The Android Open Source Project | dd7bc33 | 2009-03-03 19:32:55 -0800 | [diff] [blame] | 1 | /* libs/pixelflinger/trap.cpp |
| 2 | ** |
| 3 | ** Copyright 2006, The Android Open Source Project |
| 4 | ** |
| 5 | ** Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | ** you may not use this file except in compliance with the License. |
| 7 | ** You may obtain a copy of the License at |
| 8 | ** |
| 9 | ** http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | ** |
| 11 | ** Unless required by applicable law or agreed to in writing, software |
| 12 | ** distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | ** See the License for the specific language governing permissions and |
| 15 | ** limitations under the License. |
| 16 | */ |
| 17 | |
| 18 | #include <assert.h> |
| 19 | #include <stdio.h> |
| 20 | #include <stdlib.h> |
| 21 | |
| 22 | #include "trap.h" |
| 23 | #include "picker.h" |
| 24 | |
| 25 | #include <cutils/log.h> |
| 26 | #include <cutils/memory.h> |
| 27 | |
| 28 | namespace android { |
| 29 | |
| 30 | // ---------------------------------------------------------------------------- |
| 31 | |
| 32 | // enable to see triangles edges |
| 33 | #define DEBUG_TRANGLES 0 |
| 34 | |
| 35 | // ---------------------------------------------------------------------------- |
| 36 | |
| 37 | static void pointx_validate(void *con, const GGLcoord* c, GGLcoord r); |
| 38 | static void pointx(void *con, const GGLcoord* c, GGLcoord r); |
| 39 | static void aa_pointx(void *con, const GGLcoord* c, GGLcoord r); |
| 40 | static void aa_nice_pointx(void *con, const GGLcoord* c, GGLcoord r); |
| 41 | |
| 42 | static void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); |
| 43 | static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); |
| 44 | static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w); |
| 45 | |
| 46 | static void recti_validate(void* c, GGLint l, GGLint t, GGLint r, GGLint b); |
| 47 | static void recti(void* c, GGLint l, GGLint t, GGLint r, GGLint b); |
| 48 | |
| 49 | static void trianglex_validate(void*, |
| 50 | const GGLcoord*, const GGLcoord*, const GGLcoord*); |
| 51 | static void trianglex_small(void*, |
| 52 | const GGLcoord*, const GGLcoord*, const GGLcoord*); |
| 53 | static void trianglex_big(void*, |
| 54 | const GGLcoord*, const GGLcoord*, const GGLcoord*); |
| 55 | static void aa_trianglex(void*, |
| 56 | const GGLcoord*, const GGLcoord*, const GGLcoord*); |
| 57 | static void trianglex_debug(void* con, |
| 58 | const GGLcoord*, const GGLcoord*, const GGLcoord*); |
| 59 | |
| 60 | static void aapolyx(void* con, |
| 61 | const GGLcoord* pts, int count); |
| 62 | |
| 63 | static inline int min(int a, int b) CONST; |
| 64 | static inline int max(int a, int b) CONST; |
| 65 | static inline int min(int a, int b, int c) CONST; |
| 66 | static inline int max(int a, int b, int c) CONST; |
| 67 | |
| 68 | // ---------------------------------------------------------------------------- |
| 69 | #if 0 |
| 70 | #pragma mark - |
| 71 | #pragma mark Tools |
| 72 | #endif |
| 73 | |
| 74 | inline int min(int a, int b) { |
| 75 | return a<b ? a : b; |
| 76 | } |
| 77 | inline int max(int a, int b) { |
| 78 | return a<b ? b : a; |
| 79 | } |
| 80 | inline int min(int a, int b, int c) { |
| 81 | return min(a,min(b,c)); |
| 82 | } |
| 83 | inline int max(int a, int b, int c) { |
| 84 | return max(a,max(b,c)); |
| 85 | } |
| 86 | |
| 87 | template <typename T> |
| 88 | static inline void swap(T& a, T& b) { |
| 89 | T t(a); |
| 90 | a = b; |
| 91 | b = t; |
| 92 | } |
| 93 | |
| 94 | static void |
| 95 | triangle_dump_points( const GGLcoord* v0, |
| 96 | const GGLcoord* v1, |
| 97 | const GGLcoord* v2 ) |
| 98 | { |
| 99 | float tri = 1.0f / TRI_ONE; |
| 100 | LOGD( " P0=(%.3f, %.3f) [%08x, %08x]\n" |
| 101 | " P1=(%.3f, %.3f) [%08x, %08x]\n" |
| 102 | " P2=(%.3f, %.3f) [%08x, %08x]\n", |
| 103 | v0[0]*tri, v0[1]*tri, v0[0], v0[1], |
| 104 | v1[0]*tri, v1[1]*tri, v1[0], v1[1], |
| 105 | v2[0]*tri, v2[1]*tri, v2[0], v2[1] ); |
| 106 | } |
| 107 | |
| 108 | // ---------------------------------------------------------------------------- |
| 109 | #if 0 |
| 110 | #pragma mark - |
| 111 | #pragma mark Misc |
| 112 | #endif |
| 113 | |
| 114 | void ggl_init_trap(context_t* c) |
| 115 | { |
| 116 | ggl_state_changed(c, GGL_PIXEL_PIPELINE_STATE|GGL_TMU_STATE|GGL_CB_STATE); |
| 117 | } |
| 118 | |
| 119 | void ggl_state_changed(context_t* c, int flags) |
| 120 | { |
| 121 | if (ggl_likely(!c->dirty)) { |
| 122 | c->procs.pointx = pointx_validate; |
| 123 | c->procs.linex = linex_validate; |
| 124 | c->procs.recti = recti_validate; |
| 125 | c->procs.trianglex = trianglex_validate; |
| 126 | } |
| 127 | c->dirty |= uint32_t(flags); |
| 128 | } |
| 129 | |
| 130 | // ---------------------------------------------------------------------------- |
| 131 | #if 0 |
| 132 | #pragma mark - |
| 133 | #pragma mark Point |
| 134 | #endif |
| 135 | |
| 136 | void pointx_validate(void *con, const GGLcoord* v, GGLcoord rad) |
| 137 | { |
| 138 | GGL_CONTEXT(c, con); |
| 139 | ggl_pick(c); |
| 140 | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { |
| 141 | if (c->state.enables & GGL_ENABLE_POINT_AA_NICE) { |
| 142 | c->procs.pointx = aa_nice_pointx; |
| 143 | } else { |
| 144 | c->procs.pointx = aa_pointx; |
| 145 | } |
| 146 | } else { |
| 147 | c->procs.pointx = pointx; |
| 148 | } |
| 149 | c->procs.pointx(con, v, rad); |
| 150 | } |
| 151 | |
| 152 | void pointx(void *con, const GGLcoord* v, GGLcoord rad) |
| 153 | { |
| 154 | GGL_CONTEXT(c, con); |
| 155 | GGLcoord halfSize = TRI_ROUND(rad) >> 1; |
| 156 | if (halfSize == 0) |
| 157 | halfSize = TRI_HALF; |
| 158 | GGLcoord xc = v[0]; |
| 159 | GGLcoord yc = v[1]; |
| 160 | if (halfSize & TRI_HALF) { // size odd |
| 161 | xc = TRI_FLOOR(xc) + TRI_HALF; |
| 162 | yc = TRI_FLOOR(yc) + TRI_HALF; |
| 163 | } else { // size even |
| 164 | xc = TRI_ROUND(xc); |
| 165 | yc = TRI_ROUND(yc); |
| 166 | } |
| 167 | GGLint l = (xc - halfSize) >> TRI_FRACTION_BITS; |
| 168 | GGLint t = (yc - halfSize) >> TRI_FRACTION_BITS; |
| 169 | GGLint r = (xc + halfSize) >> TRI_FRACTION_BITS; |
| 170 | GGLint b = (yc + halfSize) >> TRI_FRACTION_BITS; |
| 171 | recti(c, l, t, r, b); |
| 172 | } |
| 173 | |
| 174 | // This way of computing the coverage factor, is more accurate and gives |
| 175 | // better results for small circles, but it is also a lot slower. |
| 176 | // Here we use super-sampling. |
| 177 | static int32_t coverageNice(GGLcoord x, GGLcoord y, |
| 178 | GGLcoord rmin, GGLcoord rmax, GGLcoord rr) |
| 179 | { |
| 180 | const GGLcoord d2 = x*x + y*y; |
| 181 | if (d2 >= rmax) return 0; |
| 182 | if (d2 < rmin) return 0x7FFF; |
| 183 | |
| 184 | const int kSamples = 4; |
| 185 | const int kInc = 4; // 1/4 = 0.25 |
| 186 | const int kCoverageUnit = 1; // 1/(4^2) = 0.0625 |
| 187 | const GGLcoord kCoordOffset = -6; // -0.375 |
| 188 | |
| 189 | int hits = 0; |
| 190 | int x_sample = x + kCoordOffset; |
| 191 | for (int i=0 ; i<kSamples ; i++, x_sample += kInc) { |
| 192 | const int xval = rr - (x_sample * x_sample); |
| 193 | int y_sample = y + kCoordOffset; |
| 194 | for (int j=0 ; j<kSamples ; j++, y_sample += kInc) { |
| 195 | if (xval - (y_sample * y_sample) > 0) |
| 196 | hits += kCoverageUnit; |
| 197 | } |
| 198 | } |
| 199 | return min(0x7FFF, hits << (15 - kSamples)); |
| 200 | } |
| 201 | |
| 202 | |
| 203 | void aa_nice_pointx(void *con, const GGLcoord* v, GGLcoord size) |
| 204 | { |
| 205 | GGL_CONTEXT(c, con); |
| 206 | |
| 207 | GGLcoord rad = ((size + 1)>>1); |
| 208 | GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; |
| 209 | GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; |
| 210 | GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; |
| 211 | GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; |
| 212 | GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF; |
| 213 | GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF; |
| 214 | |
| 215 | // scissor... |
| 216 | if (l < GGLint(c->state.scissor.left)) { |
| 217 | xstart += TRI_FROM_INT(c->state.scissor.left-l); |
| 218 | l = GGLint(c->state.scissor.left); |
| 219 | } |
| 220 | if (t < GGLint(c->state.scissor.top)) { |
| 221 | ystart += TRI_FROM_INT(c->state.scissor.top-t); |
| 222 | t = GGLint(c->state.scissor.top); |
| 223 | } |
| 224 | if (r > GGLint(c->state.scissor.right)) { |
| 225 | r = GGLint(c->state.scissor.right); |
| 226 | } |
| 227 | if (b > GGLint(c->state.scissor.bottom)) { |
| 228 | b = GGLint(c->state.scissor.bottom); |
| 229 | } |
| 230 | |
| 231 | int xc = r - l; |
| 232 | int yc = b - t; |
| 233 | if (xc>0 && yc>0) { |
| 234 | int16_t* covPtr = c->state.buffers.coverage; |
| 235 | const int32_t sqr2Over2 = 0xC; // rounded up |
| 236 | GGLcoord rr = rad*rad; |
| 237 | GGLcoord rmin = (rad - sqr2Over2)*(rad - sqr2Over2); |
| 238 | GGLcoord rmax = (rad + sqr2Over2)*(rad + sqr2Over2); |
| 239 | GGLcoord y = ystart; |
| 240 | c->iterators.xl = l; |
| 241 | c->iterators.xr = r; |
| 242 | c->init_y(c, t); |
| 243 | do { |
| 244 | // compute coverage factors for each pixel |
| 245 | GGLcoord x = xstart; |
| 246 | for (int i=l ; i<r ; i++) { |
| 247 | covPtr[i] = coverageNice(x, y, rmin, rmax, rr); |
| 248 | x += TRI_ONE; |
| 249 | } |
| 250 | y += TRI_ONE; |
| 251 | c->scanline(c); |
| 252 | c->step_y(c); |
| 253 | } while (--yc); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | // This is a cheap way of computing the coverage factor for a circle. |
| 258 | // We just lerp between the circles of radii r-sqrt(2)/2 and r+sqrt(2)/2 |
| 259 | static inline int32_t coverageFast(GGLcoord x, GGLcoord y, |
| 260 | GGLcoord rmin, GGLcoord rmax, GGLcoord scale) |
| 261 | { |
| 262 | const GGLcoord d2 = x*x + y*y; |
| 263 | if (d2 >= rmax) return 0; |
| 264 | if (d2 < rmin) return 0x7FFF; |
| 265 | return 0x7FFF - (d2-rmin)*scale; |
| 266 | } |
| 267 | |
| 268 | void aa_pointx(void *con, const GGLcoord* v, GGLcoord size) |
| 269 | { |
| 270 | GGL_CONTEXT(c, con); |
| 271 | |
| 272 | GGLcoord rad = ((size + 1)>>1); |
| 273 | GGLint l = (v[0] - rad) >> TRI_FRACTION_BITS; |
| 274 | GGLint t = (v[1] - rad) >> TRI_FRACTION_BITS; |
| 275 | GGLint r = (v[0] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; |
| 276 | GGLint b = (v[1] + rad + (TRI_ONE-1)) >> TRI_FRACTION_BITS; |
| 277 | GGLcoord xstart = TRI_FROM_INT(l) - v[0] + TRI_HALF; |
| 278 | GGLcoord ystart = TRI_FROM_INT(t) - v[1] + TRI_HALF; |
| 279 | |
| 280 | // scissor... |
| 281 | if (l < GGLint(c->state.scissor.left)) { |
| 282 | xstart += TRI_FROM_INT(c->state.scissor.left-l); |
| 283 | l = GGLint(c->state.scissor.left); |
| 284 | } |
| 285 | if (t < GGLint(c->state.scissor.top)) { |
| 286 | ystart += TRI_FROM_INT(c->state.scissor.top-t); |
| 287 | t = GGLint(c->state.scissor.top); |
| 288 | } |
| 289 | if (r > GGLint(c->state.scissor.right)) { |
| 290 | r = GGLint(c->state.scissor.right); |
| 291 | } |
| 292 | if (b > GGLint(c->state.scissor.bottom)) { |
| 293 | b = GGLint(c->state.scissor.bottom); |
| 294 | } |
| 295 | |
| 296 | int xc = r - l; |
| 297 | int yc = b - t; |
| 298 | if (xc>0 && yc>0) { |
| 299 | int16_t* covPtr = c->state.buffers.coverage; |
| 300 | rad <<= 4; |
| 301 | const int32_t sqr2Over2 = 0xB5; // fixed-point 24.8 |
| 302 | GGLcoord rmin = rad - sqr2Over2; |
| 303 | GGLcoord rmax = rad + sqr2Over2; |
| 304 | GGLcoord scale; |
| 305 | rmin *= rmin; |
| 306 | rmax *= rmax; |
| 307 | scale = 0x800000 / (rmax - rmin); |
| 308 | rmin >>= 8; |
| 309 | rmax >>= 8; |
| 310 | |
| 311 | GGLcoord y = ystart; |
| 312 | c->iterators.xl = l; |
| 313 | c->iterators.xr = r; |
| 314 | c->init_y(c, t); |
| 315 | |
| 316 | do { |
| 317 | // compute coverage factors for each pixel |
| 318 | GGLcoord x = xstart; |
| 319 | for (int i=l ; i<r ; i++) { |
| 320 | covPtr[i] = coverageFast(x, y, rmin, rmax, scale); |
| 321 | x += TRI_ONE; |
| 322 | } |
| 323 | y += TRI_ONE; |
| 324 | c->scanline(c); |
| 325 | c->step_y(c); |
| 326 | } while (--yc); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | // ---------------------------------------------------------------------------- |
| 331 | #if 0 |
| 332 | #pragma mark - |
| 333 | #pragma mark Line |
| 334 | #endif |
| 335 | |
| 336 | void linex_validate(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord w) |
| 337 | { |
| 338 | GGL_CONTEXT(c, con); |
| 339 | ggl_pick(c); |
| 340 | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { |
| 341 | c->procs.linex = aa_linex; |
| 342 | } else { |
| 343 | c->procs.linex = linex; |
| 344 | } |
| 345 | c->procs.linex(con, v0, v1, w); |
| 346 | } |
| 347 | |
| 348 | static void linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) |
| 349 | { |
| 350 | GGL_CONTEXT(c, con); |
| 351 | GGLcoord v[4][2]; |
| 352 | v[0][0] = v0[0]; v[0][1] = v0[1]; |
| 353 | v[1][0] = v1[0]; v[1][1] = v1[1]; |
| 354 | v0 = v[0]; |
| 355 | v1 = v[1]; |
| 356 | const GGLcoord dx = abs(v0[0] - v1[0]); |
| 357 | const GGLcoord dy = abs(v0[1] - v1[1]); |
| 358 | GGLcoord nx, ny; |
| 359 | nx = ny = 0; |
| 360 | |
| 361 | GGLcoord halfWidth = TRI_ROUND(width) >> 1; |
| 362 | if (halfWidth == 0) |
| 363 | halfWidth = TRI_HALF; |
| 364 | |
| 365 | ((dx > dy) ? ny : nx) = halfWidth; |
| 366 | v[2][0] = v1[0]; v[2][1] = v1[1]; |
| 367 | v[3][0] = v0[0]; v[3][1] = v0[1]; |
| 368 | v[0][0] += nx; v[0][1] += ny; |
| 369 | v[1][0] += nx; v[1][1] += ny; |
| 370 | v[2][0] -= nx; v[2][1] -= ny; |
| 371 | v[3][0] -= nx; v[3][1] -= ny; |
| 372 | trianglex_big(con, v[0], v[1], v[2]); |
| 373 | trianglex_big(con, v[0], v[2], v[3]); |
| 374 | } |
| 375 | |
| 376 | static void aa_linex(void *con, const GGLcoord* v0, const GGLcoord* v1, GGLcoord width) |
| 377 | { |
| 378 | GGL_CONTEXT(c, con); |
| 379 | GGLcoord v[4][2]; |
| 380 | v[0][0] = v0[0]; v[0][1] = v0[1]; |
| 381 | v[1][0] = v1[0]; v[1][1] = v1[1]; |
| 382 | v0 = v[0]; |
| 383 | v1 = v[1]; |
| 384 | |
| 385 | const GGLcoord dx = v0[0] - v1[0]; |
| 386 | const GGLcoord dy = v0[1] - v1[1]; |
| 387 | GGLcoord nx = -dy; |
| 388 | GGLcoord ny = dx; |
| 389 | |
| 390 | // generally, this will be well below 1.0 |
| 391 | const GGLfixed norm = gglMulx(width, gglSqrtRecipx(nx*nx+ny*ny), 4); |
| 392 | nx = gglMulx(nx, norm, 21); |
| 393 | ny = gglMulx(ny, norm, 21); |
| 394 | |
| 395 | v[2][0] = v1[0]; v[2][1] = v1[1]; |
| 396 | v[3][0] = v0[0]; v[3][1] = v0[1]; |
| 397 | v[0][0] += nx; v[0][1] += ny; |
| 398 | v[1][0] += nx; v[1][1] += ny; |
| 399 | v[2][0] -= nx; v[2][1] -= ny; |
| 400 | v[3][0] -= nx; v[3][1] -= ny; |
| 401 | aapolyx(con, v[0], 4); |
| 402 | } |
| 403 | |
| 404 | |
| 405 | // ---------------------------------------------------------------------------- |
| 406 | #if 0 |
| 407 | #pragma mark - |
| 408 | #pragma mark Rect |
| 409 | #endif |
| 410 | |
| 411 | void recti_validate(void *con, GGLint l, GGLint t, GGLint r, GGLint b) |
| 412 | { |
| 413 | GGL_CONTEXT(c, con); |
| 414 | ggl_pick(c); |
| 415 | c->procs.recti = recti; |
| 416 | c->procs.recti(con, l, t, r, b); |
| 417 | } |
| 418 | |
| 419 | void recti(void* con, GGLint l, GGLint t, GGLint r, GGLint b) |
| 420 | { |
| 421 | GGL_CONTEXT(c, con); |
| 422 | |
| 423 | // scissor... |
| 424 | if (l < GGLint(c->state.scissor.left)) |
| 425 | l = GGLint(c->state.scissor.left); |
| 426 | if (t < GGLint(c->state.scissor.top)) |
| 427 | t = GGLint(c->state.scissor.top); |
| 428 | if (r > GGLint(c->state.scissor.right)) |
| 429 | r = GGLint(c->state.scissor.right); |
| 430 | if (b > GGLint(c->state.scissor.bottom)) |
| 431 | b = GGLint(c->state.scissor.bottom); |
| 432 | |
| 433 | int xc = r - l; |
| 434 | int yc = b - t; |
| 435 | if (xc>0 && yc>0) { |
| 436 | c->iterators.xl = l; |
| 437 | c->iterators.xr = r; |
| 438 | c->init_y(c, t); |
| 439 | c->rect(c, yc); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | // ---------------------------------------------------------------------------- |
| 444 | #if 0 |
| 445 | #pragma mark - |
| 446 | #pragma mark Triangle / Debugging |
| 447 | #endif |
| 448 | |
| 449 | static void scanline_set(context_t* c) |
| 450 | { |
| 451 | int32_t x = c->iterators.xl; |
| 452 | size_t ct = c->iterators.xr - x; |
| 453 | int32_t y = c->iterators.y; |
| 454 | surface_t* cb = &(c->state.buffers.color); |
| 455 | const GGLFormat* fp = &(c->formats[cb->format]); |
| 456 | uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + |
| 457 | (x + (cb->stride * y)) * fp->size; |
| 458 | const size_t size = ct * fp->size; |
| 459 | memset(dst, 0xFF, size); |
| 460 | } |
| 461 | |
| 462 | static void trianglex_debug(void* con, |
| 463 | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) |
| 464 | { |
| 465 | GGL_CONTEXT(c, con); |
| 466 | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { |
| 467 | aa_trianglex(con,v0,v1,v2); |
| 468 | } else { |
| 469 | trianglex_big(con,v0,v1,v2); |
| 470 | } |
| 471 | void (*save_scanline)(context_t*) = c->scanline; |
| 472 | c->scanline = scanline_set; |
| 473 | linex(con, v0, v1, TRI_ONE); |
| 474 | linex(con, v1, v2, TRI_ONE); |
| 475 | linex(con, v2, v0, TRI_ONE); |
| 476 | c->scanline = save_scanline; |
| 477 | } |
| 478 | |
| 479 | static void trianglex_xor(void* con, |
| 480 | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) |
| 481 | { |
| 482 | trianglex_big(con,v0,v1,v2); |
| 483 | trianglex_small(con,v0,v1,v2); |
| 484 | } |
| 485 | |
| 486 | // ---------------------------------------------------------------------------- |
| 487 | #if 0 |
| 488 | #pragma mark - |
| 489 | #pragma mark Triangle |
| 490 | #endif |
| 491 | |
| 492 | void trianglex_validate(void *con, |
| 493 | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) |
| 494 | { |
| 495 | GGL_CONTEXT(c, con); |
| 496 | ggl_pick(c); |
| 497 | if (c->state.needs.p & GGL_NEED_MASK(P_AA)) { |
| 498 | c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : aa_trianglex; |
| 499 | } else { |
| 500 | c->procs.trianglex = DEBUG_TRANGLES ? trianglex_debug : trianglex_big; |
| 501 | } |
| 502 | c->procs.trianglex(con, v0, v1, v2); |
| 503 | } |
| 504 | |
| 505 | // ---------------------------------------------------------------------------- |
| 506 | |
| 507 | void trianglex_small(void* con, |
| 508 | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) |
| 509 | { |
| 510 | GGL_CONTEXT(c, con); |
| 511 | |
| 512 | // vertices are in 28.4 fixed point, which allows |
| 513 | // us to use 32 bits multiplies below. |
| 514 | int32_t x0 = v0[0]; |
| 515 | int32_t y0 = v0[1]; |
| 516 | int32_t x1 = v1[0]; |
| 517 | int32_t y1 = v1[1]; |
| 518 | int32_t x2 = v2[0]; |
| 519 | int32_t y2 = v2[1]; |
| 520 | |
| 521 | int32_t dx01 = x0 - x1; |
| 522 | int32_t dy20 = y2 - y0; |
| 523 | int32_t dy01 = y0 - y1; |
| 524 | int32_t dx20 = x2 - x0; |
| 525 | |
| 526 | // The code below works only with CCW triangles |
| 527 | // so if we get a CW triangle, we need to swap two of its vertices |
| 528 | if (dx01*dy20 < dy01*dx20) { |
| 529 | swap(x0, x1); |
| 530 | swap(y0, y1); |
| 531 | dx01 = x0 - x1; |
| 532 | dy01 = y0 - y1; |
| 533 | dx20 = x2 - x0; |
| 534 | dy20 = y2 - y0; |
| 535 | } |
| 536 | int32_t dx12 = x1 - x2; |
| 537 | int32_t dy12 = y1 - y2; |
| 538 | |
| 539 | // bounding box & scissor |
| 540 | const int32_t bminx = TRI_FLOOR(min(x0, x1, x2)) >> TRI_FRACTION_BITS; |
| 541 | const int32_t bminy = TRI_FLOOR(min(y0, y1, y2)) >> TRI_FRACTION_BITS; |
| 542 | const int32_t bmaxx = TRI_CEIL( max(x0, x1, x2)) >> TRI_FRACTION_BITS; |
| 543 | const int32_t bmaxy = TRI_CEIL( max(y0, y1, y2)) >> TRI_FRACTION_BITS; |
| 544 | const int32_t minx = max(bminx, c->state.scissor.left); |
| 545 | const int32_t miny = max(bminy, c->state.scissor.top); |
| 546 | const int32_t maxx = min(bmaxx, c->state.scissor.right); |
| 547 | const int32_t maxy = min(bmaxy, c->state.scissor.bottom); |
| 548 | if ((minx >= maxx) || (miny >= maxy)) |
| 549 | return; // too small or clipped out... |
| 550 | |
| 551 | // step equations to the bounding box and snap to pixel center |
| 552 | const int32_t my = (miny << TRI_FRACTION_BITS) + TRI_HALF; |
| 553 | const int32_t mx = (minx << TRI_FRACTION_BITS) + TRI_HALF; |
| 554 | int32_t ey0 = dy01 * (x0 - mx) - dx01 * (y0 - my); |
| 555 | int32_t ey1 = dy12 * (x1 - mx) - dx12 * (y1 - my); |
| 556 | int32_t ey2 = dy20 * (x2 - mx) - dx20 * (y2 - my); |
| 557 | |
| 558 | // right-exclusive fill rule, to avoid rare cases |
| 559 | // of over drawing |
| 560 | if (dy01<0 || (dy01 == 0 && dx01>0)) ey0++; |
| 561 | if (dy12<0 || (dy12 == 0 && dx12>0)) ey1++; |
| 562 | if (dy20<0 || (dy20 == 0 && dx20>0)) ey2++; |
| 563 | |
| 564 | c->init_y(c, miny); |
| 565 | for (int32_t y = miny; y < maxy; y++) { |
| 566 | register int32_t ex0 = ey0; |
| 567 | register int32_t ex1 = ey1; |
| 568 | register int32_t ex2 = ey2; |
| 569 | register int32_t xl, xr; |
| 570 | for (xl=minx ; xl<maxx ; xl++) { |
| 571 | if (ex0>0 && ex1>0 && ex2>0) |
| 572 | break; // all strictly positive |
| 573 | ex0 -= dy01 << TRI_FRACTION_BITS; |
| 574 | ex1 -= dy12 << TRI_FRACTION_BITS; |
| 575 | ex2 -= dy20 << TRI_FRACTION_BITS; |
| 576 | } |
| 577 | xr = xl; |
| 578 | for ( ; xr<maxx ; xr++) { |
| 579 | if (!(ex0>0 && ex1>0 && ex2>0)) |
| 580 | break; // not all strictly positive |
| 581 | ex0 -= dy01 << TRI_FRACTION_BITS; |
| 582 | ex1 -= dy12 << TRI_FRACTION_BITS; |
| 583 | ex2 -= dy20 << TRI_FRACTION_BITS; |
| 584 | } |
| 585 | |
| 586 | if (xl < xr) { |
| 587 | c->iterators.xl = xl; |
| 588 | c->iterators.xr = xr; |
| 589 | c->scanline(c); |
| 590 | } |
| 591 | c->step_y(c); |
| 592 | |
| 593 | ey0 += dx01 << TRI_FRACTION_BITS; |
| 594 | ey1 += dx12 << TRI_FRACTION_BITS; |
| 595 | ey2 += dx20 << TRI_FRACTION_BITS; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | // ---------------------------------------------------------------------------- |
| 600 | #if 0 |
| 601 | #pragma mark - |
| 602 | #endif |
| 603 | |
| 604 | // the following routine fills a triangle via edge stepping, which |
| 605 | // unfortunately requires divisions in the setup phase to get right, |
| 606 | // it should probably only be used for relatively large trianges |
| 607 | |
| 608 | |
| 609 | // x = y*DX/DY (ou DX and DY are constants, DY > 0, et y >= 0) |
| 610 | // |
| 611 | // for an equation of the type: |
| 612 | // x' = y*K/2^p (with K and p constants "carefully chosen") |
| 613 | // |
| 614 | // We can now do a DDA without precision loss. We define 'e' by: |
| 615 | // x' - x = y*(DX/DY - K/2^p) = y*e |
| 616 | // |
| 617 | // If we choose K = round(DX*2^p/DY) then, |
| 618 | // abs(e) <= 1/2^(p+1) by construction |
| 619 | // |
| 620 | // therefore abs(x'-x) = y*abs(e) <= y/2^(p+1) <= DY/2^(p+1) <= DMAX/2^(p+1) |
| 621 | // |
| 622 | // which means that if DMAX <= 2^p, therefore abs(x-x') <= 1/2, including |
| 623 | // at the last line. In fact, it's even a strict inequality except in one |
| 624 | // extrem case (DY == DMAX et e = +/- 1/2) |
| 625 | // |
| 626 | // Applying that to our coordinates, we need 2^p >= 4096*16 = 65536 |
| 627 | // so p = 16 is enough, we're so lucky! |
| 628 | |
| 629 | const int TRI_ITERATORS_BITS = 16; |
| 630 | |
| 631 | struct Edge |
| 632 | { |
| 633 | int32_t x; // edge position in 16.16 coordinates |
| 634 | int32_t x_incr; // on each step, increment x by that amount |
| 635 | int32_t y_top; // starting scanline, 16.4 format |
| 636 | int32_t y_bot; |
| 637 | }; |
| 638 | |
| 639 | static void |
| 640 | edge_dump( Edge* edge ) |
| 641 | { |
| 642 | LOGI( " top=%d (%.3f) bot=%d (%.3f) x=%d (%.3f) ix=%d (%.3f)", |
| 643 | edge->y_top, edge->y_top/float(TRI_ONE), |
| 644 | edge->y_bot, edge->y_bot/float(TRI_ONE), |
| 645 | edge->x, edge->x/float(FIXED_ONE), |
| 646 | edge->x_incr, edge->x_incr/float(FIXED_ONE) ); |
| 647 | } |
| 648 | |
| 649 | static void |
| 650 | triangle_dump_edges( Edge* edges, |
| 651 | int count ) |
| 652 | { |
| 653 | LOGI( "%d edge%s:\n", count, count == 1 ? "" : "s" ); |
| 654 | for ( ; count > 0; count--, edges++ ) |
| 655 | edge_dump( edges ); |
| 656 | } |
| 657 | |
| 658 | // the following function sets up an edge, it assumes |
| 659 | // that ymin and ymax are in already in the 'reduced' |
| 660 | // format |
| 661 | static __attribute__((noinline)) |
| 662 | void edge_setup( |
| 663 | Edge* edges, |
| 664 | int* pcount, |
| 665 | const GGLcoord* p1, |
| 666 | const GGLcoord* p2, |
| 667 | int32_t ymin, |
| 668 | int32_t ymax ) |
| 669 | { |
| 670 | const GGLfixed* top = p1; |
| 671 | const GGLfixed* bot = p2; |
| 672 | Edge* edge = edges + *pcount; |
| 673 | |
| 674 | if (top[1] > bot[1]) { |
| 675 | swap(top, bot); |
| 676 | } |
| 677 | |
| 678 | int y1 = top[1] | 1; |
| 679 | int y2 = bot[1] | 1; |
| 680 | int dy = y2 - y1; |
| 681 | |
| 682 | if ( dy == 0 || y1 > ymax || y2 < ymin ) |
| 683 | return; |
| 684 | |
| 685 | if ( y1 > ymin ) |
| 686 | ymin = TRI_SNAP_NEXT_HALF(y1); |
| 687 | |
| 688 | if ( y2 < ymax ) |
| 689 | ymax = TRI_SNAP_PREV_HALF(y2); |
| 690 | |
| 691 | if ( ymin > ymax ) // when the edge doesn't cross any scanline |
| 692 | return; |
| 693 | |
| 694 | const int x1 = top[0]; |
| 695 | const int dx = bot[0] - x1; |
| 696 | const int shift = TRI_ITERATORS_BITS - TRI_FRACTION_BITS; |
| 697 | |
| 698 | // setup edge fields |
| 699 | // We add 0.5 to edge->x here because it simplifies the rounding |
| 700 | // in triangle_sweep_edges() -- this doesn't change the ordering of 'x' |
| 701 | edge->x = (x1 << shift) + (1LU << (TRI_ITERATORS_BITS-1)); |
| 702 | edge->x_incr = 0; |
| 703 | edge->y_top = ymin; |
| 704 | edge->y_bot = ymax; |
| 705 | |
| 706 | if (ggl_likely(ymin <= ymax && dx)) { |
| 707 | edge->x_incr = gglDivQ16(dx, dy); |
| 708 | } |
| 709 | if (ggl_likely(y1 < ymin)) { |
| 710 | int32_t xadjust = (edge->x_incr * (ymin-y1)) >> TRI_FRACTION_BITS; |
| 711 | edge->x += xadjust; |
| 712 | } |
| 713 | |
| 714 | ++*pcount; |
| 715 | } |
| 716 | |
| 717 | |
| 718 | static void |
| 719 | triangle_sweep_edges( Edge* left, |
| 720 | Edge* right, |
| 721 | int ytop, |
| 722 | int ybot, |
| 723 | context_t* c ) |
| 724 | { |
| 725 | int count = ((ybot - ytop)>>TRI_FRACTION_BITS) + 1; |
| 726 | if (count<=0) return; |
| 727 | |
| 728 | // sort the edges horizontally |
| 729 | if ((left->x > right->x) || |
| 730 | ((left->x == right->x) && (left->x_incr > right->x_incr))) { |
| 731 | swap(left, right); |
| 732 | } |
| 733 | |
| 734 | int left_x = left->x; |
| 735 | int right_x = right->x; |
| 736 | const int left_xi = left->x_incr; |
| 737 | const int right_xi = right->x_incr; |
| 738 | left->x += left_xi * count; |
| 739 | right->x += right_xi * count; |
| 740 | |
| 741 | const int xmin = c->state.scissor.left; |
| 742 | const int xmax = c->state.scissor.right; |
| 743 | do { |
| 744 | // horizontal scissoring |
| 745 | const int32_t xl = max(left_x >> TRI_ITERATORS_BITS, xmin); |
| 746 | const int32_t xr = min(right_x >> TRI_ITERATORS_BITS, xmax); |
| 747 | left_x += left_xi; |
| 748 | right_x += right_xi; |
| 749 | // invoke the scanline rasterizer |
| 750 | if (ggl_likely(xl < xr)) { |
| 751 | c->iterators.xl = xl; |
| 752 | c->iterators.xr = xr; |
| 753 | c->scanline(c); |
| 754 | } |
| 755 | c->step_y(c); |
| 756 | } while (--count); |
| 757 | } |
| 758 | |
| 759 | |
| 760 | void trianglex_big(void* con, |
| 761 | const GGLcoord* v0, const GGLcoord* v1, const GGLcoord* v2) |
| 762 | { |
| 763 | GGL_CONTEXT(c, con); |
| 764 | |
| 765 | Edge edges[3]; |
| 766 | int num_edges = 0; |
| 767 | int32_t ymin = TRI_FROM_INT(c->state.scissor.top) + TRI_HALF; |
| 768 | int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom) - TRI_HALF; |
| 769 | |
| 770 | edge_setup( edges, &num_edges, v0, v1, ymin, ymax ); |
| 771 | edge_setup( edges, &num_edges, v0, v2, ymin, ymax ); |
| 772 | edge_setup( edges, &num_edges, v1, v2, ymin, ymax ); |
| 773 | |
| 774 | if (ggl_unlikely(num_edges<2)) // for really tiny triangles that don't |
| 775 | return; // cross any scanline centers |
| 776 | |
| 777 | Edge* left = &edges[0]; |
| 778 | Edge* right = &edges[1]; |
| 779 | Edge* other = &edges[2]; |
| 780 | int32_t y_top = min(left->y_top, right->y_top); |
| 781 | int32_t y_bot = max(left->y_bot, right->y_bot); |
| 782 | |
| 783 | if (ggl_likely(num_edges==3)) { |
| 784 | y_top = min(y_top, edges[2].y_top); |
| 785 | y_bot = max(y_bot, edges[2].y_bot); |
| 786 | if (edges[0].y_top > y_top) { |
| 787 | other = &edges[0]; |
| 788 | left = &edges[2]; |
| 789 | } else if (edges[1].y_top > y_top) { |
| 790 | other = &edges[1]; |
| 791 | right = &edges[2]; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | c->init_y(c, y_top >> TRI_FRACTION_BITS); |
| 796 | |
| 797 | int32_t y_mid = min(left->y_bot, right->y_bot); |
| 798 | triangle_sweep_edges( left, right, y_top, y_mid, c ); |
| 799 | |
| 800 | // second scanline sweep loop, if necessary |
| 801 | y_mid += TRI_ONE; |
| 802 | if (y_mid <= y_bot) { |
| 803 | ((left->y_bot == y_bot) ? right : left) = other; |
| 804 | if (other->y_top < y_mid) { |
| 805 | other->x += other->x_incr; |
| 806 | } |
| 807 | triangle_sweep_edges( left, right, y_mid, y_bot, c ); |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | void aa_trianglex(void* con, |
| 812 | const GGLcoord* a, const GGLcoord* b, const GGLcoord* c) |
| 813 | { |
| 814 | GGLcoord pts[6] = { a[0], a[1], b[0], b[1], c[0], c[1] }; |
| 815 | aapolyx(con, pts, 3); |
| 816 | } |
| 817 | |
| 818 | // ---------------------------------------------------------------------------- |
| 819 | #if 0 |
| 820 | #pragma mark - |
| 821 | #endif |
| 822 | |
| 823 | struct AAEdge |
| 824 | { |
| 825 | GGLfixed x; // edge position in 12.16 coordinates |
| 826 | GGLfixed x_incr; // on each y step, increment x by that amount |
| 827 | GGLfixed y_incr; // on each x step, increment y by that amount |
| 828 | int16_t y_top; // starting scanline, 12.4 format |
| 829 | int16_t y_bot; // starting scanline, 12.4 format |
| 830 | void dump(); |
| 831 | }; |
| 832 | |
| 833 | void AAEdge::dump() |
| 834 | { |
| 835 | float tri = 1.0f / TRI_ONE; |
| 836 | float iter = 1.0f / (1<<TRI_ITERATORS_BITS); |
| 837 | float fix = 1.0f / FIXED_ONE; |
| 838 | LOGD( "x=%08x (%.3f), " |
| 839 | "x_incr=%08x (%.3f), y_incr=%08x (%.3f), " |
| 840 | "y_top=%08x (%.3f), y_bot=%08x (%.3f) ", |
| 841 | x, x*fix, |
| 842 | x_incr, x_incr*iter, |
| 843 | y_incr, y_incr*iter, |
| 844 | y_top, y_top*tri, |
| 845 | y_bot, y_bot*tri ); |
| 846 | } |
| 847 | |
| 848 | // the following function sets up an edge, it assumes |
| 849 | // that ymin and ymax are in already in the 'reduced' |
| 850 | // format |
| 851 | static __attribute__((noinline)) |
| 852 | void aa_edge_setup( |
| 853 | AAEdge* edges, |
| 854 | int* pcount, |
| 855 | const GGLcoord* p1, |
| 856 | const GGLcoord* p2, |
| 857 | int32_t ymin, |
| 858 | int32_t ymax ) |
| 859 | { |
| 860 | const GGLfixed* top = p1; |
| 861 | const GGLfixed* bot = p2; |
| 862 | AAEdge* edge = edges + *pcount; |
| 863 | |
| 864 | if (top[1] > bot[1]) |
| 865 | swap(top, bot); |
| 866 | |
| 867 | int y1 = top[1]; |
| 868 | int y2 = bot[1]; |
| 869 | int dy = y2 - y1; |
| 870 | |
| 871 | if (dy==0 || y1>ymax || y2<ymin) |
| 872 | return; |
| 873 | |
| 874 | if (y1 > ymin) |
| 875 | ymin = y1; |
| 876 | |
| 877 | if (y2 < ymax) |
| 878 | ymax = y2; |
| 879 | |
| 880 | const int x1 = top[0]; |
| 881 | const int dx = bot[0] - x1; |
| 882 | const int shift = FIXED_BITS - TRI_FRACTION_BITS; |
| 883 | |
| 884 | // setup edge fields |
| 885 | edge->x = x1 << shift; |
| 886 | edge->x_incr = 0; |
| 887 | edge->y_top = ymin; |
| 888 | edge->y_bot = ymax; |
| 889 | edge->y_incr = 0x7FFFFFFF; |
| 890 | |
| 891 | if (ggl_likely(ymin <= ymax && dx)) { |
| 892 | edge->x_incr = gglDivQ16(dx, dy); |
| 893 | if (dx != 0) { |
| 894 | edge->y_incr = abs(gglDivQ16(dy, dx)); |
| 895 | } |
| 896 | } |
| 897 | if (ggl_likely(y1 < ymin)) { |
| 898 | int32_t xadjust = (edge->x_incr * (ymin-y1)) |
| 899 | >> (TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS); |
| 900 | edge->x += xadjust; |
| 901 | } |
| 902 | |
| 903 | ++*pcount; |
| 904 | } |
| 905 | |
| 906 | |
| 907 | typedef int (*compar_t)(const void*, const void*); |
| 908 | static int compare_edges(const AAEdge *e0, const AAEdge *e1) { |
| 909 | if (e0->y_top > e1->y_top) return 1; |
| 910 | if (e0->y_top < e1->y_top) return -1; |
| 911 | if (e0->x > e1->x) return 1; |
| 912 | if (e0->x < e1->x) return -1; |
| 913 | if (e0->x_incr > e1->x_incr) return 1; |
| 914 | if (e0->x_incr < e1->x_incr) return -1; |
| 915 | return 0; // same edges, should never happen |
| 916 | } |
| 917 | |
| 918 | static inline |
| 919 | void SET_COVERAGE(int16_t*& p, int32_t value, ssize_t n) |
| 920 | { |
| 921 | android_memset16((uint16_t*)p, value, n*2); |
| 922 | p += n; |
| 923 | } |
| 924 | |
| 925 | static inline |
| 926 | void ADD_COVERAGE(int16_t*& p, int32_t value) |
| 927 | { |
| 928 | value = *p + value; |
| 929 | if (value >= 0x8000) |
| 930 | value = 0x7FFF; |
| 931 | *p++ = value; |
| 932 | } |
| 933 | |
| 934 | static inline |
| 935 | void SUB_COVERAGE(int16_t*& p, int32_t value) |
| 936 | { |
| 937 | value = *p - value; |
| 938 | value &= ~(value>>31); |
| 939 | *p++ = value; |
| 940 | } |
| 941 | |
| 942 | void aapolyx(void* con, |
| 943 | const GGLcoord* pts, int count) |
| 944 | { |
| 945 | /* |
| 946 | * NOTE: This routine assumes that the polygon has been clipped to the |
| 947 | * viewport already, that is, no vertex lies outside of the framebuffer. |
| 948 | * If this happens, the code below won't corrupt memory but the |
| 949 | * coverage values may not be correct. |
| 950 | */ |
| 951 | |
| 952 | GGL_CONTEXT(c, con); |
| 953 | |
| 954 | // we do only quads for now (it's used for thick lines) |
| 955 | if ((count>4) || (count<2)) return; |
| 956 | |
| 957 | // take scissor into account |
| 958 | const int xmin = c->state.scissor.left; |
| 959 | const int xmax = c->state.scissor.right; |
| 960 | if (xmin >= xmax) return; |
| 961 | |
| 962 | // generate edges from the vertices |
| 963 | int32_t ymin = TRI_FROM_INT(c->state.scissor.top); |
| 964 | int32_t ymax = TRI_FROM_INT(c->state.scissor.bottom); |
| 965 | if (ymin >= ymax) return; |
| 966 | |
| 967 | AAEdge edges[4]; |
| 968 | int num_edges = 0; |
| 969 | GGLcoord const * p = pts; |
| 970 | for (int i=0 ; i<count-1 ; i++, p+=2) { |
| 971 | aa_edge_setup(edges, &num_edges, p, p+2, ymin, ymax); |
| 972 | } |
| 973 | aa_edge_setup(edges, &num_edges, p, pts, ymin, ymax ); |
| 974 | if (ggl_unlikely(num_edges<2)) |
| 975 | return; |
| 976 | |
| 977 | // sort the edge list top to bottom, left to right. |
| 978 | qsort(edges, num_edges, sizeof(AAEdge), (compar_t)compare_edges); |
| 979 | |
| 980 | int16_t* const covPtr = c->state.buffers.coverage; |
| 981 | memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); |
| 982 | |
| 983 | // now, sweep all edges in order |
| 984 | // start with the 2 first edges. We know that they share their top |
| 985 | // vertex, by construction. |
| 986 | int i = 2; |
| 987 | AAEdge* left = &edges[0]; |
| 988 | AAEdge* right = &edges[1]; |
| 989 | int32_t yt = left->y_top; |
| 990 | GGLfixed l = left->x; |
| 991 | GGLfixed r = right->x; |
| 992 | int retire = 0; |
| 993 | int16_t* coverage; |
| 994 | |
| 995 | // at this point we can initialize the rasterizer |
| 996 | c->init_y(c, yt>>TRI_FRACTION_BITS); |
| 997 | c->iterators.xl = xmax; |
| 998 | c->iterators.xr = xmin; |
| 999 | |
| 1000 | do { |
| 1001 | int32_t y = min(min(left->y_bot, right->y_bot), TRI_FLOOR(yt + TRI_ONE)); |
| 1002 | const int32_t shift = TRI_FRACTION_BITS + TRI_ITERATORS_BITS - FIXED_BITS; |
| 1003 | const int cf_shift = (1 + TRI_FRACTION_BITS*2 + TRI_ITERATORS_BITS - 15); |
| 1004 | |
| 1005 | // compute xmin and xmax for the left edge |
| 1006 | GGLfixed l_min = gglMulAddx(left->x_incr, y - left->y_top, left->x, shift); |
| 1007 | GGLfixed l_max = l; |
| 1008 | l = l_min; |
| 1009 | if (l_min > l_max) |
| 1010 | swap(l_min, l_max); |
| 1011 | |
| 1012 | // compute xmin and xmax for the right edge |
| 1013 | GGLfixed r_min = gglMulAddx(right->x_incr, y - right->y_top, right->x, shift); |
| 1014 | GGLfixed r_max = r; |
| 1015 | r = r_min; |
| 1016 | if (r_min > r_max) |
| 1017 | swap(r_min, r_max); |
| 1018 | |
| 1019 | // make sure we're not touching coverage values outside of the |
| 1020 | // framebuffer |
| 1021 | l_min &= ~(l_min>>31); |
| 1022 | r_min &= ~(r_min>>31); |
| 1023 | l_max &= ~(l_max>>31); |
| 1024 | r_max &= ~(r_max>>31); |
| 1025 | if (gglFixedToIntFloor(l_min) >= xmax) l_min = gglIntToFixed(xmax)-1; |
| 1026 | if (gglFixedToIntFloor(r_min) >= xmax) r_min = gglIntToFixed(xmax)-1; |
| 1027 | if (gglFixedToIntCeil(l_max) >= xmax) l_max = gglIntToFixed(xmax)-1; |
| 1028 | if (gglFixedToIntCeil(r_max) >= xmax) r_max = gglIntToFixed(xmax)-1; |
| 1029 | |
| 1030 | // compute the integer versions of the above |
| 1031 | const GGLfixed l_min_i = gglFloorx(l_min); |
| 1032 | const GGLfixed l_max_i = gglCeilx (l_max); |
| 1033 | const GGLfixed r_min_i = gglFloorx(r_min); |
| 1034 | const GGLfixed r_max_i = gglCeilx (r_max); |
| 1035 | |
| 1036 | // clip horizontally using the scissor |
| 1037 | const int xml = max(xmin, gglFixedToIntFloor(l_min_i)); |
| 1038 | const int xmr = min(xmax, gglFixedToIntFloor(r_max_i)); |
| 1039 | |
| 1040 | // if we just stepped to a new scanline, render the previous one. |
| 1041 | // and clear the coverage buffer |
| 1042 | if (retire) { |
| 1043 | if (c->iterators.xl < c->iterators.xr) |
| 1044 | c->scanline(c); |
| 1045 | c->step_y(c); |
| 1046 | memset(covPtr+xmin, 0, (xmax-xmin)*sizeof(*covPtr)); |
| 1047 | c->iterators.xl = xml; |
| 1048 | c->iterators.xr = xmr; |
| 1049 | } else { |
| 1050 | // update the horizontal range of this scanline |
| 1051 | c->iterators.xl = min(c->iterators.xl, xml); |
| 1052 | c->iterators.xr = max(c->iterators.xr, xmr); |
| 1053 | } |
| 1054 | |
| 1055 | coverage = covPtr + gglFixedToIntFloor(l_min_i); |
| 1056 | if (l_min_i == gglFloorx(l_max)) { |
| 1057 | |
| 1058 | /* |
| 1059 | * fully traverse this pixel vertically |
| 1060 | * l_max |
| 1061 | * +-----/--+ yt |
| 1062 | * | / | |
| 1063 | * | / | |
| 1064 | * | / | |
| 1065 | * +-/------+ y |
| 1066 | * l_min (l_min_i + TRI_ONE) |
| 1067 | */ |
| 1068 | |
| 1069 | GGLfixed dx = l_max - l_min; |
| 1070 | int32_t dy = y - yt; |
| 1071 | int cf = gglMulx((dx >> 1) + (l_min_i + FIXED_ONE - l_max), dy, |
| 1072 | FIXED_BITS + TRI_FRACTION_BITS - 15); |
| 1073 | ADD_COVERAGE(coverage, cf); |
| 1074 | // all pixels on the right have cf = 1.0 |
| 1075 | } else { |
| 1076 | /* |
| 1077 | * spans several pixels in one scanline |
| 1078 | * l_max |
| 1079 | * +--------+--/-----+ yt |
| 1080 | * | |/ | |
| 1081 | * | /| | |
| 1082 | * | / | | |
| 1083 | * +---/----+--------+ y |
| 1084 | * l_min (l_min_i + TRI_ONE) |
| 1085 | */ |
| 1086 | |
| 1087 | // handle the first pixel separately... |
| 1088 | const int32_t y_incr = left->y_incr; |
| 1089 | int32_t dx = TRI_FROM_FIXED(l_min_i - l_min) + TRI_ONE; |
| 1090 | int32_t cf = (dx * dx * y_incr) >> cf_shift; |
| 1091 | ADD_COVERAGE(coverage, cf); |
| 1092 | |
| 1093 | // following pixels get covered by y_incr, but we need |
| 1094 | // to fix-up the cf to account for previous partial pixel |
| 1095 | dx = TRI_FROM_FIXED(l_min - l_min_i); |
| 1096 | cf -= (dx * dx * y_incr) >> cf_shift; |
| 1097 | for (int x = l_min_i+FIXED_ONE ; x < l_max_i-FIXED_ONE ; x += FIXED_ONE) { |
| 1098 | cf += y_incr >> (TRI_ITERATORS_BITS-15); |
| 1099 | ADD_COVERAGE(coverage, cf); |
| 1100 | } |
| 1101 | |
| 1102 | // and the last pixel |
| 1103 | dx = TRI_FROM_FIXED(l_max - l_max_i) - TRI_ONE; |
| 1104 | cf += (dx * dx * y_incr) >> cf_shift; |
| 1105 | ADD_COVERAGE(coverage, cf); |
| 1106 | } |
| 1107 | |
| 1108 | // now, fill up all fully covered pixels |
| 1109 | coverage = covPtr + gglFixedToIntFloor(l_max_i); |
| 1110 | int cf = ((y - yt) << (15 - TRI_FRACTION_BITS)); |
| 1111 | if (ggl_likely(cf >= 0x8000)) { |
| 1112 | SET_COVERAGE(coverage, 0x7FFF, ((r_max - l_max_i)>>FIXED_BITS)+1); |
| 1113 | } else { |
| 1114 | for (int x=l_max_i ; x<r_max ; x+=FIXED_ONE) { |
| 1115 | ADD_COVERAGE(coverage, cf); |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | // subtract the coverage of the right edge |
| 1120 | coverage = covPtr + gglFixedToIntFloor(r_min_i); |
| 1121 | if (r_min_i == gglFloorx(r_max)) { |
| 1122 | GGLfixed dx = r_max - r_min; |
| 1123 | int32_t dy = y - yt; |
| 1124 | int cf = gglMulx((dx >> 1) + (r_min_i + FIXED_ONE - r_max), dy, |
| 1125 | FIXED_BITS + TRI_FRACTION_BITS - 15); |
| 1126 | SUB_COVERAGE(coverage, cf); |
| 1127 | // all pixels on the right have cf = 1.0 |
| 1128 | } else { |
| 1129 | // handle the first pixel separately... |
| 1130 | const int32_t y_incr = right->y_incr; |
| 1131 | int32_t dx = TRI_FROM_FIXED(r_min_i - r_min) + TRI_ONE; |
| 1132 | int32_t cf = (dx * dx * y_incr) >> cf_shift; |
| 1133 | SUB_COVERAGE(coverage, cf); |
| 1134 | |
| 1135 | // following pixels get covered by y_incr, but we need |
| 1136 | // to fix-up the cf to account for previous partial pixel |
| 1137 | dx = TRI_FROM_FIXED(r_min - r_min_i); |
| 1138 | cf -= (dx * dx * y_incr) >> cf_shift; |
| 1139 | for (int x = r_min_i+FIXED_ONE ; x < r_max_i-FIXED_ONE ; x += FIXED_ONE) { |
| 1140 | cf += y_incr >> (TRI_ITERATORS_BITS-15); |
| 1141 | SUB_COVERAGE(coverage, cf); |
| 1142 | } |
| 1143 | |
| 1144 | // and the last pixel |
| 1145 | dx = TRI_FROM_FIXED(r_max - r_max_i) - TRI_ONE; |
| 1146 | cf += (dx * dx * y_incr) >> cf_shift; |
| 1147 | SUB_COVERAGE(coverage, cf); |
| 1148 | } |
| 1149 | |
| 1150 | // did we reach the end of an edge? if so, get a new one. |
| 1151 | if (y == left->y_bot || y == right->y_bot) { |
| 1152 | // bail out if we're done |
| 1153 | if (i>=num_edges) |
| 1154 | break; |
| 1155 | if (y == left->y_bot) |
| 1156 | left = &edges[i++]; |
| 1157 | if (y == right->y_bot) |
| 1158 | right = &edges[i++]; |
| 1159 | } |
| 1160 | |
| 1161 | // next scanline |
| 1162 | yt = y; |
| 1163 | |
| 1164 | // did we just finish a scanline? |
| 1165 | retire = (y << (32-TRI_FRACTION_BITS)) == 0; |
| 1166 | } while (true); |
| 1167 | |
| 1168 | // render the last scanline |
| 1169 | if (c->iterators.xl < c->iterators.xr) |
| 1170 | c->scanline(c); |
| 1171 | } |
| 1172 | |
| 1173 | }; // namespace android |