Kenny Root | db0850c | 2013-10-08 12:52:07 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2013 The Android Open Source Project |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * * Redistributions of source code must retain the above copyright |
| 7 | * notice, this list of conditions and the following disclaimer. |
| 8 | * * Redistributions in binary form must reproduce the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer in the |
| 10 | * documentation and/or other materials provided with the distribution. |
| 11 | * * Neither the name of Google Inc. nor the names of its contributors may |
| 12 | * be used to endorse or promote products derived from this software |
| 13 | * without specific prior written permission. |
| 14 | * |
| 15 | * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR |
| 16 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| 17 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
| 18 | * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 21 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 22 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 23 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 24 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | // This is an implementation of the P256 elliptic curve group. It's written to |
| 28 | // be portable 32-bit, although it's still constant-time. |
| 29 | // |
| 30 | // WARNING: Implementing these functions in a constant-time manner is far from |
| 31 | // obvious. Be careful when touching this code. |
| 32 | // |
| 33 | // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. |
| 34 | |
| 35 | #include <assert.h> |
| 36 | #include <stdint.h> |
| 37 | #include <string.h> |
| 38 | #include <stdio.h> |
| 39 | |
| 40 | #include "mincrypt/p256.h" |
| 41 | |
| 42 | const p256_int SECP256r1_n = // curve order |
| 43 | {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; |
| 44 | |
| 45 | const p256_int SECP256r1_p = // curve field size |
| 46 | {{-1, -1, -1, 0, 0, 0, 1, -1 }}; |
| 47 | |
| 48 | const p256_int SECP256r1_b = // curve b |
| 49 | {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0, |
| 50 | 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}}; |
| 51 | |
Kenny Root | db0850c | 2013-10-08 12:52:07 -0700 | [diff] [blame] | 52 | void p256_init(p256_int* a) { |
| 53 | memset(a, 0, sizeof(*a)); |
| 54 | } |
| 55 | |
| 56 | void p256_clear(p256_int* a) { p256_init(a); } |
| 57 | |
| 58 | int p256_get_bit(const p256_int* scalar, int bit) { |
| 59 | return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT) |
| 60 | >> (bit & (P256_BITSPERDIGIT - 1))) & 1; |
| 61 | } |
| 62 | |
| 63 | int p256_is_zero(const p256_int* a) { |
| 64 | int i, result = 0; |
| 65 | for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i); |
| 66 | return !result; |
| 67 | } |
| 68 | |
| 69 | // top, c[] += a[] * b |
| 70 | // Returns new top |
| 71 | static p256_digit mulAdd(const p256_int* a, |
| 72 | p256_digit b, |
| 73 | p256_digit top, |
| 74 | p256_digit* c) { |
| 75 | int i; |
| 76 | p256_ddigit carry = 0; |
| 77 | |
| 78 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 79 | carry += *c; |
| 80 | carry += (p256_ddigit)P256_DIGIT(a, i) * b; |
| 81 | *c++ = (p256_digit)carry; |
| 82 | carry >>= P256_BITSPERDIGIT; |
| 83 | } |
| 84 | return top + (p256_digit)carry; |
| 85 | } |
| 86 | |
| 87 | // top, c[] -= top_a, a[] |
| 88 | static p256_digit subTop(p256_digit top_a, |
| 89 | const p256_digit* a, |
| 90 | p256_digit top_c, |
| 91 | p256_digit* c) { |
| 92 | int i; |
| 93 | p256_sddigit borrow = 0; |
| 94 | |
| 95 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 96 | borrow += *c; |
| 97 | borrow -= *a++; |
| 98 | *c++ = (p256_digit)borrow; |
| 99 | borrow >>= P256_BITSPERDIGIT; |
| 100 | } |
| 101 | borrow += top_c; |
| 102 | borrow -= top_a; |
| 103 | top_c = (p256_digit)borrow; |
| 104 | assert((borrow >> P256_BITSPERDIGIT) == 0); |
| 105 | return top_c; |
| 106 | } |
| 107 | |
| 108 | // top, c[] -= MOD[] & mask (0 or -1) |
| 109 | // returns new top. |
| 110 | static p256_digit subM(const p256_int* MOD, |
| 111 | p256_digit top, |
| 112 | p256_digit* c, |
| 113 | p256_digit mask) { |
| 114 | int i; |
| 115 | p256_sddigit borrow = 0; |
| 116 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 117 | borrow += *c; |
| 118 | borrow -= P256_DIGIT(MOD, i) & mask; |
| 119 | *c++ = (p256_digit)borrow; |
| 120 | borrow >>= P256_BITSPERDIGIT; |
| 121 | } |
| 122 | return top + (p256_digit)borrow; |
| 123 | } |
| 124 | |
| 125 | // top, c[] += MOD[] & mask (0 or -1) |
| 126 | // returns new top. |
| 127 | static p256_digit addM(const p256_int* MOD, |
| 128 | p256_digit top, |
| 129 | p256_digit* c, |
| 130 | p256_digit mask) { |
| 131 | int i; |
| 132 | p256_ddigit carry = 0; |
| 133 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 134 | carry += *c; |
| 135 | carry += P256_DIGIT(MOD, i) & mask; |
| 136 | *c++ = (p256_digit)carry; |
| 137 | carry >>= P256_BITSPERDIGIT; |
| 138 | } |
| 139 | return top + (p256_digit)carry; |
| 140 | } |
| 141 | |
| 142 | // c = a * b mod MOD. c can be a and/or b. |
| 143 | void p256_modmul(const p256_int* MOD, |
| 144 | const p256_int* a, |
| 145 | const p256_digit top_b, |
| 146 | const p256_int* b, |
| 147 | p256_int* c) { |
| 148 | p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 }; |
| 149 | p256_digit top = 0; |
| 150 | int i; |
| 151 | |
| 152 | // Multiply/add into tmp. |
| 153 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 154 | if (i) tmp[i + P256_NDIGITS - 1] = top; |
| 155 | top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i); |
| 156 | } |
| 157 | |
| 158 | // Multiply/add top digit |
| 159 | tmp[i + P256_NDIGITS - 1] = top; |
| 160 | top = mulAdd(a, top_b, 0, tmp + i); |
| 161 | |
| 162 | // Reduce tmp, digit by digit. |
| 163 | for (; i >= 0; --i) { |
| 164 | p256_digit reducer[P256_NDIGITS] = { 0 }; |
| 165 | p256_digit top_reducer; |
| 166 | |
| 167 | // top can be any value at this point. |
| 168 | // Guestimate reducer as top * MOD, since msw of MOD is -1. |
| 169 | top_reducer = mulAdd(MOD, top, 0, reducer); |
| 170 | |
| 171 | // Subtract reducer from top | tmp. |
| 172 | top = subTop(top_reducer, reducer, top, tmp + i); |
| 173 | |
| 174 | // top is now either 0 or 1. Make it 0, fixed-timing. |
| 175 | assert(top <= 1); |
| 176 | |
| 177 | top = subM(MOD, top, tmp + i, ~(top - 1)); |
| 178 | |
| 179 | assert(top == 0); |
| 180 | |
| 181 | // We have now reduced the top digit off tmp. Fetch new top digit. |
| 182 | top = tmp[i + P256_NDIGITS - 1]; |
| 183 | } |
| 184 | |
| 185 | // tmp might still be larger than MOD, yet same bit length. |
| 186 | // Make sure it is less, fixed-timing. |
| 187 | addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1)); |
| 188 | |
| 189 | memcpy(c, tmp, P256_NBYTES); |
| 190 | } |
| 191 | int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; } |
| 192 | int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); } |
| 193 | |
| 194 | p256_digit p256_shl(const p256_int* a, int n, p256_int* b) { |
| 195 | int i; |
| 196 | p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1); |
| 197 | |
| 198 | n %= P256_BITSPERDIGIT; |
| 199 | for (i = P256_NDIGITS - 1; i > 0; --i) { |
| 200 | p256_digit accu = (P256_DIGIT(a, i) << n); |
| 201 | accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n)); |
| 202 | P256_DIGIT(b, i) = accu; |
| 203 | } |
| 204 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n); |
| 205 | |
| 206 | top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT); |
| 207 | |
| 208 | return top; |
| 209 | } |
| 210 | |
| 211 | void p256_shr(const p256_int* a, int n, p256_int* b) { |
| 212 | int i; |
| 213 | |
| 214 | n %= P256_BITSPERDIGIT; |
| 215 | for (i = 0; i < P256_NDIGITS - 1; ++i) { |
| 216 | p256_digit accu = (P256_DIGIT(a, i) >> n); |
| 217 | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n)); |
| 218 | P256_DIGIT(b, i) = accu; |
| 219 | } |
| 220 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n); |
| 221 | } |
| 222 | |
| 223 | static void p256_shr1(const p256_int* a, int highbit, p256_int* b) { |
| 224 | int i; |
| 225 | |
| 226 | for (i = 0; i < P256_NDIGITS - 1; ++i) { |
| 227 | p256_digit accu = (P256_DIGIT(a, i) >> 1); |
| 228 | accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1)); |
| 229 | P256_DIGIT(b, i) = accu; |
| 230 | } |
| 231 | P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) | |
| 232 | (highbit << (P256_BITSPERDIGIT - 1)); |
| 233 | } |
| 234 | |
| 235 | // Return -1, 0, 1 for a < b, a == b or a > b respectively. |
| 236 | int p256_cmp(const p256_int* a, const p256_int* b) { |
| 237 | int i; |
| 238 | p256_sddigit borrow = 0; |
| 239 | p256_digit notzero = 0; |
| 240 | |
| 241 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 242 | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); |
| 243 | // Track whether any result digit is ever not zero. |
| 244 | // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1. |
| 245 | notzero |= !!((p256_digit)borrow); |
| 246 | borrow >>= P256_BITSPERDIGIT; |
| 247 | } |
| 248 | return (int)borrow | notzero; |
| 249 | } |
| 250 | |
| 251 | // c = a - b. Returns borrow: 0 or -1. |
| 252 | int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) { |
| 253 | int i; |
| 254 | p256_sddigit borrow = 0; |
| 255 | |
| 256 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 257 | borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); |
| 258 | if (c) P256_DIGIT(c, i) = (p256_digit)borrow; |
| 259 | borrow >>= P256_BITSPERDIGIT; |
| 260 | } |
| 261 | return (int)borrow; |
| 262 | } |
| 263 | |
| 264 | // c = a + b. Returns carry: 0 or 1. |
| 265 | int p256_add(const p256_int* a, const p256_int* b, p256_int* c) { |
| 266 | int i; |
| 267 | p256_ddigit carry = 0; |
| 268 | |
| 269 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 270 | carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i); |
| 271 | if (c) P256_DIGIT(c, i) = (p256_digit)carry; |
| 272 | carry >>= P256_BITSPERDIGIT; |
| 273 | } |
| 274 | return (int)carry; |
| 275 | } |
| 276 | |
| 277 | // b = a + d. Returns carry, 0 or 1. |
| 278 | int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) { |
| 279 | int i; |
| 280 | p256_ddigit carry = d; |
| 281 | |
| 282 | for (i = 0; i < P256_NDIGITS; ++i) { |
| 283 | carry += (p256_ddigit)P256_DIGIT(a, i); |
| 284 | if (b) P256_DIGIT(b, i) = (p256_digit)carry; |
| 285 | carry >>= P256_BITSPERDIGIT; |
| 286 | } |
| 287 | return (int)carry; |
| 288 | } |
| 289 | |
| 290 | // b = 1/a mod MOD, binary euclid. |
| 291 | void p256_modinv_vartime(const p256_int* MOD, |
| 292 | const p256_int* a, |
| 293 | p256_int* b) { |
| 294 | p256_int R = P256_ZERO; |
| 295 | p256_int S = P256_ONE; |
| 296 | p256_int U = *MOD; |
| 297 | p256_int V = *a; |
| 298 | |
| 299 | for (;;) { |
| 300 | if (p256_is_even(&U)) { |
| 301 | p256_shr1(&U, 0, &U); |
| 302 | if (p256_is_even(&R)) { |
| 303 | p256_shr1(&R, 0, &R); |
| 304 | } else { |
| 305 | // R = (R+MOD)/2 |
| 306 | p256_shr1(&R, p256_add(&R, MOD, &R), &R); |
| 307 | } |
| 308 | } else if (p256_is_even(&V)) { |
| 309 | p256_shr1(&V, 0, &V); |
| 310 | if (p256_is_even(&S)) { |
| 311 | p256_shr1(&S, 0, &S); |
| 312 | } else { |
| 313 | // S = (S+MOD)/2 |
| 314 | p256_shr1(&S, p256_add(&S, MOD, &S) , &S); |
| 315 | } |
| 316 | } else { // U,V both odd. |
| 317 | if (!p256_sub(&V, &U, NULL)) { |
| 318 | p256_sub(&V, &U, &V); |
| 319 | if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S); |
| 320 | if (p256_is_zero(&V)) break; // done. |
| 321 | } else { |
| 322 | p256_sub(&U, &V, &U); |
| 323 | if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R); |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | p256_mod(MOD, &R, b); |
| 329 | } |
| 330 | |
| 331 | void p256_mod(const p256_int* MOD, |
| 332 | const p256_int* in, |
| 333 | p256_int* out) { |
| 334 | if (out != in) *out = *in; |
| 335 | addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1)); |
| 336 | } |
| 337 | |
| 338 | // Verify y^2 == x^3 - 3x + b mod p |
| 339 | // and 0 < x < p and 0 < y < p |
| 340 | int p256_is_valid_point(const p256_int* x, const p256_int* y) { |
| 341 | p256_int y2, x3; |
| 342 | |
| 343 | if (p256_cmp(&SECP256r1_p, x) <= 0 || |
| 344 | p256_cmp(&SECP256r1_p, y) <= 0 || |
| 345 | p256_is_zero(x) || |
| 346 | p256_is_zero(y)) return 0; |
| 347 | |
| 348 | p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2 |
| 349 | |
| 350 | p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2 |
| 351 | p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3 |
| 352 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x |
| 353 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x |
| 354 | if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x |
| 355 | if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b |
| 356 | p256_sub(&x3, &SECP256r1_p, &x3); |
| 357 | |
| 358 | return p256_cmp(&y2, &x3) == 0; |
| 359 | } |
| 360 | |
| 361 | void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { |
| 362 | int i; |
| 363 | const uint8_t* p = &src[0]; |
| 364 | |
| 365 | for (i = P256_NDIGITS - 1; i >= 0; --i) { |
| 366 | P256_DIGIT(dst, i) = |
| 367 | (p[0] << 24) | |
| 368 | (p[1] << 16) | |
| 369 | (p[2] << 8) | |
| 370 | p[3]; |
| 371 | p += 4; |
| 372 | } |
| 373 | } |