blob: 138ce8be7c1dc3aa1c32e19c07256fad53033965 [file] [log] [blame]
Jason Simmonsb86c8e42011-06-28 17:43:30 -07001/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define __STDC_LIMIT_MACROS
18
19#include <assert.h>
20#include <stdint.h>
21
22#include <utils/LinearTransform.h>
23
Andy Hung13c19e72015-10-21 15:11:02 -070024// disable sanitize as these functions may intentionally overflow (see comments below).
25// the ifdef can be removed when host builds use clang.
26#if defined(__clang__)
27#define ATTRIBUTE_NO_SANITIZE_INTEGER __attribute__((no_sanitize("integer")))
28#else
29#define ATTRIBUTE_NO_SANITIZE_INTEGER
30#endif
31
Jason Simmonsb86c8e42011-06-28 17:43:30 -070032namespace android {
33
Andy Hung13c19e72015-10-21 15:11:02 -070034// sanitize failure with T = int32_t and x = 0x80000000
35template<class T>
36ATTRIBUTE_NO_SANITIZE_INTEGER
37static inline T ABS(T x) { return (x < 0) ? -x : x; }
Jason Simmonsb86c8e42011-06-28 17:43:30 -070038
39// Static math methods involving linear transformations
Andy Hung13c19e72015-10-21 15:11:02 -070040// remote sanitize failure on overflow case.
41ATTRIBUTE_NO_SANITIZE_INTEGER
Jason Simmonsb86c8e42011-06-28 17:43:30 -070042static bool scale_u64_to_u64(
43 uint64_t val,
44 uint32_t N,
45 uint32_t D,
46 uint64_t* res,
47 bool round_up_not_down) {
48 uint64_t tmp1, tmp2;
49 uint32_t r;
50
51 assert(res);
52 assert(D);
53
54 // Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit
55 // integer X.
56 // Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit
57 // integer X.
58 // Let X[A, B] with A <= B denote bits A through B of the integer X.
59 // Let (A | B) denote the concatination of two 32 bit ints, A and B.
60 // IOW X = (A | B) => U32(X) == A && L32(X) == B
61 //
62 // compute M = val * N (a 96 bit int)
63 // ---------------------------------
64 // tmp2 = U32(val) * N (a 64 bit int)
65 // tmp1 = L32(val) * N (a 64 bit int)
66 // which means
67 // M = val * N = (tmp2 << 32) + tmp1
68 tmp2 = (val >> 32) * N;
69 tmp1 = (val & UINT32_MAX) * N;
70
71 // compute M[32, 95]
72 // tmp2 = tmp2 + U32(tmp1)
73 // = (U32(val) * N) + U32(L32(val) * N)
74 // = M[32, 95]
75 tmp2 += tmp1 >> 32;
76
77 // if M[64, 95] >= D, then M/D has bits > 63 set and we have
78 // an overflow.
79 if ((tmp2 >> 32) >= D) {
80 *res = UINT64_MAX;
81 return false;
82 }
83
84 // Divide. Going in we know
85 // tmp2 = M[32, 95]
86 // U32(tmp2) < D
87 r = tmp2 % D;
88 tmp2 /= D;
89
90 // At this point
91 // tmp1 = L32(val) * N
92 // tmp2 = M[32, 95] / D
93 // = (M / D)[32, 95]
94 // r = M[32, 95] % D
95 // U32(tmp2) = 0
96 //
97 // compute tmp1 = (r | M[0, 31])
98 tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32);
99
100 // Divide again. Keep the remainder around in order to round properly.
101 r = tmp1 % D;
102 tmp1 /= D;
103
104 // At this point
105 // tmp2 = (M / D)[32, 95]
106 // tmp1 = (M / D)[ 0, 31]
107 // r = M % D
108 // U32(tmp1) = 0
109 // U32(tmp2) = 0
110
111 // Pack the result and deal with the round-up case (As well as the
112 // remote possiblility over overflow in such a case).
113 *res = (tmp2 << 32) | tmp1;
114 if (r && round_up_not_down) {
115 ++(*res);
116 if (!(*res)) {
117 *res = UINT64_MAX;
118 return false;
119 }
120 }
121
122 return true;
123}
124
Andy Hung13c19e72015-10-21 15:11:02 -0700125// at least one known sanitize failure (see comment below)
126ATTRIBUTE_NO_SANITIZE_INTEGER
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700127static bool linear_transform_s64_to_s64(
128 int64_t val,
129 int64_t basis1,
130 int32_t N,
131 uint32_t D,
John Grossman885a2fe2012-06-27 15:34:43 -0700132 bool invert_frac,
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700133 int64_t basis2,
134 int64_t* out) {
135 uint64_t scaled, res;
136 uint64_t abs_val;
137 bool is_neg;
138
139 if (!out)
140 return false;
141
142 // Compute abs(val - basis_64). Keep track of whether or not this delta
143 // will be negative after the scale opertaion.
144 if (val < basis1) {
145 is_neg = true;
146 abs_val = basis1 - val;
147 } else {
148 is_neg = false;
149 abs_val = val - basis1;
150 }
151
152 if (N < 0)
153 is_neg = !is_neg;
154
155 if (!scale_u64_to_u64(abs_val,
John Grossman885a2fe2012-06-27 15:34:43 -0700156 invert_frac ? D : ABS(N),
157 invert_frac ? ABS(N) : D,
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700158 &scaled,
159 is_neg))
160 return false; // overflow/undeflow
161
162 // if scaled is >= 0x8000<etc>, then we are going to overflow or
163 // underflow unless ABS(basis2) is large enough to pull us back into the
164 // non-overflow/underflow region.
165 if (scaled & INT64_MIN) {
166 if (is_neg && (basis2 < 0))
167 return false; // certain underflow
168
169 if (!is_neg && (basis2 >= 0))
170 return false; // certain overflow
171
172 if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX))
173 return false; // not enough
174
175 // Looks like we are OK
176 *out = (is_neg ? (-scaled) : scaled) + basis2;
177 } else {
178 // Scaled fits within signed bounds, so we just need to check for
179 // over/underflow for two signed integers. Basically, if both scaled
180 // and basis2 have the same sign bit, and the result has a different
181 // sign bit, then we have under/overflow. An easy way to compute this
182 // is
183 // (scaled_signbit XNOR basis_signbit) &&
184 // (scaled_signbit XOR res_signbit)
185 // ==
186 // (scaled_signbit XOR basis_signbit XOR 1) &&
187 // (scaled_signbit XOR res_signbit)
188
189 if (is_neg)
Andy Hung13c19e72015-10-21 15:11:02 -0700190 scaled = -scaled; // known sanitize failure
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700191 res = scaled + basis2;
192
193 if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN)
194 return false;
195
196 *out = res;
197 }
198
199 return true;
200}
201
202bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const {
203 if (0 == a_to_b_denom)
204 return false;
205
206 return linear_transform_s64_to_s64(a_in,
207 a_zero,
208 a_to_b_numer,
209 a_to_b_denom,
John Grossman885a2fe2012-06-27 15:34:43 -0700210 false,
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700211 b_zero,
212 b_out);
213}
214
215bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const {
216 if (0 == a_to_b_numer)
217 return false;
218
219 return linear_transform_s64_to_s64(b_in,
220 b_zero,
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700221 a_to_b_numer,
John Grossman885a2fe2012-06-27 15:34:43 -0700222 a_to_b_denom,
223 true,
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700224 a_zero,
225 a_out);
226}
227
228template <class T> void LinearTransform::reduce(T* N, T* D) {
229 T a, b;
230 if (!N || !D || !(*D)) {
231 assert(false);
232 return;
233 }
234
235 a = *N;
236 b = *D;
237
238 if (a == 0) {
239 *D = 1;
240 return;
241 }
242
243 // This implements Euclid's method to find GCD.
244 if (a < b) {
245 T tmp = a;
246 a = b;
247 b = tmp;
248 }
249
250 while (1) {
251 // a is now the greater of the two.
252 const T remainder = a % b;
253 if (remainder == 0) {
254 *N /= b;
255 *D /= b;
256 return;
257 }
258 // by swapping remainder and b, we are guaranteeing that a is
259 // still the greater of the two upon entrance to the loop.
260 a = b;
261 b = remainder;
262 }
263};
264
265template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D);
266template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D);
267
Andy Hung13c19e72015-10-21 15:11:02 -0700268// sanitize failure if *N = 0x80000000
269ATTRIBUTE_NO_SANITIZE_INTEGER
Jason Simmonsb86c8e42011-06-28 17:43:30 -0700270void LinearTransform::reduce(int32_t* N, uint32_t* D) {
271 if (N && D && *D) {
272 if (*N < 0) {
273 *N = -(*N);
274 reduce(reinterpret_cast<uint32_t*>(N), D);
275 *N = -(*N);
276 } else {
277 reduce(reinterpret_cast<uint32_t*>(N), D);
278 }
279 }
280}
281
282} // namespace android