The Android Open Source Project | dd7bc33 | 2009-03-03 19:32:55 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2007 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include <cutils/hashmap.h> |
| 18 | #include <assert.h> |
| 19 | #include <errno.h> |
| 20 | #include <cutils/threads.h> |
| 21 | #include <stdlib.h> |
| 22 | #include <string.h> |
| 23 | #include <stdbool.h> |
| 24 | #include <sys/types.h> |
| 25 | |
| 26 | typedef struct Entry Entry; |
| 27 | struct Entry { |
| 28 | void* key; |
| 29 | int hash; |
| 30 | void* value; |
| 31 | Entry* next; |
| 32 | }; |
| 33 | |
| 34 | struct Hashmap { |
| 35 | Entry** buckets; |
| 36 | size_t bucketCount; |
| 37 | int (*hash)(void* key); |
| 38 | bool (*equals)(void* keyA, void* keyB); |
| 39 | mutex_t lock; |
| 40 | size_t size; |
| 41 | }; |
| 42 | |
| 43 | Hashmap* hashmapCreate(size_t initialCapacity, |
| 44 | int (*hash)(void* key), bool (*equals)(void* keyA, void* keyB)) { |
| 45 | assert(hash != NULL); |
| 46 | assert(equals != NULL); |
| 47 | |
| 48 | Hashmap* map = malloc(sizeof(Hashmap)); |
| 49 | if (map == NULL) { |
| 50 | return NULL; |
| 51 | } |
| 52 | |
| 53 | // 0.75 load factor. |
| 54 | size_t minimumBucketCount = initialCapacity * 4 / 3; |
| 55 | map->bucketCount = 1; |
| 56 | while (map->bucketCount <= minimumBucketCount) { |
| 57 | // Bucket count must be power of 2. |
| 58 | map->bucketCount <<= 1; |
| 59 | } |
| 60 | |
| 61 | map->buckets = calloc(map->bucketCount, sizeof(Entry*)); |
| 62 | if (map->buckets == NULL) { |
| 63 | free(map); |
| 64 | return NULL; |
| 65 | } |
| 66 | |
| 67 | map->size = 0; |
| 68 | |
| 69 | map->hash = hash; |
| 70 | map->equals = equals; |
| 71 | |
| 72 | mutex_init(&map->lock); |
| 73 | |
| 74 | return map; |
| 75 | } |
| 76 | |
| 77 | /** |
| 78 | * Hashes the given key. |
| 79 | */ |
| 80 | static inline int hashKey(Hashmap* map, void* key) { |
| 81 | int h = map->hash(key); |
| 82 | |
| 83 | // We apply this secondary hashing discovered by Doug Lea to defend |
| 84 | // against bad hashes. |
| 85 | h += ~(h << 9); |
| 86 | h ^= (((unsigned int) h) >> 14); |
| 87 | h += (h << 4); |
| 88 | h ^= (((unsigned int) h) >> 10); |
| 89 | |
| 90 | return h; |
| 91 | } |
| 92 | |
| 93 | size_t hashmapSize(Hashmap* map) { |
| 94 | return map->size; |
| 95 | } |
| 96 | |
| 97 | static inline size_t calculateIndex(size_t bucketCount, int hash) { |
| 98 | return ((size_t) hash) & (bucketCount - 1); |
| 99 | } |
| 100 | |
| 101 | static void expandIfNecessary(Hashmap* map) { |
| 102 | // If the load factor exceeds 0.75... |
| 103 | if (map->size > (map->bucketCount * 3 / 4)) { |
| 104 | // Start off with a 0.33 load factor. |
| 105 | size_t newBucketCount = map->bucketCount << 1; |
| 106 | Entry** newBuckets = calloc(newBucketCount, sizeof(Entry*)); |
| 107 | if (newBuckets == NULL) { |
| 108 | // Abort expansion. |
| 109 | return; |
| 110 | } |
| 111 | |
| 112 | // Move over existing entries. |
| 113 | size_t i; |
| 114 | for (i = 0; i < map->bucketCount; i++) { |
| 115 | Entry* entry = map->buckets[i]; |
| 116 | while (entry != NULL) { |
| 117 | Entry* next = entry->next; |
| 118 | size_t index = calculateIndex(newBucketCount, entry->hash); |
| 119 | entry->next = newBuckets[index]; |
| 120 | newBuckets[index] = entry; |
| 121 | entry = next; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | // Copy over internals. |
| 126 | free(map->buckets); |
| 127 | map->buckets = newBuckets; |
| 128 | map->bucketCount = newBucketCount; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | void hashmapLock(Hashmap* map) { |
| 133 | mutex_lock(&map->lock); |
| 134 | } |
| 135 | |
| 136 | void hashmapUnlock(Hashmap* map) { |
| 137 | mutex_unlock(&map->lock); |
| 138 | } |
| 139 | |
| 140 | void hashmapFree(Hashmap* map) { |
| 141 | size_t i; |
| 142 | for (i = 0; i < map->bucketCount; i++) { |
| 143 | Entry* entry = map->buckets[i]; |
| 144 | while (entry != NULL) { |
| 145 | Entry* next = entry->next; |
| 146 | free(entry); |
| 147 | entry = next; |
| 148 | } |
| 149 | } |
| 150 | free(map->buckets); |
| 151 | mutex_destroy(&map->lock); |
| 152 | free(map); |
| 153 | } |
| 154 | |
| 155 | int hashmapHash(void* key, size_t keySize) { |
| 156 | int h = keySize; |
| 157 | char* data = (char*) key; |
| 158 | size_t i; |
| 159 | for (i = 0; i < keySize; i++) { |
| 160 | h = h * 31 + *data; |
| 161 | data++; |
| 162 | } |
| 163 | return h; |
| 164 | } |
| 165 | |
| 166 | static Entry* createEntry(void* key, int hash, void* value) { |
| 167 | Entry* entry = malloc(sizeof(Entry)); |
| 168 | if (entry == NULL) { |
| 169 | return NULL; |
| 170 | } |
| 171 | entry->key = key; |
| 172 | entry->hash = hash; |
| 173 | entry->value = value; |
| 174 | entry->next = NULL; |
| 175 | return entry; |
| 176 | } |
| 177 | |
| 178 | static inline bool equalKeys(void* keyA, int hashA, void* keyB, int hashB, |
| 179 | bool (*equals)(void*, void*)) { |
| 180 | if (keyA == keyB) { |
| 181 | return true; |
| 182 | } |
| 183 | if (hashA != hashB) { |
| 184 | return false; |
| 185 | } |
| 186 | return equals(keyA, keyB); |
| 187 | } |
| 188 | |
| 189 | void* hashmapPut(Hashmap* map, void* key, void* value) { |
| 190 | int hash = hashKey(map, key); |
| 191 | size_t index = calculateIndex(map->bucketCount, hash); |
| 192 | |
| 193 | Entry** p = &(map->buckets[index]); |
| 194 | while (true) { |
| 195 | Entry* current = *p; |
| 196 | |
| 197 | // Add a new entry. |
| 198 | if (current == NULL) { |
| 199 | *p = createEntry(key, hash, value); |
| 200 | if (*p == NULL) { |
| 201 | errno = ENOMEM; |
| 202 | return NULL; |
| 203 | } |
| 204 | map->size++; |
| 205 | expandIfNecessary(map); |
| 206 | return NULL; |
| 207 | } |
| 208 | |
| 209 | // Replace existing entry. |
| 210 | if (equalKeys(current->key, current->hash, key, hash, map->equals)) { |
| 211 | void* oldValue = current->value; |
| 212 | current->value = value; |
| 213 | return oldValue; |
| 214 | } |
| 215 | |
| 216 | // Move to next entry. |
| 217 | p = ¤t->next; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | void* hashmapGet(Hashmap* map, void* key) { |
| 222 | int hash = hashKey(map, key); |
| 223 | size_t index = calculateIndex(map->bucketCount, hash); |
| 224 | |
| 225 | Entry* entry = map->buckets[index]; |
| 226 | while (entry != NULL) { |
| 227 | if (equalKeys(entry->key, entry->hash, key, hash, map->equals)) { |
| 228 | return entry->value; |
| 229 | } |
| 230 | entry = entry->next; |
| 231 | } |
| 232 | |
| 233 | return NULL; |
| 234 | } |
| 235 | |
| 236 | bool hashmapContainsKey(Hashmap* map, void* key) { |
| 237 | int hash = hashKey(map, key); |
| 238 | size_t index = calculateIndex(map->bucketCount, hash); |
| 239 | |
| 240 | Entry* entry = map->buckets[index]; |
| 241 | while (entry != NULL) { |
| 242 | if (equalKeys(entry->key, entry->hash, key, hash, map->equals)) { |
| 243 | return true; |
| 244 | } |
| 245 | entry = entry->next; |
| 246 | } |
| 247 | |
| 248 | return false; |
| 249 | } |
| 250 | |
| 251 | void* hashmapMemoize(Hashmap* map, void* key, |
| 252 | void* (*initialValue)(void* key, void* context), void* context) { |
| 253 | int hash = hashKey(map, key); |
| 254 | size_t index = calculateIndex(map->bucketCount, hash); |
| 255 | |
| 256 | Entry** p = &(map->buckets[index]); |
| 257 | while (true) { |
| 258 | Entry* current = *p; |
| 259 | |
| 260 | // Add a new entry. |
| 261 | if (current == NULL) { |
| 262 | *p = createEntry(key, hash, NULL); |
| 263 | if (*p == NULL) { |
| 264 | errno = ENOMEM; |
| 265 | return NULL; |
| 266 | } |
| 267 | void* value = initialValue(key, context); |
| 268 | (*p)->value = value; |
| 269 | map->size++; |
| 270 | expandIfNecessary(map); |
| 271 | return value; |
| 272 | } |
| 273 | |
| 274 | // Return existing value. |
| 275 | if (equalKeys(current->key, current->hash, key, hash, map->equals)) { |
| 276 | return current->value; |
| 277 | } |
| 278 | |
| 279 | // Move to next entry. |
| 280 | p = ¤t->next; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | void* hashmapRemove(Hashmap* map, void* key) { |
| 285 | int hash = hashKey(map, key); |
| 286 | size_t index = calculateIndex(map->bucketCount, hash); |
| 287 | |
| 288 | // Pointer to the current entry. |
| 289 | Entry** p = &(map->buckets[index]); |
| 290 | Entry* current; |
| 291 | while ((current = *p) != NULL) { |
| 292 | if (equalKeys(current->key, current->hash, key, hash, map->equals)) { |
| 293 | void* value = current->value; |
| 294 | *p = current->next; |
| 295 | free(current); |
| 296 | map->size--; |
| 297 | return value; |
| 298 | } |
| 299 | |
| 300 | p = ¤t->next; |
| 301 | } |
| 302 | |
| 303 | return NULL; |
| 304 | } |
| 305 | |
| 306 | void hashmapForEach(Hashmap* map, |
| 307 | bool (*callback)(void* key, void* value, void* context), |
| 308 | void* context) { |
| 309 | size_t i; |
| 310 | for (i = 0; i < map->bucketCount; i++) { |
| 311 | Entry* entry = map->buckets[i]; |
| 312 | while (entry != NULL) { |
| 313 | if (!callback(entry->key, entry->value, context)) { |
| 314 | return; |
| 315 | } |
| 316 | entry = entry->next; |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | size_t hashmapCurrentCapacity(Hashmap* map) { |
| 322 | size_t bucketCount = map->bucketCount; |
| 323 | return bucketCount * 3 / 4; |
| 324 | } |
| 325 | |
| 326 | size_t hashmapCountCollisions(Hashmap* map) { |
| 327 | size_t collisions = 0; |
| 328 | size_t i; |
| 329 | for (i = 0; i < map->bucketCount; i++) { |
| 330 | Entry* entry = map->buckets[i]; |
| 331 | while (entry != NULL) { |
| 332 | if (entry->next != NULL) { |
| 333 | collisions++; |
| 334 | } |
| 335 | entry = entry->next; |
| 336 | } |
| 337 | } |
| 338 | return collisions; |
| 339 | } |
| 340 | |
| 341 | int hashmapIntHash(void* key) { |
| 342 | // Return the key value itself. |
| 343 | return *((int*) key); |
| 344 | } |
| 345 | |
| 346 | bool hashmapIntEquals(void* keyA, void* keyB) { |
| 347 | int a = *((int*) keyA); |
| 348 | int b = *((int*) keyB); |
| 349 | return a == b; |
| 350 | } |