| /* $NetBSD: getaddrinfo.c,v 1.82 2006/03/25 12:09:40 rpaulo Exp $ */ |
| /* $KAME: getaddrinfo.c,v 1.29 2000/08/31 17:26:57 itojun Exp $ */ |
| |
| /* |
| * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the project nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #define LOG_TAG "getaddrinfo" |
| |
| #include <arpa/inet.h> |
| #include <arpa/nameser.h> |
| #include <assert.h> |
| #include <ctype.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <net/if.h> |
| #include <netdb.h> |
| #include <netinet/in.h> |
| #include <stdbool.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/param.h> |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/un.h> |
| #include <unistd.h> |
| |
| #include <android-base/logging.h> |
| |
| #include "netd_resolv/resolv.h" |
| #include "resolv_cache.h" |
| #include "resolv_private.h" |
| |
| #define ANY 0 |
| |
| const char in_addrany[] = {0, 0, 0, 0}; |
| const char in_loopback[] = {127, 0, 0, 1}; |
| const char in6_addrany[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| const char in6_loopback[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; |
| |
| const struct afd { |
| int a_af; |
| int a_addrlen; |
| int a_socklen; |
| int a_off; |
| const char* a_addrany; |
| const char* a_loopback; |
| int a_scoped; |
| } afdl[] = { |
| {PF_INET6, sizeof(struct in6_addr), sizeof(struct sockaddr_in6), |
| offsetof(struct sockaddr_in6, sin6_addr), in6_addrany, in6_loopback, 1}, |
| {PF_INET, sizeof(struct in_addr), sizeof(struct sockaddr_in), |
| offsetof(struct sockaddr_in, sin_addr), in_addrany, in_loopback, 0}, |
| {0, 0, 0, 0, NULL, NULL, 0}, |
| }; |
| |
| struct Explore { |
| int e_af; |
| int e_socktype; |
| int e_protocol; |
| int e_wild; |
| #define WILD_AF(ex) ((ex).e_wild & 0x01) |
| #define WILD_SOCKTYPE(ex) ((ex).e_wild & 0x02) |
| #define WILD_PROTOCOL(ex) ((ex).e_wild & 0x04) |
| }; |
| |
| const Explore explore_options[] = { |
| {PF_INET6, SOCK_DGRAM, IPPROTO_UDP, 0x07}, |
| {PF_INET6, SOCK_STREAM, IPPROTO_TCP, 0x07}, |
| {PF_INET6, SOCK_RAW, ANY, 0x05}, |
| {PF_INET, SOCK_DGRAM, IPPROTO_UDP, 0x07}, |
| {PF_INET, SOCK_STREAM, IPPROTO_TCP, 0x07}, |
| {PF_INET, SOCK_RAW, ANY, 0x05}, |
| {PF_UNSPEC, SOCK_DGRAM, IPPROTO_UDP, 0x07}, |
| {PF_UNSPEC, SOCK_STREAM, IPPROTO_TCP, 0x07}, |
| {PF_UNSPEC, SOCK_RAW, ANY, 0x05}, |
| }; |
| |
| #define PTON_MAX 16 |
| #define MAXPACKET (8 * 1024) |
| |
| typedef union { |
| HEADER hdr; |
| u_char buf[MAXPACKET]; |
| } querybuf; |
| |
| struct res_target { |
| struct res_target* next; |
| const char* name; /* domain name */ |
| int qclass, qtype; /* class and type of query */ |
| u_char* answer; /* buffer to put answer */ |
| int anslen; /* size of answer buffer */ |
| int n; /* result length */ |
| }; |
| |
| static int str2number(const char*); |
| static int explore_fqdn(const struct addrinfo*, const char*, const char*, struct addrinfo**, |
| const struct android_net_context*); |
| static int explore_null(const struct addrinfo*, const char*, struct addrinfo**); |
| static int explore_numeric(const struct addrinfo*, const char*, const char*, struct addrinfo**, |
| const char*); |
| static int explore_numeric_scope(const struct addrinfo*, const char*, const char*, |
| struct addrinfo**); |
| static int get_canonname(const struct addrinfo*, struct addrinfo*, const char*); |
| static struct addrinfo* get_ai(const struct addrinfo*, const struct afd*, const char*); |
| static int get_portmatch(const struct addrinfo*, const char*); |
| static int get_port(const struct addrinfo*, const char*, int); |
| static const struct afd* find_afd(int); |
| static int ip6_str2scopeid(const char*, struct sockaddr_in6*, u_int32_t*); |
| |
| static struct addrinfo* getanswer(const querybuf*, int, const char*, int, const struct addrinfo*, |
| int* herrno); |
| static int dns_getaddrinfo(const char* name, const addrinfo* pai, |
| const android_net_context* netcontext, addrinfo** rv); |
| static void _sethtent(FILE**); |
| static void _endhtent(FILE**); |
| static struct addrinfo* _gethtent(FILE**, const char*, const struct addrinfo*); |
| static bool files_getaddrinfo(const char* name, const addrinfo* pai, addrinfo** res); |
| static int _find_src_addr(const struct sockaddr*, struct sockaddr*, unsigned, uid_t); |
| |
| static int res_queryN(const char* name, res_target* target, res_state res, int* herrno); |
| static int res_searchN(const char* name, res_target* target, res_state res, int* herrno); |
| static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res, |
| int* herrno); |
| |
| const char* const ai_errlist[] = { |
| "Success", |
| "Address family for hostname not supported", /* EAI_ADDRFAMILY */ |
| "Temporary failure in name resolution", /* EAI_AGAIN */ |
| "Invalid value for ai_flags", /* EAI_BADFLAGS */ |
| "Non-recoverable failure in name resolution", /* EAI_FAIL */ |
| "ai_family not supported", /* EAI_FAMILY */ |
| "Memory allocation failure", /* EAI_MEMORY */ |
| "No address associated with hostname", /* EAI_NODATA */ |
| "hostname nor servname provided, or not known", /* EAI_NONAME */ |
| "servname not supported for ai_socktype", /* EAI_SERVICE */ |
| "ai_socktype not supported", /* EAI_SOCKTYPE */ |
| "System error returned in errno", /* EAI_SYSTEM */ |
| "Invalid value for hints", /* EAI_BADHINTS */ |
| "Resolved protocol is unknown", /* EAI_PROTOCOL */ |
| "Argument buffer overflow", /* EAI_OVERFLOW */ |
| "Unknown error", /* EAI_MAX */ |
| }; |
| |
| /* XXX macros that make external reference is BAD. */ |
| |
| #define GET_AI(ai, afd, addr) \ |
| do { \ |
| /* external reference: pai, error, and label free */ \ |
| (ai) = get_ai(pai, (afd), (addr)); \ |
| if ((ai) == NULL) { \ |
| error = EAI_MEMORY; \ |
| goto free; \ |
| } \ |
| } while (0) |
| |
| #define GET_PORT(ai, serv) \ |
| do { \ |
| /* external reference: error and label free */ \ |
| error = get_port((ai), (serv), 0); \ |
| if (error != 0) goto free; \ |
| } while (0) |
| |
| #define MATCH_FAMILY(x, y, w) \ |
| ((x) == (y) || ((w) && ((x) == PF_UNSPEC || (y) == PF_UNSPEC))) |
| #define MATCH(x, y, w) ((x) == (y) || ((w) && ((x) == ANY || (y) == ANY))) |
| |
| const char* gai_strerror(int ecode) { |
| if (ecode < 0 || ecode > EAI_MAX) ecode = EAI_MAX; |
| return ai_errlist[ecode]; |
| } |
| |
| void freeaddrinfo(struct addrinfo* ai) { |
| while (ai) { |
| struct addrinfo* next = ai->ai_next; |
| if (ai->ai_canonname) free(ai->ai_canonname); |
| // Also frees ai->ai_addr which points to extra space beyond addrinfo |
| free(ai); |
| ai = next; |
| } |
| } |
| |
| static int str2number(const char* p) { |
| char* ep; |
| unsigned long v; |
| |
| assert(p != NULL); |
| |
| if (*p == '\0') return -1; |
| ep = NULL; |
| errno = 0; |
| v = strtoul(p, &ep, 10); |
| if (errno == 0 && ep && *ep == '\0' && v <= UINT_MAX) |
| return v; |
| else |
| return -1; |
| } |
| |
| /* |
| * The following functions determine whether IPv4 or IPv6 connectivity is |
| * available in order to implement AI_ADDRCONFIG. |
| * |
| * Strictly speaking, AI_ADDRCONFIG should not look at whether connectivity is |
| * available, but whether addresses of the specified family are "configured |
| * on the local system". However, bionic doesn't currently support getifaddrs, |
| * so checking for connectivity is the next best thing. |
| */ |
| static int have_ipv6(unsigned mark, uid_t uid) { |
| static const struct sockaddr_in6 sin6_test = { |
| .sin6_family = AF_INET6, |
| .sin6_addr.s6_addr = {// 2000:: |
| 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; |
| sockaddr_union addr = {.sin6 = sin6_test}; |
| return _find_src_addr(&addr.sa, NULL, mark, uid) == 1; |
| } |
| |
| static int have_ipv4(unsigned mark, uid_t uid) { |
| static const struct sockaddr_in sin_test = { |
| .sin_family = AF_INET, |
| .sin_addr.s_addr = __constant_htonl(0x08080808L) // 8.8.8.8 |
| }; |
| sockaddr_union addr = {.sin = sin_test}; |
| return _find_src_addr(&addr.sa, NULL, mark, uid) == 1; |
| } |
| |
| // Internal version of getaddrinfo(), but limited to AI_NUMERICHOST. |
| // NOTE: also called by resolv_set_nameservers_for_net(). |
| int getaddrinfo_numeric(const char* hostname, const char* servname, addrinfo hints, |
| addrinfo** result) { |
| hints.ai_flags = AI_NUMERICHOST; |
| const android_net_context netcontext = { |
| .app_netid = NETID_UNSET, |
| .app_mark = MARK_UNSET, |
| .dns_netid = NETID_UNSET, |
| .dns_mark = MARK_UNSET, |
| .uid = NET_CONTEXT_INVALID_UID, |
| }; |
| return android_getaddrinfofornetcontext(hostname, servname, &hints, &netcontext, result); |
| } |
| |
| int android_getaddrinfofornetcontext(const char* hostname, const char* servname, |
| const struct addrinfo* hints, |
| const struct android_net_context* netcontext, |
| struct addrinfo** res) { |
| struct addrinfo sentinel = {}; |
| struct addrinfo* cur = &sentinel; |
| int error = 0; |
| |
| // hostname is allowed to be nullptr |
| // servname is allowed to be nullptr |
| // hints is allowed to be nullptr |
| assert(res != nullptr); |
| assert(netcontext != nullptr); |
| |
| struct addrinfo ai = { |
| .ai_flags = 0, |
| .ai_family = PF_UNSPEC, |
| .ai_socktype = ANY, |
| .ai_protocol = ANY, |
| .ai_addrlen = 0, |
| .ai_canonname = nullptr, |
| .ai_addr = nullptr, |
| .ai_next = nullptr, |
| }; |
| |
| do { |
| if (hostname == NULL && servname == NULL) { |
| error = EAI_NONAME; |
| break; |
| } |
| if (hints) { |
| /* error check for hints */ |
| if (hints->ai_addrlen || hints->ai_canonname || hints->ai_addr || hints->ai_next) { |
| error = EAI_BADHINTS; |
| break; |
| } |
| if (hints->ai_flags & ~AI_MASK) { |
| error = EAI_BADFLAGS; |
| break; |
| } |
| |
| if (!(hints->ai_family == PF_UNSPEC || hints->ai_family == PF_INET || |
| hints->ai_family == PF_INET6)) { |
| error = EAI_FAMILY; |
| break; |
| } |
| |
| ai = *hints; |
| |
| /* |
| * if both socktype/protocol are specified, check if they |
| * are meaningful combination. |
| */ |
| if (ai.ai_socktype != ANY && ai.ai_protocol != ANY) { |
| for (const Explore& ex : explore_options) { |
| if (ai.ai_family != ex.e_af) continue; |
| if (ex.e_socktype == ANY) continue; |
| if (ex.e_protocol == ANY) continue; |
| if (ai.ai_socktype == ex.e_socktype && ai.ai_protocol != ex.e_protocol) { |
| error = EAI_BADHINTS; |
| break; |
| } |
| } |
| if (error) break; |
| } |
| } |
| |
| /* |
| * Check for special cases: |
| * (1) numeric servname is disallowed if socktype/protocol are left unspecified. |
| * (2) servname is disallowed for raw and other inet{,6} sockets. |
| */ |
| if (MATCH_FAMILY(ai.ai_family, PF_INET, 1) || MATCH_FAMILY(ai.ai_family, PF_INET6, 1)) { |
| struct addrinfo tmp = ai; |
| if (tmp.ai_family == PF_UNSPEC) { |
| tmp.ai_family = PF_INET6; |
| } |
| error = get_portmatch(&tmp, servname); |
| if (error) break; |
| } |
| |
| // NULL hostname, or numeric hostname |
| for (const Explore& ex : explore_options) { |
| /* PF_UNSPEC entries are prepared for DNS queries only */ |
| if (ex.e_af == PF_UNSPEC) continue; |
| |
| if (!MATCH_FAMILY(ai.ai_family, ex.e_af, WILD_AF(ex))) continue; |
| if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue; |
| if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue; |
| |
| struct addrinfo tmp = ai; |
| if (tmp.ai_family == PF_UNSPEC) tmp.ai_family = ex.e_af; |
| if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype; |
| if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol; |
| |
| LOG(DEBUG) << __func__ << ": explore_numeric: ai_family=" << tmp.ai_family |
| << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol; |
| if (hostname == nullptr) |
| error = explore_null(&tmp, servname, &cur->ai_next); |
| else |
| error = explore_numeric_scope(&tmp, hostname, servname, &cur->ai_next); |
| |
| if (error) break; |
| |
| while (cur->ai_next) cur = cur->ai_next; |
| } |
| if (error) break; |
| |
| /* |
| * XXX |
| * If numeric representation of AF1 can be interpreted as FQDN |
| * representation of AF2, we need to think again about the code below. |
| */ |
| if (sentinel.ai_next) break; |
| |
| if (hostname == nullptr) { |
| error = EAI_NODATA; |
| break; |
| } |
| if (ai.ai_flags & AI_NUMERICHOST) { |
| error = EAI_NONAME; |
| break; |
| } |
| |
| /* |
| * hostname as alphabetical name. |
| * We would like to prefer AF_INET6 over AF_INET, so we'll make a outer loop by AFs. |
| */ |
| for (const Explore& ex : explore_options) { |
| // Require exact match for family field |
| if (ai.ai_family != ex.e_af) continue; |
| |
| if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) { |
| continue; |
| } |
| if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) { |
| continue; |
| } |
| |
| struct addrinfo tmp = ai; |
| if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype; |
| if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol; |
| |
| LOG(DEBUG) << __func__ << ": explore_fqdn(): ai_family=" << tmp.ai_family |
| << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol; |
| error = explore_fqdn(&tmp, hostname, servname, &cur->ai_next, netcontext); |
| |
| while (cur->ai_next) cur = cur->ai_next; |
| } |
| |
| if (sentinel.ai_next) { |
| error = 0; |
| } else if (error == 0) { |
| error = EAI_FAIL; |
| } |
| } while (0); |
| |
| if (error) { |
| freeaddrinfo(sentinel.ai_next); |
| *res = nullptr; |
| } else { |
| *res = sentinel.ai_next; |
| } |
| return error; |
| } |
| |
| // FQDN hostname, DNS lookup |
| static int explore_fqdn(const struct addrinfo* pai, const char* hostname, const char* servname, |
| struct addrinfo** res, const struct android_net_context* netcontext) { |
| struct addrinfo* result; |
| int error = 0; |
| |
| assert(pai != NULL); |
| /* hostname may be NULL */ |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| result = NULL; |
| |
| // If the servname does not match socktype/protocol, ignore it. |
| if (get_portmatch(pai, servname) != 0) return 0; |
| |
| if (!files_getaddrinfo(hostname, pai, &result)) { |
| error = dns_getaddrinfo(hostname, pai, netcontext, &result); |
| } |
| if (!error) { |
| struct addrinfo* cur; |
| for (cur = result; cur; cur = cur->ai_next) { |
| GET_PORT(cur, servname); |
| /* canonname should be filled already */ |
| } |
| *res = result; |
| return 0; |
| } |
| |
| free: |
| freeaddrinfo(result); |
| return error; |
| } |
| |
| /* |
| * hostname == NULL. |
| * passive socket -> anyaddr (0.0.0.0 or ::) |
| * non-passive socket -> localhost (127.0.0.1 or ::1) |
| */ |
| static int explore_null(const struct addrinfo* pai, const char* servname, struct addrinfo** res) { |
| int s; |
| const struct afd* afd; |
| struct addrinfo* cur; |
| struct addrinfo sentinel; |
| int error; |
| |
| LOG(DEBUG) << __func__; |
| |
| assert(pai != NULL); |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| *res = NULL; |
| sentinel.ai_next = NULL; |
| cur = &sentinel; |
| |
| /* |
| * filter out AFs that are not supported by the kernel |
| * XXX errno? |
| */ |
| s = socket(pai->ai_family, SOCK_DGRAM | SOCK_CLOEXEC, 0); |
| if (s < 0) { |
| if (errno != EMFILE) return 0; |
| } else |
| close(s); |
| |
| /* |
| * if the servname does not match socktype/protocol, ignore it. |
| */ |
| if (get_portmatch(pai, servname) != 0) return 0; |
| |
| afd = find_afd(pai->ai_family); |
| if (afd == NULL) return 0; |
| |
| if (pai->ai_flags & AI_PASSIVE) { |
| GET_AI(cur->ai_next, afd, afd->a_addrany); |
| GET_PORT(cur->ai_next, servname); |
| } else { |
| GET_AI(cur->ai_next, afd, afd->a_loopback); |
| GET_PORT(cur->ai_next, servname); |
| } |
| cur = cur->ai_next; |
| |
| *res = sentinel.ai_next; |
| return 0; |
| |
| free: |
| freeaddrinfo(sentinel.ai_next); |
| return error; |
| } |
| |
| /* |
| * numeric hostname |
| */ |
| static int explore_numeric(const struct addrinfo* pai, const char* hostname, const char* servname, |
| struct addrinfo** res, const char* canonname) { |
| const struct afd* afd; |
| struct addrinfo* cur; |
| struct addrinfo sentinel; |
| int error; |
| char pton[PTON_MAX]; |
| |
| assert(pai != NULL); |
| /* hostname may be NULL */ |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| *res = NULL; |
| sentinel.ai_next = NULL; |
| cur = &sentinel; |
| |
| /* |
| * if the servname does not match socktype/protocol, ignore it. |
| */ |
| if (get_portmatch(pai, servname) != 0) return 0; |
| |
| afd = find_afd(pai->ai_family); |
| if (afd == NULL) return 0; |
| |
| if (inet_pton(afd->a_af, hostname, pton) == 1) { |
| if (pai->ai_family == afd->a_af || pai->ai_family == PF_UNSPEC /*?*/) { |
| GET_AI(cur->ai_next, afd, pton); |
| GET_PORT(cur->ai_next, servname); |
| if ((pai->ai_flags & AI_CANONNAME)) { |
| /* |
| * Set the numeric address itself as |
| * the canonical name, based on a |
| * clarification in rfc2553bis-03. |
| */ |
| error = get_canonname(pai, cur->ai_next, canonname); |
| if (error != 0) { |
| freeaddrinfo(sentinel.ai_next); |
| return error; |
| } |
| } |
| while (cur->ai_next) cur = cur->ai_next; |
| } else |
| return EAI_FAMILY; |
| } |
| |
| *res = sentinel.ai_next; |
| return 0; |
| |
| free: |
| freeaddrinfo(sentinel.ai_next); |
| return error; |
| } |
| |
| /* |
| * numeric hostname with scope |
| */ |
| static int explore_numeric_scope(const struct addrinfo* pai, const char* hostname, |
| const char* servname, struct addrinfo** res) { |
| const struct afd* afd; |
| struct addrinfo* cur; |
| int error; |
| const char *cp, *scope, *addr; |
| struct sockaddr_in6* sin6; |
| |
| LOG(DEBUG) << __func__; |
| |
| assert(pai != NULL); |
| /* hostname may be NULL */ |
| /* servname may be NULL */ |
| assert(res != NULL); |
| |
| /* |
| * if the servname does not match socktype/protocol, ignore it. |
| */ |
| if (get_portmatch(pai, servname) != 0) return 0; |
| |
| afd = find_afd(pai->ai_family); |
| if (afd == NULL) return 0; |
| |
| if (!afd->a_scoped) return explore_numeric(pai, hostname, servname, res, hostname); |
| |
| cp = strchr(hostname, SCOPE_DELIMITER); |
| if (cp == NULL) return explore_numeric(pai, hostname, servname, res, hostname); |
| |
| /* |
| * Handle special case of <scoped_address><delimiter><scope id> |
| */ |
| char* hostname2 = strdup(hostname); |
| if (hostname2 == NULL) return EAI_MEMORY; |
| /* terminate at the delimiter */ |
| hostname2[cp - hostname] = '\0'; |
| addr = hostname2; |
| scope = cp + 1; |
| |
| error = explore_numeric(pai, addr, servname, res, hostname); |
| if (error == 0) { |
| u_int32_t scopeid; |
| |
| for (cur = *res; cur; cur = cur->ai_next) { |
| if (cur->ai_family != AF_INET6) continue; |
| sin6 = (struct sockaddr_in6*) (void*) cur->ai_addr; |
| if (ip6_str2scopeid(scope, sin6, &scopeid) == -1) { |
| free(hostname2); |
| return (EAI_NODATA); /* XXX: is return OK? */ |
| } |
| sin6->sin6_scope_id = scopeid; |
| } |
| } |
| |
| free(hostname2); |
| |
| return error; |
| } |
| |
| static int get_canonname(const struct addrinfo* pai, struct addrinfo* ai, const char* str) { |
| assert(pai != NULL); |
| assert(ai != NULL); |
| assert(str != NULL); |
| |
| if ((pai->ai_flags & AI_CANONNAME) != 0) { |
| ai->ai_canonname = strdup(str); |
| if (ai->ai_canonname == NULL) return EAI_MEMORY; |
| } |
| return 0; |
| } |
| |
| static struct addrinfo* get_ai(const struct addrinfo* pai, const struct afd* afd, |
| const char* addr) { |
| char* p; |
| struct addrinfo* ai; |
| |
| assert(pai != NULL); |
| assert(afd != NULL); |
| assert(addr != NULL); |
| |
| ai = (struct addrinfo*) malloc(sizeof(struct addrinfo) + sizeof(sockaddr_union)); |
| if (ai == NULL) return NULL; |
| |
| memcpy(ai, pai, sizeof(struct addrinfo)); |
| ai->ai_addr = (struct sockaddr*) (void*) (ai + 1); |
| memset(ai->ai_addr, 0, sizeof(sockaddr_union)); |
| |
| ai->ai_addrlen = afd->a_socklen; |
| ai->ai_addr->sa_family = ai->ai_family = afd->a_af; |
| p = (char*) (void*) (ai->ai_addr); |
| memcpy(p + afd->a_off, addr, (size_t) afd->a_addrlen); |
| return ai; |
| } |
| |
| static int get_portmatch(const struct addrinfo* ai, const char* servname) { |
| assert(ai != NULL); |
| /* servname may be NULL */ |
| |
| return get_port(ai, servname, 1); |
| } |
| |
| static int get_port(const struct addrinfo* ai, const char* servname, int matchonly) { |
| const char* proto; |
| struct servent* sp; |
| int port; |
| int allownumeric; |
| |
| assert(ai != NULL); |
| /* servname may be NULL */ |
| |
| if (servname == NULL) return 0; |
| switch (ai->ai_family) { |
| case AF_INET: |
| case AF_INET6: |
| break; |
| default: |
| return 0; |
| } |
| |
| switch (ai->ai_socktype) { |
| case SOCK_RAW: |
| return EAI_SERVICE; |
| case SOCK_DGRAM: |
| case SOCK_STREAM: |
| allownumeric = 1; |
| break; |
| case ANY: |
| allownumeric = 1; |
| break; |
| default: |
| return EAI_SOCKTYPE; |
| } |
| |
| port = str2number(servname); |
| if (port >= 0) { |
| if (!allownumeric) return EAI_SERVICE; |
| if (port < 0 || port > 65535) return EAI_SERVICE; |
| port = htons(port); |
| } else { |
| if (ai->ai_flags & AI_NUMERICSERV) return EAI_NONAME; |
| |
| switch (ai->ai_socktype) { |
| case SOCK_DGRAM: |
| proto = "udp"; |
| break; |
| case SOCK_STREAM: |
| proto = "tcp"; |
| break; |
| default: |
| proto = NULL; |
| break; |
| } |
| |
| if ((sp = getservbyname(servname, proto)) == NULL) return EAI_SERVICE; |
| port = sp->s_port; |
| } |
| |
| if (!matchonly) { |
| switch (ai->ai_family) { |
| case AF_INET: |
| ((struct sockaddr_in*) (void*) ai->ai_addr)->sin_port = port; |
| break; |
| case AF_INET6: |
| ((struct sockaddr_in6*) (void*) ai->ai_addr)->sin6_port = port; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct afd* find_afd(int af) { |
| const struct afd* afd; |
| |
| if (af == PF_UNSPEC) return NULL; |
| for (afd = afdl; afd->a_af; afd++) { |
| if (afd->a_af == af) return afd; |
| } |
| return NULL; |
| } |
| |
| // Convert a string to a scope identifier. |
| static int ip6_str2scopeid(const char* scope, struct sockaddr_in6* sin6, u_int32_t* scopeid) { |
| u_long lscopeid; |
| struct in6_addr* a6; |
| char* ep; |
| |
| assert(scope != NULL); |
| assert(sin6 != NULL); |
| assert(scopeid != NULL); |
| |
| a6 = &sin6->sin6_addr; |
| |
| /* empty scopeid portion is invalid */ |
| if (*scope == '\0') return -1; |
| |
| if (IN6_IS_ADDR_LINKLOCAL(a6) || IN6_IS_ADDR_MC_LINKLOCAL(a6)) { |
| /* |
| * We currently assume a one-to-one mapping between links |
| * and interfaces, so we simply use interface indices for |
| * like-local scopes. |
| */ |
| *scopeid = if_nametoindex(scope); |
| if (*scopeid == 0) goto trynumeric; |
| return 0; |
| } |
| |
| /* still unclear about literal, allow numeric only - placeholder */ |
| if (IN6_IS_ADDR_SITELOCAL(a6) || IN6_IS_ADDR_MC_SITELOCAL(a6)) goto trynumeric; |
| if (IN6_IS_ADDR_MC_ORGLOCAL(a6)) |
| goto trynumeric; |
| else |
| goto trynumeric; /* global */ |
| |
| /* try to convert to a numeric id as a last resort */ |
| trynumeric: |
| errno = 0; |
| lscopeid = strtoul(scope, &ep, 10); |
| *scopeid = (u_int32_t)(lscopeid & 0xffffffffUL); |
| if (errno == 0 && ep && *ep == '\0' && *scopeid == lscopeid) |
| return 0; |
| else |
| return -1; |
| } |
| |
| /* code duplicate with gethnamaddr.c */ |
| |
| #define BOUNDED_INCR(x) \ |
| do { \ |
| BOUNDS_CHECK(cp, x); \ |
| cp += (x); \ |
| } while (0) |
| |
| #define BOUNDS_CHECK(ptr, count) \ |
| do { \ |
| if (eom - (ptr) < (count)) { \ |
| *herrno = NO_RECOVERY; \ |
| return NULL; \ |
| } \ |
| } while (0) |
| |
| static struct addrinfo* getanswer(const querybuf* answer, int anslen, const char* qname, int qtype, |
| const struct addrinfo* pai, int* herrno) { |
| struct addrinfo sentinel = {}; |
| struct addrinfo *cur; |
| struct addrinfo ai; |
| const struct afd* afd; |
| char* canonname; |
| const HEADER* hp; |
| const u_char* cp; |
| int n; |
| const u_char* eom; |
| char *bp, *ep; |
| int type, ancount, qdcount; |
| int haveanswer, had_error; |
| char tbuf[MAXDNAME]; |
| int (*name_ok)(const char*); |
| char hostbuf[8 * 1024]; |
| |
| assert(answer != NULL); |
| assert(qname != NULL); |
| assert(pai != NULL); |
| |
| cur = &sentinel; |
| |
| canonname = NULL; |
| eom = answer->buf + anslen; |
| switch (qtype) { |
| case T_A: |
| case T_AAAA: |
| case T_ANY: /*use T_ANY only for T_A/T_AAAA lookup*/ |
| name_ok = res_hnok; |
| break; |
| default: |
| return NULL; /* XXX should be abort(); */ |
| } |
| /* |
| * find first satisfactory answer |
| */ |
| hp = &answer->hdr; |
| ancount = ntohs(hp->ancount); |
| qdcount = ntohs(hp->qdcount); |
| bp = hostbuf; |
| ep = hostbuf + sizeof hostbuf; |
| cp = answer->buf; |
| BOUNDED_INCR(HFIXEDSZ); |
| if (qdcount != 1) { |
| *herrno = NO_RECOVERY; |
| return (NULL); |
| } |
| n = dn_expand(answer->buf, eom, cp, bp, ep - bp); |
| if ((n < 0) || !(*name_ok)(bp)) { |
| *herrno = NO_RECOVERY; |
| return (NULL); |
| } |
| BOUNDED_INCR(n + QFIXEDSZ); |
| if (qtype == T_A || qtype == T_AAAA || qtype == T_ANY) { |
| /* res_send() has already verified that the query name is the |
| * same as the one we sent; this just gets the expanded name |
| * (i.e., with the succeeding search-domain tacked on). |
| */ |
| n = strlen(bp) + 1; /* for the \0 */ |
| if (n >= MAXHOSTNAMELEN) { |
| *herrno = NO_RECOVERY; |
| return (NULL); |
| } |
| canonname = bp; |
| bp += n; |
| /* The qname can be abbreviated, but h_name is now absolute. */ |
| qname = canonname; |
| } |
| haveanswer = 0; |
| had_error = 0; |
| while (ancount-- > 0 && cp < eom && !had_error) { |
| n = dn_expand(answer->buf, eom, cp, bp, ep - bp); |
| if ((n < 0) || !(*name_ok)(bp)) { |
| had_error++; |
| continue; |
| } |
| cp += n; /* name */ |
| BOUNDS_CHECK(cp, 3 * INT16SZ + INT32SZ); |
| type = ntohs(*reinterpret_cast<const uint16_t*>(cp)); |
| cp += INT16SZ; /* type */ |
| int cl = ntohs(*reinterpret_cast<const uint16_t*>(cp)); |
| cp += INT16SZ + INT32SZ; /* class, TTL */ |
| n = ntohs(*reinterpret_cast<const uint16_t*>(cp)); |
| cp += INT16SZ; /* len */ |
| BOUNDS_CHECK(cp, n); |
| if (cl != C_IN) { |
| /* XXX - debug? syslog? */ |
| cp += n; |
| continue; /* XXX - had_error++ ? */ |
| } |
| if ((qtype == T_A || qtype == T_AAAA || qtype == T_ANY) && type == T_CNAME) { |
| n = dn_expand(answer->buf, eom, cp, tbuf, sizeof tbuf); |
| if ((n < 0) || !(*name_ok)(tbuf)) { |
| had_error++; |
| continue; |
| } |
| cp += n; |
| /* Get canonical name. */ |
| n = strlen(tbuf) + 1; /* for the \0 */ |
| if (n > ep - bp || n >= MAXHOSTNAMELEN) { |
| had_error++; |
| continue; |
| } |
| strlcpy(bp, tbuf, (size_t)(ep - bp)); |
| canonname = bp; |
| bp += n; |
| continue; |
| } |
| if (qtype == T_ANY) { |
| if (!(type == T_A || type == T_AAAA)) { |
| cp += n; |
| continue; |
| } |
| } else if (type != qtype) { |
| if (type != T_KEY && type != T_SIG) |
| LOG(DEBUG) << __func__ << ": asked for \"" << qname << " " << p_class(C_IN) << " " |
| << p_type(qtype) << "\", got type \"" << p_type(type) << "\""; |
| cp += n; |
| continue; /* XXX - had_error++ ? */ |
| } |
| switch (type) { |
| case T_A: |
| case T_AAAA: |
| if (strcasecmp(canonname, bp) != 0) { |
| LOG(DEBUG) << __func__ << ": asked for \"" << canonname << "\", got \"" << bp |
| << "\""; |
| cp += n; |
| continue; /* XXX - had_error++ ? */ |
| } |
| if (type == T_A && n != INADDRSZ) { |
| cp += n; |
| continue; |
| } |
| if (type == T_AAAA && n != IN6ADDRSZ) { |
| cp += n; |
| continue; |
| } |
| if (type == T_AAAA) { |
| struct in6_addr in6; |
| memcpy(&in6, cp, IN6ADDRSZ); |
| if (IN6_IS_ADDR_V4MAPPED(&in6)) { |
| cp += n; |
| continue; |
| } |
| } |
| if (!haveanswer) { |
| int nn; |
| |
| canonname = bp; |
| nn = strlen(bp) + 1; /* for the \0 */ |
| bp += nn; |
| } |
| |
| /* don't overwrite pai */ |
| ai = *pai; |
| ai.ai_family = (type == T_A) ? AF_INET : AF_INET6; |
| afd = find_afd(ai.ai_family); |
| if (afd == NULL) { |
| cp += n; |
| continue; |
| } |
| cur->ai_next = get_ai(&ai, afd, (const char*) cp); |
| if (cur->ai_next == NULL) had_error++; |
| while (cur && cur->ai_next) cur = cur->ai_next; |
| cp += n; |
| break; |
| default: |
| abort(); |
| } |
| if (!had_error) haveanswer++; |
| } |
| if (haveanswer) { |
| if (!canonname) |
| (void) get_canonname(pai, sentinel.ai_next, qname); |
| else |
| (void) get_canonname(pai, sentinel.ai_next, canonname); |
| *herrno = NETDB_SUCCESS; |
| return sentinel.ai_next; |
| } |
| |
| *herrno = NO_RECOVERY; |
| return NULL; |
| } |
| |
| struct addrinfo_sort_elem { |
| struct addrinfo* ai; |
| int has_src_addr; |
| sockaddr_union src_addr; |
| int original_order; |
| }; |
| |
| static int _get_scope(const struct sockaddr* addr) { |
| if (addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr; |
| if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr)) { |
| return IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr); |
| } else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) || |
| IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr)) { |
| /* |
| * RFC 4291 section 2.5.3 says loopback is to be treated as having |
| * link-local scope. |
| */ |
| return IPV6_ADDR_SCOPE_LINKLOCAL; |
| } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) { |
| return IPV6_ADDR_SCOPE_SITELOCAL; |
| } else { |
| return IPV6_ADDR_SCOPE_GLOBAL; |
| } |
| } else if (addr->sa_family == AF_INET) { |
| const struct sockaddr_in* addr4 = (const struct sockaddr_in*) addr; |
| unsigned long int na = ntohl(addr4->sin_addr.s_addr); |
| |
| if (IN_LOOPBACK(na) || /* 127.0.0.0/8 */ |
| (na & 0xffff0000) == 0xa9fe0000) { /* 169.254.0.0/16 */ |
| return IPV6_ADDR_SCOPE_LINKLOCAL; |
| } else { |
| /* |
| * RFC 6724 section 3.2. Other IPv4 addresses, including private addresses |
| * and shared addresses (100.64.0.0/10), are assigned global scope. |
| */ |
| return IPV6_ADDR_SCOPE_GLOBAL; |
| } |
| } else { |
| /* |
| * This should never happen. |
| * Return a scope with low priority as a last resort. |
| */ |
| return IPV6_ADDR_SCOPE_NODELOCAL; |
| } |
| } |
| |
| /* These macros are modelled after the ones in <netinet/in6.h>. */ |
| |
| /* RFC 4380, section 2.6 */ |
| #define IN6_IS_ADDR_TEREDO(a) \ |
| ((*(const uint32_t*) (const void*) (&(a)->s6_addr[0]) == ntohl(0x20010000))) |
| |
| /* RFC 3056, section 2. */ |
| #define IN6_IS_ADDR_6TO4(a) (((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02)) |
| |
| /* 6bone testing address area (3ffe::/16), deprecated in RFC 3701. */ |
| #define IN6_IS_ADDR_6BONE(a) (((a)->s6_addr[0] == 0x3f) && ((a)->s6_addr[1] == 0xfe)) |
| |
| /* |
| * Get the label for a given IPv4/IPv6 address. |
| * RFC 6724, section 2.1. |
| */ |
| |
| static int _get_label(const struct sockaddr* addr) { |
| if (addr->sa_family == AF_INET) { |
| return 4; |
| } else if (addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr; |
| if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) { |
| return 0; |
| } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) { |
| return 4; |
| } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) { |
| return 2; |
| } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) { |
| return 5; |
| } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) { |
| return 13; |
| } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) { |
| return 3; |
| } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) { |
| return 11; |
| } else if (IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) { |
| return 12; |
| } else { |
| /* All other IPv6 addresses, including global unicast addresses. */ |
| return 1; |
| } |
| } else { |
| /* |
| * This should never happen. |
| * Return a semi-random label as a last resort. |
| */ |
| return 1; |
| } |
| } |
| |
| /* |
| * Get the precedence for a given IPv4/IPv6 address. |
| * RFC 6724, section 2.1. |
| */ |
| |
| static int _get_precedence(const struct sockaddr* addr) { |
| if (addr->sa_family == AF_INET) { |
| return 35; |
| } else if (addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr; |
| if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) { |
| return 50; |
| } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) { |
| return 35; |
| } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) { |
| return 30; |
| } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) { |
| return 5; |
| } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) { |
| return 3; |
| } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr) || |
| IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr) || |
| IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) { |
| return 1; |
| } else { |
| /* All other IPv6 addresses, including global unicast addresses. */ |
| return 40; |
| } |
| } else { |
| return 1; |
| } |
| } |
| |
| /* |
| * Find number of matching initial bits between the two addresses a1 and a2. |
| */ |
| |
| static int _common_prefix_len(const struct in6_addr* a1, const struct in6_addr* a2) { |
| const char* p1 = (const char*) a1; |
| const char* p2 = (const char*) a2; |
| unsigned i; |
| |
| for (i = 0; i < sizeof(*a1); ++i) { |
| int x, j; |
| |
| if (p1[i] == p2[i]) { |
| continue; |
| } |
| x = p1[i] ^ p2[i]; |
| for (j = 0; j < CHAR_BIT; ++j) { |
| if (x & (1 << (CHAR_BIT - 1))) { |
| return i * CHAR_BIT + j; |
| } |
| x <<= 1; |
| } |
| } |
| return sizeof(*a1) * CHAR_BIT; |
| } |
| |
| /* |
| * Compare two source/destination address pairs. |
| * RFC 6724, section 6. |
| */ |
| |
| static int _rfc6724_compare(const void* ptr1, const void* ptr2) { |
| const struct addrinfo_sort_elem* a1 = (const struct addrinfo_sort_elem*) ptr1; |
| const struct addrinfo_sort_elem* a2 = (const struct addrinfo_sort_elem*) ptr2; |
| int scope_src1, scope_dst1, scope_match1; |
| int scope_src2, scope_dst2, scope_match2; |
| int label_src1, label_dst1, label_match1; |
| int label_src2, label_dst2, label_match2; |
| int precedence1, precedence2; |
| int prefixlen1, prefixlen2; |
| |
| /* Rule 1: Avoid unusable destinations. */ |
| if (a1->has_src_addr != a2->has_src_addr) { |
| return a2->has_src_addr - a1->has_src_addr; |
| } |
| |
| /* Rule 2: Prefer matching scope. */ |
| scope_src1 = _get_scope(&a1->src_addr.sa); |
| scope_dst1 = _get_scope(a1->ai->ai_addr); |
| scope_match1 = (scope_src1 == scope_dst1); |
| |
| scope_src2 = _get_scope(&a2->src_addr.sa); |
| scope_dst2 = _get_scope(a2->ai->ai_addr); |
| scope_match2 = (scope_src2 == scope_dst2); |
| |
| if (scope_match1 != scope_match2) { |
| return scope_match2 - scope_match1; |
| } |
| |
| /* |
| * Rule 3: Avoid deprecated addresses. |
| * TODO(sesse): We don't currently have a good way of finding this. |
| */ |
| |
| /* |
| * Rule 4: Prefer home addresses. |
| * TODO(sesse): We don't currently have a good way of finding this. |
| */ |
| |
| /* Rule 5: Prefer matching label. */ |
| label_src1 = _get_label(&a1->src_addr.sa); |
| label_dst1 = _get_label(a1->ai->ai_addr); |
| label_match1 = (label_src1 == label_dst1); |
| |
| label_src2 = _get_label(&a2->src_addr.sa); |
| label_dst2 = _get_label(a2->ai->ai_addr); |
| label_match2 = (label_src2 == label_dst2); |
| |
| if (label_match1 != label_match2) { |
| return label_match2 - label_match1; |
| } |
| |
| /* Rule 6: Prefer higher precedence. */ |
| precedence1 = _get_precedence(a1->ai->ai_addr); |
| precedence2 = _get_precedence(a2->ai->ai_addr); |
| if (precedence1 != precedence2) { |
| return precedence2 - precedence1; |
| } |
| |
| /* |
| * Rule 7: Prefer native transport. |
| * TODO(sesse): We don't currently have a good way of finding this. |
| */ |
| |
| /* Rule 8: Prefer smaller scope. */ |
| if (scope_dst1 != scope_dst2) { |
| return scope_dst1 - scope_dst2; |
| } |
| |
| /* |
| * Rule 9: Use longest matching prefix. |
| * We implement this for IPv6 only, as the rules in RFC 6724 don't seem |
| * to work very well directly applied to IPv4. (glibc uses information from |
| * the routing table for a custom IPv4 implementation here.) |
| */ |
| if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 && a2->has_src_addr && |
| a2->ai->ai_addr->sa_family == AF_INET6) { |
| const struct sockaddr_in6* a1_src = &a1->src_addr.sin6; |
| const struct sockaddr_in6* a1_dst = (const struct sockaddr_in6*) a1->ai->ai_addr; |
| const struct sockaddr_in6* a2_src = &a2->src_addr.sin6; |
| const struct sockaddr_in6* a2_dst = (const struct sockaddr_in6*) a2->ai->ai_addr; |
| prefixlen1 = _common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr); |
| prefixlen2 = _common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr); |
| if (prefixlen1 != prefixlen2) { |
| return prefixlen2 - prefixlen1; |
| } |
| } |
| |
| /* |
| * Rule 10: Leave the order unchanged. |
| * We need this since qsort() is not necessarily stable. |
| */ |
| return a1->original_order - a2->original_order; |
| } |
| |
| /* |
| * Find the source address that will be used if trying to connect to the given |
| * address. src_addr must be large enough to hold a struct sockaddr_in6. |
| * |
| * Returns 1 if a source address was found, 0 if the address is unreachable, |
| * and -1 if a fatal error occurred. If 0 or -1, the contents of src_addr are |
| * undefined. |
| */ |
| |
| static int _find_src_addr(const struct sockaddr* addr, struct sockaddr* src_addr, unsigned mark, |
| uid_t uid) { |
| int sock; |
| int ret; |
| socklen_t len; |
| |
| switch (addr->sa_family) { |
| case AF_INET: |
| len = sizeof(struct sockaddr_in); |
| break; |
| case AF_INET6: |
| len = sizeof(struct sockaddr_in6); |
| break; |
| default: |
| /* No known usable source address for non-INET families. */ |
| return 0; |
| } |
| |
| sock = socket(addr->sa_family, SOCK_DGRAM | SOCK_CLOEXEC, IPPROTO_UDP); |
| if (sock == -1) { |
| if (errno == EAFNOSUPPORT) { |
| return 0; |
| } else { |
| return -1; |
| } |
| } |
| if (mark != MARK_UNSET && setsockopt(sock, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) { |
| close(sock); |
| return 0; |
| } |
| if (uid > 0 && uid != NET_CONTEXT_INVALID_UID && fchown(sock, uid, (gid_t) -1) < 0) { |
| close(sock); |
| return 0; |
| } |
| do { |
| ret = connect(sock, addr, len); |
| } while (ret == -1 && errno == EINTR); |
| |
| if (ret == -1) { |
| close(sock); |
| return 0; |
| } |
| |
| if (src_addr && getsockname(sock, src_addr, &len) == -1) { |
| close(sock); |
| return -1; |
| } |
| close(sock); |
| return 1; |
| } |
| |
| /* |
| * Sort the linked list starting at sentinel->ai_next in RFC6724 order. |
| * Will leave the list unchanged if an error occurs. |
| */ |
| |
| static void _rfc6724_sort(struct addrinfo* list_sentinel, unsigned mark, uid_t uid) { |
| struct addrinfo* cur; |
| int nelem = 0, i; |
| struct addrinfo_sort_elem* elems; |
| |
| cur = list_sentinel->ai_next; |
| while (cur) { |
| ++nelem; |
| cur = cur->ai_next; |
| } |
| |
| elems = (struct addrinfo_sort_elem*) malloc(nelem * sizeof(struct addrinfo_sort_elem)); |
| if (elems == NULL) { |
| goto error; |
| } |
| |
| /* |
| * Convert the linked list to an array that also contains the candidate |
| * source address for each destination address. |
| */ |
| for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next) { |
| int has_src_addr; |
| assert(cur != NULL); |
| elems[i].ai = cur; |
| elems[i].original_order = i; |
| |
| has_src_addr = _find_src_addr(cur->ai_addr, &elems[i].src_addr.sa, mark, uid); |
| if (has_src_addr == -1) { |
| goto error; |
| } |
| elems[i].has_src_addr = has_src_addr; |
| } |
| |
| /* Sort the addresses, and rearrange the linked list so it matches the sorted order. */ |
| qsort((void*) elems, nelem, sizeof(struct addrinfo_sort_elem), _rfc6724_compare); |
| |
| list_sentinel->ai_next = elems[0].ai; |
| for (i = 0; i < nelem - 1; ++i) { |
| elems[i].ai->ai_next = elems[i + 1].ai; |
| } |
| elems[nelem - 1].ai->ai_next = NULL; |
| |
| error: |
| free(elems); |
| } |
| |
| static int dns_getaddrinfo(const char* name, const addrinfo* pai, |
| const android_net_context* netcontext, addrinfo** rv) { |
| res_target q = {}; |
| res_target q2 = {}; |
| |
| auto buf = std::make_unique<querybuf>(); |
| auto buf2 = std::make_unique<querybuf>(); |
| |
| switch (pai->ai_family) { |
| case AF_UNSPEC: { |
| /* prefer IPv6 */ |
| q.name = name; |
| q.qclass = C_IN; |
| q.answer = buf->buf; |
| q.anslen = sizeof(buf->buf); |
| int query_ipv6 = 1, query_ipv4 = 1; |
| if (pai->ai_flags & AI_ADDRCONFIG) { |
| query_ipv6 = have_ipv6(netcontext->app_mark, netcontext->uid); |
| query_ipv4 = have_ipv4(netcontext->app_mark, netcontext->uid); |
| } |
| if (query_ipv6) { |
| q.qtype = T_AAAA; |
| if (query_ipv4) { |
| q.next = &q2; |
| q2.name = name; |
| q2.qclass = C_IN; |
| q2.qtype = T_A; |
| q2.answer = buf2->buf; |
| q2.anslen = sizeof(buf2->buf); |
| } |
| } else if (query_ipv4) { |
| q.qtype = T_A; |
| } else { |
| return EAI_NODATA; |
| } |
| break; |
| } |
| case AF_INET: |
| q.name = name; |
| q.qclass = C_IN; |
| q.qtype = T_A; |
| q.answer = buf->buf; |
| q.anslen = sizeof(buf->buf); |
| break; |
| case AF_INET6: |
| q.name = name; |
| q.qclass = C_IN; |
| q.qtype = T_AAAA; |
| q.answer = buf->buf; |
| q.anslen = sizeof(buf->buf); |
| break; |
| default: |
| return EAI_FAMILY; |
| } |
| |
| res_state res = res_get_state(); |
| if (!res) return EAI_MEMORY; |
| |
| /* this just sets our netid val in the thread private data so we don't have to |
| * modify the api's all the way down to res_send.c's res_nsend. We could |
| * fully populate the thread private data here, but if we get down there |
| * and have a cache hit that would be wasted, so we do the rest there on miss |
| */ |
| res_setnetcontext(res, netcontext); |
| |
| int he; |
| if (res_searchN(name, &q, res, &he) < 0) { |
| // Return h_errno (he) to catch more detailed errors rather than EAI_NODATA. |
| // Note that res_searchN() doesn't set the pair NETDB_INTERNAL and errno. |
| // See also herrnoToAiErrno(). |
| return herrnoToAiErrno(he); |
| } |
| |
| addrinfo sentinel = {}; |
| addrinfo* cur = &sentinel; |
| addrinfo* ai = getanswer(buf.get(), q.n, q.name, q.qtype, pai, &he); |
| if (ai) { |
| cur->ai_next = ai; |
| while (cur && cur->ai_next) cur = cur->ai_next; |
| } |
| if (q.next) { |
| ai = getanswer(buf2.get(), q2.n, q2.name, q2.qtype, pai, &he); |
| if (ai) cur->ai_next = ai; |
| } |
| if (sentinel.ai_next == NULL) { |
| // Note that getanswer() doesn't set the pair NETDB_INTERNAL and errno. |
| // See also herrnoToAiErrno(). |
| return herrnoToAiErrno(he); |
| } |
| |
| _rfc6724_sort(&sentinel, netcontext->app_mark, netcontext->uid); |
| |
| *rv = sentinel.ai_next; |
| return 0; |
| } |
| |
| static void _sethtent(FILE** hostf) { |
| if (!*hostf) |
| *hostf = fopen(_PATH_HOSTS, "re"); |
| else |
| rewind(*hostf); |
| } |
| |
| static void _endhtent(FILE** hostf) { |
| if (*hostf) { |
| (void) fclose(*hostf); |
| *hostf = NULL; |
| } |
| } |
| |
| static struct addrinfo* _gethtent(FILE** hostf, const char* name, const struct addrinfo* pai) { |
| char* p; |
| char *cp, *tname, *cname; |
| struct addrinfo *res0, *res; |
| int error; |
| const char* addr; |
| char hostbuf[8 * 1024]; |
| |
| assert(name != NULL); |
| assert(pai != NULL); |
| |
| if (!*hostf && !(*hostf = fopen(_PATH_HOSTS, "re"))) return (NULL); |
| again: |
| if (!(p = fgets(hostbuf, sizeof hostbuf, *hostf))) return (NULL); |
| if (*p == '#') goto again; |
| if (!(cp = strpbrk(p, "#\n"))) goto again; |
| *cp = '\0'; |
| if (!(cp = strpbrk(p, " \t"))) goto again; |
| *cp++ = '\0'; |
| addr = p; |
| /* if this is not something we're looking for, skip it. */ |
| cname = NULL; |
| while (cp && *cp) { |
| if (*cp == ' ' || *cp == '\t') { |
| cp++; |
| continue; |
| } |
| if (!cname) cname = cp; |
| tname = cp; |
| if ((cp = strpbrk(cp, " \t")) != NULL) *cp++ = '\0'; |
| if (strcasecmp(name, tname) == 0) goto found; |
| } |
| goto again; |
| |
| found: |
| error = getaddrinfo_numeric(addr, nullptr, *pai, &res0); |
| if (error) goto again; |
| for (res = res0; res; res = res->ai_next) { |
| /* cover it up */ |
| res->ai_flags = pai->ai_flags; |
| |
| if (pai->ai_flags & AI_CANONNAME) { |
| if (get_canonname(pai, res, cname) != 0) { |
| freeaddrinfo(res0); |
| goto again; |
| } |
| } |
| } |
| return res0; |
| } |
| |
| static bool files_getaddrinfo(const char* name, const addrinfo* pai, addrinfo** res) { |
| struct addrinfo sentinel = {}; |
| struct addrinfo *p, *cur; |
| FILE* hostf = NULL; |
| |
| cur = &sentinel; |
| |
| _sethtent(&hostf); |
| while ((p = _gethtent(&hostf, name, pai)) != NULL) { |
| cur->ai_next = p; |
| while (cur && cur->ai_next) cur = cur->ai_next; |
| } |
| _endhtent(&hostf); |
| |
| *res = sentinel.ai_next; |
| return sentinel.ai_next != NULL; |
| } |
| |
| /* resolver logic */ |
| |
| /* |
| * Formulate a normal query, send, and await answer. |
| * Returned answer is placed in supplied buffer "answer". |
| * Perform preliminary check of answer, returning success only |
| * if no error is indicated and the answer count is nonzero. |
| * Return the size of the response on success, -1 on error. |
| * Error number is left in *herrno. |
| * |
| * Caller must parse answer and determine whether it answers the question. |
| */ |
| static int res_queryN(const char* name, res_target* target, res_state res, int* herrno) { |
| u_char buf[MAXPACKET]; |
| HEADER* hp; |
| int n; |
| struct res_target* t; |
| int rcode; |
| int ancount; |
| |
| assert(name != NULL); |
| /* XXX: target may be NULL??? */ |
| |
| rcode = NOERROR; |
| ancount = 0; |
| |
| for (t = target; t; t = t->next) { |
| u_char* answer; |
| int anslen; |
| |
| hp = (HEADER*) (void*) t->answer; |
| bool retried = false; |
| again: |
| hp->rcode = NOERROR; /* default */ |
| |
| /* make it easier... */ |
| int cl = t->qclass; |
| int type = t->qtype; |
| answer = t->answer; |
| anslen = t->anslen; |
| |
| LOG(DEBUG) << __func__ << ": (" << cl << ", " << type << ")"; |
| |
| n = res_nmkquery(res, QUERY, name, cl, type, NULL, 0, NULL, buf, sizeof(buf)); |
| if (n > 0 && (res->options & (RES_USE_EDNS0 | RES_USE_DNSSEC)) != 0 && !retried) |
| n = res_nopt(res, n, buf, sizeof(buf), anslen); |
| if (n <= 0) { |
| LOG(ERROR) << __func__ << ": res_nmkquery failed"; |
| *herrno = NO_RECOVERY; |
| return n; |
| } |
| |
| n = res_nsend(res, buf, n, answer, anslen, &rcode, 0); |
| if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) { |
| // Record rcode from DNS response header only if no timeout. |
| // Keep rcode timeout for reporting later if any. |
| if (rcode != RCODE_TIMEOUT) rcode = hp->rcode; /* record most recent error */ |
| /* if the query choked with EDNS0, retry without EDNS0 */ |
| if ((res->options & (RES_USE_EDNS0 | RES_USE_DNSSEC)) != 0 && |
| (res->_flags & RES_F_EDNS0ERR) && !retried) { |
| LOG(DEBUG) << __func__ << ": retry without EDNS0"; |
| retried = true; |
| goto again; |
| } |
| LOG(DEBUG) << __func__ << ": rcode=" << hp->rcode << ", ancount=" << ntohs(hp->ancount); |
| continue; |
| } |
| |
| ancount += ntohs(hp->ancount); |
| |
| t->n = n; |
| } |
| |
| if (ancount == 0) { |
| switch (rcode) { |
| // Not defined in RFC. |
| case RCODE_TIMEOUT: |
| // DNS metrics monitors DNS query timeout. |
| *herrno = NETD_RESOLV_H_ERRNO_EXT_TIMEOUT; // extended h_errno. |
| break; |
| // Defined in RFC 1035 section 4.1.1. |
| case NXDOMAIN: |
| *herrno = HOST_NOT_FOUND; |
| break; |
| case SERVFAIL: |
| *herrno = TRY_AGAIN; |
| break; |
| case NOERROR: |
| *herrno = NO_DATA; |
| break; |
| case FORMERR: |
| case NOTIMP: |
| case REFUSED: |
| default: |
| *herrno = NO_RECOVERY; |
| break; |
| } |
| return -1; |
| } |
| return ancount; |
| } |
| |
| /* |
| * Formulate a normal query, send, and retrieve answer in supplied buffer. |
| * Return the size of the response on success, -1 on error. |
| * If enabled, implement search rules until answer or unrecoverable failure |
| * is detected. Error code, if any, is left in *herrno. |
| */ |
| static int res_searchN(const char* name, res_target* target, res_state res, int* herrno) { |
| const char *cp, *const *domain; |
| HEADER* hp; |
| u_int dots; |
| int trailing_dot, ret, saved_herrno; |
| int got_nodata = 0, got_servfail = 0, tried_as_is = 0; |
| |
| assert(name != NULL); |
| assert(target != NULL); |
| |
| hp = (HEADER*) (void*) target->answer; /*XXX*/ |
| |
| errno = 0; |
| *herrno = HOST_NOT_FOUND; /* default, if we never query */ |
| dots = 0; |
| for (cp = name; *cp; cp++) dots += (*cp == '.'); |
| trailing_dot = 0; |
| if (cp > name && *--cp == '.') trailing_dot++; |
| |
| /* |
| * If there are dots in the name already, let's just give it a try |
| * 'as is'. The threshold can be set with the "ndots" option. |
| */ |
| saved_herrno = -1; |
| if (dots >= res->ndots) { |
| ret = res_querydomainN(name, NULL, target, res, herrno); |
| if (ret > 0) return (ret); |
| saved_herrno = *herrno; |
| tried_as_is++; |
| } |
| |
| /* |
| * We do at least one level of search if |
| * - there is no dot and RES_DEFNAME is set, or |
| * - there is at least one dot, there is no trailing dot, |
| * and RES_DNSRCH is set. |
| */ |
| if ((!dots && (res->options & RES_DEFNAMES)) || |
| (dots && !trailing_dot && (res->options & RES_DNSRCH))) { |
| int done = 0; |
| |
| /* Unfortunately we need to set stuff up before |
| * the domain stuff is tried. Will have a better |
| * fix after thread pools are used. |
| */ |
| _resolv_populate_res_for_net(res); |
| |
| for (domain = (const char* const*) res->dnsrch; *domain && !done; domain++) { |
| ret = res_querydomainN(name, *domain, target, res, herrno); |
| if (ret > 0) return ret; |
| |
| /* |
| * If no server present, give up. |
| * If name isn't found in this domain, |
| * keep trying higher domains in the search list |
| * (if that's enabled). |
| * On a NO_DATA error, keep trying, otherwise |
| * a wildcard entry of another type could keep us |
| * from finding this entry higher in the domain. |
| * If we get some other error (negative answer or |
| * server failure), then stop searching up, |
| * but try the input name below in case it's |
| * fully-qualified. |
| */ |
| if (errno == ECONNREFUSED) { |
| *herrno = TRY_AGAIN; |
| return -1; |
| } |
| |
| switch (*herrno) { |
| case NO_DATA: |
| got_nodata++; |
| [[fallthrough]]; |
| case HOST_NOT_FOUND: |
| /* keep trying */ |
| break; |
| case TRY_AGAIN: |
| if (hp->rcode == SERVFAIL) { |
| /* try next search element, if any */ |
| got_servfail++; |
| break; |
| } |
| [[fallthrough]]; |
| default: |
| /* anything else implies that we're done */ |
| done++; |
| } |
| /* |
| * if we got here for some reason other than DNSRCH, |
| * we only wanted one iteration of the loop, so stop. |
| */ |
| if (!(res->options & RES_DNSRCH)) done++; |
| } |
| } |
| |
| /* |
| * if we have not already tried the name "as is", do that now. |
| * note that we do this regardless of how many dots were in the |
| * name or whether it ends with a dot. |
| */ |
| if (!tried_as_is) { |
| ret = res_querydomainN(name, NULL, target, res, herrno); |
| if (ret > 0) return ret; |
| } |
| |
| /* |
| * if we got here, we didn't satisfy the search. |
| * if we did an initial full query, return that query's h_errno |
| * (note that we wouldn't be here if that query had succeeded). |
| * else if we ever got a nodata, send that back as the reason. |
| * else send back meaningless h_errno, that being the one from |
| * the last DNSRCH we did. |
| */ |
| if (saved_herrno != -1) |
| *herrno = saved_herrno; |
| else if (got_nodata) |
| *herrno = NO_DATA; |
| else if (got_servfail) |
| *herrno = TRY_AGAIN; |
| return -1; |
| } |
| |
| /* |
| * Perform a call on res_query on the concatenation of name and domain, |
| * removing a trailing dot from name if domain is NULL. |
| */ |
| static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res, |
| int* herrno) { |
| char nbuf[MAXDNAME]; |
| const char* longname = nbuf; |
| size_t n, d; |
| |
| assert(name != NULL); |
| |
| if (domain == NULL) { |
| // Check for trailing '.'; copy without '.' if present. |
| n = strlen(name); |
| if (n + 1 > sizeof(nbuf)) { |
| *herrno = NO_RECOVERY; |
| return -1; |
| } |
| if (n > 0 && name[--n] == '.') { |
| strncpy(nbuf, name, n); |
| nbuf[n] = '\0'; |
| } else |
| longname = name; |
| } else { |
| n = strlen(name); |
| d = strlen(domain); |
| if (n + 1 + d + 1 > sizeof(nbuf)) { |
| *herrno = NO_RECOVERY; |
| return -1; |
| } |
| snprintf(nbuf, sizeof(nbuf), "%s.%s", name, domain); |
| } |
| return res_queryN(longname, target, res, herrno); |
| } |