bytes = std::min(size, contents_length); |
| |
| if (bytes == size) { |
| oss << " contents:" << std::endl; |
| } else { |
| oss << " first " << bytes << " bytes of contents:" << std::endl; |
| } |
| |
| for (size_t i = 0; i < bytes; i += bytes_per_line) { |
| oss << " " << std::hex << begin + i << ": "; |
| size_t j; |
| oss << std::setfill('0'); |
| for (j = i; j < bytes && j < i + bytes_per_line; j++) { |
| oss << std::setw(2) << static_cast<int>(contents[j]) << " "; |
| } |
| oss << std::setfill(' '); |
| for (; j < i + bytes_per_line; j++) { |
| oss << " "; |
| } |
| for (j = i; j < bytes && j < i + bytes_per_line; j++) { |
| char c = contents[j]; |
| if (c < ' ' || c >= 0x7f) { |
| c = '.'; |
| } |
| oss << c; |
| } |
| oss << std::endl; |
| } |
| } |
| if (backtrace.num_frames > 0) { |
| oss << backtrace_string(backtrace.frames, backtrace.num_frames); |
| } |
| |
| return oss.str(); |
| } |
| |
| std::string UnreachableMemoryInfo::ToString(bool log_contents) const { |
| std::ostringstream oss; |
| oss << " " << leak_bytes << " bytes in "; |
| oss << num_leaks << " unreachable allocation" << plural(num_leaks); |
| oss << std::endl; |
| oss << " ABI: '" ABI_STRING "'" << std::endl; |
| oss << std::endl; |
| |
| for (auto it = leaks.begin(); it != leaks.end(); it++) { |
| oss << it->ToString(log_contents); |
| oss << std::endl; |
| } |
| |
| return oss.str(); |
| } |
| |
| UnreachableMemoryInfo::~UnreachableMemoryInfo() { |
| // Clear the memory that holds the leaks, otherwise the next attempt to |
| // detect leaks may find the old data (for example in the jemalloc tcache) |
| // and consider all the leaks to be referenced. |
| memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak)); |
| |
| std::vector<Leak> tmp; |
| leaks.swap(tmp); |
| |
| // Disable and re-enable malloc to flush the jemalloc tcache to make sure |
| // there are no copies of the leaked pointer addresses there. |
| malloc_disable(); |
| malloc_enable(); |
| } |
| |
| std::string GetUnreachableMemoryString(bool log_contents, size_t limit) { |
| UnreachableMemoryInfo info; |
| if (!GetUnreachableMemory(info, limit)) { |
| return "Failed to get unreachable memory\n" |
| "If you are trying to get unreachable memory from a system app\n" |
| "(like com.android.systemui), disable selinux first using\n" |
| "setenforce 0\n"; |
| } |
| |
| return info.ToString(log_contents); |
| } |
| |
| } // namespace android |
| |
| bool LogUnreachableMemory(bool log_contents, size_t limit) { |
| android::UnreachableMemoryInfo info; |
| if (!android::GetUnreachableMemory(info, limit)) { |
| return false; |
| } |
| |
| for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) { |
| MEM_ALOGE("%s", it->ToString(log_contents).c_str()); |
| } |
| return true; |
| } |
| |
| bool NoLeaks() { |
| android::UnreachableMemoryInfo info; |
| if (!android::GetUnreachableMemory(info, 0)) { |
| return false; |
| } |
| |
| return info.num_leaks == 0; |
| } |