blob: 7ad34b051bad8ef8a6dc76ffe8a0d2dfc7b50c17 [file] [log] [blame]
Martyn Capewellf9e8ab02009-12-07 15:00:19 +00001/* libs/pixelflinger/col32cb16blend_neon.S
Dave Butcheref182022010-08-19 12:31:34 +01002 *
3 * Copyright (C) 2009 The Android Open Source Project
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
Martyn Capewellf9e8ab02009-12-07 15:00:19 +000018
19 .text
Nikola Veljkovic1109f112016-07-13 22:08:18 +020020 .balign 4
Martyn Capewellf9e8ab02009-12-07 15:00:19 +000021
22 .global scanline_col32cb16blend_neon
23
24//
25// This function alpha blends a fixed color into a destination scanline, using
26// the formula:
27//
28// d = s + (((a + (a >> 7)) * d) >> 8)
29//
30// where d is the destination pixel,
31// s is the source color,
32// a is the alpha channel of the source color.
33//
34// The NEON implementation processes 16 pixels per iteration. The remaining 0 - 15
35// pixels are processed in ARM code.
36//
37
38// r0 = destination buffer pointer
39// r1 = color pointer
40// r2 = count
41
42
43scanline_col32cb16blend_neon:
44 push {r4-r11, lr} // stack ARM regs
45
46 vmov.u16 q15, #256 // create alpha constant
47 movs r3, r2, lsr #4 // calc. sixteens iterations
48 vmov.u16 q14, #0x1f // create blue mask
49
50 beq 2f // if r3 == 0, branch to singles
51
52 vld4.8 {d0[], d2[], d4[], d6[]}, [r1] // load color into four registers
53 // split and duplicate them, such that
54 // d0 = 8 equal red values
55 // d2 = 8 equal green values
56 // d4 = 8 equal blue values
57 // d6 = 8 equal alpha values
58 vshll.u8 q0, d0, #5 // shift up red and widen
59 vshll.u8 q1, d2, #6 // shift up green and widen
60 vshll.u8 q2, d4, #5 // shift up blue and widen
61
62 vshr.u8 d7, d6, #7 // extract top bit of alpha
63 vaddl.u8 q3, d6, d7 // add top bit into alpha
64 vsub.u16 q3, q15, q3 // invert alpha
65
661:
67 // This loop processes 16 pixels per iteration. In the comments, references to
68 // the first eight pixels are suffixed with "0" (red0, green0, blue0),
69 // the second eight are suffixed "1".
70 // q8 = dst red0
71 // q9 = dst green0
72 // q10 = dst blue0
73 // q13 = dst red1
74 // q12 = dst green1
75 // q11 = dst blue1
76
77 vld1.16 {d20, d21, d22, d23}, [r0] // load 16 dest pixels
78 vshr.u16 q8, q10, #11 // shift dst red0 to low 5 bits
79 pld [r0, #63] // preload next dest pixels
80 vshl.u16 q9, q10, #5 // shift dst green0 to top 6 bits
81 vand q10, q10, q14 // extract dst blue0
82 vshr.u16 q9, q9, #10 // shift dst green0 to low 6 bits
83 vmul.u16 q8, q8, q3 // multiply dst red0 by src alpha
84 vshl.u16 q12, q11, #5 // shift dst green1 to top 6 bits
85 vmul.u16 q9, q9, q3 // multiply dst green0 by src alpha
86 vshr.u16 q13, q11, #11 // shift dst red1 to low 5 bits
87 vmul.u16 q10, q10, q3 // multiply dst blue0 by src alpha
88 vshr.u16 q12, q12, #10 // shift dst green1 to low 6 bits
89 vand q11, q11, q14 // extract dst blue1
90 vadd.u16 q8, q8, q0 // add src red to dst red0
91 vmul.u16 q13, q13, q3 // multiply dst red1 by src alpha
92 vadd.u16 q9, q9, q1 // add src green to dst green0
93 vmul.u16 q12, q12, q3 // multiply dst green1 by src alpha
94 vadd.u16 q10, q10, q2 // add src blue to dst blue0
95 vmul.u16 q11, q11, q3 // multiply dst blue1 by src alpha
96 vshr.u16 q8, q8, #8 // shift down red0
97 vadd.u16 q13, q13, q0 // add src red to dst red1
98 vshr.u16 q9, q9, #8 // shift down green0
99 vadd.u16 q12, q12, q1 // add src green to dst green1
100 vshr.u16 q10, q10, #8 // shift down blue0
101 vadd.u16 q11, q11, q2 // add src blue to dst blue1
102 vsli.u16 q10, q9, #5 // shift & insert green0 into blue0
103 vshr.u16 q13, q13, #8 // shift down red1
104 vsli.u16 q10, q8, #11 // shift & insert red0 into blue0
105 vshr.u16 q12, q12, #8 // shift down green1
106 vshr.u16 q11, q11, #8 // shift down blue1
107 subs r3, r3, #1 // decrement loop counter
108 vsli.u16 q11, q12, #5 // shift & insert green1 into blue1
109 vsli.u16 q11, q13, #11 // shift & insert red1 into blue1
110
111 vst1.16 {d20, d21, d22, d23}, [r0]! // write 16 pixels back to dst
112 bne 1b // if count != 0, loop
113
1142:
115 ands r3, r2, #15 // calc. single iterations
116 beq 4f // if r3 == 0, exit
117
118 ldr r4, [r1] // load source color
119 mov r5, r4, lsr #24 // shift down alpha
120 add r5, r5, r5, lsr #7 // add in top bit
121 rsb r5, r5, #256 // invert alpha
122 and r11, r4, #0xff // extract red
123 ubfx r12, r4, #8, #8 // extract green
124 ubfx r4, r4, #16, #8 // extract blue
125 mov r11, r11, lsl #5 // prescale red
126 mov r12, r12, lsl #6 // prescale green
127 mov r4, r4, lsl #5 // prescale blue
128
1293:
130 ldrh r8, [r0] // load dest pixel
131 subs r3, r3, #1 // decrement loop counter
132 mov r6, r8, lsr #11 // extract dest red
133 ubfx r7, r8, #5, #6 // extract dest green
134 and r8, r8, #0x1f // extract dest blue
135
136 smlabb r6, r6, r5, r11 // dest red * alpha + src red
137 smlabb r7, r7, r5, r12 // dest green * alpha + src green
138 smlabb r8, r8, r5, r4 // dest blue * alpha + src blue
139
140 mov r6, r6, lsr #8 // shift down red
141 mov r7, r7, lsr #8 // shift down green
142 mov r6, r6, lsl #11 // shift red into 565
143 orr r6, r7, lsl #5 // shift green into 565
144 orr r6, r8, lsr #8 // shift blue into 565
145
146 strh r6, [r0], #2 // store pixel to dest, update ptr
147 bne 3b // if count != 0, loop
1484:
149
150 pop {r4-r11, pc} // return
151
152
153