blob: 5f1750bf8a4df522c0f654fd33b7f46a04f7ee09 [file] [log] [blame]
/*
* Copyright (C) 2013-2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <inttypes.h>
#include <poll.h>
#include <sched.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <unordered_set>
#include <android-base/file.h>
#include <android-base/properties.h>
#include <benchmark/benchmark.h>
#include <cutils/sockets.h>
#include <log/event_tag_map.h>
#include <log/log_read.h>
#include <private/android_logger.h>
BENCHMARK_MAIN();
// enhanced version of LOG_FAILURE_RETRY to add support for EAGAIN and
// non-syscall libs. Since we are benchmarking, or using this in the emergency
// signal to stuff a terminating code, we do NOT want to introduce
// a syscall or usleep on EAGAIN retry.
#define LOG_FAILURE_RETRY(exp) \
({ \
typeof(exp) _rc; \
do { \
_rc = (exp); \
} while (((_rc == -1) && ((errno == EINTR) || (errno == EAGAIN))) || \
(_rc == -EINTR) || (_rc == -EAGAIN)); \
_rc; \
})
/*
* Measure the fastest rate we can reliabley stuff print messages into
* the log at high pressure. Expect this to be less than double the process
* wakeup time (2ms?)
*/
static void BM_log_maximum_retry(benchmark::State& state) {
while (state.KeepRunning()) {
LOG_FAILURE_RETRY(__android_log_print(ANDROID_LOG_INFO, "BM_log_maximum_retry", "%" PRIu64,
state.iterations()));
}
}
BENCHMARK(BM_log_maximum_retry);
/*
* Measure the fastest rate we can stuff print messages into the log
* at high pressure. Expect this to be less than double the process wakeup
* time (2ms?)
*/
static void BM_log_maximum(benchmark::State& state) {
while (state.KeepRunning()) {
__android_log_print(ANDROID_LOG_INFO, "BM_log_maximum", "%" PRIu64, state.iterations());
}
}
BENCHMARK(BM_log_maximum);
/*
* Measure the time it takes to collect the time using
* discrete acquisition (state.PauseTiming() to state.ResumeTiming())
* under light load. Expect this to be a syscall period (2us) or
* data read time if zero-syscall.
*
* vdso support in the kernel and the library can allow
* clock_gettime to be zero-syscall, but there there does remain some
* benchmarking overhead to pause and resume; assumptions are both are
* covered.
*/
static void BM_clock_overhead(benchmark::State& state) {
while (state.KeepRunning()) {
state.PauseTiming();
state.ResumeTiming();
}
}
BENCHMARK(BM_clock_overhead);
static void do_clock_overhead(benchmark::State& state, clockid_t clk_id) {
timespec t;
while (state.KeepRunning()) {
clock_gettime(clk_id, &t);
}
}
static void BM_time_clock_gettime_REALTIME(benchmark::State& state) {
do_clock_overhead(state, CLOCK_REALTIME);
}
BENCHMARK(BM_time_clock_gettime_REALTIME);
static void BM_time_clock_gettime_MONOTONIC(benchmark::State& state) {
do_clock_overhead(state, CLOCK_MONOTONIC);
}
BENCHMARK(BM_time_clock_gettime_MONOTONIC);
static void BM_time_clock_gettime_MONOTONIC_syscall(benchmark::State& state) {
timespec t;
while (state.KeepRunning()) {
syscall(__NR_clock_gettime, CLOCK_MONOTONIC, &t);
}
}
BENCHMARK(BM_time_clock_gettime_MONOTONIC_syscall);
static void BM_time_clock_gettime_MONOTONIC_RAW(benchmark::State& state) {
do_clock_overhead(state, CLOCK_MONOTONIC_RAW);
}
BENCHMARK(BM_time_clock_gettime_MONOTONIC_RAW);
static void BM_time_clock_gettime_BOOTTIME(benchmark::State& state) {
do_clock_overhead(state, CLOCK_BOOTTIME);
}
BENCHMARK(BM_time_clock_gettime_BOOTTIME);
static void BM_time_clock_getres_MONOTONIC(benchmark::State& state) {
timespec t;
while (state.KeepRunning()) {
clock_getres(CLOCK_MONOTONIC, &t);
}
}
BENCHMARK(BM_time_clock_getres_MONOTONIC);
static void BM_time_clock_getres_MONOTONIC_syscall(benchmark::State& state) {
timespec t;
while (state.KeepRunning()) {
syscall(__NR_clock_getres, CLOCK_MONOTONIC, &t);
}
}
BENCHMARK(BM_time_clock_getres_MONOTONIC_syscall);
static void BM_time_time(benchmark::State& state) {
while (state.KeepRunning()) {
time_t now;
now = time(&now);
}
}
BENCHMARK(BM_time_time);
/*
* Measure the time it takes to submit the android logging data to pstore
*/
static void BM_pmsg_short(benchmark::State& state) {
int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC));
if (pstore_fd < 0) {
state.SkipWithError("/dev/pmsg0");
return;
}
/*
* struct {
* // what we provide to pstore
* android_pmsg_log_header_t pmsg_header;
* // what we provide to socket
* android_log_header_t header;
* // caller provides
* union {
* struct {
* char prio;
* char payload[];
* } string;
* struct {
* uint32_t tag
* char payload[];
* } binary;
* };
* };
*/
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
android_pmsg_log_header_t pmsg_header;
pmsg_header.magic = LOGGER_MAGIC;
pmsg_header.len =
sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t);
pmsg_header.uid = getuid();
pmsg_header.pid = getpid();
android_log_header_t header;
header.tid = gettid();
header.realtime.tv_sec = ts.tv_sec;
header.realtime.tv_nsec = ts.tv_nsec;
static const unsigned nr = 1;
static const unsigned header_length = 2;
struct iovec newVec[nr + header_length];
newVec[0].iov_base = (unsigned char*)&pmsg_header;
newVec[0].iov_len = sizeof(pmsg_header);
newVec[1].iov_base = (unsigned char*)&header;
newVec[1].iov_len = sizeof(header);
android_log_event_int_t buffer;
header.id = LOG_ID_EVENTS;
buffer.header.tag = 0;
buffer.payload.type = EVENT_TYPE_INT;
uint32_t snapshot = 0;
buffer.payload.data = snapshot;
newVec[2].iov_base = &buffer;
newVec[2].iov_len = sizeof(buffer);
while (state.KeepRunning()) {
++snapshot;
buffer.payload.data = snapshot;
writev(pstore_fd, newVec, nr);
}
state.PauseTiming();
close(pstore_fd);
}
BENCHMARK(BM_pmsg_short);
/*
* Measure the time it takes to submit the android logging data to pstore
* best case aligned single block.
*/
static void BM_pmsg_short_aligned(benchmark::State& state) {
int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC));
if (pstore_fd < 0) {
state.SkipWithError("/dev/pmsg0");
return;
}
/*
* struct {
* // what we provide to pstore
* android_pmsg_log_header_t pmsg_header;
* // what we provide to socket
* android_log_header_t header;
* // caller provides
* union {
* struct {
* char prio;
* char payload[];
* } string;
* struct {
* uint32_t tag
* char payload[];
* } binary;
* };
* };
*/
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
struct packet {
android_pmsg_log_header_t pmsg_header;
android_log_header_t header;
android_log_event_int_t payload;
};
alignas(8) char buf[sizeof(struct packet) + 8];
memset(buf, 0, sizeof(buf));
struct packet* buffer = (struct packet*)(((uintptr_t)buf + 7) & ~7);
if (((uintptr_t)&buffer->pmsg_header) & 7) {
fprintf(stderr, "&buffer=0x%p iterations=%" PRIu64 "\n", &buffer->pmsg_header,
state.iterations());
}
buffer->pmsg_header.magic = LOGGER_MAGIC;
buffer->pmsg_header.len =
sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t);
buffer->pmsg_header.uid = getuid();
buffer->pmsg_header.pid = getpid();
buffer->header.tid = gettid();
buffer->header.realtime.tv_sec = ts.tv_sec;
buffer->header.realtime.tv_nsec = ts.tv_nsec;
buffer->header.id = LOG_ID_EVENTS;
buffer->payload.header.tag = 0;
buffer->payload.payload.type = EVENT_TYPE_INT;
uint32_t snapshot = 0;
buffer->payload.payload.data = snapshot;
while (state.KeepRunning()) {
++snapshot;
buffer->payload.payload.data = snapshot;
write(pstore_fd, &buffer->pmsg_header,
sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t) +
sizeof(android_log_event_int_t));
}
state.PauseTiming();
close(pstore_fd);
}
BENCHMARK(BM_pmsg_short_aligned);
/*
* Measure the time it takes to submit the android logging data to pstore
* best case aligned single block.
*/
static void BM_pmsg_short_unaligned1(benchmark::State& state) {
int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC));
if (pstore_fd < 0) {
state.SkipWithError("/dev/pmsg0");
return;
}
/*
* struct {
* // what we provide to pstore
* android_pmsg_log_header_t pmsg_header;
* // what we provide to socket
* android_log_header_t header;
* // caller provides
* union {
* struct {
* char prio;
* char payload[];
* } string;
* struct {
* uint32_t tag
* char payload[];
* } binary;
* };
* };
*/
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
struct packet {
android_pmsg_log_header_t pmsg_header;
android_log_header_t header;
android_log_event_int_t payload;
};
alignas(8) char buf[sizeof(struct packet) + 8];
memset(buf, 0, sizeof(buf));
struct packet* buffer = (struct packet*)((((uintptr_t)buf + 7) & ~7) + 1);
if ((((uintptr_t)&buffer->pmsg_header) & 7) != 1) {
fprintf(stderr, "&buffer=0x%p iterations=%" PRIu64 "\n", &buffer->pmsg_header,
state.iterations());
}
buffer->pmsg_header.magic = LOGGER_MAGIC;
buffer->pmsg_header.len =
sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t);
buffer->pmsg_header.uid = getuid();
buffer->pmsg_header.pid = getpid();
buffer->header.tid = gettid();
buffer->header.realtime.tv_sec = ts.tv_sec;
buffer->header.realtime.tv_nsec = ts.tv_nsec;
buffer->header.id = LOG_ID_EVENTS;
buffer->payload.header.tag = 0;
buffer->payload.payload.type = EVENT_TYPE_INT;
uint32_t snapshot = 0;
buffer->payload.payload.data = snapshot;
while (state.KeepRunning()) {
++snapshot;
buffer->payload.payload.data = snapshot;
write(pstore_fd, &buffer->pmsg_header,
sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t) +
sizeof(android_log_event_int_t));
}
state.PauseTiming();
close(pstore_fd);
}
BENCHMARK(BM_pmsg_short_unaligned1);
/*
* Measure the time it takes to submit the android logging data to pstore
* best case aligned single block.
*/
static void BM_pmsg_long_aligned(benchmark::State& state) {
int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC));
if (pstore_fd < 0) {
state.SkipWithError("/dev/pmsg0");
return;
}
/*
* struct {
* // what we provide to pstore
* android_pmsg_log_header_t pmsg_header;
* // what we provide to socket
* android_log_header_t header;
* // caller provides
* union {
* struct {
* char prio;
* char payload[];
* } string;
* struct {
* uint32_t tag
* char payload[];
* } binary;
* };
* };
*/
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
struct packet {
android_pmsg_log_header_t pmsg_header;
android_log_header_t header;
android_log_event_int_t payload;
};
alignas(8) char buf[sizeof(struct packet) + 8 + LOGGER_ENTRY_MAX_PAYLOAD];
memset(buf, 0, sizeof(buf));
struct packet* buffer = (struct packet*)(((uintptr_t)buf + 7) & ~7);
if (((uintptr_t)&buffer->pmsg_header) & 7) {
fprintf(stderr, "&buffer=0x%p iterations=%" PRIu64 "\n", &buffer->pmsg_header,
state.iterations());
}
buffer->pmsg_header.magic = LOGGER_MAGIC;
buffer->pmsg_header.len =
sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t);
buffer->pmsg_header.uid = getuid();
buffer->pmsg_header.pid = getpid();
buffer->header.tid = gettid();
buffer->header.realtime.tv_sec = ts.tv_sec;
buffer->header.realtime.tv_nsec = ts.tv_nsec;
buffer->header.id = LOG_ID_EVENTS;
buffer->payload.header.tag = 0;
buffer->payload.payload.type = EVENT_TYPE_INT;
uint32_t snapshot = 0;
buffer->payload.payload.data = snapshot;
while (state.KeepRunning()) {
++snapshot;
buffer->payload.payload.data = snapshot;
write(pstore_fd, &buffer->pmsg_header, LOGGER_ENTRY_MAX_PAYLOAD);
}
state.PauseTiming();
close(pstore_fd);
}
BENCHMARK(BM_pmsg_long_aligned);
/*
* Measure the time it takes to submit the android logging data to pstore
* best case aligned single block.
*/
static void BM_pmsg_long_unaligned1(benchmark::State& state) {
int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC));
if (pstore_fd < 0) {
state.SkipWithError("/dev/pmsg0");
return;
}
/*
* struct {
* // what we provide to pstore
* android_pmsg_log_header_t pmsg_header;
* // what we provide to socket
* android_log_header_t header;
* // caller provides
* union {
* struct {
* char prio;
* char payload[];
* } string;
* struct {
* uint32_t tag
* char payload[];
* } binary;
* };
* };
*/
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
struct packet {
android_pmsg_log_header_t pmsg_header;
android_log_header_t header;
android_log_event_int_t payload;
};
alignas(8) char buf[sizeof(struct packet) + 8 + LOGGER_ENTRY_MAX_PAYLOAD];
memset(buf, 0, sizeof(buf));
struct packet* buffer = (struct packet*)((((uintptr_t)buf + 7) & ~7) + 1);
if ((((uintptr_t)&buffer->pmsg_header) & 7) != 1) {
fprintf(stderr, "&buffer=0x%p iterations=%" PRIu64 "\n", &buffer->pmsg_header,
state.iterations());
}
buffer->pmsg_header.magic = LOGGER_MAGIC;
buffer->pmsg_header.len =
sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t);
buffer->pmsg_header.uid = getuid();
buffer->pmsg_header.pid = getpid();
buffer->header.tid = gettid();
buffer->header.realtime.tv_sec = ts.tv_sec;
buffer->header.realtime.tv_nsec = ts.tv_nsec;
buffer->header.id = LOG_ID_EVENTS;
buffer->payload.header.tag = 0;
buffer->payload.payload.type = EVENT_TYPE_INT;
uint32_t snapshot = 0;
buffer->payload.payload.data = snapshot;
while (state.KeepRunning()) {
++snapshot;
buffer->payload.payload.data = snapshot;
write(pstore_fd, &buffer->pmsg_header, LOGGER_ENTRY_MAX_PAYLOAD);
}
state.PauseTiming();
close(pstore_fd);
}
BENCHMARK(BM_pmsg_long_unaligned1);
/*
* Measure the time it takes to form sprintf plus time using
* discrete acquisition under light load. Expect this to be a syscall period
* (2us) or sprintf time if zero-syscall time.
*/
/* helper function */
static void test_print(const char* fmt, ...) {
va_list ap;
char buf[1024];
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
}
#define logd_yield() sched_yield() // allow logd to catch up
#define logd_sleep() usleep(50) // really allow logd to catch up
/* performance test */
static void BM_sprintf_overhead(benchmark::State& state) {
while (state.KeepRunning()) {
test_print("BM_sprintf_overhead:%" PRIu64, state.iterations());
state.PauseTiming();
logd_yield();
state.ResumeTiming();
}
}
BENCHMARK(BM_sprintf_overhead);
/*
* Measure the time it takes to submit the android printing logging call
* using discrete acquisition discrete acquisition under light load. Expect
* this to be a dozen or so syscall periods (40us) plus time to run *printf
*/
static void BM_log_print_overhead(benchmark::State& state) {
while (state.KeepRunning()) {
__android_log_print(ANDROID_LOG_INFO, "BM_log_overhead", "%" PRIu64, state.iterations());
state.PauseTiming();
logd_yield();
state.ResumeTiming();
}
}
BENCHMARK(BM_log_print_overhead);
/*
* Measure the time it takes to submit the android event logging call
* using discrete acquisition under light load. Expect this to be a long path
* to logger to convert the unknown tag (0) into a tagname (less than 200us).
*/
static void BM_log_event_overhead(benchmark::State& state) {
for (int64_t i = 0; state.KeepRunning(); ++i) {
// log tag number 0 is not known, nor shall it ever be known
__android_log_btwrite(0, EVENT_TYPE_LONG, &i, sizeof(i));
state.PauseTiming();
logd_yield();
state.ResumeTiming();
}
}
BENCHMARK(BM_log_event_overhead);
/*
* Measure the time it takes to submit the android event logging call
* using discrete acquisition under light load with a known logtag. Expect
* this to be a dozen or so syscall periods (less than 40us)
*/
static void BM_log_event_overhead_42(benchmark::State& state) {
for (int64_t i = 0; state.KeepRunning(); ++i) {
// In system/core/logcat/event.logtags:
// # These are used for testing, do not modify without updating
// # tests/framework-tests/src/android/util/EventLogFunctionalTest.java.
// # system/logging/liblog/tests/liblog_benchmark.cpp
// # system/logging/liblog/tests/liblog_test.cpp
// 42 answer (to life the universe etc|3)
__android_log_btwrite(42, EVENT_TYPE_LONG, &i, sizeof(i));
state.PauseTiming();
logd_yield();
state.ResumeTiming();
}
}
BENCHMARK(BM_log_event_overhead_42);
/*
* Measure the time it takes to submit the android event logging call
* using discrete acquisition under very-light load (<1% CPU utilization).
*/
static void BM_log_light_overhead(benchmark::State& state) {
for (int64_t i = 0; state.KeepRunning(); ++i) {
__android_log_btwrite(0, EVENT_TYPE_LONG, &i, sizeof(i));
state.PauseTiming();
usleep(10000);
state.ResumeTiming();
}
}
BENCHMARK(BM_log_light_overhead);
static void caught_latency(int /*signum*/) {
unsigned long long v = 0xDEADBEEFA55A5AA5ULL;
LOG_FAILURE_RETRY(__android_log_btwrite(0, EVENT_TYPE_LONG, &v, sizeof(v)));
}
static unsigned long long caught_convert(char* cp) {
unsigned long long l = cp[0] & 0xFF;
l |= (unsigned long long)(cp[1] & 0xFF) << 8;
l |= (unsigned long long)(cp[2] & 0xFF) << 16;
l |= (unsigned long long)(cp[3] & 0xFF) << 24;
l |= (unsigned long long)(cp[4] & 0xFF) << 32;
l |= (unsigned long long)(cp[5] & 0xFF) << 40;
l |= (unsigned long long)(cp[6] & 0xFF) << 48;
l |= (unsigned long long)(cp[7] & 0xFF) << 56;
return l;
}
static const int alarm_time = 3;
/*
* Measure the time it takes for the logd posting call to acquire the
* timestamp to place into the internal record. Expect this to be less than
* 4 syscalls (3us). This test uses manual injection of timing because it is
* comparing the timestamp at send, and then picking up the corresponding log
* end-to-end long path from logd to see what actual timestamp was submitted.
*/
static void BM_log_latency(benchmark::State& state) {
pid_t pid = getpid();
struct logger_list* logger_list = android_logger_list_open(LOG_ID_EVENTS, 0, 0, pid);
if (!logger_list) {
fprintf(stderr, "Unable to open events log: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
signal(SIGALRM, caught_latency);
alarm(alarm_time);
for (size_t j = 0; state.KeepRunning() && j < 10 * state.iterations(); ++j) {
retry: // We allow transitory errors (logd overloaded) to be retried.
log_time ts;
LOG_FAILURE_RETRY((ts = log_time(CLOCK_REALTIME),
android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts))));
for (;;) {
log_msg log_msg;
int ret = android_logger_list_read(logger_list, &log_msg);
alarm(alarm_time);
if (ret <= 0) {
state.SkipWithError("android_logger_list_read");
break;
}
if ((log_msg.entry.len != (4 + 1 + 8)) ||
(log_msg.id() != LOG_ID_EVENTS)) {
continue;
}
char* eventData = log_msg.msg();
if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) {
continue;
}
log_time* tx = reinterpret_cast<log_time*>(eventData + 4 + 1);
if (ts != *tx) {
if (0xDEADBEEFA55A5AA5ULL == caught_convert(eventData + 4 + 1)) {
state.SkipWithError("signal");
break;
}
continue;
}
uint64_t start = ts.nsec();
uint64_t end = log_msg.nsec();
if (end < start) goto retry;
state.SetIterationTime((end - start) / (double)NS_PER_SEC);
break;
}
}
signal(SIGALRM, SIG_DFL);
alarm(0);
android_logger_list_free(logger_list);
}
// Default gets out of hand for this test, so we set a reasonable number of
// iterations for a timely result.
BENCHMARK(BM_log_latency)->UseManualTime()->Iterations(200);
static void caught_delay(int /*signum*/) {
unsigned long long v = 0xDEADBEEFA55A5AA6ULL;
LOG_FAILURE_RETRY(__android_log_btwrite(0, EVENT_TYPE_LONG, &v, sizeof(v)));
}
/*
* Measure the time it takes for the logd posting call to make it into
* the logs. Expect this to be less than double the process wakeup time (2ms).
*/
static void BM_log_delay(benchmark::State& state) {
pid_t pid = getpid();
struct logger_list* logger_list = android_logger_list_open(LOG_ID_EVENTS, 0, 0, pid);
if (!logger_list) {
fprintf(stderr, "Unable to open events log: %s\n", strerror(errno));
exit(EXIT_FAILURE);
}
signal(SIGALRM, caught_delay);
alarm(alarm_time);
while (state.KeepRunning()) {
log_time ts(CLOCK_REALTIME);
LOG_FAILURE_RETRY(android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts)));
for (;;) {
log_msg log_msg;
int ret = android_logger_list_read(logger_list, &log_msg);
alarm(alarm_time);
if (ret <= 0) {
state.SkipWithError("android_logger_list_read");
break;
}
if ((log_msg.entry.len != (4 + 1 + 8)) ||
(log_msg.id() != LOG_ID_EVENTS)) {
continue;
}
char* eventData = log_msg.msg();
if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) {
continue;
}
log_time* tx = reinterpret_cast<log_time*>(eventData + 4 + 1);
if (ts != *tx) {
if (0xDEADBEEFA55A5AA6ULL == caught_convert(eventData + 4 + 1)) {
state.SkipWithError("signal");
break;
}
continue;
}
break;
}
}
state.PauseTiming();
signal(SIGALRM, SIG_DFL);
alarm(0);
android_logger_list_free(logger_list);
}
BENCHMARK(BM_log_delay);
/*
* Measure the time it takes for __android_log_is_loggable.
*/
static void BM_is_loggable(benchmark::State& state) {
static const char logd[] = "logd";
while (state.KeepRunning()) {
__android_log_is_loggable_len(ANDROID_LOG_WARN, logd, strlen(logd),
ANDROID_LOG_VERBOSE);
}
}
BENCHMARK(BM_is_loggable);
/*
* Measure the time it takes for __android_log_security.
*/
static void BM_security(benchmark::State& state) {
while (state.KeepRunning()) {
__android_log_security();
}
}
BENCHMARK(BM_security);
// Keep maps around for multiple iterations
static std::unordered_set<uint32_t> set;
static EventTagMap* map;
static bool prechargeEventMap() {
if (map) return true;
fprintf(stderr, "Precharge: start\n");
map = android_openEventTagMap(NULL);
for (uint32_t tag = 1; tag < USHRT_MAX; ++tag) {
size_t len;
if (android_lookupEventTag_len(map, &len, tag) == NULL) continue;
set.insert(tag);
}
fprintf(stderr, "Precharge: stop %zu\n", set.size());
return true;
}
/*
* Measure the time it takes for android_lookupEventTag_len
*/
static void BM_lookupEventTag(benchmark::State& state) {
prechargeEventMap();
std::unordered_set<uint32_t>::const_iterator it = set.begin();
while (state.KeepRunning()) {
size_t len;
android_lookupEventTag_len(map, &len, (*it));
++it;
if (it == set.end()) it = set.begin();
}
}
BENCHMARK(BM_lookupEventTag);
/*
* Measure the time it takes for android_lookupEventTag_len
*/
static uint32_t notTag = 1;
static void BM_lookupEventTag_NOT(benchmark::State& state) {
prechargeEventMap();
while (set.find(notTag) != set.end()) {
++notTag;
if (notTag >= USHRT_MAX) notTag = 1;
}
while (state.KeepRunning()) {
size_t len;
android_lookupEventTag_len(map, &len, notTag);
}
++notTag;
if (notTag >= USHRT_MAX) notTag = 1;
}
BENCHMARK(BM_lookupEventTag_NOT);
/*
* Measure the time it takes for android_lookupEventFormat_len
*/
static void BM_lookupEventFormat(benchmark::State& state) {
prechargeEventMap();
std::unordered_set<uint32_t>::const_iterator it = set.begin();
while (state.KeepRunning()) {
size_t len;
android_lookupEventFormat_len(map, &len, (*it));
++it;
if (it == set.end()) it = set.begin();
}
}
BENCHMARK(BM_lookupEventFormat);
// Must be functionally identical to liblog internal SendLogdControlMessage()
static void send_to_control(char* buf, size_t len) {
int sock =
socket_local_client("logd", ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_STREAM | SOCK_CLOEXEC);
if (sock < 0) return;
size_t writeLen = strlen(buf) + 1;
ssize_t ret = TEMP_FAILURE_RETRY(write(sock, buf, writeLen));
if (ret <= 0) {
close(sock);
return;
}
while ((ret = read(sock, buf, len)) > 0) {
if (((size_t)ret == len) || (len < PAGE_SIZE)) {
break;
}
len -= ret;
buf += ret;
struct pollfd p = {.fd = sock, .events = POLLIN, .revents = 0 };
ret = poll(&p, 1, 20);
if ((ret <= 0) || !(p.revents & POLLIN)) {
break;
}
}
close(sock);
}
static void BM_lookupEventTagNum_logd_new(benchmark::State& state) {
fprintf(stderr,
"WARNING: "
"This test can cause logd to grow in size and hit DOS limiter\n");
// Make copies
static const char empty_event_log_tags[] = "# content owned by logd\n";
static const char dev_event_log_tags_path[] = "/dev/event-log-tags";
std::string dev_event_log_tags;
if (android::base::ReadFileToString(dev_event_log_tags_path,
&dev_event_log_tags) &&
(dev_event_log_tags.length() == 0)) {
dev_event_log_tags = empty_event_log_tags;
}
static const char data_event_log_tags_path[] =
"/data/misc/logd/event-log-tags";
std::string data_event_log_tags;
if (android::base::ReadFileToString(data_event_log_tags_path,
&data_event_log_tags) &&
(data_event_log_tags.length() == 0)) {
data_event_log_tags = empty_event_log_tags;
}
while (state.KeepRunning()) {
char buffer[256];
memset(buffer, 0, sizeof(buffer));
log_time now(CLOCK_MONOTONIC);
char name[64];
snprintf(name, sizeof(name), "a%" PRIu64, now.nsec());
snprintf(buffer, sizeof(buffer), "getEventTag name=%s format=\"(new|1)\"",
name);
state.ResumeTiming();
send_to_control(buffer, sizeof(buffer));
state.PauseTiming();
}
// Restore copies (logd still know about them, until crash or reboot)
if (dev_event_log_tags.length() &&
!android::base::WriteStringToFile(dev_event_log_tags,
dev_event_log_tags_path)) {
fprintf(stderr,
"WARNING: "
"failed to restore %s\n",
dev_event_log_tags_path);
}
if (data_event_log_tags.length() &&
!android::base::WriteStringToFile(data_event_log_tags,
data_event_log_tags_path)) {
fprintf(stderr,
"WARNING: "
"failed to restore %s\n",
data_event_log_tags_path);
}
fprintf(stderr,
"WARNING: "
"Restarting logd to make it forget what we just did\n");
system("stop logd ; start logd");
}
BENCHMARK(BM_lookupEventTagNum_logd_new);
static void BM_lookupEventTagNum_logd_existing(benchmark::State& state) {
prechargeEventMap();
std::unordered_set<uint32_t>::const_iterator it = set.begin();
while (state.KeepRunning()) {
size_t len;
const char* name = android_lookupEventTag_len(map, &len, (*it));
std::string Name(name, len);
const char* format = android_lookupEventFormat_len(map, &len, (*it));
std::string Format(format, len);
char buffer[256];
snprintf(buffer, sizeof(buffer), "getEventTag name=%s format=\"%s\"",
Name.c_str(), Format.c_str());
state.ResumeTiming();
send_to_control(buffer, sizeof(buffer));
state.PauseTiming();
++it;
if (it == set.end()) it = set.begin();
}
}
BENCHMARK(BM_lookupEventTagNum_logd_existing);
static void BM_log_verbose_overhead(benchmark::State& state) {
std::string test_log_tag = "liblog_verbose_tag";
android::base::SetProperty("log.tag." + test_log_tag, "I");
for (auto _ : state) {
__android_log_print(ANDROID_LOG_VERBOSE, test_log_tag.c_str(), "%s test log message %d %d",
"test test", 123, 456);
}
android::base::SetProperty("log.tag." + test_log_tag, "");
}
BENCHMARK(BM_log_verbose_overhead);