| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_HIDL_SUPPORT_H |
| #define ANDROID_HIDL_SUPPORT_H |
| |
| #include <algorithm> |
| #include <array> |
| #include <iterator> |
| #include <hidl/HidlInternal.h> |
| #include <map> |
| #include <sstream> |
| #include <stddef.h> |
| #include <tuple> |
| #include <type_traits> |
| #include <vector> |
| |
| // no requirements on types not used in scatter/gather |
| // no requirements on other libraries |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wpadded" |
| #include <cutils/native_handle.h> |
| #include <hidl/Status.h> |
| #include <utils/Errors.h> |
| #include <utils/RefBase.h> |
| #include <utils/StrongPointer.h> |
| #pragma clang diagnostic pop |
| |
| namespace android { |
| |
| // this file is included by all hidl interface, so we must forward declare the |
| // IMemory and IBase types. |
| namespace hidl { |
| namespace memory { |
| namespace V1_0 { |
| |
| struct IMemory; |
| |
| } // namespace V1_0 |
| } // namespace memory |
| } // namespace hidl |
| |
| namespace hidl { |
| namespace base { |
| namespace V1_0 { |
| |
| struct IBase; |
| |
| } // namespace V1_0 |
| } // namespace base |
| } // namespace hidl |
| |
| namespace hardware { |
| |
| namespace details { |
| // Return true on userdebug / eng builds and false on user builds. |
| bool debuggable(); |
| } // namespace details |
| |
| // hidl_death_recipient is a callback interfaced that can be used with |
| // linkToDeath() / unlinkToDeath() |
| struct hidl_death_recipient : public virtual RefBase { |
| virtual void serviceDied(uint64_t cookie, |
| const ::android::wp<::android::hidl::base::V1_0::IBase>& who) = 0; |
| }; |
| |
| // hidl_handle wraps a pointer to a native_handle_t in a hidl_pointer, |
| // so that it can safely be transferred between 32-bit and 64-bit processes. |
| // The ownership semantics for this are: |
| // 1) The conversion constructor and assignment operator taking a const native_handle_t* |
| // do not take ownership of the handle; this is because these operations are usually |
| // just done for IPC, and cloning by default is a waste of resources. If you want |
| // a hidl_handle to take ownership, call setTo(handle, true /*shouldOwn*/); |
| // 2) The copy constructor/assignment operator taking a hidl_handle *DO* take ownership; |
| // that is because it's not intuitive that this class encapsulates a native_handle_t |
| // which needs cloning to be valid; in particular, this allows constructs like this: |
| // hidl_handle copy; |
| // foo->someHidlCall([&](auto incoming_handle) { |
| // copy = incoming_handle; |
| // }); |
| // // copy and its enclosed file descriptors will remain valid here. |
| // 3) The move constructor does what you would expect; it only owns the handle if the |
| // original did. |
| struct hidl_handle { |
| hidl_handle(); |
| ~hidl_handle(); |
| |
| hidl_handle(const native_handle_t *handle); |
| |
| // copy constructor. |
| hidl_handle(const hidl_handle &other); |
| |
| // move constructor. |
| hidl_handle(hidl_handle &&other) noexcept; |
| |
| // assignment operators |
| hidl_handle &operator=(const hidl_handle &other); |
| |
| hidl_handle &operator=(const native_handle_t *native_handle); |
| |
| hidl_handle &operator=(hidl_handle &&other) noexcept; |
| |
| void setTo(native_handle_t* handle, bool shouldOwn = false); |
| |
| const native_handle_t* operator->() const; |
| |
| // implicit conversion to const native_handle_t* |
| operator const native_handle_t *() const; |
| |
| // explicit conversion |
| const native_handle_t *getNativeHandle() const; |
| |
| // offsetof(hidl_handle, mHandle) exposed since mHandle is private. |
| static const size_t kOffsetOfNativeHandle; |
| |
| private: |
| void freeHandle(); |
| |
| details::hidl_pointer<const native_handle_t> mHandle; |
| bool mOwnsHandle; |
| uint8_t mPad[7]; |
| }; |
| |
| struct hidl_string { |
| hidl_string(); |
| ~hidl_string(); |
| |
| // copy constructor. |
| hidl_string(const hidl_string &); |
| // copy from a C-style string. nullptr will create an empty string |
| hidl_string(const char *); |
| // copy the first length characters from a C-style string. |
| hidl_string(const char *, size_t length); |
| // copy from an std::string. |
| hidl_string(const std::string &); |
| |
| // move constructor. |
| hidl_string(hidl_string &&) noexcept; |
| |
| const char *c_str() const; |
| size_t size() const; |
| bool empty() const; |
| |
| // copy assignment operator. |
| hidl_string &operator=(const hidl_string &); |
| // copy from a C-style string. |
| hidl_string &operator=(const char *s); |
| // copy from an std::string. |
| hidl_string &operator=(const std::string &); |
| // move assignment operator. |
| hidl_string &operator=(hidl_string &&other) noexcept; |
| // cast to std::string. |
| operator std::string() const; |
| |
| void clear(); |
| |
| // Reference an external char array. Ownership is _not_ transferred. |
| // Caller is responsible for ensuring that underlying memory is valid |
| // for the lifetime of this hidl_string. |
| // |
| // size == strlen(data) |
| void setToExternal(const char *data, size_t size); |
| |
| // offsetof(hidl_string, mBuffer) exposed since mBuffer is private. |
| static const size_t kOffsetOfBuffer; |
| |
| private: |
| details::hidl_pointer<const char> mBuffer; |
| uint32_t mSize; // NOT including the terminating '\0'. |
| bool mOwnsBuffer; // if true then mBuffer is a mutable char * |
| uint8_t mPad[3]; |
| |
| // copy from data with size. Assume that my memory is freed |
| // (through clear(), for example) |
| void copyFrom(const char *data, size_t size); |
| // move from another hidl_string |
| void moveFrom(hidl_string &&); |
| }; |
| |
| // Use NOLINT to suppress missing parentheses warnings around OP. |
| #define HIDL_STRING_OPERATOR(OP) \ |
| inline bool operator OP(const hidl_string& hs1, const hidl_string& hs2) { \ |
| return strcmp(hs1.c_str(), hs2.c_str()) OP 0; /* NOLINT */ \ |
| } \ |
| inline bool operator OP(const hidl_string& hs, const char* s) { \ |
| return strcmp(hs.c_str(), s) OP 0; /* NOLINT */ \ |
| } \ |
| inline bool operator OP(const char* s, const hidl_string& hs) { \ |
| return strcmp(s, hs.c_str()) OP 0; /* NOLINT */ \ |
| } |
| |
| HIDL_STRING_OPERATOR(==) |
| HIDL_STRING_OPERATOR(!=) |
| HIDL_STRING_OPERATOR(<) |
| HIDL_STRING_OPERATOR(<=) |
| HIDL_STRING_OPERATOR(>) |
| HIDL_STRING_OPERATOR(>=) |
| |
| #undef HIDL_STRING_OPERATOR |
| |
| // Send our content to the output stream |
| std::ostream& operator<<(std::ostream& os, const hidl_string& str); |
| |
| |
| // hidl_memory is a structure that can be used to transfer |
| // pieces of shared memory between processes. The assumption |
| // of this object is that the memory remains accessible as |
| // long as the file descriptors in the enclosed mHandle |
| // - as well as all of its cross-process dups() - remain opened. |
| struct hidl_memory { |
| |
| hidl_memory() : mHandle(nullptr), mSize(0), mName("") { |
| } |
| |
| /** |
| * Creates a hidl_memory object whose handle has the same lifetime |
| * as the handle moved into it. |
| */ |
| hidl_memory(const hidl_string& name, hidl_handle&& handle, size_t size) |
| : mHandle(std::move(handle)), mSize(size), mName(name) {} |
| |
| /** |
| * Creates a hidl_memory object, but doesn't take ownership of |
| * the passed in native_handle_t; callers are responsible for |
| * making sure the handle remains valid while this object is |
| * used. |
| */ |
| hidl_memory(const hidl_string &name, const native_handle_t *handle, size_t size) |
| : mHandle(handle), |
| mSize(size), |
| mName(name) |
| {} |
| |
| // copy constructor |
| hidl_memory(const hidl_memory& other) { |
| *this = other; |
| } |
| |
| // copy assignment |
| hidl_memory &operator=(const hidl_memory &other) { |
| if (this != &other) { |
| mHandle = other.mHandle; |
| mSize = other.mSize; |
| mName = other.mName; |
| } |
| |
| return *this; |
| } |
| |
| // move constructor |
| hidl_memory(hidl_memory&& other) noexcept { |
| *this = std::move(other); |
| } |
| |
| // move assignment |
| hidl_memory &operator=(hidl_memory &&other) noexcept { |
| if (this != &other) { |
| mHandle = std::move(other.mHandle); |
| mSize = other.mSize; |
| mName = std::move(other.mName); |
| other.mSize = 0; |
| } |
| |
| return *this; |
| } |
| |
| |
| ~hidl_memory() { |
| } |
| |
| const native_handle_t* handle() const { |
| return mHandle; |
| } |
| |
| const hidl_string &name() const { |
| return mName; |
| } |
| |
| uint64_t size() const { |
| return mSize; |
| } |
| |
| // @return true if it's valid |
| inline bool valid() const { return handle() != nullptr; } |
| |
| // offsetof(hidl_memory, mHandle) exposed since mHandle is private. |
| static const size_t kOffsetOfHandle; |
| // offsetof(hidl_memory, mName) exposed since mHandle is private. |
| static const size_t kOffsetOfName; |
| |
| private: |
| hidl_handle mHandle; |
| uint64_t mSize; |
| hidl_string mName; |
| }; |
| |
| // HidlMemory is a wrapper class to support sp<> for hidl_memory. It also |
| // provides factory methods to create an instance from hidl_memory or |
| // from a opened file descriptor. The number of factory methods can be increase |
| // to support other type of hidl_memory without break the ABI. |
| class HidlMemory : public virtual hidl_memory, public virtual ::android::RefBase { |
| public: |
| static sp<HidlMemory> getInstance(const hidl_memory& mem); |
| |
| static sp<HidlMemory> getInstance(hidl_memory&& mem); |
| |
| static sp<HidlMemory> getInstance(const hidl_string& name, hidl_handle&& handle, uint64_t size); |
| // @param fd, shall be opened and points to the resource. |
| // @note this method takes the ownership of the fd and will close it in |
| // destructor |
| // @return nullptr in failure with the fd closed |
| static sp<HidlMemory> getInstance(const hidl_string& name, int fd, uint64_t size); |
| |
| virtual ~HidlMemory(); |
| |
| protected: |
| HidlMemory(); |
| HidlMemory(const hidl_string& name, hidl_handle&& handle, size_t size); |
| }; |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| template<typename T> |
| struct hidl_vec { |
| using value_type = T; |
| |
| hidl_vec() : mBuffer(nullptr), mSize(0), mOwnsBuffer(true) { |
| static_assert(hidl_vec<T>::kOffsetOfBuffer == 0, "wrong offset"); |
| |
| // mOwnsBuffer true to match original implementation |
| |
| memset(mPad, 0, sizeof(mPad)); |
| } |
| |
| // Note, does not initialize primitive types. |
| hidl_vec(size_t size) : hidl_vec() { resize(size); } |
| |
| hidl_vec(const hidl_vec<T> &other) : hidl_vec() { |
| *this = other; |
| } |
| |
| hidl_vec(hidl_vec<T> &&other) noexcept : hidl_vec() { |
| *this = std::move(other); |
| } |
| |
| hidl_vec(const std::initializer_list<T> list) : hidl_vec() { *this = list; } |
| |
| hidl_vec(const std::vector<T> &other) : hidl_vec() { |
| *this = other; |
| } |
| |
| template <typename InputIterator, |
| typename = typename std::enable_if<std::is_convertible< |
| typename std::iterator_traits<InputIterator>::iterator_category, |
| std::input_iterator_tag>::value>::type> |
| hidl_vec(InputIterator first, InputIterator last) : hidl_vec() { |
| auto size = std::distance(first, last); |
| if (size > static_cast<int64_t>(UINT32_MAX)) { |
| details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements."); |
| } |
| if (size < 0) { |
| details::logAlwaysFatal("size can't be negative."); |
| } |
| mSize = static_cast<uint32_t>(size); |
| mBuffer = new T[mSize](); |
| mOwnsBuffer = true; |
| |
| size_t idx = 0; |
| for (; first != last; ++first) { |
| mBuffer[idx++] = static_cast<T>(*first); |
| } |
| } |
| |
| ~hidl_vec() { |
| if (mOwnsBuffer) { |
| delete[] mBuffer; |
| } |
| mBuffer = nullptr; |
| } |
| |
| // Reference an existing array, optionally taking ownership. It is the |
| // caller's responsibility to ensure that the underlying memory stays |
| // valid for the lifetime of this hidl_vec. |
| void setToExternal(T *data, size_t size, bool shouldOwn = false) { |
| if (mOwnsBuffer) { |
| delete [] mBuffer; |
| } |
| mBuffer = data; |
| if (size > UINT32_MAX) { |
| details::logAlwaysFatal("external vector size exceeds 2^32 elements."); |
| } |
| mSize = static_cast<uint32_t>(size); |
| mOwnsBuffer = shouldOwn; |
| } |
| |
| T *data() { |
| return mBuffer; |
| } |
| |
| const T *data() const { |
| return mBuffer; |
| } |
| |
| T *releaseData() { |
| if (!mOwnsBuffer && mSize > 0) { |
| resize(mSize); |
| } |
| mOwnsBuffer = false; |
| return mBuffer; |
| } |
| |
| hidl_vec &operator=(hidl_vec &&other) noexcept { |
| if (mOwnsBuffer) { |
| delete[] mBuffer; |
| } |
| mBuffer = other.mBuffer; |
| mSize = other.mSize; |
| mOwnsBuffer = other.mOwnsBuffer; |
| other.mOwnsBuffer = false; |
| return *this; |
| } |
| |
| hidl_vec &operator=(const hidl_vec &other) { |
| if (this != &other) { |
| if (mOwnsBuffer) { |
| delete[] mBuffer; |
| } |
| copyFrom(other, other.mSize); |
| } |
| |
| return *this; |
| } |
| |
| // copy from an std::vector. |
| hidl_vec &operator=(const std::vector<T> &other) { |
| if (mOwnsBuffer) { |
| delete[] mBuffer; |
| } |
| copyFrom(other, other.size()); |
| return *this; |
| } |
| |
| hidl_vec& operator=(const std::initializer_list<T> list) { |
| if (list.size() > UINT32_MAX) { |
| details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements."); |
| } |
| if (mOwnsBuffer) { |
| delete[] mBuffer; |
| } |
| mSize = static_cast<uint32_t>(list.size()); |
| mBuffer = new T[mSize](); |
| mOwnsBuffer = true; |
| |
| size_t idx = 0; |
| for (auto it = list.begin(); it != list.end(); ++it) { |
| mBuffer[idx++] = *it; |
| } |
| return *this; |
| } |
| |
| // cast to an std::vector. |
| operator std::vector<T>() const { |
| std::vector<T> v(mSize); |
| for (size_t i = 0; i < mSize; ++i) { |
| v[i] = mBuffer[i]; |
| } |
| return v; |
| } |
| |
| // equality check, assuming that T::operator== is defined. |
| bool operator==(const hidl_vec &other) const { |
| if (mSize != other.size()) { |
| return false; |
| } |
| for (size_t i = 0; i < mSize; ++i) { |
| if (!(mBuffer[i] == other.mBuffer[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // inequality check, assuming that T::operator== is defined. |
| inline bool operator!=(const hidl_vec &other) const { |
| return !((*this) == other); |
| } |
| |
| size_t size() const { |
| return mSize; |
| } |
| |
| T &operator[](size_t index) { |
| return mBuffer[index]; |
| } |
| |
| const T &operator[](size_t index) const { |
| return mBuffer[index]; |
| } |
| |
| // Does not initialize primitive types if new size > old size. |
| void resize(size_t size) { |
| if (size > UINT32_MAX) { |
| details::logAlwaysFatal("hidl_vec can't hold more than 2^32 elements."); |
| } |
| T* newBuffer = new T[size](); |
| |
| for (size_t i = 0; i < std::min(static_cast<uint32_t>(size), mSize); ++i) { |
| newBuffer[i] = std::move(mBuffer[i]); |
| } |
| |
| if (mOwnsBuffer) { |
| delete[] mBuffer; |
| } |
| mBuffer = newBuffer; |
| |
| mSize = static_cast<uint32_t>(size); |
| mOwnsBuffer = true; |
| } |
| |
| // offsetof(hidl_string, mBuffer) exposed since mBuffer is private. |
| static const size_t kOffsetOfBuffer; |
| |
| private: |
| // Define std interator interface for walking the array contents |
| template<bool is_const> |
| class iter : public std::iterator< |
| std::random_access_iterator_tag, /* Category */ |
| T, |
| ptrdiff_t, /* Distance */ |
| typename std::conditional<is_const, const T *, T *>::type /* Pointer */, |
| typename std::conditional<is_const, const T &, T &>::type /* Reference */> |
| { |
| using traits = std::iterator_traits<iter>; |
| using ptr_type = typename traits::pointer; |
| using ref_type = typename traits::reference; |
| using diff_type = typename traits::difference_type; |
| public: |
| iter(ptr_type ptr) : mPtr(ptr) { } |
| inline iter &operator++() { mPtr++; return *this; } |
| inline iter operator++(int) { iter i = *this; mPtr++; return i; } |
| inline iter &operator--() { mPtr--; return *this; } |
| inline iter operator--(int) { iter i = *this; mPtr--; return i; } |
| inline friend iter operator+(diff_type n, const iter &it) { return it.mPtr + n; } |
| inline iter operator+(diff_type n) const { return mPtr + n; } |
| inline iter operator-(diff_type n) const { return mPtr - n; } |
| inline diff_type operator-(const iter &other) const { return mPtr - other.mPtr; } |
| inline iter &operator+=(diff_type n) { mPtr += n; return *this; } |
| inline iter &operator-=(diff_type n) { mPtr -= n; return *this; } |
| inline ref_type operator*() const { return *mPtr; } |
| inline ptr_type operator->() const { return mPtr; } |
| inline bool operator==(const iter &rhs) const { return mPtr == rhs.mPtr; } |
| inline bool operator!=(const iter &rhs) const { return mPtr != rhs.mPtr; } |
| inline bool operator< (const iter &rhs) const { return mPtr < rhs.mPtr; } |
| inline bool operator> (const iter &rhs) const { return mPtr > rhs.mPtr; } |
| inline bool operator<=(const iter &rhs) const { return mPtr <= rhs.mPtr; } |
| inline bool operator>=(const iter &rhs) const { return mPtr >= rhs.mPtr; } |
| inline ref_type operator[](size_t n) const { return mPtr[n]; } |
| private: |
| ptr_type mPtr; |
| }; |
| public: |
| using iterator = iter<false /* is_const */>; |
| using const_iterator = iter<true /* is_const */>; |
| |
| iterator begin() { return data(); } |
| iterator end() { return data()+mSize; } |
| const_iterator begin() const { return data(); } |
| const_iterator end() const { return data()+mSize; } |
| iterator find(const T& v) { return std::find(begin(), end(), v); } |
| const_iterator find(const T& v) const { return std::find(begin(), end(), v); } |
| bool contains(const T& v) const { return find(v) != end(); } |
| |
| private: |
| details::hidl_pointer<T> mBuffer; |
| uint32_t mSize; |
| bool mOwnsBuffer; |
| uint8_t mPad[3]; |
| |
| // copy from an array-like object, assuming my resources are freed. |
| template <typename Array> |
| void copyFrom(const Array &data, size_t size) { |
| mSize = static_cast<uint32_t>(size); |
| mOwnsBuffer = true; |
| if (mSize > 0) { |
| mBuffer = new T[size](); |
| for (size_t i = 0; i < size; ++i) { |
| mBuffer[i] = data[i]; |
| } |
| } else { |
| mBuffer = nullptr; |
| } |
| } |
| }; |
| |
| template <typename T> |
| const size_t hidl_vec<T>::kOffsetOfBuffer = offsetof(hidl_vec<T>, mBuffer); |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| namespace details { |
| |
| template<size_t SIZE1, size_t... SIZES> |
| struct product { |
| static constexpr size_t value = SIZE1 * product<SIZES...>::value; |
| }; |
| |
| template<size_t SIZE1> |
| struct product<SIZE1> { |
| static constexpr size_t value = SIZE1; |
| }; |
| |
| template<typename T, size_t SIZE1, size_t... SIZES> |
| struct std_array { |
| using type = std::array<typename std_array<T, SIZES...>::type, SIZE1>; |
| }; |
| |
| template<typename T, size_t SIZE1> |
| struct std_array<T, SIZE1> { |
| using type = std::array<T, SIZE1>; |
| }; |
| |
| template<typename T, size_t SIZE1, size_t... SIZES> |
| struct accessor { |
| |
| using std_array_type = typename std_array<T, SIZE1, SIZES...>::type; |
| |
| explicit accessor(T *base) |
| : mBase(base) { |
| } |
| |
| accessor<T, SIZES...> operator[](size_t index) { |
| return accessor<T, SIZES...>( |
| &mBase[index * product<SIZES...>::value]); |
| } |
| |
| accessor &operator=(const std_array_type &other) { |
| for (size_t i = 0; i < SIZE1; ++i) { |
| (*this)[i] = other[i]; |
| } |
| return *this; |
| } |
| |
| private: |
| T *mBase; |
| }; |
| |
| template<typename T, size_t SIZE1> |
| struct accessor<T, SIZE1> { |
| |
| using std_array_type = typename std_array<T, SIZE1>::type; |
| |
| explicit accessor(T *base) |
| : mBase(base) { |
| } |
| |
| T &operator[](size_t index) { |
| return mBase[index]; |
| } |
| |
| accessor &operator=(const std_array_type &other) { |
| for (size_t i = 0; i < SIZE1; ++i) { |
| (*this)[i] = other[i]; |
| } |
| return *this; |
| } |
| |
| private: |
| T *mBase; |
| }; |
| |
| template<typename T, size_t SIZE1, size_t... SIZES> |
| struct const_accessor { |
| |
| using std_array_type = typename std_array<T, SIZE1, SIZES...>::type; |
| |
| explicit const_accessor(const T *base) |
| : mBase(base) { |
| } |
| |
| const_accessor<T, SIZES...> operator[](size_t index) const { |
| return const_accessor<T, SIZES...>( |
| &mBase[index * product<SIZES...>::value]); |
| } |
| |
| operator std_array_type() { |
| std_array_type array; |
| for (size_t i = 0; i < SIZE1; ++i) { |
| array[i] = (*this)[i]; |
| } |
| return array; |
| } |
| |
| private: |
| const T *mBase; |
| }; |
| |
| template<typename T, size_t SIZE1> |
| struct const_accessor<T, SIZE1> { |
| |
| using std_array_type = typename std_array<T, SIZE1>::type; |
| |
| explicit const_accessor(const T *base) |
| : mBase(base) { |
| } |
| |
| const T &operator[](size_t index) const { |
| return mBase[index]; |
| } |
| |
| operator std_array_type() { |
| std_array_type array; |
| for (size_t i = 0; i < SIZE1; ++i) { |
| array[i] = (*this)[i]; |
| } |
| return array; |
| } |
| |
| private: |
| const T *mBase; |
| }; |
| |
| } // namespace details |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // A multidimensional array of T's. Assumes that T::operator=(const T &) is defined. |
| template<typename T, size_t SIZE1, size_t... SIZES> |
| struct hidl_array { |
| |
| using std_array_type = typename details::std_array<T, SIZE1, SIZES...>::type; |
| |
| hidl_array() = default; |
| hidl_array(const hidl_array&) noexcept = default; |
| hidl_array(hidl_array&&) noexcept = default; |
| |
| // Copies the data from source, using T::operator=(const T &). |
| hidl_array(const T *source) { |
| for (size_t i = 0; i < elementCount(); ++i) { |
| mBuffer[i] = source[i]; |
| } |
| } |
| |
| // Copies the data from the given std::array, using T::operator=(const T &). |
| hidl_array(const std_array_type &array) { |
| details::accessor<T, SIZE1, SIZES...> modifier(mBuffer); |
| modifier = array; |
| } |
| |
| hidl_array& operator=(const hidl_array&) noexcept = default; |
| hidl_array& operator=(hidl_array&&) noexcept = default; |
| |
| T *data() { return mBuffer; } |
| const T *data() const { return mBuffer; } |
| |
| details::accessor<T, SIZES...> operator[](size_t index) { |
| return details::accessor<T, SIZES...>( |
| &mBuffer[index * details::product<SIZES...>::value]); |
| } |
| |
| details::const_accessor<T, SIZES...> operator[](size_t index) const { |
| return details::const_accessor<T, SIZES...>( |
| &mBuffer[index * details::product<SIZES...>::value]); |
| } |
| |
| // equality check, assuming that T::operator== is defined. |
| bool operator==(const hidl_array &other) const { |
| for (size_t i = 0; i < elementCount(); ++i) { |
| if (!(mBuffer[i] == other.mBuffer[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| inline bool operator!=(const hidl_array &other) const { |
| return !((*this) == other); |
| } |
| |
| using size_tuple_type = std::tuple<decltype(SIZE1), decltype(SIZES)...>; |
| |
| static constexpr size_tuple_type size() { |
| return std::make_tuple(SIZE1, SIZES...); |
| } |
| |
| static constexpr size_t elementCount() { |
| return details::product<SIZE1, SIZES...>::value; |
| } |
| |
| operator std_array_type() const { |
| return details::const_accessor<T, SIZE1, SIZES...>(mBuffer); |
| } |
| |
| private: |
| T mBuffer[elementCount()]; |
| }; |
| |
| // An array of T's. Assumes that T::operator=(const T &) is defined. |
| template<typename T, size_t SIZE1> |
| struct hidl_array<T, SIZE1> { |
| using value_type = T; |
| using std_array_type = typename details::std_array<T, SIZE1>::type; |
| |
| hidl_array() = default; |
| hidl_array(const hidl_array&) noexcept = default; |
| hidl_array(hidl_array&&) noexcept = default; |
| |
| // Copies the data from source, using T::operator=(const T &). |
| hidl_array(const T *source) { |
| for (size_t i = 0; i < elementCount(); ++i) { |
| mBuffer[i] = source[i]; |
| } |
| } |
| |
| // Copies the data from the given std::array, using T::operator=(const T &). |
| hidl_array(const std_array_type &array) : hidl_array(array.data()) {} |
| |
| hidl_array& operator=(const hidl_array&) noexcept = default; |
| hidl_array& operator=(hidl_array&&) noexcept = default; |
| |
| T *data() { return mBuffer; } |
| const T *data() const { return mBuffer; } |
| |
| T &operator[](size_t index) { |
| return mBuffer[index]; |
| } |
| |
| const T &operator[](size_t index) const { |
| return mBuffer[index]; |
| } |
| |
| // equality check, assuming that T::operator== is defined. |
| bool operator==(const hidl_array &other) const { |
| for (size_t i = 0; i < elementCount(); ++i) { |
| if (!(mBuffer[i] == other.mBuffer[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| inline bool operator!=(const hidl_array &other) const { |
| return !((*this) == other); |
| } |
| |
| static constexpr size_t size() { return SIZE1; } |
| static constexpr size_t elementCount() { return SIZE1; } |
| |
| // Copies the data to an std::array, using T::operator=(T). |
| operator std_array_type() const { |
| std_array_type array; |
| for (size_t i = 0; i < SIZE1; ++i) { |
| array[i] = mBuffer[i]; |
| } |
| return array; |
| } |
| |
| private: |
| T mBuffer[SIZE1]; |
| }; |
| |
| // ---------------------------------------------------------------------- |
| // Version functions |
| struct hidl_version { |
| public: |
| constexpr hidl_version(uint16_t major, uint16_t minor) : mMajor(major), mMinor(minor) { |
| static_assert(sizeof(*this) == 4, "wrong size"); |
| } |
| |
| bool operator==(const hidl_version& other) const { |
| return (mMajor == other.get_major() && mMinor == other.get_minor()); |
| } |
| |
| bool operator!=(const hidl_version& other) const { |
| return !(*this == other); |
| } |
| |
| bool operator<(const hidl_version& other) const { |
| return (mMajor < other.get_major() || |
| (mMajor == other.get_major() && mMinor < other.get_minor())); |
| } |
| |
| bool operator>(const hidl_version& other) const { |
| return other < *this; |
| } |
| |
| bool operator<=(const hidl_version& other) const { |
| return !(*this > other); |
| } |
| |
| bool operator>=(const hidl_version& other) const { |
| return !(*this < other); |
| } |
| |
| constexpr uint16_t get_major() const { return mMajor; } |
| constexpr uint16_t get_minor() const { return mMinor; } |
| |
| private: |
| uint16_t mMajor; |
| uint16_t mMinor; |
| }; |
| |
| inline android::hardware::hidl_version make_hidl_version(uint16_t major, uint16_t minor) { |
| return hidl_version(major,minor); |
| } |
| |
| ///////////////////// toString functions |
| |
| std::string toString(const void *t); |
| |
| // toString alias for numeric types |
| template<typename T, typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type> |
| inline std::string toString(T t) { |
| return std::to_string(t); |
| } |
| |
| namespace details { |
| |
| template<typename T, typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type> |
| inline std::string toHexString(T t, bool prefix = true) { |
| std::ostringstream os; |
| if (prefix) { os << std::showbase; } |
| os << std::hex << t; |
| return os.str(); |
| } |
| |
| template<> |
| inline std::string toHexString(uint8_t t, bool prefix) { |
| return toHexString(static_cast<int32_t>(t), prefix); |
| } |
| |
| template<> |
| inline std::string toHexString(int8_t t, bool prefix) { |
| return toHexString(static_cast<int32_t>(t), prefix); |
| } |
| |
| template<typename Array> |
| std::string arrayToString(const Array &a, size_t size); |
| |
| template<size_t SIZE1> |
| std::string arraySizeToString() { |
| return std::string{"["} + toString(SIZE1) + "]"; |
| } |
| |
| template<size_t SIZE1, size_t SIZE2, size_t... SIZES> |
| std::string arraySizeToString() { |
| return std::string{"["} + toString(SIZE1) + "]" + arraySizeToString<SIZE2, SIZES...>(); |
| } |
| |
| template<typename T, size_t SIZE1> |
| std::string toString(details::const_accessor<T, SIZE1> a) { |
| return arrayToString(a, SIZE1); |
| } |
| |
| template<typename Array> |
| std::string arrayToString(const Array &a, size_t size) { |
| using android::hardware::toString; |
| std::string os; |
| os += "{"; |
| for (size_t i = 0; i < size; ++i) { |
| if (i > 0) { |
| os += ", "; |
| } |
| os += toString(a[i]); |
| } |
| os += "}"; |
| return os; |
| } |
| |
| template<typename T, size_t SIZE1, size_t SIZE2, size_t... SIZES> |
| std::string toString(details::const_accessor<T, SIZE1, SIZE2, SIZES...> a) { |
| return arrayToString(a, SIZE1); |
| } |
| |
| } //namespace details |
| |
| inline std::string toString(const void *t) { |
| return details::toHexString(reinterpret_cast<uintptr_t>(t)); |
| } |
| |
| // debug string dump. There will be quotes around the string! |
| inline std::string toString(const hidl_string &hs) { |
| return std::string{"\""} + hs.c_str() + "\""; |
| } |
| |
| // debug string dump |
| inline std::string toString(const hidl_handle &hs) { |
| return toString(hs.getNativeHandle()); |
| } |
| |
| inline std::string toString(const hidl_memory &mem) { |
| return std::string{"memory {.name = "} + toString(mem.name()) + ", .size = " |
| + toString(mem.size()) |
| + ", .handle = " + toString(mem.handle()) + "}"; |
| } |
| |
| inline std::string toString(const sp<hidl_death_recipient> &dr) { |
| return std::string{"death_recipient@"} + toString(dr.get()); |
| } |
| |
| // debug string dump, assuming that toString(T) is defined. |
| template<typename T> |
| std::string toString(const hidl_vec<T> &a) { |
| std::string os; |
| os += "[" + toString(a.size()) + "]"; |
| os += details::arrayToString(a, a.size()); |
| return os; |
| } |
| |
| template<typename T, size_t SIZE1> |
| std::string toString(const hidl_array<T, SIZE1> &a) { |
| return details::arraySizeToString<SIZE1>() |
| + details::toString(details::const_accessor<T, SIZE1>(a.data())); |
| } |
| |
| template<typename T, size_t SIZE1, size_t SIZE2, size_t... SIZES> |
| std::string toString(const hidl_array<T, SIZE1, SIZE2, SIZES...> &a) { |
| return details::arraySizeToString<SIZE1, SIZE2, SIZES...>() |
| + details::toString(details::const_accessor<T, SIZE1, SIZE2, SIZES...>(a.data())); |
| } |
| |
| namespace details { |
| // Never instantiated. Used as a placeholder for template variables. |
| template <typename T> |
| struct hidl_invalid_type; |
| |
| // HIDL generates specializations of this for enums. See hidl_enum_range. |
| template <typename T, typename = std::enable_if_t<std::is_enum<T>::value>> |
| constexpr hidl_invalid_type<T> hidl_enum_values; |
| } // namespace details |
| |
| /** |
| * Every HIDL generated enum supports this function. |
| * E.x.: for(const auto v : hidl_enum_range<Enum>) { ... } |
| */ |
| template <typename T, typename = std::enable_if_t<std::is_enum<T>::value>> |
| struct hidl_enum_range { |
| constexpr auto begin() const { return std::begin(details::hidl_enum_values<T>); } |
| constexpr auto cbegin() const { return begin(); } |
| constexpr auto rbegin() const { return std::rbegin(details::hidl_enum_values<T>); } |
| constexpr auto crbegin() const { return rbegin(); } |
| constexpr auto end() const { return std::end(details::hidl_enum_values<T>); } |
| constexpr auto cend() const { return end(); } |
| constexpr auto rend() const { return std::rend(details::hidl_enum_values<T>); } |
| constexpr auto crend() const { return rend(); } |
| }; |
| |
| template <typename T, typename = std::enable_if_t<std::is_enum<T>::value>> |
| struct hidl_enum_iterator { |
| static_assert(!std::is_enum<T>::value, |
| "b/78573628: hidl_enum_iterator was renamed to hidl_enum_range because it is not " |
| "actually an iterator. Please use that type instead."); |
| }; |
| |
| /** |
| * Bitfields in HIDL are the underlying type of the enumeration. |
| */ |
| template <typename Enum> |
| using hidl_bitfield = typename std::underlying_type<Enum>::type; |
| |
| } // namespace hardware |
| } // namespace android |
| |
| |
| #endif // ANDROID_HIDL_SUPPORT_H |