blob: 1b85c67e6d212145064123faed1f626943bb57fd [file] [log] [blame]
#define LOG_TAG "hidl_test_client"
#include "FooCallback.h"
#include "hidl_test.h"
#include <android-base/logging.h>
#include <android/hidl/manager/1.1/IServiceManager.h>
#include <android/hidl/manager/1.0/IServiceNotification.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <android/hidl/memory/1.0/IMemory.h>
#include <android/hidl/token/1.0/ITokenManager.h>
#include <android/hardware/tests/bar/1.0/BpHwBar.h>
#include <android/hardware/tests/bar/1.0/BnHwBar.h>
#include <android/hardware/tests/bar/1.0/IBar.h>
#include <android/hardware/tests/bar/1.0/IComplicated.h>
#include <android/hardware/tests/bar/1.0/IImportRules.h>
#include <android/hardware/tests/baz/1.0/IBaz.h>
#include <android/hardware/tests/foo/1.0/BnHwSimple.h>
#include <android/hardware/tests/foo/1.0/BpHwSimple.h>
#include <android/hardware/tests/foo/1.0/BsSimple.h>
#include <android/hardware/tests/foo/1.0/IFoo.h>
#include <android/hardware/tests/hash/1.0/IHash.h>
#include <android/hardware/tests/inheritance/1.0/IChild.h>
#include <android/hardware/tests/inheritance/1.0/IFetcher.h>
#include <android/hardware/tests/inheritance/1.0/IGrandparent.h>
#include <android/hardware/tests/inheritance/1.0/IParent.h>
#include <android/hardware/tests/memory/1.0/IMemoryTest.h>
#include <android/hardware/tests/multithread/1.0/IMultithread.h>
#include <android/hardware/tests/pointer/1.0/IGraph.h>
#include <android/hardware/tests/pointer/1.0/IPointer.h>
#include <gtest/gtest.h>
#if GTEST_IS_THREADSAFE
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <errno.h>
#include <pthread.h>
#else
#error "GTest did not detect pthread library."
#endif
#include <getopt.h>
#include <inttypes.h>
#include <algorithm>
#include <condition_variable>
#include <fstream>
#include <future>
#include <mutex>
#include <set>
#include <sstream>
#include <thread>
#include <utility>
#include <vector>
#include <hidl-test/FooHelper.h>
#include <hidl-test/PointerHelper.h>
#include <hidl/ServiceManagement.h>
#include <hidl/Status.h>
#include <hidlmemory/mapping.h>
#include <utils/Condition.h>
#include <utils/Timers.h>
#define EXPECT_OK(__ret__) EXPECT_TRUE(isOk(__ret__))
#define EXPECT_FAIL(__ret__) EXPECT_FALSE(isOk(__ret__))
#define EXPECT_ARRAYEQ(__a1__, __a2__, __size__) EXPECT_TRUE(isArrayEqual(__a1__, __a2__, __size__))
// TODO uncomment this when kernel is patched with pointer changes.
//#define HIDL_RUN_POINTER_TESTS 1
// forward declarations.
class HidlEnvironment;
// static storage
enum TestMode {
BINDERIZED,
PASSTHROUGH
};
static HidlEnvironment *gHidlEnvironment = nullptr;
using ::android::hardware::tests::foo::V1_0::Abc;
using ::android::hardware::tests::foo::V1_0::IFoo;
using ::android::hardware::tests::foo::V1_0::IFooCallback;
using ::android::hardware::tests::foo::V1_0::ISimple;
using ::android::hardware::tests::foo::V1_0::implementation::FooCallback;
using ::android::hardware::tests::bar::V1_0::IBar;
using ::android::hardware::tests::bar::V1_0::IComplicated;
using ::android::hardware::tests::baz::V1_0::IBaz;
using ::android::hardware::tests::hash::V1_0::IHash;
using ::android::hardware::tests::inheritance::V1_0::IFetcher;
using ::android::hardware::tests::inheritance::V1_0::IGrandparent;
using ::android::hardware::tests::inheritance::V1_0::IParent;
using ::android::hardware::tests::inheritance::V1_0::IChild;
using ::android::hardware::tests::pointer::V1_0::IGraph;
using ::android::hardware::tests::pointer::V1_0::IPointer;
using ::android::hardware::tests::memory::V1_0::IMemoryTest;
using ::android::hardware::tests::multithread::V1_0::IMultithread;
using ::android::hardware::Return;
using ::android::hardware::Void;
using ::android::hardware::hidl_array;
using ::android::hardware::hidl_death_recipient;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_string;
using ::android::hardware::hidl_vec;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::base::V1_0::IBase;
using ::android::hidl::manager::V1_1::IServiceManager;
using ::android::hidl::manager::V1_0::IServiceNotification;
using ::android::hidl::memory::V1_0::IMemory;
using ::android::hidl::token::V1_0::ITokenManager;
using ::android::sp;
using ::android::wp;
using ::android::to_string;
using ::android::Mutex;
using ::android::MultiDimensionalToString;
using ::android::Condition;
using ::android::DELAY_S;
using ::android::DELAY_NS;
using ::android::TOLERANCE_NS;
using ::android::ONEWAY_TOLERANCE_NS;
using std::to_string;
bool isLibraryOpen(const std::string &lib) {
std::ifstream ifs("/proc/self/maps");
for (std::string line; std::getline(ifs, line);) {
if (line.size() >= lib.size() && line.substr(line.size() - lib.size()) == lib) {
return true;
}
}
return false;
}
template <typename T>
static inline ::testing::AssertionResult isOk(const ::android::hardware::Return<T> &ret) {
return ret.isOk()
? (::testing::AssertionSuccess() << ret.description())
: (::testing::AssertionFailure() << ret.description());
}
template<typename T, typename S>
static inline bool isArrayEqual(const T arr1, const S arr2, size_t size) {
for(size_t i = 0; i < size; i++)
if(arr1[i] != arr2[i])
return false;
return true;
}
template<typename T>
std::string to_string(std::set<T> set) {
std::stringstream ss;
ss << "{";
bool first = true;
for (const T &item : set) {
if (first) {
first = false;
} else {
ss << ", ";
}
ss << to_string(item);
}
ss << "}";
return ss.str();
}
struct Simple : public ISimple {
Simple(int32_t cookie)
: mCookie(cookie) {
}
Return<int32_t> getCookie() override {
return mCookie;
}
Return<void> customVecInt(customVecInt_cb _cb) override {
_cb(hidl_vec<int32_t>());
return Void();
}
Return<void> customVecStr(customVecStr_cb _cb) override {
hidl_vec<hidl_string> vec;
vec.resize(2);
_cb(vec);
return Void();
}
Return<void> mystr(mystr_cb _cb) override {
_cb(hidl_string());
return Void();
}
Return<void> myhandle(myhandle_cb _cb) override {
auto h = native_handle_create(0, 1);
_cb(h);
native_handle_delete(h);
return Void();
}
private:
int32_t mCookie;
};
struct SimpleParent : public IParent {
Return<void> doGrandparent() override {
return Void();
}
Return<void> doParent() override {
return Void();
}
};
struct SimpleChild : public IChild {
Return<void> doGrandparent() override {
return Void();
}
Return <void> doParent() override {
return Void();
}
Return <void> doChild() override {
return Void();
}
};
struct Complicated : public IComplicated {
Complicated(int32_t cookie)
: mCookie(cookie) {
}
Return<int32_t> getCookie() override {
return mCookie;
}
Return<void> customVecInt(customVecInt_cb _cb) override {
_cb(hidl_vec<int32_t>());
return Void();
}
Return<void> customVecStr(customVecStr_cb _cb) override {
hidl_vec<hidl_string> vec;
vec.resize(2);
_cb(vec);
return Void();
}
Return<void> mystr(mystr_cb _cb) override {
_cb(hidl_string());
return Void();
}
Return<void> myhandle(myhandle_cb _cb) override {
auto h = native_handle_create(0, 1);
_cb(h);
native_handle_delete(h);
return Void();
}
private:
int32_t mCookie;
};
// Ensure (statically) that the types in IImportRules resolves to the correct types by
// overriding the methods with fully namespaced types as arguments.
struct MyImportRules : public ::android::hardware::tests::bar::V1_0::IImportRules {
Return<void> rule0a(
const ::android::hardware::tests::bar::V1_0::IImportRules::Outer&) override {
return Void();
}
Return<void> rule0a1(
const ::android::hardware::tests::bar::V1_0::IImportRules::Outer&) override {
return Void();
}
Return<void> rule0b(
const ::android::hardware::tests::bar::V1_0::IImportRules::Outer&) override {
return Void();
}
Return<void> rule0c(const ::android::hardware::tests::foo::V1_0::Outer&) override {
return Void();
}
Return<void> rule0d(const ::android::hardware::tests::foo::V1_0::Outer&) override {
return Void();
}
Return<void> rule0e(
const ::android::hardware::tests::bar::V1_0::IImportRules::Outer::Inner&) override {
return Void();
}
Return<void> rule0f(
const ::android::hardware::tests::bar::V1_0::IImportRules::Outer::Inner&) override {
return Void();
}
Return<void> rule0g(const ::android::hardware::tests::foo::V1_0::Outer::Inner&) override {
return Void();
}
Return<void> rule0h(const ::android::hardware::tests::foo::V1_0::Outer::Inner&) override {
return Void();
}
Return<void> rule1a(const ::android::hardware::tests::bar::V1_0::Def&) override {
return Void();
}
Return<void> rule1b(const ::android::hardware::tests::foo::V1_0::Def&) override {
return Void();
}
Return<void> rule2a(const ::android::hardware::tests::foo::V1_0::Unrelated&) override {
return Void();
}
Return<void> rule2b(const sp<::android::hardware::tests::foo::V1_0::IFooCallback>&) override {
return Void();
}
};
struct ServiceNotification : public IServiceNotification {
std::mutex mutex;
std::condition_variable condition;
Return<void> onRegistration(const hidl_string &fqName,
const hidl_string &name,
bool preexisting) override {
if (preexisting) {
// not interested in things registered from previous runs of hidl_test
return Void();
}
std::unique_lock<std::mutex> lock(mutex);
mRegistered.push_back(std::string(fqName.c_str()) + "/" + name.c_str());
lock.unlock();
condition.notify_one();
return Void();
}
const std::vector<std::string> &getRegistrations() const {
return mRegistered;
}
private:
std::vector<std::string> mRegistered{};
};
class HidlEnvironment : public ::testing::Environment {
public:
sp<IServiceManager> manager;
sp<ITokenManager> tokenManager;
sp<IAllocator> ashmemAllocator;
sp<IMemoryTest> memoryTest;
sp<IFetcher> fetcher;
sp<IFoo> foo;
sp<IBaz> dyingBaz;
sp<IBar> bar;
sp<IGraph> graphInterface;
sp<IPointer> pointerInterface;
sp<IPointer> validationPointerInterface;
sp<IMultithread> multithreadInterface;
TestMode mode;
bool enableDelayMeasurementTests;
HidlEnvironment(TestMode mode, bool enableDelayMeasurementTests) :
mode(mode), enableDelayMeasurementTests(enableDelayMeasurementTests) {};
void getServices() {
manager = IServiceManager::getService();
// alternatively:
// manager = defaultServiceManager()
ASSERT_NE(manager, nullptr);
ASSERT_TRUE(manager->isRemote()); // manager is always remote
tokenManager = ITokenManager::getService();
ASSERT_NE(tokenManager, nullptr);
ASSERT_TRUE(tokenManager->isRemote()); // tokenManager is always remote
ashmemAllocator = IAllocator::getService("ashmem");
ASSERT_NE(ashmemAllocator, nullptr);
ASSERT_TRUE(ashmemAllocator->isRemote()); // allocator is always remote
// getStub is true if we are in passthrough mode to skip checking
// binderized server, false for binderized mode.
memoryTest = IMemoryTest::getService("memory", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(memoryTest, nullptr);
ASSERT_EQ(memoryTest->isRemote(), mode == BINDERIZED);
fetcher = IFetcher::getService("fetcher", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(fetcher, nullptr);
ASSERT_EQ(fetcher->isRemote(), mode == BINDERIZED);
foo = IFoo::getService("foo", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(foo, nullptr);
ASSERT_EQ(foo->isRemote(), mode == BINDERIZED);
dyingBaz = IBaz::getService("dyingBaz", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(foo, nullptr);
ASSERT_EQ(foo->isRemote(), mode == BINDERIZED);
bar = IBar::getService("foo", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(bar, nullptr);
ASSERT_EQ(bar->isRemote(), mode == BINDERIZED);
graphInterface = IGraph::getService("graph", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(graphInterface, nullptr);
ASSERT_EQ(graphInterface->isRemote(), mode == BINDERIZED);
pointerInterface = IPointer::getService("pointer", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(pointerInterface, nullptr);
ASSERT_EQ(pointerInterface->isRemote(), mode == BINDERIZED);
// use passthrough mode as the validation object.
validationPointerInterface = IPointer::getService("pointer", true /* getStub */);
ASSERT_NE(validationPointerInterface, nullptr);
multithreadInterface =
IMultithread::getService("multithread", mode == PASSTHROUGH /* getStub */);
ASSERT_NE(multithreadInterface, nullptr);
ASSERT_EQ(multithreadInterface->isRemote(), mode == BINDERIZED);
}
virtual void SetUp() {
ALOGI("Environment setup beginning...");
getServices();
ALOGI("Environment setup complete.");
}
};
class HidlTest : public ::testing::Test {
public:
sp<IServiceManager> manager;
sp<ITokenManager> tokenManager;
sp<IAllocator> ashmemAllocator;
sp<IMemoryTest> memoryTest;
sp<IFetcher> fetcher;
sp<IFoo> foo;
sp<IBaz> dyingBaz;
sp<IBar> bar;
sp<IGraph> graphInterface;
sp<IPointer> pointerInterface;
sp<IPointer> validationPointerInterface;
TestMode mode = TestMode::PASSTHROUGH;
virtual void SetUp() override {
ALOGI("Test setup beginning...");
manager = gHidlEnvironment->manager;
tokenManager = gHidlEnvironment->tokenManager;
ashmemAllocator = gHidlEnvironment->ashmemAllocator;
memoryTest = gHidlEnvironment->memoryTest;
fetcher = gHidlEnvironment->fetcher;
foo = gHidlEnvironment->foo;
dyingBaz = gHidlEnvironment->dyingBaz;
bar = gHidlEnvironment->bar;
graphInterface = gHidlEnvironment->graphInterface;
pointerInterface = gHidlEnvironment->pointerInterface;
validationPointerInterface = gHidlEnvironment->validationPointerInterface;
mode = gHidlEnvironment->mode;
ALOGI("Test setup complete");
}
};
TEST_F(HidlTest, PreloadTest) {
// in passthrough mode, this will already be opened
if (mode == BINDERIZED) {
using android::hardware::preloadPassthroughService;
static const std::string kLib = "android.hardware.tests.inheritance@1.0-impl.so";
EXPECT_FALSE(isLibraryOpen(kLib));
preloadPassthroughService<IParent>();
EXPECT_TRUE(isLibraryOpen(kLib));
}
}
TEST_F(HidlTest, ToStringTest) {
using namespace android::hardware;
LOG(INFO) << toString(IFoo::Everything{});
// Note that handles don't need to be deleted because MQDescriptor takes ownership
// and deletes them when destructed.
auto handle = native_handle_create(0, 1);
auto handle2 = native_handle_create(0, 1);
handle->data[0] = 5;
handle2->data[0] = 6;
IFoo::Everything e {
.u = {.p = reinterpret_cast<void *>(0x5)},
.number = 10,
.h = handle,
.descSync = {std::vector<GrantorDescriptor>(), handle, 5},
.descUnsync = {std::vector<GrantorDescriptor>(), handle2, 6},
.mem = hidl_memory("mymem", handle, 5),
.p = reinterpret_cast<void *>(0x6),
.vs = {"hello", "world"},
.multidimArray = hidl_vec<hidl_string>{"hello", "great", "awesome", "nice"}.data(),
.sArray = hidl_vec<hidl_string>{"awesome", "thanks", "you're welcome"}.data(),
.anotherStruct = {.first = "first", .last = "last"},
.bf = IFoo::BitField::V0 | IFoo::BitField::V2
};
LOG(INFO) << toString(e);
LOG(INFO) << toString(foo);
// toString is for debugging purposes only; no good EXPECT
// statement can be written here.
}
TEST_F(HidlTest, PassthroughLookupTest) {
// IFoo is special because it returns an interface no matter
// what instance name is requested. In general, this is BAD!
EXPECT_NE(nullptr, IFoo::getService("", true /* getStub */).get());
EXPECT_NE(nullptr, IFoo::getService("a", true /* getStub */).get());
EXPECT_NE(nullptr, IFoo::getService("asdf", true /* getStub */).get());
EXPECT_NE(nullptr, IFoo::getService("::::::::", true /* getStub */).get());
EXPECT_NE(nullptr, IFoo::getService("/////", true /* getStub */).get());
EXPECT_NE(nullptr, IFoo::getService("\n", true /* getStub */).get());
}
TEST_F(HidlTest, EnumToStringTest) {
using namespace std::string_literals;
using ::android::hardware::tests::foo::V1_0::toString;
// toString for enum
EXPECT_EQ(toString(IFoo::BitField::V0), "V0"s);
EXPECT_EQ(toString(static_cast<IFoo::BitField>(0)), "0"s)
<< "Invalid enum isn't stringified correctly.";
EXPECT_EQ(toString(static_cast<IFoo::BitField>(IFoo::BitField::V0 | IFoo::BitField::V2)), "0x5"s)
<< "Invalid enum isn't stringified correctly.";
// dump bitfields
EXPECT_EQ(toString<IFoo::BitField>(0 | IFoo::BitField::V0), "V0 (0x1)"s);
EXPECT_EQ(toString<IFoo::BitField>(0 | IFoo::BitField::V0 | IFoo::BitField::V2), "V0 | V2 (0x5)"s);
EXPECT_EQ(toString<IFoo::BitField>(0xF), "V0 | V1 | V2 | V3 | VALL (0xf)"s);
EXPECT_EQ(toString<IFoo::BitField>(0xFF), "V0 | V1 | V2 | V3 | VALL | 0xf0 (0xff)"s);
}
TEST_F(HidlTest, PingTest) {
EXPECT_OK(manager->ping());
}
TEST_F(HidlTest, TryGetServiceTest) {
sp<IServiceManager> dne = IServiceManager::tryGetService("boss");
ASSERT_EQ(dne, nullptr);
sp<IServiceManager> manager = IServiceManager::tryGetService();
ASSERT_NE(manager, nullptr);
}
TEST_F(HidlTest, HashTest) {
uint8_t ihash[32] = {74,38,204,105,102,117,11,15,207,7,238,198,29,35,30,62,100,
216,131,182,3,61,162,241,215,211,6,20,251,143,125,161};
auto service = IHash::getService(mode == PASSTHROUGH /* getStub */);
EXPECT_OK(service->getHashChain([&] (const auto &chain) {
EXPECT_EQ(chain[0].size(), 32u);
EXPECT_ARRAYEQ(ihash, chain[0], 32);
EXPECT_OK(manager->getHashChain([&] (const auto &managerChain) {
EXPECT_EQ(chain[chain.size() - 1].size(), managerChain[managerChain.size() - 1].size());
EXPECT_ARRAYEQ(chain[chain.size() - 1], managerChain[managerChain.size() - 1],
chain[chain.size() - 1].size()) << "Hash for IBase doesn't match!";
}));
}));
}
TEST_F(HidlTest, ServiceListTest) {
static const std::set<std::string> binderizedSet = {
"android.hardware.tests.pointer@1.0::IPointer/pointer",
"android.hardware.tests.bar@1.0::IBar/foo",
"android.hardware.tests.inheritance@1.0::IFetcher/fetcher",
"android.hardware.tests.inheritance@1.0::IParent/parent",
"android.hardware.tests.inheritance@1.0::IParent/child",
"android.hardware.tests.inheritance@1.0::IChild/child",
"android.hardware.tests.pointer@1.0::IGraph/graph",
"android.hardware.tests.inheritance@1.0::IGrandparent/child",
"android.hardware.tests.foo@1.0::IFoo/foo",
"android.hidl.manager@1.0::IServiceManager/default",
"android.hidl.manager@1.1::IServiceManager/default",
};
static const std::set<std::string> passthroughSet = {
"android.hidl.manager@1.0::IServiceManager/default",
"android.hidl.manager@1.1::IServiceManager/default",
};
std::set<std::string> activeSet;
switch(mode) {
case BINDERIZED: {
activeSet = binderizedSet;
} break;
case PASSTHROUGH: {
activeSet = passthroughSet;
} break;
default:
EXPECT_TRUE(false) << "unrecognized mode";
}
EXPECT_OK(manager->list([&activeSet](const hidl_vec<hidl_string> &registered){
std::set<std::string> registeredSet;
for (size_t i = 0; i < registered.size(); i++) {
registeredSet.insert(registered[i]);
}
std::set<std::string> difference;
std::set_difference(activeSet.begin(), activeSet.end(),
registeredSet.begin(), registeredSet.end(),
std::inserter(difference, difference.begin()));
EXPECT_EQ(difference.size(), 0u) << "service(s) not registered " << to_string(difference);
}));
}
// passthrough TODO(b/31959402)
TEST_F(HidlTest, ServiceListByInterfaceTest) {
if (mode == BINDERIZED) {
EXPECT_OK(manager->listByInterface(IParent::descriptor,
[](const hidl_vec<hidl_string> &registered) {
std::set<std::string> registeredSet;
for (size_t i = 0; i < registered.size(); i++) {
registeredSet.insert(registered[i]);
}
std::set<std::string> activeSet = {
"parent", "child"
};
std::set<std::string> difference;
std::set_difference(activeSet.begin(), activeSet.end(),
registeredSet.begin(), registeredSet.end(),
std::inserter(difference, difference.begin()));
EXPECT_EQ(difference.size(), 0u) << "service(s) not registered " << to_string(difference);
}));
}
}
// passthrough TODO(b/31959402)
TEST_F(HidlTest, ServiceParentTest) {
if (mode == BINDERIZED) {
sp<IParent> parent = IParent::getService("child");
EXPECT_NE(parent, nullptr);
}
}
// passthrough TODO(b/31959402)
TEST_F(HidlTest, ServiceNotificationTest) {
if (mode == BINDERIZED) {
ServiceNotification *notification = new ServiceNotification();
std::string instanceName = "test-instance";
EXPECT_TRUE(IParent::registerForNotifications(instanceName, notification));
EXPECT_EQ(::android::OK, (new SimpleChild())->registerAsService(instanceName));
EXPECT_EQ(::android::OK, (new SimpleParent())->registerAsService(instanceName));
std::unique_lock<std::mutex> lock(notification->mutex);
notification->condition.wait_for(
lock,
std::chrono::milliseconds(2),
[&notification]() {
return notification->getRegistrations().size() >= 2;
});
std::vector<std::string> registrations = notification->getRegistrations();
EXPECT_EQ(registrations.size(), 2u);
EXPECT_EQ(to_string(registrations.data(), registrations.size()),
std::string("['") + IParent::descriptor + "/" + instanceName +
"', '" + IParent::descriptor + "/" + instanceName + "']");
}
}
TEST_F(HidlTest, ServiceUnregisterTest) {
if (mode == BINDERIZED) {
const std::string instance = "some-instance-name";
sp<ServiceNotification> sNotification = new ServiceNotification();
// unregister all
EXPECT_TRUE(IParent::registerForNotifications(instance, sNotification));
EXPECT_TRUE(manager->unregisterForNotifications("", "", sNotification));
// unregister all with instance name
EXPECT_TRUE(IParent::registerForNotifications(instance, sNotification));
EXPECT_TRUE(manager->unregisterForNotifications(IParent::descriptor,
"", sNotification));
// unregister package listener
EXPECT_TRUE(IParent::registerForNotifications("", sNotification));
EXPECT_TRUE(manager->unregisterForNotifications(IParent::descriptor,
"", sNotification));
// unregister listener for specific service and name
EXPECT_TRUE(IParent::registerForNotifications(instance, sNotification));
EXPECT_TRUE(manager->unregisterForNotifications(IParent::descriptor,
instance, sNotification));
EXPECT_FALSE(manager->unregisterForNotifications("", "", sNotification));
// TODO(b/32837397): remote destructor is lazy
// wp<ServiceNotification> wNotification = sNotification;
// sNotification = nullptr;
// EXPECT_EQ(nullptr, wNotification.promote().get());
}
}
// passthrough TODO(b/31959402)
TEST_F(HidlTest, ServiceAllNotificationTest) {
if (mode == BINDERIZED) {
ServiceNotification *notification = new ServiceNotification();
std::string instanceOne = "test-instance-one";
std::string instanceTwo = "test-instance-two";
EXPECT_TRUE(ISimple::registerForNotifications("", notification));
Simple* instanceA = new Simple(1);
EXPECT_EQ(::android::OK, instanceA->registerAsService(instanceOne));
Simple* instanceB = new Simple(2);
EXPECT_EQ(::android::OK, instanceB->registerAsService(instanceTwo));
std::unique_lock<std::mutex> lock(notification->mutex);
notification->condition.wait_for(
lock,
std::chrono::milliseconds(2),
[&notification]() {
return notification->getRegistrations().size() >= 2;
});
std::vector<std::string> registrations = notification->getRegistrations();
std::sort(registrations.begin(), registrations.end());
EXPECT_EQ(registrations.size(), 2u);
std::string descriptor = ISimple::descriptor;
EXPECT_EQ(to_string(registrations.data(), registrations.size()),
"['" + descriptor + "/" + instanceOne + "', '"
+ descriptor + "/" + instanceTwo + "']");
}
}
TEST_F(HidlTest, TestToken) {
using android::hardware::interfacesEqual;
Return<void> ret = tokenManager->createToken(manager, [&] (const hidl_vec<uint8_t> &token) {
Return<sp<IBase>> retService = tokenManager->get(token);
EXPECT_OK(retService);
if (retService.isOk()) {
sp<IBase> service = retService;
EXPECT_NE(nullptr, service.get());
sp<IServiceManager> retManager = IServiceManager::castFrom(service);
EXPECT_TRUE(interfacesEqual(manager, retManager));
}
Return<bool> unregisterRet = tokenManager->unregister(token);
EXPECT_OK(unregisterRet);
if (unregisterRet.isOk()) {
EXPECT_TRUE(unregisterRet);
}
});
EXPECT_OK(ret);
}
TEST_F(HidlTest, TestSharedMemory) {
const uint8_t kValue = 0xCA;
hidl_memory mem_copy;
EXPECT_OK(ashmemAllocator->allocate(1024, [&](bool success, const hidl_memory& mem) {
EXPECT_EQ(success, true);
sp<IMemory> memory = mapMemory(mem);
EXPECT_NE(memory, nullptr);
uint8_t* data = static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
EXPECT_NE(data, nullptr);
EXPECT_EQ(memory->getSize(), mem.size());
memory->update();
memset(data, 0, memory->getSize());
memory->commit();
mem_copy = mem;
memoryTest->fillMemory(mem, kValue);
memory->read();
for (size_t i = 0; i < mem.size(); i++) {
EXPECT_EQ(kValue, data[i]);
}
memory->commit();
}));
// Test the memory persists after the call
sp<IMemory> memory = mapMemory(mem_copy);
EXPECT_NE(memory, nullptr);
uint8_t* data = static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
EXPECT_NE(data, nullptr);
memory->read();
for (size_t i = 0; i < mem_copy.size(); i++) {
EXPECT_EQ(kValue, data[i]);
}
memory->commit();
hidl_memory mem_move(std::move(mem_copy));
ASSERT_EQ(nullptr, mem_copy.handle());
ASSERT_EQ(0UL, mem_copy.size());
ASSERT_EQ("", mem_copy.name());
memory.clear();
memory = mapMemory(mem_move);
EXPECT_NE(memory, nullptr);
data = static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
EXPECT_NE(data, nullptr);
memory->read();
for (size_t i = 0; i < mem_move.size(); i++) {
EXPECT_EQ(kValue, data[i]);
}
memory->commit();
}
TEST_F(HidlTest, BatchSharedMemory) {
const uint8_t kValue = 0xCA;
const uint64_t kBatchSize = 2;
hidl_vec<hidl_memory> batchCopy;
EXPECT_OK(ashmemAllocator->batchAllocate(1024, kBatchSize,
[&](bool success, const hidl_vec<hidl_memory>& batch) {
ASSERT_TRUE(success);
EXPECT_EQ(kBatchSize, batch.size());
for (uint64_t i = 0; i < batch.size(); i++) {
sp<IMemory> memory = mapMemory(batch[i]);
EXPECT_NE(nullptr, memory.get());
uint8_t* data = static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
EXPECT_NE(nullptr, data);
EXPECT_EQ(memory->getSize(), batch[i].size());
memory->update();
memset(data, kValue, memory->getSize());
memory->commit();
}
batchCopy = batch;
}));
for (uint64_t i = 0; i < batchCopy.size(); i++) {
// Test the memory persists after the call
sp<IMemory> memory = mapMemory(batchCopy[i]);
EXPECT_NE(memory, nullptr);
uint8_t* data = static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
EXPECT_NE(data, nullptr);
memory->read();
for (size_t i = 0; i < batchCopy[i].size(); i++) {
EXPECT_EQ(kValue, data[i]);
}
memory->commit();
}
}
inline uint64_t operator""_GB(unsigned long long num) {
return num * 1024 * 1024 * 1024;
}
TEST_F(HidlTest, FailedBatchSharedMemory) {
EXPECT_OK(ashmemAllocator->batchAllocate(1024, UINT64_MAX, [&](bool success, const auto& v) {
EXPECT_FALSE(success);
EXPECT_EQ(0u, v.size());
}));
EXPECT_OK(ashmemAllocator->batchAllocate(1_GB, 1024, [&](bool success, const auto& v) {
EXPECT_FALSE(success);
EXPECT_EQ(0u, v.size());
}));
}
TEST_F(HidlTest, NullSharedMemory) {
hidl_memory memory{};
EXPECT_EQ(nullptr, memory.handle());
EXPECT_OK(memoryTest->haveSomeMemory(memory, [&](const hidl_memory &mem) {
EXPECT_EQ(nullptr, mem.handle());
}));
}
TEST_F(HidlTest, FooGetDescriptorTest) {
EXPECT_OK(foo->interfaceDescriptor([&] (const auto &desc) {
EXPECT_EQ(desc, mode == BINDERIZED
? IBar::descriptor // service is actually IBar in binderized mode
: IFoo::descriptor); // dlopened, so service is IFoo
}));
}
TEST_F(HidlTest, FooDoThisTest) {
ALOGI("CLIENT call doThis.");
EXPECT_OK(foo->doThis(1.0f));
ALOGI("CLIENT doThis returned.");
}
TEST_F(HidlTest, FooDoThatAndReturnSomethingTest) {
ALOGI("CLIENT call doThatAndReturnSomething.");
int32_t result = foo->doThatAndReturnSomething(2.0f);
ALOGI("CLIENT doThatAndReturnSomething returned %d.", result);
EXPECT_EQ(result, 666);
}
TEST_F(HidlTest, FooDoQuiteABitTest) {
ALOGI("CLIENT call doQuiteABit");
double something = foo->doQuiteABit(1, 2, 3.0f, 4.0);
ALOGI("CLIENT doQuiteABit returned %f.", something);
EXPECT_DOUBLE_EQ(something, 666.5);
}
TEST_F(HidlTest, FooDoSomethingElseTest) {
ALOGI("CLIENT call doSomethingElse");
hidl_array<int32_t, 15> param;
for (size_t i = 0; i < sizeof(param) / sizeof(param[0]); ++i) {
param[i] = i;
}
EXPECT_OK(foo->doSomethingElse(param, [&](const auto &something) {
ALOGI("CLIENT doSomethingElse returned %s.",
to_string(something).c_str());
int32_t expect[] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2};
EXPECT_TRUE(isArrayEqual(something, expect, 32));
}));
}
TEST_F(HidlTest, FooDoStuffAndReturnAStringTest) {
ALOGI("CLIENT call doStuffAndReturnAString");
EXPECT_OK(foo->doStuffAndReturnAString([&](const auto &something) {
ALOGI("CLIENT doStuffAndReturnAString returned '%s'.",
something.c_str());
EXPECT_STREQ(something.c_str(), "Hello, world");
EXPECT_EQ(strlen("Hello, world"), something.size());
}));
}
TEST_F(HidlTest, FooMapThisVectorTest) {
hidl_vec<int32_t> vecParam;
vecParam.resize(10);
for (size_t i = 0; i < 10; ++i) {
vecParam[i] = i;
}
EXPECT_OK(foo->mapThisVector(vecParam, [&](const auto &something) {
ALOGI("CLIENT mapThisVector returned %s.",
to_string(something).c_str());
int32_t expect[] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18};
EXPECT_TRUE(isArrayEqual(something, expect, something.size()));
}));
}
TEST_F(HidlTest, WrapTest) {
if (!gHidlEnvironment->enableDelayMeasurementTests) {
return;
}
using ::android::hardware::tests::foo::V1_0::BnHwSimple;
using ::android::hardware::tests::foo::V1_0::BsSimple;
using ::android::hardware::tests::foo::V1_0::BpHwSimple;
using ::android::hardware::details::HidlInstrumentor;
nsecs_t now;
int i = 0;
now = systemTime();
new BnHwSimple(new Simple(1));
EXPECT_LT(systemTime() - now, 2000000) << " for BnHwSimple(nonnull)";
now = systemTime();
new BnHwSimple(nullptr);
EXPECT_LT(systemTime() - now, 2000000) << " for BnHwSimple(null)";
now = systemTime();
new BsSimple(new Simple(1));
EXPECT_LT(systemTime() - now, 2000000) << " for BsSimple(nonnull)";
now = systemTime();
new BsSimple(nullptr);
EXPECT_LT(systemTime() - now, 2000000) << " for BsSimple(null)";
now = systemTime();
new BpHwSimple(nullptr);
EXPECT_LT(systemTime() - now, 2000000) << " for BpHwSimple(null)";
now = systemTime();
new ::android::hardware::details::HidlInstrumentor("", "");
EXPECT_LT(systemTime() - now, 2000000) << " for HidlInstrumentor";
now = systemTime();
i++;
EXPECT_LT(systemTime() - now, 1000) << " for nothing";
}
TEST_F(HidlTest, FooCallMeTest) {
if (!gHidlEnvironment->enableDelayMeasurementTests) {
return;
}
sp<IFooCallback> fooCb = new FooCallback();
ALOGI("CLIENT call callMe.");
// callMe is oneway, should return instantly.
nsecs_t now;
now = systemTime();
EXPECT_OK(foo->callMe(fooCb));
EXPECT_LT(systemTime() - now, ONEWAY_TOLERANCE_NS);
ALOGI("CLIENT callMe returned.");
// Bar::callMe will invoke three methods on FooCallback; one will return
// right away (even though it is a two-way method); the second one will
// block Bar for DELAY_S seconds, and the third one will return
// to Bar right away (is oneway) but will itself block for DELAY_S seconds.
// We need a way to make sure that these three things have happened within
// 2*DELAY_S seconds plus some small tolerance.
//
// Method FooCallback::reportResults() takes a timeout parameter. It blocks for
// that length of time, while waiting for the three methods above to
// complete. It returns the information of whether each method was invoked,
// as well as how long the body of the method took to execute. We verify
// the information returned by reportResults() against the timeout we pass (which
// is long enough for the method bodies to execute, plus tolerance), and
// verify that eachof them executed, as expected, and took the length of
// time to execute that we also expect.
const nsecs_t waitNs =
3 * DELAY_NS + TOLERANCE_NS;
const nsecs_t reportResultsNs =
2 * DELAY_NS + TOLERANCE_NS;
ALOGI("CLIENT: Waiting for up to %" PRId64 " seconds.",
nanoseconds_to_seconds(waitNs));
fooCb->reportResults(waitNs,
[&](int64_t timeLeftNs,
const hidl_array<IFooCallback::InvokeInfo, 3> &invokeResults) {
ALOGI("CLIENT: FooCallback::reportResults() is returning data.");
ALOGI("CLIENT: Waited for %" PRId64 " milliseconds.",
nanoseconds_to_milliseconds(waitNs - timeLeftNs));
EXPECT_LE(waitNs - timeLeftNs, reportResultsNs)
<< "waited for "
<< (timeLeftNs >= 0 ? "" : "more than ")
<< (timeLeftNs >= 0 ? (waitNs - timeLeftNs) : waitNs)
<< "ns, expect to finish in "
<< reportResultsNs << " ns";
// two-way method, was supposed to return right away
EXPECT_TRUE(invokeResults[0].invoked);
EXPECT_LE(invokeResults[0].timeNs, invokeResults[0].callerBlockedNs);
EXPECT_LE(invokeResults[0].callerBlockedNs, TOLERANCE_NS);
// two-way method, was supposed to block caller for DELAY_NS
EXPECT_TRUE(invokeResults[1].invoked);
EXPECT_LE(invokeResults[1].timeNs, invokeResults[1].callerBlockedNs);
EXPECT_LE(invokeResults[1].callerBlockedNs,
DELAY_NS + TOLERANCE_NS);
// one-way method, do not block caller, but body was supposed to block for DELAY_NS
EXPECT_TRUE(invokeResults[2].invoked);
EXPECT_LE(invokeResults[2].callerBlockedNs, ONEWAY_TOLERANCE_NS);
EXPECT_LE(invokeResults[2].timeNs, DELAY_NS + TOLERANCE_NS);
});
}
TEST_F(HidlTest, FooUseAnEnumTest) {
ALOGI("CLIENT call useAnEnum.");
IFoo::SomeEnum sleepy = foo->useAnEnum(IFoo::SomeEnum::quux);
ALOGI("CLIENT useAnEnum returned %u", (unsigned)sleepy);
EXPECT_EQ(sleepy, IFoo::SomeEnum::goober);
}
TEST_F(HidlTest, FooHaveAGooberTest) {
hidl_vec<IFoo::Goober> gooberVecParam;
gooberVecParam.resize(2);
gooberVecParam[0].name = "Hello";
gooberVecParam[1].name = "World";
ALOGI("CLIENT call haveAGooberVec.");
EXPECT_OK(foo->haveAGooberVec(gooberVecParam));
ALOGI("CLIENT haveAGooberVec returned.");
ALOGI("CLIENT call haveaGoober.");
EXPECT_OK(foo->haveAGoober(gooberVecParam[0]));
ALOGI("CLIENT haveaGoober returned.");
ALOGI("CLIENT call haveAGooberArray.");
hidl_array<IFoo::Goober, 20> gooberArrayParam;
EXPECT_OK(foo->haveAGooberArray(gooberArrayParam));
ALOGI("CLIENT haveAGooberArray returned.");
}
TEST_F(HidlTest, FooHaveATypeFromAnotherFileTest) {
ALOGI("CLIENT call haveATypeFromAnotherFile.");
Abc abcParam{};
abcParam.x = "alphabet";
abcParam.y = 3.14f;
native_handle_t *handle = native_handle_create(0, 0);
abcParam.z = handle;
EXPECT_OK(foo->haveATypeFromAnotherFile(abcParam));
ALOGI("CLIENT haveATypeFromAnotherFile returned.");
native_handle_delete(handle);
abcParam.z = NULL;
}
TEST_F(HidlTest, FooHaveSomeStringsTest) {
ALOGI("CLIENT call haveSomeStrings.");
hidl_array<hidl_string, 3> stringArrayParam;
stringArrayParam[0] = "What";
stringArrayParam[1] = "a";
stringArrayParam[2] = "disaster";
EXPECT_OK(foo->haveSomeStrings(
stringArrayParam,
[&](const auto &out) {
ALOGI("CLIENT haveSomeStrings returned %s.",
to_string(out).c_str());
EXPECT_EQ(to_string(out), "['Hello', 'World']");
}));
ALOGI("CLIENT haveSomeStrings returned.");
}
TEST_F(HidlTest, FooHaveAStringVecTest) {
ALOGI("CLIENT call haveAStringVec.");
hidl_vec<hidl_string> stringVecParam;
stringVecParam.resize(3);
stringVecParam[0] = "What";
stringVecParam[1] = "a";
stringVecParam[2] = "disaster";
EXPECT_OK(foo->haveAStringVec(
stringVecParam,
[&](const auto &out) {
ALOGI("CLIENT haveAStringVec returned %s.",
to_string(out).c_str());
EXPECT_EQ(to_string(out), "['Hello', 'World']");
}));
ALOGI("CLIENT haveAStringVec returned.");
}
TEST_F(HidlTest, FooTransposeMeTest) {
hidl_array<float, 3, 5> in;
float k = 1.0f;
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 5; ++j, ++k) {
in[i][j] = k;
}
}
ALOGI("CLIENT call transposeMe(%s).", to_string(in).c_str());
EXPECT_OK(foo->transposeMe(
in,
[&](const auto &out) {
ALOGI("CLIENT transposeMe returned %s.",
to_string(out).c_str());
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 5; ++j) {
EXPECT_EQ(out[j][i], in[i][j]);
}
}
}));
}
TEST_F(HidlTest, FooCallingDrWhoTest) {
IFoo::MultiDimensional in;
size_t k = 0;
for (size_t i = 0; i < 5; ++i) {
for (size_t j = 0; j < 3; ++j, ++k) {
in.quuxMatrix[i][j].first = ("First " + std::to_string(k)).c_str();
in.quuxMatrix[i][j].last = ("Last " + std::to_string(15-k)).c_str();
}
}
ALOGI("CLIENT call callingDrWho(%s).",
MultiDimensionalToString(in).c_str());
EXPECT_OK(foo->callingDrWho(
in,
[&](const auto &out) {
ALOGI("CLIENT callingDrWho returned %s.",
MultiDimensionalToString(out).c_str());
size_t k = 0;
for (size_t i = 0; i < 5; ++i) {
for (size_t j = 0; j < 3; ++j, ++k) {
EXPECT_STREQ(
out.quuxMatrix[i][j].first.c_str(),
in.quuxMatrix[4 - i][2 - j].last.c_str());
EXPECT_STREQ(
out.quuxMatrix[i][j].last.c_str(),
in.quuxMatrix[4 - i][2 - j].first.c_str());
}
}
}));
}
static std::string numberToEnglish(int x) {
static const char *const kDigits[] = {
"zero",
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
};
if (x < 0) {
return "negative " + numberToEnglish(-x);
}
if (x < 10) {
return kDigits[x];
}
if (x <= 15) {
static const char *const kSpecialTens[] = {
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
};
return kSpecialTens[x - 10];
}
if (x < 20) {
return std::string(kDigits[x % 10]) + "teen";
}
if (x < 100) {
static const char *const kDecades[] = {
"twenty", "thirty", "forty", "fifty", "sixty", "seventy",
"eighty", "ninety",
};
return std::string(kDecades[x / 10 - 2]) + kDigits[x % 10];
}
return "positively huge!";
}
TEST_F(HidlTest, FooTransposeTest) {
IFoo::StringMatrix5x3 in;
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 3; ++j) {
in.s[i][j] = numberToEnglish(3 * i + j + 1).c_str();
}
}
EXPECT_OK(foo->transpose(
in,
[&](const auto &out) {
EXPECT_EQ(
to_string(out),
"[['one', 'four', 'seven', 'ten', 'thirteen'], "
"['two', 'five', 'eight', 'eleven', 'fourteen'], "
"['three', 'six', 'nine', 'twelve', 'fifteen']]");
}));
}
TEST_F(HidlTest, FooTranspose2Test) {
hidl_array<hidl_string, 5, 3> in;
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 3; ++j) {
in[i][j] = numberToEnglish(3 * i + j + 1).c_str();
}
}
EXPECT_OK(foo->transpose2(
in,
[&](const auto &out) {
EXPECT_EQ(
to_string(out),
"[['one', 'four', 'seven', 'ten', 'thirteen'], "
"['two', 'five', 'eight', 'eleven', 'fourteen'], "
"['three', 'six', 'nine', 'twelve', 'fifteen']]");
}));
}
TEST_F(HidlTest, FooNullNativeHandleTest) {
Abc xyz;
xyz.z = nullptr;
EXPECT_OK(bar->expectNullHandle(nullptr, xyz, [](bool hIsNull, bool xyzHasNull) {
EXPECT_TRUE(hIsNull);
EXPECT_TRUE(xyzHasNull);
}));
}
TEST_F(HidlTest, FooNullSynchronousCallbackTest) {
Return<void> ret = foo->echoNullInterface(nullptr, nullptr /* synchronous callback */);
EXPECT_FAIL(ret);
EXPECT_TRUE(ret.description().find("Null synchronous callback passed") != std::string::npos);
}
TEST_F(HidlTest, FooNullCallbackTest) {
EXPECT_OK(foo->echoNullInterface(nullptr,
[](const auto receivedNull, const auto &intf) {
EXPECT_TRUE(receivedNull);
EXPECT_EQ(intf, nullptr);
}));
}
TEST_F(HidlTest, FooNonNullCallbackTest) {
hidl_array<hidl_string, 5, 3> in;
EXPECT_FAIL(foo->transpose2(in, nullptr /* _hidl_cb */));
}
TEST_F(HidlTest, FooSendVecTest) {
hidl_vec<uint8_t> in;
in.resize(16);
for (size_t i = 0; i < in.size(); ++i) {
in[i] = i;
}
EXPECT_OK(foo->sendVec(
in,
[&](const auto &out) {
EXPECT_EQ(to_string(in), to_string(out));
}));
}
TEST_F(HidlTest, FooSendEmptyVecTest) {
hidl_vec<uint8_t> in;
EXPECT_OK(foo->sendVec(
in,
[&](const auto &out) {
EXPECT_EQ(out.size(), 0u);
EXPECT_EQ(to_string(in), to_string(out));
}));
}
TEST_F(HidlTest, FooHaveAVectorOfInterfacesTest) {
hidl_vec<sp<ISimple> > in;
in.resize(16);
for (size_t i = 0; i < in.size(); ++i) {
in[i] = new Simple(i);
}
EXPECT_OK(foo->haveAVectorOfInterfaces(
in,
[&](const auto &out) {
EXPECT_EQ(in.size(), out.size());
for (size_t i = 0; i < in.size(); ++i) {
int32_t inCookie = in[i]->getCookie();
int32_t outCookie = out[i]->getCookie();
EXPECT_EQ(inCookie, outCookie);
}
}));
}
TEST_F(HidlTest, FooHaveAVectorOfGenericInterfacesTest) {
hidl_vec<sp<::android::hidl::base::V1_0::IBase> > in;
in.resize(16);
for (size_t i = 0; i < in.size(); ++i) {
sp<ISimple> s = new Simple(i);
in[i] = s;
}
EXPECT_OK(foo->haveAVectorOfGenericInterfaces(
in,
[&](const auto &out) {
EXPECT_EQ(in.size(), out.size());
EXPECT_OK(out[0]->interfaceDescriptor([](const auto &name) {
ASSERT_STREQ(name.c_str(), ISimple::descriptor);
}));
for (size_t i = 0; i < in.size(); ++i) {
sp<ISimple> inSimple = ISimple::castFrom(in[i]);
sp<ISimple> outSimple = ISimple::castFrom(out[i]);
ASSERT_NE(inSimple.get(), nullptr);
ASSERT_NE(outSimple.get(), nullptr);
EXPECT_EQ(in[i], inSimple.get()); // pointers must be equal!
int32_t inCookie = inSimple->getCookie();
int32_t outCookie = outSimple->getCookie();
EXPECT_EQ(inCookie, outCookie);
}
}));
}
TEST_F(HidlTest, FooStructEmbeddedHandleTest) {
EXPECT_OK(foo->createMyHandle([&](const auto &myHandle) {
EXPECT_EQ(myHandle.guard, 666);
const native_handle_t* handle = myHandle.h.getNativeHandle();
EXPECT_EQ(handle->numInts, 10);
EXPECT_EQ(handle->numFds, 0);
int data[] = {2,3,5,7,11,13,17,19,21,23};
EXPECT_ARRAYEQ(handle->data, data, 10);
}));
EXPECT_OK(foo->closeHandles());
}
TEST_F(HidlTest, FooHandleVecTest) {
EXPECT_OK(foo->createHandles(3, [&](const auto &handles) {
EXPECT_EQ(handles.size(), 3ull);
int data[] = {2,3,5,7,11,13,17,19,21,23};
for (size_t i = 0; i < 3; i++) {
const native_handle_t *h = handles[i];
EXPECT_EQ(h->numInts, 10) << " for element " << i;
EXPECT_EQ(h->numFds, 0) << " for element " << i;
EXPECT_ARRAYEQ(h->data, data, 10);
}
}));
EXPECT_OK(foo->closeHandles());
}
struct HidlDeathRecipient : hidl_death_recipient {
std::mutex mutex;
std::condition_variable condition;
wp<IBase> who;
bool fired = false;
uint64_t cookie = 0;
virtual void serviceDied(uint64_t cookie, const wp<IBase>& who) {
std::unique_lock<std::mutex> lock(mutex);
fired = true;
this->cookie = cookie;
this->who = who;
condition.notify_one();
};
};
TEST_F(HidlTest, DeathRecipientTest) {
sp<HidlDeathRecipient> recipient = new HidlDeathRecipient();
sp<HidlDeathRecipient> recipient2 = new HidlDeathRecipient();
EXPECT_TRUE(dyingBaz->linkToDeath(recipient, 0x1481));
EXPECT_TRUE(dyingBaz->linkToDeath(recipient2, 0x2592));
EXPECT_TRUE(dyingBaz->unlinkToDeath(recipient2));
if (mode != BINDERIZED) {
// Passthrough doesn't fire, nor does it keep state of
// registered death recipients (so it won't fail unlinking
// the same recipient twice).
return;
}
EXPECT_FALSE(dyingBaz->unlinkToDeath(recipient2));
auto ret = dyingBaz->dieNow();
if (!ret.isOk()) {
//do nothing, this is expected
}
std::unique_lock<std::mutex> lock(recipient->mutex);
recipient->condition.wait_for(lock, std::chrono::milliseconds(100), [&recipient]() {
return recipient->fired;
});
EXPECT_TRUE(recipient->fired);
EXPECT_EQ(recipient->cookie, 0x1481u);
EXPECT_EQ(recipient->who, dyingBaz);
std::unique_lock<std::mutex> lock2(recipient2->mutex);
recipient2->condition.wait_for(lock2, std::chrono::milliseconds(100), [&recipient2]() {
return recipient2->fired;
});
EXPECT_FALSE(recipient2->fired);
// Verify servicemanager dropped its reference too
sp<IBaz> deadBaz = IBaz::getService("dyingBaz", false);
if (deadBaz != nullptr) {
// Got a passthrough
EXPECT_FALSE(deadBaz->isRemote());
}
}
TEST_F(HidlTest, BarThisIsNewTest) {
// Now the tricky part, get access to the derived interface.
ALOGI("CLIENT call thisIsNew.");
EXPECT_OK(bar->thisIsNew());
ALOGI("CLIENT thisIsNew returned.");
}
static void expectGoodChild(sp<IChild> child) {
ASSERT_NE(child.get(), nullptr);
child = IChild::castFrom(child);
ASSERT_NE(child.get(), nullptr);
EXPECT_OK(child->doGrandparent());
EXPECT_OK(child->doParent());
EXPECT_OK(child->doChild());
}
static void expectGoodParent(sp<IParent> parent) {
ASSERT_NE(parent.get(), nullptr);
parent = IParent::castFrom(parent);
ASSERT_NE(parent.get(), nullptr);
EXPECT_OK(parent->doGrandparent());
EXPECT_OK(parent->doParent());
sp<IChild> child = IChild::castFrom(parent);
expectGoodChild(child);
}
static void expectGoodGrandparent(sp<IGrandparent> grandparent) {
ASSERT_NE(grandparent.get(), nullptr);
grandparent = IGrandparent::castFrom(grandparent);
ASSERT_NE(grandparent.get(), nullptr);
EXPECT_OK(grandparent->doGrandparent());
sp<IParent> parent = IParent::castFrom(grandparent);
expectGoodParent(parent);
}
TEST_F(HidlTest, FooHaveAnInterfaceTest) {
sp<ISimple> in = new Complicated(42);
Return<sp<ISimple>> ret = bar->haveAInterface(in);
EXPECT_OK(ret);
sp<ISimple> out = ret;
ASSERT_NE(out.get(), nullptr);
EXPECT_EQ(out->getCookie(), 42);
EXPECT_OK(out->customVecInt([](const auto &) { }));
EXPECT_OK(out->customVecStr([](const auto &) { }));
EXPECT_OK(out->ping());
EXPECT_OK(out->mystr([](const auto &) { }));
EXPECT_OK(out->myhandle([](const auto &) { }));
}
TEST_F(HidlTest, InheritRemoteGrandparentTest) {
Return<sp<IGrandparent>> ret = fetcher->getGrandparent(true);
EXPECT_OK(ret);
expectGoodGrandparent(ret);
}
TEST_F(HidlTest, InheritLocalGrandparentTest) {
Return<sp<IGrandparent>> ret = fetcher->getGrandparent(false);
EXPECT_OK(ret);
expectGoodGrandparent(ret);
}
TEST_F(HidlTest, InheritRemoteParentTest) {
Return<sp<IParent>> ret = fetcher->getParent(true);
EXPECT_OK(ret);
expectGoodParent(ret);
}
TEST_F(HidlTest, InheritLocalParentTest) {
Return<sp<IParent>> ret = fetcher->getParent(false);
EXPECT_OK(ret);
expectGoodParent(ret);
}
TEST_F(HidlTest, InheritRemoteChildTest) {
Return<sp<IChild>> ret = fetcher->getChild(true);
EXPECT_OK(ret);
expectGoodChild(ret);
}
TEST_F(HidlTest, InheritLocalChildTest) {
Return<sp<IChild>> ret = fetcher->getChild(false);
EXPECT_OK(ret);
expectGoodChild(ret);
}
TEST_F(HidlTest, TestArrayDimensionality) {
hidl_array<int, 2> oneDim;
hidl_array<int, 2, 3> twoDim;
hidl_array<int, 2, 3, 4> threeDim;
EXPECT_EQ(oneDim.size(), 2u);
EXPECT_EQ(twoDim.size(), std::make_tuple(2u, 3u));
EXPECT_EQ(threeDim.size(), std::make_tuple(2u, 3u, 4u));
}
TEST_F(HidlTest, StructEqualTest) {
using G = IFoo::Goober;
using F = IFoo::Fumble;
G g1{
.q = 42,
.name = "The Ultimate Question of Life, the Universe, and Everything",
.address = "North Pole",
.numbers = std::array<double, 10>{ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} },
.fumble = F{.data = {.data = 50}},
.gumble = F{.data = {.data = 60}}
};
G g2{
.q = 42,
.name = "The Ultimate Question of Life, the Universe, and Everything",
.address = "North Pole",
.numbers = std::array<double, 10>{ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} },
.fumble = F{.data = {.data = 50}},
.gumble = F{.data = {.data = 60}}
};
G g3{
.q = 42,
.name = "The Ultimate Question of Life, the Universe, and Everything",
.address = "North Pole",
.numbers = std::array<double, 10>{ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} },
.fumble = F{.data = {.data = 50}},
.gumble = F{.data = {.data = 61}}
};
// explicitly invoke operator== here.
EXPECT_TRUE(g1 == g2);
EXPECT_TRUE(g1 != g3);
}
TEST_F(HidlTest, EnumEqualTest) {
using E = IFoo::SomeEnum;
E e1 = E::quux;
E e2 = E::quux;
E e3 = E::goober;
// explicitly invoke operator== here.
EXPECT_TRUE(e1 == e2);
EXPECT_TRUE(e1 != e3);
}
TEST_F(HidlTest, InvalidTransactionTest) {
using ::android::hardware::tests::bar::V1_0::BnHwBar;
using ::android::hardware::tests::bar::V1_0::BpHwBar;
using ::android::hardware::IBinder;
using ::android::hardware::Parcel;
using ::android::status_t;
using ::android::OK;
Parcel request, reply;
sp<IBinder> binder;
status_t status = request.writeInterfaceToken(::android::hardware::tests::bar::V1_0::IBar::descriptor);
EXPECT_EQ(status, OK);
if (mode == BINDERIZED) {
EXPECT_TRUE(bar->isRemote());
binder = ::android::hardware::toBinder<IBar>(bar);
} else {
// For a local test, just wrap the implementation with a BnHwBar
binder = new BnHwBar(bar);
}
status = binder->transact(1234, request, &reply);
EXPECT_EQ(status, ::android::UNKNOWN_TRANSACTION);
// Try another call, to make sure nothing is messed up
EXPECT_OK(bar->thisIsNew());
}
class HidlMultithreadTest : public ::testing::Test {
public:
sp<IMultithread> multithreadInterface;
TestMode mode = TestMode::PASSTHROUGH;
virtual void SetUp() override {
ALOGI("Test setup beginning...");
multithreadInterface = gHidlEnvironment->multithreadInterface;
mode = gHidlEnvironment->mode;
ALOGI("Test setup complete");
}
void test_multithread(int maxThreads, int numThreads) {
LOG(INFO) << "CLIENT call setNumThreads("
<< maxThreads << ", " << numThreads << ")";
EXPECT_OK(multithreadInterface->setNumThreads(maxThreads, numThreads));
std::vector<std::future<bool>> threads;
for (int i = 0; i != numThreads; ++i) {
LOG(INFO) << "CLIENT call runNewThread";
threads.emplace_back(std::async(
std::launch::async, [&]() { return (bool)multithreadInterface->runNewThread(); }));
}
bool noTimeout = std::all_of(threads.begin(), threads.end(),
[](std::future<bool>& thread) { return thread.get(); });
EXPECT_EQ(noTimeout, maxThreads >= numThreads || mode == PASSTHROUGH);
}
};
// If it fails first try to increment timeout duration at
// hardware/interfaces/tests/multithread/1.0/default
TEST_F(HidlMultithreadTest, MultithreadTest) {
// configureRpcThreadpool doesn't stop threads,
// so maxThreads should not decrease
test_multithread(1, 1);
test_multithread(2, 1);
test_multithread(2, 2);
test_multithread(2, 3);
test_multithread(10, 5);
test_multithread(10, 10);
test_multithread(10, 15);
test_multithread(20, 30);
test_multithread(20, 20);
test_multithread(20, 10);
}
#if HIDL_RUN_POINTER_TESTS
TEST_F(HidlTest, PassAGraphTest) {
IGraph::Graph g;
::android::simpleGraph(g);
::android::logSimpleGraph("CLIENT", g);
ALOGI("CLIENT call passAGraph");
EXPECT_OK(graphInterface->passAGraph(g));
}
TEST_F(HidlTest, GiveAGraphTest) {
EXPECT_OK(graphInterface->giveAGraph([&](const auto &newGraph) {
::android::logSimpleGraph("CLIENT", newGraph);
EXPECT_TRUE(::android::isSimpleGraph(newGraph));
}));
}
TEST_F(HidlTest, PassANodeTest) {
IGraph::Node node; node.data = 10;
EXPECT_OK(graphInterface->passANode(node));
}
TEST_F(HidlTest, PassTwoGraphsTest) {
IGraph::Graph g;
::android::simpleGraph(g);
EXPECT_OK(graphInterface->passTwoGraphs(&g, &g));
}
TEST_F(HidlTest, PassAGammaTest) {
IGraph::Theta s; s.data = 500;
IGraph::Alpha a; a.s_ptr = &s;
IGraph::Beta b; b.s_ptr = &s;
IGraph::Gamma c; c.a_ptr = &a; c.b_ptr = &b;
ALOGI("CLIENT calling passAGamma: c.a = %p, c.b = %p, c.a->s = %p, c.b->s = %p",
c.a_ptr, c.b_ptr, c.a_ptr->s_ptr, c.b_ptr->s_ptr);
EXPECT_OK(graphInterface->passAGamma(c));
}
TEST_F(HidlTest, PassNullTest) {
IGraph::Gamma c;
c.a_ptr = nullptr;
c.b_ptr = nullptr;
EXPECT_OK(graphInterface->passAGamma(c));
}
TEST_F(HidlTest, PassASimpleRefTest) {
IGraph::Theta s;
s.data = 500;
IGraph::Alpha a;
a.s_ptr = &s;
EXPECT_OK(graphInterface->passASimpleRef(&a));
}
TEST_F(HidlTest, PassASimpleRefSTest) {
IGraph::Theta s;
s.data = 500;
ALOGI("CLIENT call passASimpleRefS with %p", &s);
EXPECT_OK(graphInterface->passASimpleRefS(&s));
}
TEST_F(HidlTest, GiveASimpleRefTest) {
EXPECT_OK(graphInterface->giveASimpleRef([&](const auto & a_ptr) {
EXPECT_EQ(a_ptr->s_ptr->data, 500);
}));
}
TEST_F(HidlTest, GraphReportErrorsTest) {
Return<int32_t> ret = graphInterface->getErrors();
EXPECT_OK(ret);
EXPECT_EQ(int32_t(ret), 0);
}
TEST_F(HidlTest, PointerPassOldBufferTest) {
EXPECT_OK(validationPointerInterface->bar1([&](const auto& sptr, const auto& s) {
EXPECT_OK(pointerInterface->foo1(sptr, s));
}));
}
TEST_F(HidlTest, PointerPassOldBufferTest2) {
EXPECT_OK(validationPointerInterface->bar2([&](const auto& s, const auto& a) {
EXPECT_OK(pointerInterface->foo2(s, a));
}));
}
TEST_F(HidlTest, PointerPassSameOldBufferPointerTest) {
EXPECT_OK(validationPointerInterface->bar3([&](const auto& s, const auto& a, const auto& b) {
EXPECT_OK(pointerInterface->foo3(s, a, b));
}));
}
TEST_F(HidlTest, PointerPassOnlyTest) {
EXPECT_OK(validationPointerInterface->bar4([&](const auto& s) {
EXPECT_OK(pointerInterface->foo4(s));
}));
}
TEST_F(HidlTest, PointerPassTwoEmbeddedTest) {
EXPECT_OK(validationPointerInterface->bar5([&](const auto& a, const auto& b) {
EXPECT_OK(pointerInterface->foo5(a, b));
}));
}
TEST_F(HidlTest, PointerPassIndirectBufferHasDataTest) {
EXPECT_OK(validationPointerInterface->bar6([&](const auto& a) {
EXPECT_OK(pointerInterface->foo6(a));
}));
}
TEST_F(HidlTest, PointerPassTwoIndirectBufferTest) {
EXPECT_OK(validationPointerInterface->bar7([&](const auto& a, const auto& b) {
EXPECT_OK(pointerInterface->foo7(a, b));
}));
}
TEST_F(HidlTest, PointerPassDeeplyIndirectTest) {
EXPECT_OK(validationPointerInterface->bar8([&](const auto& d) {
EXPECT_OK(pointerInterface->foo8(d));
}));
}
TEST_F(HidlTest, PointerPassStringRefTest) {
EXPECT_OK(validationPointerInterface->bar9([&](const auto& str) {
EXPECT_OK(pointerInterface->foo9(str));
}));
}
TEST_F(HidlTest, PointerPassRefVecTest) {
EXPECT_OK(validationPointerInterface->bar10([&](const auto& v) {
EXPECT_OK(pointerInterface->foo10(v));
}));
}
TEST_F(HidlTest, PointerPassVecRefTest) {
EXPECT_OK(validationPointerInterface->bar11([&](const auto& v) {
EXPECT_OK(pointerInterface->foo11(v));
}));
}
TEST_F(HidlTest, PointerPassArrayRefTest) {
EXPECT_OK(validationPointerInterface->bar12([&](const auto& array) {
EXPECT_OK(pointerInterface->foo12(array));
}));
}
TEST_F(HidlTest, PointerPassRefArrayTest) {
EXPECT_OK(validationPointerInterface->bar13([&](const auto& array) {
EXPECT_OK(pointerInterface->foo13(array));
}));
}
TEST_F(HidlTest, PointerPass3RefTest) {
EXPECT_OK(validationPointerInterface->bar14([&](const auto& p3) {
EXPECT_OK(pointerInterface->foo14(p3));
}));
}
TEST_F(HidlTest, PointerPassInt3RefTest) {
EXPECT_OK(validationPointerInterface->bar15([&](const auto& p3) {
EXPECT_OK(pointerInterface->foo15(p3));
}));
}
TEST_F(HidlTest, PointerPassEmbeddedPointersTest) {
EXPECT_OK(validationPointerInterface->bar16([&](const auto& p) {
EXPECT_OK(pointerInterface->foo16(p));
}));
}
TEST_F(HidlTest, PointerPassEmbeddedPointers2Test) {
EXPECT_OK(validationPointerInterface->bar17([&](const auto& p) {
EXPECT_OK(pointerInterface->foo17(p));
}));
}
TEST_F(HidlTest, PointerPassCopiedStringTest) {
EXPECT_OK(validationPointerInterface->bar18([&](const auto& str_ref, const auto& str_ref2, const auto& str) {
EXPECT_OK(pointerInterface->foo18(str_ref, str_ref2, str));
}));
}
TEST_F(HidlTest, PointerPassCopiedVecTest) {
EXPECT_OK(validationPointerInterface->bar19([&](const auto& a_vec_ref, const auto& a_vec, const auto& a_vec_ref2) {
EXPECT_OK(pointerInterface->foo19(a_vec_ref, a_vec, a_vec_ref2));
}));
}
TEST_F(HidlTest, PointerPassBigRefVecTest) {
EXPECT_OK(validationPointerInterface->bar20([&](const auto& v) {
EXPECT_FAIL(pointerInterface->foo20(v));
}));
}
TEST_F(HidlTest, PointerPassMultidimArrayRefTest) {
EXPECT_OK(validationPointerInterface->bar21([&](const auto& v) {
EXPECT_OK(pointerInterface->foo21(v));
}));
}
TEST_F(HidlTest, PointerPassRefMultidimArrayTest) {
EXPECT_OK(validationPointerInterface->bar22([&](const auto& v) {
EXPECT_OK(pointerInterface->foo22(v));
}));
}
TEST_F(HidlTest, PointerGiveOldBufferTest) {
EXPECT_OK(pointerInterface->bar1([&](const auto& sptr, const auto& s) {
EXPECT_OK(validationPointerInterface->foo1(sptr, s));
}));
}
TEST_F(HidlTest, PointerGiveOldBufferTest2) {
EXPECT_OK(pointerInterface->bar2([&](const auto& s, const auto& a) {
EXPECT_OK(validationPointerInterface->foo2(s, a));
}));
}
TEST_F(HidlTest, PointerGiveSameOldBufferPointerTest) {
EXPECT_OK(pointerInterface->bar3([&](const auto& s, const auto& a, const auto& b) {
EXPECT_OK(validationPointerInterface->foo3(s, a, b));
}));
}
TEST_F(HidlTest, PointerGiveOnlyTest) {
EXPECT_OK(pointerInterface->bar4([&](const auto& s) {
EXPECT_OK(validationPointerInterface->foo4(s));
}));
}
TEST_F(HidlTest, PointerGiveTwoEmbeddedTest) {
EXPECT_OK(pointerInterface->bar5([&](const auto& a, const auto& b) {
EXPECT_OK(validationPointerInterface->foo5(a, b));
}));
}
TEST_F(HidlTest, PointerGiveIndirectBufferHasDataTest) {
EXPECT_OK(pointerInterface->bar6([&](const auto& a) {
EXPECT_OK(validationPointerInterface->foo6(a));
}));
}
TEST_F(HidlTest, PointerGiveTwoIndirectBufferTest) {
EXPECT_OK(pointerInterface->bar7([&](const auto& a, const auto& b) {
EXPECT_OK(validationPointerInterface->foo7(a, b));
}));
}
TEST_F(HidlTest, PointerGiveDeeplyIndirectTest) {
EXPECT_OK(pointerInterface->bar8([&](const auto& d) {
EXPECT_OK(validationPointerInterface->foo8(d));
}));
}
TEST_F(HidlTest, PointerGiveStringRefTest) {
EXPECT_OK(pointerInterface->bar9([&](const auto& str) {
EXPECT_OK(validationPointerInterface->foo9(str));
}));
}
TEST_F(HidlTest, PointerGiveRefVecTest) {
EXPECT_OK(pointerInterface->bar10([&](const auto& v) {
EXPECT_OK(validationPointerInterface->foo10(v));
}));
}
TEST_F(HidlTest, PointerGiveVecRefTest) {
EXPECT_OK(pointerInterface->bar11([&](const auto& v) {
EXPECT_OK(validationPointerInterface->foo11(v));
}));
}
TEST_F(HidlTest, PointerGiveArrayRefTest) {
EXPECT_OK(pointerInterface->bar12([&](const auto& array) {
EXPECT_OK(validationPointerInterface->foo12(array));
}));
}
TEST_F(HidlTest, PointerGiveRefArrayTest) {
EXPECT_OK(pointerInterface->bar13([&](const auto& array) {
EXPECT_OK(validationPointerInterface->foo13(array));
}));
}
TEST_F(HidlTest, PointerGive3RefTest) {
EXPECT_OK(pointerInterface->bar14([&](const auto& p3) {
EXPECT_OK(validationPointerInterface->foo14(p3));
}));
}
TEST_F(HidlTest, PointerGiveInt3RefTest) {
EXPECT_OK(pointerInterface->bar15([&](const auto& p3) {
EXPECT_OK(validationPointerInterface->foo15(p3));
}));
}
TEST_F(HidlTest, PointerGiveEmbeddedPointersTest) {
EXPECT_OK(pointerInterface->bar16([&](const auto& p) {
EXPECT_OK(validationPointerInterface->foo16(p));
}));
}
TEST_F(HidlTest, PointerGiveEmbeddedPointers2Test) {
EXPECT_OK(pointerInterface->bar17([&](const auto& p) {
EXPECT_OK(validationPointerInterface->foo17(p));
}));
}
TEST_F(HidlTest, PointerGiveCopiedStringTest) {
EXPECT_OK(pointerInterface->bar18([&](const auto& str_ref, const auto& str_ref2, const auto& str) {
EXPECT_OK(validationPointerInterface->foo18(str_ref, str_ref2, str));
}));
}
TEST_F(HidlTest, PointerGiveCopiedVecTest) {
EXPECT_OK(pointerInterface->bar19([&](const auto& a_vec_ref, const auto& a_vec, const auto& a_vec_ref2) {
EXPECT_OK(validationPointerInterface->foo19(a_vec_ref, a_vec, a_vec_ref2));
}));
}
// This cannot be enabled until _hidl_error is not ignored when
// the remote writeEmbeddedReferencesToParcel.
// TEST_F(HidlTest, PointerGiveBigRefVecTest) {
// EXPECT_FAIL(pointerInterface->bar20([&](const auto& v) {
// }));
// }
TEST_F(HidlTest, PointerGiveMultidimArrayRefTest) {
EXPECT_OK(pointerInterface->bar21([&](const auto& v) {
EXPECT_OK(validationPointerInterface->foo21(v));
}));
}
TEST_F(HidlTest, PointerGiveRefMultidimArrayTest) {
EXPECT_OK(pointerInterface->bar22([&](const auto& v) {
EXPECT_OK(validationPointerInterface->foo22(v));
}));
}
TEST_F(HidlTest, PointerReportErrorsTest) {
Return<int32_t> ret = pointerInterface->getErrors();
EXPECT_OK(ret);
EXPECT_EQ(int32_t(ret), 0);
}
#endif
template <class T>
struct WaitForServer {
static void run(const std::string& serviceName) {
::android::hardware::details::waitForHwService(T::descriptor, serviceName);
}
};
int forkAndRunTests(TestMode mode, bool enableDelayMeasurementTests) {
pid_t child;
int status;
const char* modeText = (mode == BINDERIZED) ? "BINDERIZED" : "PASSTHROUGH";
ALOGI("Start running tests in %s mode...", modeText);
fprintf(stdout, "Start running tests in %s mode...\n", modeText);
fflush(stdout);
if ((child = fork()) == 0) {
gHidlEnvironment = static_cast<HidlEnvironment *>(
::testing::AddGlobalTestEnvironment(new HidlEnvironment(
mode, enableDelayMeasurementTests)));
int testStatus = RUN_ALL_TESTS();
if(testStatus == 0) {
exit(0);
}
int failed = ::testing::UnitTest::GetInstance()->failed_test_count();
if (failed == 0) {
exit(-testStatus);
}
exit(failed);
}
waitpid(child, &status, 0 /* options */);
ALOGI("All tests finished in %s mode.", modeText);
fprintf(stdout, "All tests finished in %s mode.\n", modeText);
fflush(stdout);
return status;
}
void handleStatus(int status, const char *mode) {
if (status != 0) {
if (WIFEXITED(status)) {
status = WEXITSTATUS(status);
if (status < 0) {
fprintf(stdout, " RUN_ALL_TESTS returns %d for %s mode.\n", -status, mode);
} else {
fprintf(stdout, " %d test(s) failed for %s mode.\n", status, mode);
}
} else {
fprintf(stdout, " ERROR: %s child process exited abnormally with %d\n", mode, status);
}
}
}
static void usage(const char *me) {
fprintf(stderr,
"usage: %s [-b] [-p] [-d] [GTEST_OPTIONS]\n",
me);
fprintf(stderr, " -b binderized mode only\n");
fprintf(stderr, " -p passthrough mode only\n");
fprintf(stderr, " (if -b and -p are both missing or both present, "
"both modes are tested.)\n");
fprintf(stderr, " -d Enable delay measurement tests\n");
}
int main(int argc, char **argv) {
setenv("TREBLE_TESTING_OVERRIDE", "true", true);
const char *me = argv[0];
bool b = false;
bool p = false;
bool d = false;
struct option longopts[] = {{0,0,0,0}};
int res;
while ((res = getopt_long(argc, argv, "hbpd", longopts, NULL)) >= 0) {
switch (res) {
case 'h': {
usage(me);
exit(1);
} break;
case 'b': {
b = true;
} break;
case 'p': {
p = true;
} break;
case 'd': {
d = true;
} break;
case '?':
default: {
// ignore. pass to gTest.
} break;
}
}
if (!b && !p) {
b = p = true;
}
::testing::InitGoogleTest(&argc, argv);
// put test in child process because RUN_ALL_TESTS
// should not be run twice.
int pStatus = p ? forkAndRunTests(PASSTHROUGH, d) : 0;
int bStatus = b ? forkAndRunTests(BINDERIZED, d) : 0;
fprintf(stdout, "\n=========================================================\n\n"
" Summary:\n\n");
if (p) {
ALOGI("PASSTHROUGH Test result = %d", pStatus);
handleStatus(pStatus, "PASSTHROUGH");
}
if (b) {
runOnEachServer<WaitForServer>();
ALOGI("BINDERIZED Test result = %d", bStatus);
handleStatus(bStatus, "BINDERIZED ");
}
if (pStatus == 0 && bStatus == 0) {
fprintf(stdout, " Hooray! All tests passed.\n");
}
fprintf(stdout, "\n=========================================================\n\n");
return pStatus + bStatus != 0;
}