blob: a17cd946244c43877fee1d7f9695e9d31f12301b [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "keystore"
#include "keymaster_enforcement.h"
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <string.h>
#include <openssl/evp.h>
#include <hardware/hw_auth_token.h>
#include <log/log.h>
#include <list>
#include <keystore/keystore_hidl_support.h>
namespace keystore {
bool is_public_key_algorithm(const AuthorizationSet& auth_set) {
auto algorithm = auth_set.GetTagValue(TAG_ALGORITHM);
return algorithm.isOk() &&
(algorithm.value() == Algorithm::RSA || algorithm.value() == Algorithm::EC);
}
static ErrorCode authorized_purpose(const KeyPurpose purpose, const AuthorizationSet& auth_set) {
switch (purpose) {
case KeyPurpose::VERIFY:
case KeyPurpose::ENCRYPT:
case KeyPurpose::SIGN:
case KeyPurpose::DECRYPT:
if (auth_set.Contains(TAG_PURPOSE, purpose)) return ErrorCode::OK;
return ErrorCode::INCOMPATIBLE_PURPOSE;
default:
return ErrorCode::UNSUPPORTED_PURPOSE;
}
}
inline bool is_origination_purpose(KeyPurpose purpose) {
return purpose == KeyPurpose::ENCRYPT || purpose == KeyPurpose::SIGN;
}
inline bool is_usage_purpose(KeyPurpose purpose) {
return purpose == KeyPurpose::DECRYPT || purpose == KeyPurpose::VERIFY;
}
KeymasterEnforcement::KeymasterEnforcement(uint32_t max_access_time_map_size,
uint32_t max_access_count_map_size)
: access_time_map_(max_access_time_map_size), access_count_map_(max_access_count_map_size) {}
KeymasterEnforcement::~KeymasterEnforcement() {
}
ErrorCode KeymasterEnforcement::AuthorizeOperation(const KeyPurpose purpose, const km_id_t keyid,
const AuthorizationSet& auth_set,
const AuthorizationSet& operation_params,
const HardwareAuthToken& auth_token,
uint64_t op_handle, bool is_begin_operation) {
if (is_public_key_algorithm(auth_set)) {
switch (purpose) {
case KeyPurpose::ENCRYPT:
case KeyPurpose::VERIFY:
/* Public key operations are always authorized. */
return ErrorCode::OK;
case KeyPurpose::DECRYPT:
case KeyPurpose::SIGN:
break;
case KeyPurpose::WRAP_KEY:
return ErrorCode::INCOMPATIBLE_PURPOSE;
};
};
if (is_begin_operation)
return AuthorizeBegin(purpose, keyid, auth_set, operation_params, auth_token);
else
return AuthorizeUpdateOrFinish(auth_set, auth_token, op_handle);
}
// For update and finish the only thing to check is user authentication, and then only if it's not
// timeout-based.
ErrorCode KeymasterEnforcement::AuthorizeUpdateOrFinish(const AuthorizationSet& auth_set,
const HardwareAuthToken& auth_token,
uint64_t op_handle) {
int auth_type_index = -1;
for (size_t pos = 0; pos < auth_set.size(); ++pos) {
switch (auth_set[pos].tag) {
case Tag::NO_AUTH_REQUIRED:
case Tag::AUTH_TIMEOUT:
// If no auth is required or if auth is timeout-based, we have nothing to check.
return ErrorCode::OK;
case Tag::USER_AUTH_TYPE:
auth_type_index = pos;
break;
default:
break;
}
}
// Note that at this point we should be able to assume that authentication is required, because
// authentication is required if KM_TAG_NO_AUTH_REQUIRED is absent. However, there are legacy
// keys which have no authentication-related tags, so we assume that absence is equivalent to
// presence of KM_TAG_NO_AUTH_REQUIRED.
//
// So, if we found KM_TAG_USER_AUTH_TYPE or if we find KM_TAG_USER_SECURE_ID then authentication
// is required. If we find neither, then we assume authentication is not required and return
// success.
bool authentication_required = (auth_type_index != -1);
for (auto& param : auth_set) {
auto user_secure_id = authorizationValue(TAG_USER_SECURE_ID, param);
if (user_secure_id.isOk()) {
authentication_required = true;
int auth_timeout_index = -1;
if (auth_token.mac.size() &&
AuthTokenMatches(auth_set, auth_token, user_secure_id.value(), auth_type_index,
auth_timeout_index, op_handle, false /* is_begin_operation */))
return ErrorCode::OK;
}
}
if (authentication_required) return ErrorCode::KEY_USER_NOT_AUTHENTICATED;
return ErrorCode::OK;
}
ErrorCode KeymasterEnforcement::AuthorizeBegin(const KeyPurpose purpose, const km_id_t keyid,
const AuthorizationSet& auth_set,
const AuthorizationSet& operation_params,
NullOr<const HardwareAuthToken&> auth_token) {
// Find some entries that may be needed to handle KM_TAG_USER_SECURE_ID
int auth_timeout_index = -1;
int auth_type_index = -1;
int no_auth_required_index = -1;
for (size_t pos = 0; pos < auth_set.size(); ++pos) {
switch (auth_set[pos].tag) {
case Tag::AUTH_TIMEOUT:
auth_timeout_index = pos;
break;
case Tag::USER_AUTH_TYPE:
auth_type_index = pos;
break;
case Tag::NO_AUTH_REQUIRED:
no_auth_required_index = pos;
break;
default:
break;
}
}
ErrorCode error = authorized_purpose(purpose, auth_set);
if (error != ErrorCode::OK) return error;
// If successful, and if key has a min time between ops, this will be set to the time limit
uint32_t min_ops_timeout = UINT32_MAX;
bool update_access_count = false;
bool caller_nonce_authorized_by_key = false;
bool authentication_required = false;
bool auth_token_matched = false;
bool unlocked_device_required = false;
int32_t user_id = -1;
for (auto& param : auth_set) {
// KM_TAG_PADDING_OLD and KM_TAG_DIGEST_OLD aren't actually members of the enum, so we can't
// switch on them. There's nothing to validate for them, though, so just ignore them.
if (int32_t(param.tag) == KM_TAG_PADDING_OLD || int32_t(param.tag) == KM_TAG_DIGEST_OLD)
continue;
switch (param.tag) {
case Tag::ACTIVE_DATETIME: {
auto date = authorizationValue(TAG_ACTIVE_DATETIME, param);
if (date.isOk() && !activation_date_valid(date.value()))
return ErrorCode::KEY_NOT_YET_VALID;
break;
}
case Tag::ORIGINATION_EXPIRE_DATETIME: {
auto date = authorizationValue(TAG_ORIGINATION_EXPIRE_DATETIME, param);
if (is_origination_purpose(purpose) && date.isOk() &&
expiration_date_passed(date.value()))
return ErrorCode::KEY_EXPIRED;
break;
}
case Tag::USAGE_EXPIRE_DATETIME: {
auto date = authorizationValue(TAG_USAGE_EXPIRE_DATETIME, param);
if (is_usage_purpose(purpose) && date.isOk() && expiration_date_passed(date.value()))
return ErrorCode::KEY_EXPIRED;
break;
}
case Tag::MIN_SECONDS_BETWEEN_OPS: {
auto min_ops_timeout = authorizationValue(TAG_MIN_SECONDS_BETWEEN_OPS, param);
if (min_ops_timeout.isOk() && !MinTimeBetweenOpsPassed(min_ops_timeout.value(), keyid))
return ErrorCode::KEY_RATE_LIMIT_EXCEEDED;
break;
}
case Tag::MAX_USES_PER_BOOT: {
auto max_users = authorizationValue(TAG_MAX_USES_PER_BOOT, param);
update_access_count = true;
if (max_users.isOk() && !MaxUsesPerBootNotExceeded(keyid, max_users.value()))
return ErrorCode::KEY_MAX_OPS_EXCEEDED;
break;
}
case Tag::USER_SECURE_ID:
if (no_auth_required_index != -1) {
// Key has both KM_TAG_USER_SECURE_ID and KM_TAG_NO_AUTH_REQUIRED
return ErrorCode::INVALID_KEY_BLOB;
}
if (auth_timeout_index != -1) {
auto secure_id = authorizationValue(TAG_USER_SECURE_ID, param);
authentication_required = true;
if (secure_id.isOk() && auth_token.isOk() &&
AuthTokenMatches(auth_set, auth_token.value(), secure_id.value(),
auth_type_index, auth_timeout_index, 0 /* op_handle */,
true /* is_begin_operation */))
auth_token_matched = true;
}
break;
case Tag::USER_ID:
user_id = authorizationValue(TAG_USER_ID, param).value();
break;
case Tag::CALLER_NONCE:
caller_nonce_authorized_by_key = true;
break;
case Tag::UNLOCKED_DEVICE_REQUIRED:
unlocked_device_required = true;
break;
/* Tags should never be in key auths. */
case Tag::INVALID:
case Tag::ROOT_OF_TRUST:
case Tag::APPLICATION_DATA:
case Tag::ATTESTATION_CHALLENGE:
case Tag::ATTESTATION_APPLICATION_ID:
case Tag::ATTESTATION_ID_BRAND:
case Tag::ATTESTATION_ID_DEVICE:
case Tag::ATTESTATION_ID_PRODUCT:
case Tag::ATTESTATION_ID_SERIAL:
case Tag::ATTESTATION_ID_IMEI:
case Tag::ATTESTATION_ID_MEID:
case Tag::ATTESTATION_ID_MANUFACTURER:
case Tag::ATTESTATION_ID_MODEL:
return ErrorCode::INVALID_KEY_BLOB;
/* Tags used for cryptographic parameters in keygen. Nothing to enforce. */
case Tag::PURPOSE:
case Tag::ALGORITHM:
case Tag::KEY_SIZE:
case Tag::BLOCK_MODE:
case Tag::DIGEST:
case Tag::MAC_LENGTH:
case Tag::PADDING:
case Tag::NONCE:
case Tag::MIN_MAC_LENGTH:
case Tag::EC_CURVE:
/* Tags not used for operations. */
case Tag::BLOB_USAGE_REQUIREMENTS:
/* Algorithm specific parameters not used for access control. */
case Tag::RSA_PUBLIC_EXPONENT:
/* Informational tags. */
case Tag::CREATION_DATETIME:
case Tag::ORIGIN:
case Tag::ROLLBACK_RESISTANCE:
/* Tags handled when KM_TAG_USER_SECURE_ID is handled */
case Tag::NO_AUTH_REQUIRED:
case Tag::USER_AUTH_TYPE:
case Tag::AUTH_TIMEOUT:
/* Tag to provide data to operations. */
case Tag::ASSOCIATED_DATA:
/* Tags that are implicitly verified by secure side */
case Tag::APPLICATION_ID:
case Tag::BOOT_PATCHLEVEL:
case Tag::OS_PATCHLEVEL:
case Tag::OS_VERSION:
case Tag::TRUSTED_USER_PRESENCE_REQUIRED:
case Tag::VENDOR_PATCHLEVEL:
/* TODO(swillden): Handle these */
case Tag::INCLUDE_UNIQUE_ID:
case Tag::UNIQUE_ID:
case Tag::RESET_SINCE_ID_ROTATION:
case Tag::ALLOW_WHILE_ON_BODY:
case Tag::HARDWARE_TYPE:
case Tag::TRUSTED_CONFIRMATION_REQUIRED:
case Tag::CONFIRMATION_TOKEN:
break;
case Tag::BOOTLOADER_ONLY:
return ErrorCode::INVALID_KEY_BLOB;
}
}
if (unlocked_device_required && is_device_locked(user_id)) {
switch (purpose) {
case KeyPurpose::ENCRYPT:
case KeyPurpose::VERIFY:
/* These are okay */
break;
case KeyPurpose::DECRYPT:
case KeyPurpose::SIGN:
case KeyPurpose::WRAP_KEY:
return ErrorCode::DEVICE_LOCKED;
};
}
if (authentication_required && !auth_token_matched) {
ALOGE("Auth required but no matching auth token found");
return ErrorCode::KEY_USER_NOT_AUTHENTICATED;
}
if (!caller_nonce_authorized_by_key && is_origination_purpose(purpose) &&
operation_params.Contains(Tag::NONCE))
return ErrorCode::CALLER_NONCE_PROHIBITED;
if (min_ops_timeout != UINT32_MAX) {
if (!access_time_map_.UpdateKeyAccessTime(keyid, get_current_time(), min_ops_timeout)) {
ALOGE("Rate-limited keys table full. Entries will time out.");
return ErrorCode::TOO_MANY_OPERATIONS;
}
}
if (update_access_count) {
if (!access_count_map_.IncrementKeyAccessCount(keyid)) {
ALOGE("Usage count-limited keys table full, until reboot.");
return ErrorCode::TOO_MANY_OPERATIONS;
}
}
return ErrorCode::OK;
}
class EvpMdCtx {
public:
EvpMdCtx() { EVP_MD_CTX_init(&ctx_); }
~EvpMdCtx() { EVP_MD_CTX_cleanup(&ctx_); }
EVP_MD_CTX* get() { return &ctx_; }
private:
EVP_MD_CTX ctx_;
};
/* static */
std::optional<km_id_t> KeymasterEnforcement::CreateKeyId(const hidl_vec<uint8_t>& key_blob) {
EvpMdCtx ctx;
km_id_t keyid;
uint8_t hash[EVP_MAX_MD_SIZE];
unsigned int hash_len;
if (EVP_DigestInit_ex(ctx.get(), EVP_sha256(), nullptr /* ENGINE */) &&
EVP_DigestUpdate(ctx.get(), &key_blob[0], key_blob.size()) &&
EVP_DigestFinal_ex(ctx.get(), hash, &hash_len)) {
assert(hash_len >= sizeof(keyid));
memcpy(&keyid, hash, sizeof(keyid));
return keyid;
}
return {};
}
bool KeymasterEnforcement::MinTimeBetweenOpsPassed(uint32_t min_time_between, const km_id_t keyid) {
uint32_t last_access_time;
if (!access_time_map_.LastKeyAccessTime(keyid, &last_access_time)) return true;
return min_time_between <= static_cast<int64_t>(get_current_time()) - last_access_time;
}
bool KeymasterEnforcement::MaxUsesPerBootNotExceeded(const km_id_t keyid, uint32_t max_uses) {
uint32_t key_access_count;
if (!access_count_map_.KeyAccessCount(keyid, &key_access_count)) return true;
return key_access_count < max_uses;
}
template <typename IntType, uint32_t byteOrder> struct choose_hton;
template <typename IntType> struct choose_hton<IntType, __ORDER_LITTLE_ENDIAN__> {
inline static IntType hton(const IntType& value) {
IntType result = 0;
const unsigned char* inbytes = reinterpret_cast<const unsigned char*>(&value);
unsigned char* outbytes = reinterpret_cast<unsigned char*>(&result);
for (int i = sizeof(IntType) - 1; i >= 0; --i) {
*(outbytes++) = inbytes[i];
}
return result;
}
};
template <typename IntType> struct choose_hton<IntType, __ORDER_BIG_ENDIAN__> {
inline static IntType hton(const IntType& value) { return value; }
};
template <typename IntType> inline IntType hton(const IntType& value) {
return choose_hton<IntType, __BYTE_ORDER__>::hton(value);
}
template <typename IntType> inline IntType ntoh(const IntType& value) {
// same operation and hton
return choose_hton<IntType, __BYTE_ORDER__>::hton(value);
}
bool KeymasterEnforcement::AuthTokenMatches(const AuthorizationSet& auth_set,
const HardwareAuthToken& auth_token,
const uint64_t user_secure_id,
const int auth_type_index, const int auth_timeout_index,
const uint64_t op_handle,
bool is_begin_operation) const {
assert(auth_type_index < static_cast<int>(auth_set.size()));
assert(auth_timeout_index < static_cast<int>(auth_set.size()));
if (!ValidateTokenSignature(auth_token)) {
ALOGE("Auth token signature invalid");
return false;
}
if (auth_timeout_index == -1 && op_handle && op_handle != auth_token.challenge) {
ALOGE("Auth token has the challenge %" PRIu64 ", need %" PRIu64, auth_token.challenge,
op_handle);
return false;
}
if (user_secure_id != auth_token.userId && user_secure_id != auth_token.authenticatorId) {
ALOGI("Auth token SIDs %" PRIu64 " and %" PRIu64 " do not match key SID %" PRIu64,
auth_token.userId, auth_token.authenticatorId, user_secure_id);
return false;
}
if (auth_type_index < 0 || auth_type_index > static_cast<int>(auth_set.size())) {
ALOGE("Auth required but no auth type found");
return false;
}
assert(auth_set[auth_type_index].tag == TAG_USER_AUTH_TYPE);
auto key_auth_type_mask = authorizationValue(TAG_USER_AUTH_TYPE, auth_set[auth_type_index]);
if (!key_auth_type_mask.isOk()) return false;
if ((uint32_t(key_auth_type_mask.value()) & auth_token.authenticatorType) == 0) {
ALOGE("Key requires match of auth type mask 0%uo, but token contained 0%uo",
key_auth_type_mask.value(), auth_token.authenticatorType);
return false;
}
if (auth_timeout_index != -1 && is_begin_operation) {
assert(auth_set[auth_timeout_index].tag == TAG_AUTH_TIMEOUT);
auto auth_token_timeout =
authorizationValue(TAG_AUTH_TIMEOUT, auth_set[auth_timeout_index]);
if (!auth_token_timeout.isOk()) return false;
if (auth_token_timed_out(auth_token, auth_token_timeout.value())) {
ALOGE("Auth token has timed out");
return false;
}
}
// Survived the whole gauntlet. We have authentage!
return true;
}
bool AccessTimeMap::LastKeyAccessTime(km_id_t keyid, uint32_t* last_access_time) const {
std::lock_guard<std::mutex> lock(list_lock_);
for (auto& entry : last_access_list_)
if (entry.keyid == keyid) {
*last_access_time = entry.access_time;
return true;
}
return false;
}
bool AccessTimeMap::UpdateKeyAccessTime(km_id_t keyid, uint32_t current_time, uint32_t timeout) {
std::lock_guard<std::mutex> lock(list_lock_);
for (auto iter = last_access_list_.begin(); iter != last_access_list_.end();) {
if (iter->keyid == keyid) {
iter->access_time = current_time;
return true;
}
// Expire entry if possible.
assert(current_time >= iter->access_time);
if (current_time - iter->access_time >= iter->timeout)
iter = last_access_list_.erase(iter);
else
++iter;
}
if (last_access_list_.size() >= max_size_) return false;
AccessTime new_entry;
new_entry.keyid = keyid;
new_entry.access_time = current_time;
new_entry.timeout = timeout;
last_access_list_.push_front(new_entry);
return true;
}
bool AccessCountMap::KeyAccessCount(km_id_t keyid, uint32_t* count) const {
std::lock_guard<std::mutex> lock(list_lock_);
for (auto& entry : access_count_list_)
if (entry.keyid == keyid) {
*count = entry.access_count;
return true;
}
return false;
}
bool AccessCountMap::IncrementKeyAccessCount(km_id_t keyid) {
std::lock_guard<std::mutex> lock(list_lock_);
for (auto& entry : access_count_list_)
if (entry.keyid == keyid) {
// Note that the 'if' below will always be true because KM_TAG_MAX_USES_PER_BOOT is a
// uint32_t, and as soon as entry.access_count reaches the specified maximum value
// operation requests will be rejected and access_count won't be incremented any more.
// And, besides, UINT64_MAX is huge. But we ensure that it doesn't wrap anyway, out of
// an abundance of caution.
if (entry.access_count < UINT64_MAX) ++entry.access_count;
return true;
}
if (access_count_list_.size() >= max_size_) return false;
AccessCount new_entry;
new_entry.keyid = keyid;
new_entry.access_count = 1;
access_count_list_.push_front(new_entry);
return true;
}
}; /* namespace keystore */