blob: d799c3358204ef05f3cdf45e1a7b5343cd9e8e1d [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "update_engine/update_attempter.h"
// From 'man clock_gettime': feature test macro: _POSIX_C_SOURCE >= 199309L
#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 199309L
#endif // _POSIX_C_SOURCE
#include <time.h>
#include <string>
#include <tr1/memory>
#include <vector>
#include <base/file_util.h>
#include <base/rand_util.h>
#include <glib.h>
#include <metrics/metrics_library.h>
#include <policy/libpolicy.h>
#include <policy/device_policy.h>
#include "update_engine/certificate_checker.h"
#include "update_engine/dbus_service.h"
#include "update_engine/download_action.h"
#include "update_engine/filesystem_copier_action.h"
#include "update_engine/libcurl_http_fetcher.h"
#include "update_engine/multi_range_http_fetcher.h"
#include "update_engine/omaha_request_action.h"
#include "update_engine/omaha_request_params.h"
#include "update_engine/omaha_response_handler_action.h"
#include "update_engine/postinstall_runner_action.h"
#include "update_engine/prefs_interface.h"
#include "update_engine/subprocess.h"
#include "update_engine/system_state.h"
#include "update_engine/update_check_scheduler.h"
using base::TimeDelta;
using base::TimeTicks;
using google::protobuf::NewPermanentCallback;
using std::make_pair;
using std::tr1::shared_ptr;
using std::set;
using std::string;
using std::vector;
namespace chromeos_update_engine {
const int UpdateAttempter::kMaxDeltaUpdateFailures = 3;
// Private test server URL w/ custom port number.
// TODO(garnold) This is a temporary hack to allow us to test the closed loop
// automated update testing. To be replaced with an hard-coded local IP address.
const char* const UpdateAttempter::kTestUpdateUrl(
"http://garnold.mtv.corp.google.com:8080/update");
const char* kUpdateCompletedMarker =
"/var/run/update_engine_autoupdate_completed";
namespace {
const int kMaxConsecutiveObeyProxyRequests = 20;
} // namespace {}
const char* UpdateStatusToString(UpdateStatus status) {
switch (status) {
case UPDATE_STATUS_IDLE:
return "UPDATE_STATUS_IDLE";
case UPDATE_STATUS_CHECKING_FOR_UPDATE:
return "UPDATE_STATUS_CHECKING_FOR_UPDATE";
case UPDATE_STATUS_UPDATE_AVAILABLE:
return "UPDATE_STATUS_UPDATE_AVAILABLE";
case UPDATE_STATUS_DOWNLOADING:
return "UPDATE_STATUS_DOWNLOADING";
case UPDATE_STATUS_VERIFYING:
return "UPDATE_STATUS_VERIFYING";
case UPDATE_STATUS_FINALIZING:
return "UPDATE_STATUS_FINALIZING";
case UPDATE_STATUS_UPDATED_NEED_REBOOT:
return "UPDATE_STATUS_UPDATED_NEED_REBOOT";
case UPDATE_STATUS_REPORTING_ERROR_EVENT:
return "UPDATE_STATUS_REPORTING_ERROR_EVENT";
default:
return "unknown status";
}
}
// Turns a generic kActionCodeError to a generic error code specific
// to |action| (e.g., kActionCodeFilesystemCopierError). If |code| is
// not kActionCodeError, or the action is not matched, returns |code|
// unchanged.
ActionExitCode GetErrorCodeForAction(AbstractAction* action,
ActionExitCode code) {
if (code != kActionCodeError)
return code;
const string type = action->Type();
if (type == OmahaRequestAction::StaticType())
return kActionCodeOmahaRequestError;
if (type == OmahaResponseHandlerAction::StaticType())
return kActionCodeOmahaResponseHandlerError;
if (type == FilesystemCopierAction::StaticType())
return kActionCodeFilesystemCopierError;
if (type == PostinstallRunnerAction::StaticType())
return kActionCodePostinstallRunnerError;
return code;
}
UpdateAttempter::UpdateAttempter(SystemState* system_state,
DbusGlibInterface* dbus_iface,
GpioHandler* gpio_handler)
: processor_(new ActionProcessor()),
system_state_(system_state),
dbus_service_(NULL),
update_check_scheduler_(NULL),
fake_update_success_(false),
http_response_code_(0),
shares_(utils::kCpuSharesNormal),
manage_shares_source_(NULL),
download_active_(false),
status_(UPDATE_STATUS_IDLE),
download_progress_(0.0),
last_checked_time_(0),
new_version_("0.0.0.0"),
new_payload_size_(0),
proxy_manual_checks_(0),
obeying_proxies_(true),
chrome_proxy_resolver_(dbus_iface),
updated_boot_flags_(false),
update_boot_flags_running_(false),
start_action_processor_(false),
policy_provider_(NULL),
is_using_test_url_(false),
is_test_mode_(false),
is_test_update_attempted_(false),
gpio_handler_(gpio_handler) {
prefs_ = system_state->prefs();
if (utils::FileExists(kUpdateCompletedMarker))
status_ = UPDATE_STATUS_UPDATED_NEED_REBOOT;
}
UpdateAttempter::~UpdateAttempter() {
CleanupCpuSharesManagement();
}
void UpdateAttempter::Update(const string& app_version,
const string& omaha_url,
bool obey_proxies,
bool interactive,
bool is_test_mode,
bool is_user_initiated) {
LOG(INFO) << "Update called";
chrome_proxy_resolver_.Init();
fake_update_success_ = false;
if (status_ == UPDATE_STATUS_UPDATED_NEED_REBOOT) {
// Although we have applied an update, we still want to ping Omaha
// to ensure the number of active statistics is accurate.
LOG(INFO) << "Not updating b/c we already updated and we're waiting for "
<< "reboot, we'll ping Omaha instead";
PingOmaha();
return;
}
if (status_ != UPDATE_STATUS_IDLE) {
// Update in progress. Do nothing
return;
}
if (!CalculateUpdateParams(app_version,
omaha_url,
obey_proxies,
interactive,
is_test_mode,
is_user_initiated)) {
return;
}
BuildUpdateActions(interactive);
SetStatusAndNotify(UPDATE_STATUS_CHECKING_FOR_UPDATE,
kUpdateNoticeUnspecified);
// Just in case we didn't update boot flags yet, make sure they're updated
// before any update processing starts.
start_action_processor_ = true;
UpdateBootFlags();
LOG(INFO) << "Update finished";
}
bool UpdateAttempter::CalculateUpdateParams(const string& app_version,
const string& omaha_url,
bool obey_proxies,
bool interactive,
bool is_test_mode,
bool is_user_initiated) {
http_response_code_ = 0;
// Set the test mode flag for the current update attempt.
is_test_mode_ = is_test_mode;
// Lazy initialize the policy provider, or reload the latest policy data.
if (!policy_provider_.get()) {
policy_provider_.reset(new policy::PolicyProvider());
} else {
policy_provider_->Reload();
}
// If the release_track is specified by policy, that takes precedence.
string release_track;
if (policy_provider_->device_policy_is_loaded()) {
const policy::DevicePolicy& device_policy =
policy_provider_->GetDevicePolicy();
device_policy.GetReleaseChannel(&release_track);
device_policy.GetUpdateDisabled(&omaha_request_params_.update_disabled);
device_policy.GetTargetVersionPrefix(
&omaha_request_params_.target_version_prefix);
system_state_->set_device_policy(&device_policy);
set<string> allowed_types;
string allowed_types_str;
if (device_policy.GetAllowedConnectionTypesForUpdate(&allowed_types)) {
set<string>::const_iterator iter;
for (iter = allowed_types.begin(); iter != allowed_types.end(); ++iter)
allowed_types_str += *iter + " ";
}
LOG(INFO) << "Networks over which updates are allowed per policy : "
<< (allowed_types_str.empty() ? "all" : allowed_types_str);
} else {
LOG(INFO) << "No device policies present.";
system_state_->set_device_policy(NULL);
}
CalculateScatteringParams(is_user_initiated);
// Determine whether an alternative test address should be used.
string omaha_url_to_use = omaha_url;
if ((is_using_test_url_ = (omaha_url_to_use.empty() && is_test_mode_))) {
omaha_url_to_use = kTestUpdateUrl;
LOG(INFO) << "using alternative server address: " << omaha_url_to_use;
}
if (!omaha_request_params_.Init(app_version,
omaha_url_to_use,
release_track)) {
LOG(ERROR) << "Unable to initialize Omaha request device params.";
return false;
}
LOG(INFO) << "update_disabled = "
<< (omaha_request_params_.update_disabled ? "true" : "false")
<< ", target_version_prefix = "
<< omaha_request_params_.target_version_prefix
<< ", scatter_factor_in_seconds = "
<< utils::FormatSecs(scatter_factor_.InSeconds());
LOG(INFO) << "Wall Clock Based Wait Enabled = "
<< omaha_request_params_.wall_clock_based_wait_enabled
<< ", Update Check Count Wait Enabled = "
<< omaha_request_params_.update_check_count_wait_enabled
<< ", Waiting Period = " << utils::FormatSecs(
omaha_request_params_.waiting_period.InSeconds());
obeying_proxies_ = true;
if (obey_proxies || proxy_manual_checks_ == 0) {
LOG(INFO) << "forced to obey proxies";
// If forced to obey proxies, every 20th request will not use proxies
proxy_manual_checks_++;
LOG(INFO) << "proxy manual checks: " << proxy_manual_checks_;
if (proxy_manual_checks_ >= kMaxConsecutiveObeyProxyRequests) {
proxy_manual_checks_ = 0;
obeying_proxies_ = false;
}
} else if (base::RandInt(0, 4) == 0) {
obeying_proxies_ = false;
}
LOG_IF(INFO, !obeying_proxies_) << "To help ensure updates work, this update "
"check we are ignoring the proxy settings and using "
"direct connections.";
DisableDeltaUpdateIfNeeded();
return true;
}
void UpdateAttempter::CalculateScatteringParams(bool is_user_initiated) {
// Take a copy of the old scatter value before we update it, as
// we need to update the waiting period if this value changes.
TimeDelta old_scatter_factor = scatter_factor_;
const policy::DevicePolicy* device_policy = system_state_->device_policy();
if (device_policy) {
int64 new_scatter_factor_in_secs = 0;
device_policy->GetScatterFactorInSeconds(&new_scatter_factor_in_secs);
if (new_scatter_factor_in_secs < 0) // sanitize input, just in case.
new_scatter_factor_in_secs = 0;
scatter_factor_ = TimeDelta::FromSeconds(new_scatter_factor_in_secs);
}
bool is_scatter_enabled = false;
if (scatter_factor_.InSeconds() == 0) {
LOG(INFO) << "Scattering disabled since scatter factor is set to 0";
} else if (is_user_initiated) {
LOG(INFO) << "Scattering disabled as this update check is user-initiated";
} else if (!system_state_->IsOOBEComplete()) {
LOG(INFO) << "Scattering disabled since OOBE is not complete yet";
} else {
is_scatter_enabled = true;
LOG(INFO) << "Scattering is enabled";
}
if (is_scatter_enabled) {
// This means the scattering policy is turned on.
// Now check if we need to update the waiting period. The two cases
// in which we'd need to update the waiting period are:
// 1. First time in process or a scheduled check after a user-initiated one.
// (omaha_request_params_.waiting_period will be zero in this case).
// 2. Admin has changed the scattering policy value.
// (new scattering value will be different from old one in this case).
int64 wait_period_in_secs = 0;
if (omaha_request_params_.waiting_period.InSeconds() == 0) {
// First case. Check if we have a suitable value to set for
// the waiting period.
if (prefs_->GetInt64(kPrefsWallClockWaitPeriod, &wait_period_in_secs) &&
wait_period_in_secs > 0 &&
wait_period_in_secs <= scatter_factor_.InSeconds()) {
// This means:
// 1. There's a persisted value for the waiting period available.
// 2. And that persisted value is still valid.
// So, in this case, we should reuse the persisted value instead of
// generating a new random value to improve the chances of a good
// distribution for scattering.
omaha_request_params_.waiting_period =
TimeDelta::FromSeconds(wait_period_in_secs);
LOG(INFO) << "Using persisted wall-clock waiting period: " <<
utils::FormatSecs(omaha_request_params_.waiting_period.InSeconds());
}
else {
// This means there's no persisted value for the waiting period
// available or its value is invalid given the new scatter_factor value.
// So, we should go ahead and regenerate a new value for the
// waiting period.
LOG(INFO) << "Persisted value not present or not valid ("
<< utils::FormatSecs(wait_period_in_secs)
<< ") for wall-clock waiting period.";
GenerateNewWaitingPeriod();
}
} else if (scatter_factor_ != old_scatter_factor) {
// This means there's already a waiting period value, but we detected
// a change in the scattering policy value. So, we should regenerate the
// waiting period to make sure it's within the bounds of the new scatter
// factor value.
GenerateNewWaitingPeriod();
} else {
// Neither the first time scattering is enabled nor the scattering value
// changed. Nothing to do.
LOG(INFO) << "Keeping current wall-clock waiting period: " <<
utils::FormatSecs(omaha_request_params_.waiting_period.InSeconds());
}
// The invariant at this point is that omaha_request_params_.waiting_period
// is non-zero no matter which path we took above.
LOG_IF(ERROR, omaha_request_params_.waiting_period.InSeconds() == 0)
<< "Waiting Period should NOT be zero at this point!!!";
// Since scattering is enabled, wall clock based wait will always be
// enabled.
omaha_request_params_.wall_clock_based_wait_enabled = true;
// If we don't have any issues in accessing the file system to update
// the update check count value, we'll turn that on as well.
bool decrement_succeeded = DecrementUpdateCheckCount();
omaha_request_params_.update_check_count_wait_enabled = decrement_succeeded;
} else {
// This means the scattering feature is turned off or disabled for
// this particular update check. Make sure to disable
// all the knobs and artifacts so that we don't invoke any scattering
// related code.
omaha_request_params_.wall_clock_based_wait_enabled = false;
omaha_request_params_.update_check_count_wait_enabled = false;
omaha_request_params_.waiting_period = TimeDelta::FromSeconds(0);
prefs_->Delete(kPrefsWallClockWaitPeriod);
prefs_->Delete(kPrefsUpdateCheckCount);
// Don't delete the UpdateFirstSeenAt file as we don't want manual checks
// that result in no-updates (e.g. due to server side throttling) to
// cause update starvation by having the client generate a new
// UpdateFirstSeenAt for each scheduled check that follows a manual check.
}
}
void UpdateAttempter::GenerateNewWaitingPeriod() {
omaha_request_params_.waiting_period = TimeDelta::FromSeconds(
base::RandInt(1, scatter_factor_.InSeconds()));
LOG(INFO) << "Generated new wall-clock waiting period: " << utils::FormatSecs(
omaha_request_params_.waiting_period.InSeconds());
// Do a best-effort to persist this in all cases. Even if the persistence
// fails, we'll still be able to scatter based on our in-memory value.
// The persistence only helps in ensuring a good overall distribution
// across multiple devices if they tend to reboot too often.
prefs_->SetInt64(kPrefsWallClockWaitPeriod,
omaha_request_params_.waiting_period.InSeconds());
}
void UpdateAttempter::BuildUpdateActions(bool interactive) {
CHECK(!processor_->IsRunning());
processor_->set_delegate(this);
// Actions:
LibcurlHttpFetcher* update_check_fetcher =
new LibcurlHttpFetcher(GetProxyResolver(), system_state_, is_test_mode_);
// Try harder to connect to the network, esp when not interactive.
// See comment in libcurl_http_fetcher.cc.
update_check_fetcher->set_no_network_max_retries(interactive ? 1 : 3);
update_check_fetcher->set_check_certificate(CertificateChecker::kUpdate);
shared_ptr<OmahaRequestAction> update_check_action(
new OmahaRequestAction(system_state_,
&omaha_request_params_,
NULL,
update_check_fetcher, // passes ownership
false));
shared_ptr<OmahaResponseHandlerAction> response_handler_action(
new OmahaResponseHandlerAction(system_state_));
shared_ptr<FilesystemCopierAction> filesystem_copier_action(
new FilesystemCopierAction(false, false));
shared_ptr<FilesystemCopierAction> kernel_filesystem_copier_action(
new FilesystemCopierAction(true, false));
shared_ptr<OmahaRequestAction> download_started_action(
new OmahaRequestAction(system_state_,
&omaha_request_params_,
new OmahaEvent(
OmahaEvent::kTypeUpdateDownloadStarted),
new LibcurlHttpFetcher(GetProxyResolver(),
system_state_,
is_test_mode_),
false));
LibcurlHttpFetcher* download_fetcher =
new LibcurlHttpFetcher(GetProxyResolver(), system_state_, is_test_mode_);
download_fetcher->set_check_certificate(CertificateChecker::kDownload);
shared_ptr<DownloadAction> download_action(
new DownloadAction(prefs_,
system_state_,
new MultiRangeHttpFetcher(
download_fetcher))); // passes ownership
shared_ptr<OmahaRequestAction> download_finished_action(
new OmahaRequestAction(system_state_,
&omaha_request_params_,
new OmahaEvent(
OmahaEvent::kTypeUpdateDownloadFinished),
new LibcurlHttpFetcher(GetProxyResolver(),
system_state_,
is_test_mode_),
false));
shared_ptr<FilesystemCopierAction> filesystem_verifier_action(
new FilesystemCopierAction(false, true));
shared_ptr<FilesystemCopierAction> kernel_filesystem_verifier_action(
new FilesystemCopierAction(true, true));
shared_ptr<PostinstallRunnerAction> postinstall_runner_action(
new PostinstallRunnerAction);
shared_ptr<OmahaRequestAction> update_complete_action(
new OmahaRequestAction(system_state_,
&omaha_request_params_,
new OmahaEvent(OmahaEvent::kTypeUpdateComplete),
new LibcurlHttpFetcher(GetProxyResolver(),
system_state_,
is_test_mode_),
false));
download_action->set_delegate(this);
response_handler_action_ = response_handler_action;
download_action_ = download_action;
actions_.push_back(shared_ptr<AbstractAction>(update_check_action));
actions_.push_back(shared_ptr<AbstractAction>(response_handler_action));
actions_.push_back(shared_ptr<AbstractAction>(filesystem_copier_action));
actions_.push_back(shared_ptr<AbstractAction>(
kernel_filesystem_copier_action));
actions_.push_back(shared_ptr<AbstractAction>(download_started_action));
actions_.push_back(shared_ptr<AbstractAction>(download_action));
actions_.push_back(shared_ptr<AbstractAction>(download_finished_action));
actions_.push_back(shared_ptr<AbstractAction>(filesystem_verifier_action));
actions_.push_back(shared_ptr<AbstractAction>(
kernel_filesystem_verifier_action));
actions_.push_back(shared_ptr<AbstractAction>(postinstall_runner_action));
actions_.push_back(shared_ptr<AbstractAction>(update_complete_action));
// Enqueue the actions
for (vector<shared_ptr<AbstractAction> >::iterator it = actions_.begin();
it != actions_.end(); ++it) {
processor_->EnqueueAction(it->get());
}
// Bond them together. We have to use the leaf-types when calling
// BondActions().
BondActions(update_check_action.get(),
response_handler_action.get());
BondActions(response_handler_action.get(),
filesystem_copier_action.get());
BondActions(filesystem_copier_action.get(),
kernel_filesystem_copier_action.get());
BondActions(kernel_filesystem_copier_action.get(),
download_action.get());
BondActions(download_action.get(),
filesystem_verifier_action.get());
BondActions(filesystem_verifier_action.get(),
kernel_filesystem_verifier_action.get());
BondActions(kernel_filesystem_verifier_action.get(),
postinstall_runner_action.get());
}
void UpdateAttempter::CheckForUpdate(const string& app_version,
const string& omaha_url,
bool is_user_initiated) {
LOG(INFO) << "New update check requested";
if (status_ != UPDATE_STATUS_IDLE) {
LOG(INFO) << "Skipping update check because current status is "
<< UpdateStatusToString(status_);
return;
}
// Read GPIO signals and determine whether this is an automated test scenario.
// For safety, we only allow a test update to be performed once; subsequent
// update requests will be carried out normally.
bool is_test_mode = (!is_test_update_attempted_ && gpio_handler_ &&
gpio_handler_->IsTestModeSignaled());
if (is_test_mode) {
LOG(WARNING) << "this is a test mode update attempt!";
is_test_update_attempted_ = true;
}
// Passing true for is_user_initiated to indicate that this
// is not a scheduled update check.
Update(app_version, omaha_url, true, true, is_test_mode, is_user_initiated);
}
bool UpdateAttempter::RebootIfNeeded() {
if (status_ != UPDATE_STATUS_UPDATED_NEED_REBOOT) {
LOG(INFO) << "Reboot requested, but status is "
<< UpdateStatusToString(status_) << ", so not rebooting.";
return false;
}
TEST_AND_RETURN_FALSE(utils::Reboot());
return true;
}
// Delegate methods:
void UpdateAttempter::ProcessingDone(const ActionProcessor* processor,
ActionExitCode code) {
CHECK(response_handler_action_);
LOG(INFO) << "Processing Done.";
actions_.clear();
// Reset cpu shares back to normal.
CleanupCpuSharesManagement();
if (status_ == UPDATE_STATUS_REPORTING_ERROR_EVENT) {
LOG(INFO) << "Error event sent.";
// Inform scheduler of new status; also specifically inform about a failed
// update attempt with a test address.
SetStatusAndNotify(UPDATE_STATUS_IDLE,
(is_using_test_url_ ? kUpdateNoticeTestAddrFailed :
kUpdateNoticeUnspecified));
if (!fake_update_success_) {
return;
}
LOG(INFO) << "Booted from FW B and tried to install new firmware, "
"so requesting reboot from user.";
}
if (code == kActionCodeSuccess) {
utils::WriteFile(kUpdateCompletedMarker, "", 0);
prefs_->SetInt64(kPrefsDeltaUpdateFailures, 0);
prefs_->SetString(kPrefsPreviousVersion, omaha_request_params_.app_version);
DeltaPerformer::ResetUpdateProgress(prefs_, false);
// Since we're done with scattering fully at this point, this is the
// safest point delete the state files, as we're sure that the status is
// set to reboot (which means no more updates will be applied until reboot)
// This deletion is required for correctness as we want the next update
// check to re-create a new random number for the update check count.
// Similarly, we also delete the wall-clock-wait period that was persisted
// so that we start with a new random value for the next update check
// after reboot so that the same device is not favored or punished in any
// way.
prefs_->Delete(kPrefsUpdateCheckCount);
prefs_->Delete(kPrefsWallClockWaitPeriod);
prefs_->Delete(kPrefsUpdateFirstSeenAt);
LOG(INFO) << "Update successfully applied, waiting to reboot.";
SetStatusAndNotify(UPDATE_STATUS_UPDATED_NEED_REBOOT,
kUpdateNoticeUnspecified);
// Report the time it took to update the system.
int64_t update_time = time(NULL) - last_checked_time_;
if (!fake_update_success_)
system_state_->metrics_lib()->SendToUMA(
"Installer.UpdateTime",
static_cast<int>(update_time), // sample
1, // min = 1 second
20 * 60, // max = 20 minutes
50); // buckets
// Also report the success code so that the percentiles can be
// interpreted properly for the remaining error codes in UMA.
utils::SendErrorCodeToUma(system_state_->metrics_lib(), code);
return;
}
if (ScheduleErrorEventAction()) {
return;
}
LOG(INFO) << "No update.";
SetStatusAndNotify(UPDATE_STATUS_IDLE, kUpdateNoticeUnspecified);
}
void UpdateAttempter::ProcessingStopped(const ActionProcessor* processor) {
// Reset cpu shares back to normal.
CleanupCpuSharesManagement();
download_progress_ = 0.0;
SetStatusAndNotify(UPDATE_STATUS_IDLE, kUpdateNoticeUnspecified);
actions_.clear();
error_event_.reset(NULL);
}
// Called whenever an action has finished processing, either successfully
// or otherwise.
void UpdateAttempter::ActionCompleted(ActionProcessor* processor,
AbstractAction* action,
ActionExitCode code) {
// Reset download progress regardless of whether or not the download
// action succeeded. Also, get the response code from HTTP request
// actions (update download as well as the initial update check
// actions).
const string type = action->Type();
if (type == DownloadAction::StaticType()) {
download_progress_ = 0.0;
DownloadAction* download_action = dynamic_cast<DownloadAction*>(action);
http_response_code_ = download_action->GetHTTPResponseCode();
} else if (type == OmahaRequestAction::StaticType()) {
OmahaRequestAction* omaha_request_action =
dynamic_cast<OmahaRequestAction*>(action);
// If the request is not an event, then it's the update-check.
if (!omaha_request_action->IsEvent()) {
http_response_code_ = omaha_request_action->GetHTTPResponseCode();
// Forward the server-dictated poll interval to the update check
// scheduler, if any.
if (update_check_scheduler_) {
update_check_scheduler_->set_poll_interval(
omaha_request_action->GetOutputObject().poll_interval);
}
}
}
if (code != kActionCodeSuccess) {
// If the current state is at or past the download phase, count the failure
// in case a switch to full update becomes necessary. Ignore network
// transfer timeouts and failures.
if (status_ >= UPDATE_STATUS_DOWNLOADING &&
code != kActionCodeDownloadTransferError) {
MarkDeltaUpdateFailure();
}
// On failure, schedule an error event to be sent to Omaha.
CreatePendingErrorEvent(action, code);
return;
}
// Find out which action completed.
if (type == OmahaResponseHandlerAction::StaticType()) {
// Note that the status will be updated to DOWNLOADING when some bytes get
// actually downloaded from the server and the BytesReceived callback is
// invoked. This avoids notifying the user that a download has started in
// cases when the server and the client are unable to initiate the download.
CHECK(action == response_handler_action_.get());
const InstallPlan& plan = response_handler_action_->install_plan();
last_checked_time_ = time(NULL);
// TODO(adlr): put version in InstallPlan
new_version_ = "0.0.0.0";
new_payload_size_ = plan.payload_size;
SetupDownload();
SetupCpuSharesManagement();
SetStatusAndNotify(UPDATE_STATUS_UPDATE_AVAILABLE,
kUpdateNoticeUnspecified);
} else if (type == DownloadAction::StaticType()) {
SetStatusAndNotify(UPDATE_STATUS_FINALIZING, kUpdateNoticeUnspecified);
}
}
// Stop updating. An attempt will be made to record status to the disk
// so that updates can be resumed later.
void UpdateAttempter::Terminate() {
// TODO(adlr): implement this method.
NOTIMPLEMENTED();
}
// Try to resume from a previously Terminate()d update.
void UpdateAttempter::ResumeUpdating() {
// TODO(adlr): implement this method.
NOTIMPLEMENTED();
}
void UpdateAttempter::SetDownloadStatus(bool active) {
download_active_ = active;
LOG(INFO) << "Download status: " << (active ? "active" : "inactive");
}
void UpdateAttempter::BytesReceived(uint64_t bytes_received, uint64_t total) {
if (!download_active_) {
LOG(ERROR) << "BytesReceived called while not downloading.";
return;
}
double progress = static_cast<double>(bytes_received) /
static_cast<double>(total);
// Self throttle based on progress. Also send notifications if
// progress is too slow.
const double kDeltaPercent = 0.01; // 1%
if (status_ != UPDATE_STATUS_DOWNLOADING ||
bytes_received == total ||
progress - download_progress_ >= kDeltaPercent ||
TimeTicks::Now() - last_notify_time_ >= TimeDelta::FromSeconds(10)) {
download_progress_ = progress;
SetStatusAndNotify(UPDATE_STATUS_DOWNLOADING, kUpdateNoticeUnspecified);
}
}
bool UpdateAttempter::ResetStatus() {
LOG(INFO) << "Attempting to reset state from "
<< UpdateStatusToString(status_) << " to UPDATE_STATUS_IDLE";
switch (status_) {
case UPDATE_STATUS_IDLE:
// no-op.
return true;
case UPDATE_STATUS_UPDATED_NEED_REBOOT: {
status_ = UPDATE_STATUS_IDLE;
LOG(INFO) << "Reset Successful";
// also remove the reboot marker so that if the machine is rebooted
// after resetting to idle state, it doesn't go back to
// UPDATE_STATUS_UPDATED_NEED_REBOOT state.
const FilePath kUpdateCompletedMarkerPath(kUpdateCompletedMarker);
return file_util::Delete(kUpdateCompletedMarkerPath, false);
}
default:
LOG(ERROR) << "Reset not allowed in this state.";
return false;
}
}
bool UpdateAttempter::GetStatus(int64_t* last_checked_time,
double* progress,
string* current_operation,
string* new_version,
int64_t* new_payload_size) {
*last_checked_time = last_checked_time_;
*progress = download_progress_;
*current_operation = UpdateStatusToString(status_);
*new_version = new_version_;
*new_payload_size = new_payload_size_;
return true;
}
void UpdateAttempter::UpdateBootFlags() {
if (update_boot_flags_running_) {
LOG(INFO) << "Update boot flags running, nothing to do.";
return;
}
if (updated_boot_flags_) {
LOG(INFO) << "Already updated boot flags. Skipping.";
if (start_action_processor_) {
ScheduleProcessingStart();
}
return;
}
// This is purely best effort. Failures should be logged by Subprocess. Run
// the script asynchronously to avoid blocking the event loop regardless of
// the script runtime.
update_boot_flags_running_ = true;
LOG(INFO) << "Updating boot flags...";
vector<string> cmd(1, "/usr/sbin/chromeos-setgoodkernel");
if (!Subprocess::Get().Exec(cmd, StaticCompleteUpdateBootFlags, this)) {
CompleteUpdateBootFlags(1);
}
}
void UpdateAttempter::CompleteUpdateBootFlags(int return_code) {
update_boot_flags_running_ = false;
updated_boot_flags_ = true;
if (start_action_processor_) {
ScheduleProcessingStart();
}
}
void UpdateAttempter::StaticCompleteUpdateBootFlags(
int return_code,
const string& output,
void* p) {
reinterpret_cast<UpdateAttempter*>(p)->CompleteUpdateBootFlags(return_code);
}
void UpdateAttempter::BroadcastStatus() {
if (!dbus_service_) {
return;
}
last_notify_time_ = TimeTicks::Now();
update_engine_service_emit_status_update(
dbus_service_,
last_checked_time_,
download_progress_,
UpdateStatusToString(status_),
new_version_.c_str(),
new_payload_size_);
}
void UpdateAttempter::SetStatusAndNotify(UpdateStatus status,
UpdateNotice notice) {
status_ = status;
if (update_check_scheduler_) {
update_check_scheduler_->SetUpdateStatus(status_, notice);
}
BroadcastStatus();
}
void UpdateAttempter::CreatePendingErrorEvent(AbstractAction* action,
ActionExitCode code) {
if (error_event_.get()) {
// This shouldn't really happen.
LOG(WARNING) << "There's already an existing pending error event.";
return;
}
// For now assume that a generic Omaha response action failure means that
// there's no update so don't send an event. Also, double check that the
// failure has not occurred while sending an error event -- in which case
// don't schedule another. This shouldn't really happen but just in case...
if ((action->Type() == OmahaResponseHandlerAction::StaticType() &&
code == kActionCodeError) ||
status_ == UPDATE_STATUS_REPORTING_ERROR_EVENT) {
return;
}
// Classify the code to generate the appropriate result so that
// the Borgmon charts show up the results correctly.
// Do this before calling GetErrorCodeForAction which could potentially
// augment the bit representation of code and thus cause no matches for
// the switch cases below.
OmahaEvent::Result event_result;
switch (code) {
case kActionCodeOmahaUpdateIgnoredPerPolicy:
case kActionCodeOmahaUpdateDeferredPerPolicy:
event_result = OmahaEvent::kResultUpdateDeferred;
break;
default:
event_result = OmahaEvent::kResultError;
break;
}
code = GetErrorCodeForAction(action, code);
fake_update_success_ = code == kActionCodePostinstallBootedFromFirmwareB;
// Apply the bit modifiers to the error code.
if (!utils::IsNormalBootMode()) {
code = static_cast<ActionExitCode>(code | kActionCodeBootModeFlag);
}
if (response_handler_action_.get() &&
response_handler_action_->install_plan().is_resume) {
code = static_cast<ActionExitCode>(code | kActionCodeResumedFlag);
}
error_event_.reset(new OmahaEvent(OmahaEvent::kTypeUpdateComplete,
event_result,
code));
}
bool UpdateAttempter::ScheduleErrorEventAction() {
if (error_event_.get() == NULL)
return false;
LOG(ERROR) << "Update failed.";
system_state_->payload_state()->UpdateFailed(error_event_->error_code);
LOG(INFO) << "Reporting the error event";
utils::SendErrorCodeToUma(system_state_->metrics_lib(),
error_event_->error_code);
shared_ptr<OmahaRequestAction> error_event_action(
new OmahaRequestAction(system_state_,
&omaha_request_params_,
error_event_.release(), // Pass ownership.
new LibcurlHttpFetcher(GetProxyResolver(),
system_state_,
is_test_mode_),
false));
actions_.push_back(shared_ptr<AbstractAction>(error_event_action));
processor_->EnqueueAction(error_event_action.get());
SetStatusAndNotify(UPDATE_STATUS_REPORTING_ERROR_EVENT,
kUpdateNoticeUnspecified);
processor_->StartProcessing();
return true;
}
void UpdateAttempter::SetCpuShares(utils::CpuShares shares) {
if (shares_ == shares) {
return;
}
if (utils::SetCpuShares(shares)) {
shares_ = shares;
LOG(INFO) << "CPU shares = " << shares_;
}
}
void UpdateAttempter::SetupCpuSharesManagement() {
if (manage_shares_source_) {
LOG(ERROR) << "Cpu shares timeout source hasn't been destroyed.";
CleanupCpuSharesManagement();
}
const int kCpuSharesTimeout = 2 * 60 * 60; // 2 hours
manage_shares_source_ = g_timeout_source_new_seconds(kCpuSharesTimeout);
g_source_set_callback(manage_shares_source_,
StaticManageCpuSharesCallback,
this,
NULL);
g_source_attach(manage_shares_source_, NULL);
SetCpuShares(utils::kCpuSharesLow);
}
void UpdateAttempter::CleanupCpuSharesManagement() {
if (manage_shares_source_) {
g_source_destroy(manage_shares_source_);
manage_shares_source_ = NULL;
}
SetCpuShares(utils::kCpuSharesNormal);
}
gboolean UpdateAttempter::StaticManageCpuSharesCallback(gpointer data) {
return reinterpret_cast<UpdateAttempter*>(data)->ManageCpuSharesCallback();
}
gboolean UpdateAttempter::StaticStartProcessing(gpointer data) {
reinterpret_cast<UpdateAttempter*>(data)->processor_->StartProcessing();
return FALSE; // Don't call this callback again.
}
void UpdateAttempter::ScheduleProcessingStart() {
LOG(INFO) << "Scheduling an action processor start.";
start_action_processor_ = false;
g_idle_add(&StaticStartProcessing, this);
}
bool UpdateAttempter::ManageCpuSharesCallback() {
SetCpuShares(utils::kCpuSharesNormal);
manage_shares_source_ = NULL;
return false; // Destroy the timeout source.
}
void UpdateAttempter::DisableDeltaUpdateIfNeeded() {
int64_t delta_failures;
if (omaha_request_params_.delta_okay &&
prefs_->GetInt64(kPrefsDeltaUpdateFailures, &delta_failures) &&
delta_failures >= kMaxDeltaUpdateFailures) {
LOG(WARNING) << "Too many delta update failures, forcing full update.";
omaha_request_params_.delta_okay = false;
}
}
void UpdateAttempter::MarkDeltaUpdateFailure() {
// Don't try to resume a failed delta update.
DeltaPerformer::ResetUpdateProgress(prefs_, false);
int64_t delta_failures;
if (!prefs_->GetInt64(kPrefsDeltaUpdateFailures, &delta_failures) ||
delta_failures < 0) {
delta_failures = 0;
}
prefs_->SetInt64(kPrefsDeltaUpdateFailures, ++delta_failures);
}
void UpdateAttempter::SetupDownload() {
MultiRangeHttpFetcher* fetcher =
dynamic_cast<MultiRangeHttpFetcher*>(download_action_->http_fetcher());
fetcher->ClearRanges();
if (response_handler_action_->install_plan().is_resume) {
// Resuming an update so fetch the update manifest metadata first.
int64_t manifest_metadata_size = 0;
prefs_->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size);
fetcher->AddRange(0, manifest_metadata_size);
// If there're remaining unprocessed data blobs, fetch them. Be careful not
// to request data beyond the end of the payload to avoid 416 HTTP response
// error codes.
int64_t next_data_offset = 0;
prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset);
uint64_t resume_offset = manifest_metadata_size + next_data_offset;
if (resume_offset < response_handler_action_->install_plan().payload_size) {
fetcher->AddRange(resume_offset);
}
} else {
fetcher->AddRange(0);
}
}
void UpdateAttempter::PingOmaha() {
if (!processor_->IsRunning()) {
shared_ptr<OmahaRequestAction> ping_action(
new OmahaRequestAction(system_state_,
&omaha_request_params_,
NULL,
new LibcurlHttpFetcher(GetProxyResolver(),
system_state_,
is_test_mode_),
true));
actions_.push_back(shared_ptr<OmahaRequestAction>(ping_action));
processor_->set_delegate(NULL);
processor_->EnqueueAction(ping_action.get());
// Call StartProcessing() synchronously here to avoid any race conditions
// caused by multiple outstanding ping Omaha requests. If we call
// StartProcessing() asynchronously, the device can be suspended before we
// get a chance to callback to StartProcessing(). When the device resumes
// (assuming the device sleeps longer than the next update check period),
// StartProcessing() is called back and at the same time, the next update
// check is fired which eventually invokes StartProcessing(). A crash
// can occur because StartProcessing() checks to make sure that the
// processor is idle which it isn't due to the two concurrent ping Omaha
// requests.
processor_->StartProcessing();
} else {
LOG(WARNING) << "Action processor running, Omaha ping suppressed.";
}
// Update the status which will schedule the next update check
SetStatusAndNotify(UPDATE_STATUS_UPDATED_NEED_REBOOT,
kUpdateNoticeUnspecified);
}
bool UpdateAttempter::DecrementUpdateCheckCount() {
int64 update_check_count_value;
if (!prefs_->Exists(kPrefsUpdateCheckCount)) {
// This file does not exist. This means we haven't started our update
// check count down yet, so nothing more to do. This file will be created
// later when we first satisfy the wall-clock-based-wait period.
LOG(INFO) << "No existing update check count. That's normal.";
return true;
}
if (prefs_->GetInt64(kPrefsUpdateCheckCount, &update_check_count_value)) {
// Only if we're able to read a proper integer value, then go ahead
// and decrement and write back the result in the same file, if needed.
LOG(INFO) << "Update check count = " << update_check_count_value;
if (update_check_count_value == 0) {
// It could be 0, if, for some reason, the file didn't get deleted
// when we set our status to waiting for reboot. so we just leave it
// as is so that we can prevent another update_check wait for this client.
LOG(INFO) << "Not decrementing update check count as it's already 0.";
return true;
}
if (update_check_count_value > 0)
update_check_count_value--;
else
update_check_count_value = 0;
// Write out the new value of update_check_count_value.
if (prefs_->SetInt64(kPrefsUpdateCheckCount, update_check_count_value)) {
// We successfully wrote out te new value, so enable the
// update check based wait.
LOG(INFO) << "New update check count = " << update_check_count_value;
return true;
}
}
LOG(INFO) << "Deleting update check count state due to read/write errors.";
// We cannot read/write to the file, so disable the update check based wait
// so that we don't get stuck in this OS version by any chance (which could
// happen if there's some bug that causes to read/write incorrectly).
// Also attempt to delete the file to do our best effort to cleanup.
prefs_->Delete(kPrefsUpdateCheckCount);
return false;
}
} // namespace chromeos_update_engine