| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "ConstantExpression.h" |
| |
| #include <android-base/logging.h> |
| #include <android-base/parseint.h> |
| #include <stdio.h> |
| #include <algorithm> |
| #include <iostream> |
| #include <sstream> |
| #include <string> |
| |
| #include "EnumType.h" |
| #include "Scope.h" // LocalIdentifier |
| |
| // The macros are really nasty here. Consider removing |
| // as many macros as possible. |
| |
| #define OPEQ(__y__) (std::string(mOp) == std::string(__y__)) |
| #define COMPUTE_UNARY(__op__) if (op == std::string(#__op__)) return __op__ val; |
| #define COMPUTE_BINARY(__op__) if (op == std::string(#__op__)) return lval __op__ rval; |
| #define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%")) |
| #define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&")) |
| #define OP_IS_BIN_COMP (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!=")) |
| #define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<")) |
| #define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&")) |
| #define SK(__x__) ScalarType::Kind::KIND_##__x__ |
| #define SHOULD_NOT_REACH() CHECK(false) << __LINE__ << ": should not reach here: " |
| |
| // NOLINT to suppress missing parentheses warnings about __def__. |
| #define SWITCH_KIND(__cond__, __action__, __def__) \ |
| switch(__cond__) { \ |
| case SK(BOOL): __action__(bool) \ |
| case SK(UINT8): __action__(uint8_t) \ |
| case SK(INT8): __action__(int8_t) \ |
| case SK(UINT16): __action__(uint16_t) \ |
| case SK(INT16): __action__(int16_t) \ |
| case SK(UINT32): __action__(uint32_t) \ |
| case SK(INT32): __action__(int32_t) \ |
| case SK(UINT64): __action__(uint64_t) \ |
| case SK(INT64): __action__(int64_t) \ |
| default: __def__ /* NOLINT */ \ |
| } |
| |
| namespace android { |
| |
| static inline bool isSupported(ScalarType::Kind kind) { |
| return SK(BOOL) == kind || ScalarType(kind, nullptr /* parent */).isValidEnumStorageType(); |
| } |
| |
| /* See docs at the end for details on integral promotion. */ |
| ScalarType::Kind integralPromotion(ScalarType::Kind in) { |
| return SK(INT32) < in ? in : SK(INT32); // note that KIND_INT32 < KIND_UINT32 |
| } |
| |
| /* See docs at the end for details on usual arithmetic conversion. */ |
| ScalarType::Kind usualArithmeticConversion(ScalarType::Kind lft, |
| ScalarType::Kind rgt) { |
| CHECK(isSupported(lft) && isSupported(rgt)); |
| // Kinds in concern: bool, (u)int[8|16|32|64] |
| if(lft == rgt) return lft; // easy case |
| if(lft == SK(BOOL)) return rgt; |
| if(rgt == SK(BOOL)) return lft; |
| bool isLftSigned = (lft == SK(INT8)) || (lft == SK(INT16)) |
| || (lft == SK(INT32)) || (lft == SK(INT64)); |
| bool isRgtSigned = (rgt == SK(INT8)) || (rgt == SK(INT16)) |
| || (rgt == SK(INT32)) || (rgt == SK(INT64)); |
| if(isLftSigned == isRgtSigned) return lft < rgt ? rgt : lft; |
| ScalarType::Kind unsignedRank = isLftSigned ? rgt : lft; |
| ScalarType::Kind signedRank = isLftSigned ? lft : rgt; |
| if(unsignedRank >= signedRank) return unsignedRank; |
| if(signedRank > unsignedRank) return signedRank; |
| |
| // Although there is such rule to return "the unsigned counterpart of |
| // the signed operand", it should not reach here in our HIDL grammar. |
| CHECK(false) << "Could not do usual arithmetic conversion for type " << lft << "and" << rgt; |
| switch(signedRank) { |
| case SK(INT8): return SK(UINT8); |
| case SK(INT16): return SK(UINT16); |
| case SK(INT32): return SK(UINT32); |
| case SK(INT64): return SK(UINT64); |
| default: return SK(UINT64); |
| } |
| } |
| |
| template <class T> |
| T handleUnary(const std::string& op, T val) { |
| COMPUTE_UNARY(+) |
| COMPUTE_UNARY(-) |
| COMPUTE_UNARY(!) |
| COMPUTE_UNARY(~) |
| // Should not reach here. |
| SHOULD_NOT_REACH() << "Could not handleUnary for " << op << " " << val; |
| return static_cast<T>(0xdeadbeef); |
| } |
| |
| template <class T> |
| T handleBinaryCommon(T lval, const std::string& op, T rval) { |
| COMPUTE_BINARY(+) |
| COMPUTE_BINARY(-) |
| COMPUTE_BINARY(*) |
| COMPUTE_BINARY(/) |
| COMPUTE_BINARY(%) |
| COMPUTE_BINARY(|) |
| COMPUTE_BINARY(^) |
| COMPUTE_BINARY(&) |
| // comparison operators: return 0 or 1 by nature. |
| COMPUTE_BINARY(==) |
| COMPUTE_BINARY(!=) |
| COMPUTE_BINARY(<) |
| COMPUTE_BINARY(>) |
| COMPUTE_BINARY(<=) |
| COMPUTE_BINARY(>=) |
| // Should not reach here. |
| SHOULD_NOT_REACH() << "Could not handleBinaryCommon for " |
| << lval << " " << op << " " << rval; |
| return static_cast<T>(0xdeadbeef); |
| } |
| |
| template <class T> |
| T handleShift(T lval, const std::string& op, int64_t rval) { |
| // just cast rval to int64_t and it should fit. |
| COMPUTE_BINARY(>>) |
| COMPUTE_BINARY(<<) |
| // Should not reach here. |
| SHOULD_NOT_REACH() << "Could not handleShift for " |
| << lval << " " << op << " " << rval; |
| return static_cast<T>(0xdeadbeef); |
| } |
| |
| bool handleLogical(bool lval, const std::string& op, bool rval) { |
| COMPUTE_BINARY(||); |
| COMPUTE_BINARY(&&); |
| // Should not reach here. |
| SHOULD_NOT_REACH() << "Could not handleLogical for " |
| << lval << " " << op << " " << rval; |
| return false; |
| } |
| |
| std::unique_ptr<ConstantExpression> ConstantExpression::Zero(ScalarType::Kind kind) { |
| return ValueOf(kind, 0); |
| } |
| |
| std::unique_ptr<ConstantExpression> ConstantExpression::One(ScalarType::Kind kind) { |
| return ValueOf(kind, 1); |
| } |
| |
| std::unique_ptr<ConstantExpression> ConstantExpression::ValueOf(ScalarType::Kind kind, |
| uint64_t value) { |
| return std::make_unique<LiteralConstantExpression>(kind, value); |
| } |
| |
| bool ConstantExpression::isEvaluated() const { |
| return mIsEvaluated; |
| } |
| |
| LiteralConstantExpression::LiteralConstantExpression( |
| ScalarType::Kind kind, uint64_t value, const std::string& expr) { |
| |
| CHECK(!expr.empty()); |
| CHECK(isSupported(kind)); |
| mTrivialDescription = std::to_string(value) == expr; |
| mExpr = expr; |
| mValueKind = kind; |
| mValue = value; |
| mIsEvaluated = true; |
| } |
| |
| LiteralConstantExpression::LiteralConstantExpression(ScalarType::Kind kind, uint64_t value) |
| : LiteralConstantExpression(kind, value, std::to_string(value)) {} |
| |
| LiteralConstantExpression* LiteralConstantExpression::tryParse(const std::string& value) { |
| CHECK(!value.empty()); |
| |
| bool isLong = false, isUnsigned = false; |
| bool isHex = (value[0] == '0' && value.length() > 1 && (value[1] == 'x' || value[1] == 'X')); |
| |
| auto rbegin = value.rbegin(); |
| auto rend = value.rend(); |
| for (; rbegin != rend && (*rbegin == 'u' || *rbegin == 'U' || *rbegin == 'l' || *rbegin == 'L'); |
| ++rbegin) { |
| isUnsigned |= (*rbegin == 'u' || *rbegin == 'U'); |
| isLong |= (*rbegin == 'l' || *rbegin == 'L'); |
| } |
| std::string newVal(value.begin(), rbegin.base()); |
| CHECK(!newVal.empty()); |
| |
| uint64_t rawValue = 0; |
| |
| bool parseOK = base::ParseUint(newVal, &rawValue); |
| if (!parseOK) { |
| return nullptr; |
| } |
| |
| ScalarType::Kind kind; |
| |
| // guess literal type. |
| if(isLong) { |
| if(isUnsigned) // ul |
| kind = SK(UINT64); |
| else // l |
| kind = SK(INT64); |
| } else { // no l suffix |
| if(isUnsigned) { // u |
| if(rawValue <= UINT32_MAX) |
| kind = SK(UINT32); |
| else |
| kind = SK(UINT64); |
| } else { // no suffix |
| if(isHex) { |
| if(rawValue <= INT32_MAX) // rawValue always >= 0 |
| kind = SK(INT32); |
| else if(rawValue <= UINT32_MAX) |
| kind = SK(UINT32); |
| else if(rawValue <= INT64_MAX) // rawValue always >= 0 |
| kind = SK(INT64); |
| else if(rawValue <= UINT64_MAX) |
| kind = SK(UINT64); |
| else |
| return nullptr; |
| } else { |
| if(rawValue <= INT32_MAX) // rawValue always >= 0 |
| kind = SK(INT32); |
| else |
| kind = SK(INT64); |
| } |
| } |
| } |
| |
| return new LiteralConstantExpression(kind, rawValue, value); |
| } |
| |
| void LiteralConstantExpression::evaluate() { |
| // Evaluated in constructor |
| CHECK(isEvaluated()); |
| } |
| |
| void UnaryConstantExpression::evaluate() { |
| if (isEvaluated()) return; |
| CHECK(mUnary->isEvaluated()); |
| mIsEvaluated = true; |
| |
| mExpr = std::string("(") + mOp + mUnary->mExpr + ")"; |
| mValueKind = mUnary->mValueKind; |
| |
| #define CASE_UNARY(__type__) \ |
| mValue = handleUnary(mOp, static_cast<__type__>(mUnary->mValue)); \ |
| return; |
| |
| SWITCH_KIND(mValueKind, CASE_UNARY, SHOULD_NOT_REACH(); return;) |
| } |
| |
| void BinaryConstantExpression::evaluate() { |
| if (isEvaluated()) return; |
| CHECK(mLval->isEvaluated()); |
| CHECK(mRval->isEvaluated()); |
| mIsEvaluated = true; |
| |
| mExpr = std::string("(") + mLval->mExpr + " " + mOp + " " + mRval->mExpr + ")"; |
| |
| bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP; |
| |
| // CASE 1: + - * / % | ^ & < > <= >= == != |
| if(isArithmeticOrBitflip || OP_IS_BIN_COMP) { |
| // promoted kind for both operands. |
| ScalarType::Kind promoted = usualArithmeticConversion(integralPromotion(mLval->mValueKind), |
| integralPromotion(mRval->mValueKind)); |
| // result kind. |
| mValueKind = isArithmeticOrBitflip |
| ? promoted // arithmetic or bitflip operators generates promoted type |
| : SK(BOOL); // comparison operators generates bool |
| |
| #define CASE_BINARY_COMMON(__type__) \ |
| mValue = handleBinaryCommon(static_cast<__type__>(mLval->mValue), mOp, \ |
| static_cast<__type__>(mRval->mValue)); \ |
| return; |
| |
| SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); return;) |
| } |
| |
| // CASE 2: << >> |
| std::string newOp = mOp; |
| if(OP_IS_BIN_SHIFT) { |
| mValueKind = integralPromotion(mLval->mValueKind); |
| // instead of promoting rval, simply casting it to int64 should also be good. |
| int64_t numBits = mRval->cast<int64_t>(); |
| if(numBits < 0) { |
| // shifting with negative number of bits is undefined in C. In HIDL it |
| // is defined as shifting into the other direction. |
| newOp = OPEQ("<<") ? std::string(">>") : std::string("<<"); |
| numBits = -numBits; |
| } |
| |
| #define CASE_SHIFT(__type__) \ |
| mValue = handleShift(static_cast<__type__>(mLval->mValue), newOp, numBits); \ |
| return; |
| |
| SWITCH_KIND(mValueKind, CASE_SHIFT, SHOULD_NOT_REACH(); return;) |
| } |
| |
| // CASE 3: && || |
| if(OP_IS_BIN_LOGICAL) { |
| mValueKind = SK(BOOL); |
| // easy; everything is bool. |
| mValue = handleLogical(mLval->mValue, mOp, mRval->mValue); |
| return; |
| } |
| |
| SHOULD_NOT_REACH(); |
| } |
| |
| void TernaryConstantExpression::evaluate() { |
| if (isEvaluated()) return; |
| CHECK(mCond->isEvaluated()); |
| CHECK(mTrueVal->isEvaluated()); |
| CHECK(mFalseVal->isEvaluated()); |
| mIsEvaluated = true; |
| |
| mExpr = std::string("(") + mCond->mExpr + "?" + mTrueVal->mExpr + ":" + mFalseVal->mExpr + ")"; |
| |
| // note: for ?:, unlike arithmetic ops, integral promotion is not processed. |
| mValueKind = usualArithmeticConversion(mTrueVal->mValueKind, mFalseVal->mValueKind); |
| |
| #define CASE_TERNARY(__type__) \ |
| mValue = mCond->mValue ? (static_cast<__type__>(mTrueVal->mValue)) \ |
| : (static_cast<__type__>(mFalseVal->mValue)); \ |
| return; |
| |
| SWITCH_KIND(mValueKind, CASE_TERNARY, SHOULD_NOT_REACH(); return;) |
| } |
| |
| void ReferenceConstantExpression::evaluate() { |
| if (isEvaluated()) return; |
| CHECK(mReference->constExpr() != nullptr); |
| |
| ConstantExpression* expr = mReference->constExpr(); |
| CHECK(expr->isEvaluated()); |
| |
| mValueKind = expr->mValueKind; |
| mValue = expr->mValue; |
| mIsEvaluated = true; |
| } |
| |
| status_t AttributeConstantExpression::validate() const { |
| if (mTag == "len") { |
| if (!mReference->isEnum()) { |
| std::cerr << "ERROR: " << mExpr << " refers to " << mReference->typeName() |
| << " but should refer to an enum." << std::endl; |
| return UNKNOWN_ERROR; |
| } |
| } else { |
| std::cerr << "ERROR: " << mExpr << " is not a supported tag" << std::endl; |
| return UNKNOWN_ERROR; |
| } |
| |
| return OK; |
| } |
| |
| void AttributeConstantExpression::evaluate() { |
| if (isEvaluated()) return; |
| |
| CHECK(mTag == "len"); |
| CHECK(mReference->isEnum()); |
| |
| EnumType* enumType = static_cast<EnumType*>(mReference.get()); |
| mValue = enumType->numValueNames(); |
| |
| if (mValue <= INT32_MAX) |
| mValueKind = SK(INT32); |
| else |
| mValueKind = SK(INT64); |
| |
| mIsEvaluated = true; |
| } |
| |
| std::unique_ptr<ConstantExpression> ConstantExpression::addOne(ScalarType::Kind baseKind) { |
| auto ret = std::make_unique<BinaryConstantExpression>( |
| this, "+", ConstantExpression::One(baseKind).release()); |
| return ret; |
| } |
| |
| std::string ConstantExpression::value() const { |
| return value(mValueKind); |
| } |
| |
| std::string ConstantExpression::value(ScalarType::Kind castKind) const { |
| CHECK(isEvaluated()); |
| return rawValue(castKind) + descriptionSuffix(); |
| } |
| |
| std::string ConstantExpression::cppValue() const { |
| return cppValue(mValueKind); |
| } |
| |
| std::string ConstantExpression::cppValue(ScalarType::Kind castKind) const { |
| CHECK(isEvaluated()); |
| std::string literal(rawValue(castKind)); |
| // this is a hack to translate |
| // enum x : int64_t { y = 1l << 63 }; |
| // into |
| // enum class x : int64_t { y = (int64_t)-9223372036854775808ull }; |
| // by adding the explicit cast. |
| // Because 9223372036854775808 is uint64_t, and |
| // -(uint64_t)9223372036854775808 == 9223372036854775808 could not |
| // be narrowed to int64_t. |
| if(castKind == SK(INT64) && (int64_t)mValue == INT64_MIN) { |
| literal = "static_cast<" + |
| ScalarType(SK(INT64), nullptr /* parent */).getCppStackType() // "int64_t" |
| + ">(" + literal + "ull)"; |
| } else { |
| // add suffix if necessary. |
| if (castKind == SK(UINT32) || castKind == SK(UINT64)) literal += "u"; |
| if (castKind == SK(UINT64) || castKind == SK(INT64)) literal += "ll"; |
| } |
| |
| return literal + descriptionSuffix(); |
| } |
| |
| std::string ConstantExpression::javaValue() const { |
| return javaValue(mValueKind); |
| } |
| |
| std::string ConstantExpression::javaValue(ScalarType::Kind castKind) const { |
| CHECK(isEvaluated()); |
| std::string literal; |
| |
| switch(castKind) { |
| case SK(UINT64): |
| literal = rawValue(SK(INT64)) + "L"; |
| break; |
| case SK(INT64): |
| literal = rawValue(SK(INT64)) + "L"; |
| break; |
| case SK(UINT32): |
| literal = rawValue(SK(INT32)); |
| break; |
| case SK(UINT16): |
| literal = rawValue(SK(INT16)); |
| break; |
| case SK(UINT8): |
| literal = rawValue(SK(INT8)); |
| break; |
| case SK(BOOL) : |
| literal = this->cast<bool>() ? "true" : "false"; |
| break; |
| default: |
| literal = rawValue(castKind); |
| break; |
| } |
| |
| return literal + descriptionSuffix(); |
| } |
| |
| const std::string& ConstantExpression::expression() const { |
| CHECK(isEvaluated()); |
| return mExpr; |
| } |
| |
| std::string ConstantExpression::rawValue() const { |
| return rawValue(mValueKind); |
| } |
| |
| std::string ConstantExpression::rawValue(ScalarType::Kind castKind) const { |
| CHECK(isEvaluated()); |
| |
| #define CASE_STR(__type__) return std::to_string(this->cast<__type__>()); |
| |
| SWITCH_KIND(castKind, CASE_STR, SHOULD_NOT_REACH(); return nullptr; ); |
| } |
| |
| template<typename T> |
| T ConstantExpression::cast() const { |
| CHECK(isEvaluated()); |
| |
| #define CASE_CAST_T(__type__) return static_cast<T>(static_cast<__type__>(mValue)); |
| |
| SWITCH_KIND(mValueKind, CASE_CAST_T, SHOULD_NOT_REACH(); return 0; ); |
| } |
| |
| std::string ConstantExpression::descriptionSuffix() const { |
| CHECK(isEvaluated()); |
| |
| if (!mTrivialDescription) { |
| CHECK(!mExpr.empty()); |
| |
| return " /* " + mExpr + " */"; |
| } |
| return ""; |
| } |
| |
| size_t ConstantExpression::castSizeT() const { |
| CHECK(isEvaluated()); |
| return this->cast<size_t>(); |
| } |
| |
| bool ConstantExpression::isReferenceConstantExpression() const { |
| return false; |
| } |
| |
| status_t ConstantExpression::validate() const { |
| return OK; |
| } |
| |
| std::vector<ConstantExpression*> ConstantExpression::getConstantExpressions() { |
| const auto& constRet = static_cast<const ConstantExpression*>(this)->getConstantExpressions(); |
| std::vector<ConstantExpression*> ret(constRet.size()); |
| std::transform(constRet.begin(), constRet.end(), ret.begin(), |
| [](const auto* ce) { return const_cast<ConstantExpression*>(ce); }); |
| return ret; |
| } |
| |
| std::vector<Reference<LocalIdentifier>*> ConstantExpression::getReferences() { |
| const auto& constRet = static_cast<const ConstantExpression*>(this)->getReferences(); |
| std::vector<Reference<LocalIdentifier>*> ret(constRet.size()); |
| std::transform(constRet.begin(), constRet.end(), ret.begin(), |
| [](const auto* ce) { return const_cast<Reference<LocalIdentifier>*>(ce); }); |
| return ret; |
| } |
| |
| std::vector<const Reference<LocalIdentifier>*> ConstantExpression::getReferences() const { |
| return {}; |
| } |
| |
| std::vector<Reference<Type>*> ConstantExpression::getTypeReferences() { |
| const auto& constRet = static_cast<const ConstantExpression*>(this)->getTypeReferences(); |
| std::vector<Reference<Type>*> ret(constRet.size()); |
| std::transform(constRet.begin(), constRet.end(), ret.begin(), |
| [](const auto* ce) { return const_cast<Reference<Type>*>(ce); }); |
| return ret; |
| } |
| |
| std::vector<const Reference<Type>*> ConstantExpression::getTypeReferences() const { |
| return {}; |
| } |
| |
| status_t ConstantExpression::recursivePass(const std::function<status_t(ConstantExpression*)>& func, |
| std::unordered_set<const ConstantExpression*>* visited, |
| bool processBeforeDependencies) { |
| if (mIsPostParseCompleted) return OK; |
| |
| if (visited->find(this) != visited->end()) return OK; |
| visited->insert(this); |
| |
| if (processBeforeDependencies) { |
| status_t err = func(this); |
| if (err != OK) return err; |
| } |
| |
| for (auto* nextCE : getConstantExpressions()) { |
| status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); |
| if (err != OK) return err; |
| } |
| |
| for (auto* nextRef : getReferences()) { |
| auto* nextCE = nextRef->shallowGet()->constExpr(); |
| CHECK(nextCE != nullptr) << "Local identifier is not a constant expression"; |
| status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); |
| if (err != OK) return err; |
| } |
| |
| if (!processBeforeDependencies) { |
| status_t err = func(this); |
| if (err != OK) return err; |
| } |
| |
| return OK; |
| } |
| |
| status_t ConstantExpression::recursivePass( |
| const std::function<status_t(const ConstantExpression*)>& func, |
| std::unordered_set<const ConstantExpression*>* visited, bool processBeforeDependencies) const { |
| if (mIsPostParseCompleted) return OK; |
| |
| if (visited->find(this) != visited->end()) return OK; |
| visited->insert(this); |
| |
| if (processBeforeDependencies) { |
| status_t err = func(this); |
| if (err != OK) return err; |
| } |
| |
| for (const auto* nextCE : getConstantExpressions()) { |
| status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); |
| if (err != OK) return err; |
| } |
| |
| for (const auto* nextRef : getReferences()) { |
| const auto* nextCE = nextRef->shallowGet()->constExpr(); |
| CHECK(nextCE != nullptr) << "Local identifier is not a constant expression"; |
| status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); |
| if (err != OK) return err; |
| } |
| |
| if (!processBeforeDependencies) { |
| status_t err = func(this); |
| if (err != OK) return err; |
| } |
| |
| return OK; |
| } |
| |
| ConstantExpression::CheckAcyclicStatus::CheckAcyclicStatus( |
| status_t status, const ConstantExpression* cycleEnd, |
| const ReferenceConstantExpression* lastReference) |
| : status(status), cycleEnd(cycleEnd), lastReference(lastReference) { |
| CHECK(cycleEnd == nullptr || status != OK); |
| CHECK((cycleEnd == nullptr) == (lastReference == nullptr)); |
| } |
| |
| ConstantExpression::CheckAcyclicStatus ConstantExpression::checkAcyclic( |
| std::unordered_set<const ConstantExpression*>* visited, |
| std::unordered_set<const ConstantExpression*>* stack) const { |
| if (stack->find(this) != stack->end()) { |
| CHECK(isReferenceConstantExpression()) |
| << "Only reference constant expression could be the cycle end"; |
| |
| std::cerr << "ERROR: Cyclic declaration:\n"; |
| return CheckAcyclicStatus(UNKNOWN_ERROR, this, |
| static_cast<const ReferenceConstantExpression*>(this)); |
| } |
| |
| if (visited->find(this) != visited->end()) return CheckAcyclicStatus(OK); |
| visited->insert(this); |
| stack->insert(this); |
| |
| for (const auto* nextCE : getConstantExpressions()) { |
| auto err = nextCE->checkAcyclic(visited, stack); |
| if (err.status != OK) { |
| return err; |
| } |
| } |
| |
| for (const auto* nextRef : getReferences()) { |
| const auto* nextCE = nextRef->shallowGet()->constExpr(); |
| CHECK(nextCE != nullptr) << "Local identifier is not a constant expression"; |
| auto err = nextCE->checkAcyclic(visited, stack); |
| |
| if (err.status != OK) { |
| if (err.cycleEnd == nullptr) return err; |
| |
| // Only ReferenceConstantExpression has references, |
| CHECK(isReferenceConstantExpression()) |
| << "Only reference constant expression could have refereneces"; |
| |
| // mExpr is defined explicitly before evaluation |
| std::cerr << " '" << err.lastReference->mExpr << "' in '" << mExpr << "' at " |
| << nextRef->location() << "\n"; |
| |
| if (err.cycleEnd == this) { |
| return CheckAcyclicStatus(err.status); |
| } |
| return CheckAcyclicStatus(err.status, err.cycleEnd, |
| static_cast<const ReferenceConstantExpression*>(this)); |
| } |
| } |
| |
| CHECK(stack->find(this) != stack->end()); |
| stack->erase(this); |
| return CheckAcyclicStatus(OK); |
| } |
| |
| void ConstantExpression::setPostParseCompleted() { |
| CHECK(!mIsPostParseCompleted); |
| mIsPostParseCompleted = true; |
| } |
| |
| std::vector<const ConstantExpression*> LiteralConstantExpression::getConstantExpressions() const { |
| return {}; |
| } |
| |
| UnaryConstantExpression::UnaryConstantExpression(const std::string& op, ConstantExpression* value) |
| : mUnary(value), mOp(op) {} |
| |
| std::vector<const ConstantExpression*> UnaryConstantExpression::getConstantExpressions() const { |
| return {mUnary}; |
| } |
| |
| BinaryConstantExpression::BinaryConstantExpression(ConstantExpression* lval, const std::string& op, |
| ConstantExpression* rval) |
| : mLval(lval), mRval(rval), mOp(op) {} |
| |
| std::vector<const ConstantExpression*> BinaryConstantExpression::getConstantExpressions() const { |
| return {mLval, mRval}; |
| } |
| |
| TernaryConstantExpression::TernaryConstantExpression(ConstantExpression* cond, |
| ConstantExpression* trueVal, |
| ConstantExpression* falseVal) |
| : mCond(cond), mTrueVal(trueVal), mFalseVal(falseVal) {} |
| |
| std::vector<const ConstantExpression*> TernaryConstantExpression::getConstantExpressions() const { |
| return {mCond, mTrueVal, mFalseVal}; |
| } |
| |
| ReferenceConstantExpression::ReferenceConstantExpression(const Reference<LocalIdentifier>& value, |
| const std::string& expr) |
| : mReference(value) { |
| mExpr = expr; |
| mTrivialDescription = mExpr.empty(); |
| } |
| |
| bool ReferenceConstantExpression::isReferenceConstantExpression() const { |
| return true; |
| } |
| |
| std::vector<const ConstantExpression*> ReferenceConstantExpression::getConstantExpressions() const { |
| // Returns reference instead |
| return {}; |
| } |
| |
| std::vector<const Reference<LocalIdentifier>*> ReferenceConstantExpression::getReferences() const { |
| return {&mReference}; |
| } |
| |
| AttributeConstantExpression::AttributeConstantExpression(const Reference<Type>& value, |
| const std::string& fqname, |
| const std::string& tag) |
| : mReference(value), mTag(tag) { |
| mExpr = fqname + "#" + tag; |
| } |
| |
| std::vector<const ConstantExpression*> AttributeConstantExpression::getConstantExpressions() const { |
| // Returns reference instead |
| return {}; |
| } |
| |
| std::vector<const Reference<Type>*> AttributeConstantExpression::getTypeReferences() const { |
| return {&mReference}; |
| } |
| |
| /* |
| |
| Evaluating expressions in HIDL language |
| |
| The following rules are mostly like that in: |
| http://en.cppreference.com/w/cpp/language/operator_arithmetic |
| http://en.cppreference.com/w/cpp/language/operator_logical |
| http://en.cppreference.com/w/cpp/language/operator_comparison |
| http://en.cppreference.com/w/cpp/language/operator_other |
| |
| The type of literal is the first type which the value |
| can fit from the list of types depending on the suffix and bases. |
| |
| suffix decimal bases hexadecimal bases |
| no suffix int32_t int32_t |
| int64_t uint32_t |
| int64_t |
| uint64_t |
| |
| u/U uint32_t (same as left) |
| uint64_t |
| |
| l/L int64_t int64_t |
| |
| ul/UL/uL/Ul uint64_t uint64_t |
| |
| |
| Note: There are no negative integer literals. |
| -1 is the unary minus applied to 1. |
| |
| Unary arithmetic and bitwise operators (~ + -): |
| don't change the type of the argument. |
| (so -1u = -(1u) has type uint32_t) |
| |
| Binary arithmetic and bitwise operators (except shifts) (+ - * / % & | ^): |
| 1. Integral promotion is first applied on both sides. |
| 2. If both operands have the same type, no promotion is necessary. |
| 3. Usual arithmetic conversions. |
| |
| Integral promotion: if an operand is of a type with less than 32 bits, |
| (including bool), it is promoted to int32_t. |
| |
| Usual arithmetic conversions: |
| 1. If operands are both signed or both unsigned, lesser conversion rank is |
| converted to greater conversion rank. |
| 2. Otherwise, if unsigned's rank >= signed's rank, -> unsigned's type |
| 3. Otherwise, if signed's type can hold all values in unsigned's type, |
| -> signed's type |
| 4. Otherwise, both converted to the unsigned counterpart of the signed operand's |
| type. |
| rank: bool < int8_t < int16_t < int32_t < int64_t |
| |
| |
| Shift operators (<< >>): |
| 1. Integral promotion is applied on both sides. |
| 2. For unsigned a, a << b discards bits that shifts out. |
| For signed non-negative a, a << b is legal if no bits shifts out, otherwise error. |
| For signed negative a, a << b gives error. |
| 3. For unsigned and signed non-negative a, a >> b discards bits that shifts out. |
| For signed negative a, a >> b discards bits that shifts out, and the signed |
| bit gets extended. ("arithmetic right shift") |
| 4. Shifting with negative number of bits is undefined. (Currently, the |
| parser will shift into the other direction. This behavior may change.) |
| 5. Shifting with number of bits exceeding the width of the type is undefined. |
| (Currently, 1 << 32 == 1. This behavior may change.) |
| |
| Logical operators (!, &&, ||): |
| 1. Convert first operand to bool. (true if non-zero, false otherwise) |
| 2. If short-circuited, return the result as type bool, value 1 or 0. |
| 3. Otherwise, convert second operand to bool, evaluate the result, and return |
| the result in the same fashion. |
| |
| Arithmetic comparison operators (< > <= >= == !=): |
| 1. Promote operands in the same way as binary arithmetic and bitwise operators. |
| (Integral promotion + Usual arithmetic conversions) |
| 2. Return type bool, value 0 or 1 the same way as logical operators. |
| |
| Ternary conditional operator (?:): |
| 1. Evaluate the conditional and evaluate the operands. |
| 2. Return type of expression is the type under usual arithmetic conversions on |
| the second and third operand. (No integral promotions necessary.) |
| |
| */ |
| |
| } // namespace android |
| |