blob: 360a9ca00590f063bb4401c5b4f21576be8f3d8a [file] [log] [blame]
/**
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "run_tflite.h"
#include <android/log.h>
#include <dirent.h>
#include <dlfcn.h>
#include <fcntl.h>
#include <ftw.h>
#include <sys/time.h>
#include <unistd.h>
#include <cstdio>
#include <fstream>
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h"
#include "tensorflow/lite/nnapi/NeuralNetworksTypes.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/nnapi/sl/include/SupportLibrary.h"
#define LOG_TAG "NN_BENCHMARK"
#define FATAL(fmt, ...) \
do { \
__android_log_print(ANDROID_LOG_FATAL, LOG_TAG, fmt, ##__VA_ARGS__); \
assert(false); \
} while (0)
namespace {
long long currentTimeInUsec() {
timeval tv;
gettimeofday(&tv, NULL);
return ((tv.tv_sec * 1000000L) + tv.tv_usec);
}
// Workaround for build systems that make difficult to pick the correct NDK API
// level. NDK tracing methods are dynamically loaded from libandroid.so.
typedef void* (*fp_ATrace_beginSection)(const char* sectionName);
typedef void* (*fp_ATrace_endSection)();
struct TraceFunc {
fp_ATrace_beginSection ATrace_beginSection;
fp_ATrace_endSection ATrace_endSection;
};
TraceFunc setupTraceFunc() {
void* lib = dlopen("libandroid.so", RTLD_NOW | RTLD_LOCAL);
if (lib == nullptr) {
FATAL("unable to open libandroid.so");
}
return {
reinterpret_cast<fp_ATrace_beginSection>(
dlsym(lib, "ATrace_beginSection")),
reinterpret_cast<fp_ATrace_endSection>(dlsym(lib, "ATrace_endSection"))};
}
static TraceFunc kTraceFunc{setupTraceFunc()};
// Returns the number of partitions associated, as result of a call to
// ModifyGraphWithDelegate, to the given delegate.
int CountPartitionsDelegatedTo(tflite::Subgraph* subgraph,
const TfLiteDelegate* delegate) {
return std::count_if(
subgraph->nodes_and_registration().begin(),
subgraph->nodes_and_registration().end(),
[delegate](
std::pair<TfLiteNode, TfLiteRegistration> node_and_registration) {
return node_and_registration.first.delegate == delegate;
});
}
// Returns the number of partitions associated, as result of a call to
// ModifyGraphWithDelegate, to the given delegate.
int CountPartitionsDelegatedTo(tflite::Interpreter* interpreter,
const TfLiteDelegate* delegate) {
int result = 0;
for (int i = 0; i < interpreter->subgraphs_size(); i++) {
tflite::Subgraph* subgraph = interpreter->subgraph(i);
result += CountPartitionsDelegatedTo(subgraph, delegate);
}
return result;
}
} // namespace
BenchmarkModel* BenchmarkModel::create(const char* modelfile, int tfliteBackend,
bool enable_intermediate_tensors_dump, int* nnapiErrno,
const char* nnapi_device_name, bool mmapModel,
const char* nnapi_cache_dir,
const tflite::nnapi::NnApiSupportLibrary* nnApiSl) {
BenchmarkModel* model = new BenchmarkModel();
if (!model->init(modelfile, tfliteBackend, enable_intermediate_tensors_dump, nnapiErrno,
nnapi_device_name, mmapModel, nnapi_cache_dir, nnApiSl)) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to init model %s", modelfile);
delete model;
return nullptr;
}
return model;
}
bool BenchmarkModel::init(const char* modelfile, int tfliteBackend,
bool enable_intermediate_tensors_dump, int* nnapiErrno,
const char* nnapi_device_name, bool mmapModel,
const char* nnapi_cache_dir,
const tflite::nnapi::NnApiSupportLibrary* nnApiSl) {
__android_log_print(ANDROID_LOG_INFO, LOG_TAG, "BenchmarkModel %s",
modelfile);
mModelFile = modelfile;
if (nnapi_cache_dir) {
mCacheDir = nnapi_cache_dir;
}
if (nnapi_device_name) {
mNnApiDeviceName = nnapi_device_name;
}
if (mmapModel) {
// Memory map the model. NOTE this needs lifetime greater than or equal
// to interpreter context.
mTfliteModel = tflite::FlatBufferModel::BuildFromFile(modelfile);
} else {
std::ifstream t(modelfile);
mModelBuffer = std::string((std::istreambuf_iterator<char>(t)), std::istreambuf_iterator<char>());
mTfliteModel = tflite::FlatBufferModel::BuildFromBuffer(mModelBuffer.c_str(), mModelBuffer.size());
}
if (!mTfliteModel) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to load model %s",
modelfile);
return false;
}
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*mTfliteModel, resolver)(&mTfliteInterpreter);
if (!mTfliteInterpreter) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to create TFlite interpreter");
return false;
}
if (enable_intermediate_tensors_dump) {
// Make output of every op a model output. This way we will be able to
// fetch each intermediate tensor when running with delegates.
outputs.clear();
for (size_t node = 0; node < mTfliteInterpreter->nodes_size(); ++node) {
auto node_outputs =
mTfliteInterpreter->node_and_registration(node)->first.outputs;
outputs.insert(outputs.end(), node_outputs->data,
node_outputs->data + node_outputs->size);
}
mTfliteInterpreter->SetOutputs(outputs);
}
// Allow Fp16 precision for all models
mTfliteInterpreter->SetAllowFp16PrecisionForFp32(true);
mTfliteBackend = tfliteBackend;
switch (mTfliteBackend) {
case TFLITE_NNAPI: {
tflite::StatefulNnApiDelegate::Options nnapi_options;
nnapi_options.accelerator_name = mNnApiDeviceName.empty() ? nullptr : mNnApiDeviceName.c_str();
__android_log_print(ANDROID_LOG_INFO, LOG_TAG,
"Delegating to NNAPI device '%s'", mNnApiDeviceName.c_str());
if (nnApiSl) {
mNnApiSl = nnApiSl;
__android_log_print(ANDROID_LOG_INFO, LOG_TAG, "Using NNAPI SL");
}
mTfliteNnapiDelegate =
nnApiSl
? std::make_unique<tflite::StatefulNnApiDelegate>(nnApiSl, nnapi_options)
: std::make_unique<tflite::StatefulNnApiDelegate>(nnapi_options);
int delegationStatus = mTfliteInterpreter->ModifyGraphWithDelegate(mTfliteNnapiDelegate.get());
*nnapiErrno = mTfliteNnapiDelegate->GetNnApiErrno();
if ((delegationStatus == kTfLiteOk) &&
(*nnapiErrno == ANEURALNETWORKS_NO_ERROR)) {
int nnapiPartitions =
CountPartitionsDelegatedTo(mTfliteInterpreter.get(), mTfliteNnapiDelegate.get());
if (nnapiPartitions == 0) {
__android_log_print(
ANDROID_LOG_ERROR, LOG_TAG,
"NNAPI Delegate (%s) for model %s was delegated with %d partitions delegated to NNAPI!!",
nnapi_device_name, modelfile, nnapiPartitions);
return false;
} else {
__android_log_print(
ANDROID_LOG_INFO, LOG_TAG,
"NNAPI Delegate (%s) for model %s initialized successfully with %d partitions delegated to NNAPI",
nnapi_device_name, modelfile, nnapiPartitions);
}
} else {
__android_log_print(
ANDROID_LOG_ERROR, LOG_TAG,
"Failed to initialize NNAPI Delegate for model %s, nnapi_errno is %d",
modelfile, *nnapiErrno);
return false;
}
} break;
case TFLITE_GPU: {
#if defined(NN_BENCHMARK_ENABLE_GPU)
mGpuDelegate = TfLiteGpuDelegateV2Create(/*default options=*/nullptr);
if (mTfliteInterpreter->ModifyGraphWithDelegate(mGpuDelegate) !=
kTfLiteOk) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to initialize GPU Delegate");
return false;
} else {
int gpuPartitions =
CountPartitionsDelegatedTo(mTfliteInterpreter.get(), mGpuDelegate.get());
if (gpuPartitions == 0) {
ANDROID_LOG_INFO, LOG_TAG,
"GPU Delegate (%s) for model %s initialized successfully with %d partitions delegated",
nnapi_device_name, modelfile, gpuPartitions);
return false;
}
}
#else // !defined(NN_BENCHMARK_ENABLE_GPU)
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"GPU delegate requested but not enabled with "
"NN_BENCHMARK_ENABLE_GPU");
return false;
#endif // defined(NN_BENCHMARK_ENABLE_GPU)
} break;
default:
break;
}
return true;
}
BenchmarkModel::~BenchmarkModel() {
switch (mTfliteBackend) {
case TFLITE_GPU: {
#if defined(NN_BENCHMARK_ENABLE_GPU) // !defined(NN_BENCHMARK_ENABLE_GPU)
TfLiteGpuDelegateV2Delete(mGpuDelegate);
#endif // !defined(NN_BENCHMARK_ENABLE_GPU)
} break;
default:
break;
}
}
bool BenchmarkModel::setInput(const uint8_t* dataPtr, size_t length) {
int input = mTfliteInterpreter->inputs()[0];
auto* input_tensor = mTfliteInterpreter->tensor(input);
switch (input_tensor->type) {
case kTfLiteFloat32:
case kTfLiteUInt8: {
void* raw = input_tensor->data.raw;
memcpy(raw, dataPtr, length);
break;
}
default:
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Input tensor type not supported");
return false;
}
return true;
}
void BenchmarkModel::saveInferenceOutput(InferenceResult* result,
int output_index) {
int output = mTfliteInterpreter->outputs()[output_index];
auto* output_tensor = mTfliteInterpreter->tensor(output);
auto& sink = result->inferenceOutputs[output_index];
sink.insert(sink.end(), output_tensor->data.uint8,
output_tensor->data.uint8 + output_tensor->bytes);
}
void BenchmarkModel::getOutputError(const uint8_t* expected_data, size_t length,
InferenceResult* result, int output_index) {
int output = mTfliteInterpreter->outputs()[output_index];
auto* output_tensor = mTfliteInterpreter->tensor(output);
if (output_tensor->bytes != length) {
FATAL("Wrong size of output tensor, expected %zu, is %zu",
output_tensor->bytes, length);
}
size_t elements_count = 0;
float err_sum = 0.0;
float max_error = 0.0;
switch (output_tensor->type) {
case kTfLiteUInt8: {
uint8_t* output_raw = mTfliteInterpreter->typed_tensor<uint8_t>(output);
elements_count = output_tensor->bytes;
for (size_t i = 0; i < output_tensor->bytes; ++i) {
float err = ((float)output_raw[i]) - ((float)expected_data[i]);
if (err > max_error) max_error = err;
err_sum += err * err;
}
break;
}
case kTfLiteFloat32: {
const float* expected = reinterpret_cast<const float*>(expected_data);
float* output_raw = mTfliteInterpreter->typed_tensor<float>(output);
elements_count = output_tensor->bytes / sizeof(float);
for (size_t i = 0; i < output_tensor->bytes / sizeof(float); ++i) {
float err = output_raw[i] - expected[i];
if (err > max_error) max_error = err;
err_sum += err * err;
}
break;
}
default:
FATAL("Output sensor type %d not supported", output_tensor->type);
}
result->meanSquareErrors[output_index] = err_sum / elements_count;
result->maxSingleErrors[output_index] = max_error;
}
bool BenchmarkModel::resizeInputTensors(std::vector<int> shape) {
// The benchmark only expects single input tensor, hardcoded as 0.
int input = mTfliteInterpreter->inputs()[0];
mTfliteInterpreter->ResizeInputTensor(input, shape);
if (mTfliteInterpreter->AllocateTensors() != kTfLiteOk) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to allocate tensors!");
return false;
}
return true;
}
bool BenchmarkModel::runInference() {
auto status = mTfliteInterpreter->Invoke();
auto nnapi_errno = mTfliteNnapiDelegate
? mTfliteNnapiDelegate->GetNnApiErrno()
: ANEURALNETWORKS_NO_ERROR;
if (status != kTfLiteOk || nnapi_errno != ANEURALNETWORKS_NO_ERROR) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to invoke, tflite status: %d, nnapi errno: %d!",
(int)status, nnapi_errno);
return false;
}
return true;
}
bool BenchmarkModel::resetStates() {
auto status = mTfliteInterpreter->ResetVariableTensors();
if (status != kTfLiteOk) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to reset variable tensors: %d!", (int)status);
return false;
}
return true;
}
bool BenchmarkModel::benchmark(
const std::vector<InferenceInOutSequence>& inOutData,
int seqInferencesMaxCount, float timeout, int flags,
std::vector<InferenceResult>* results) {
if (inOutData.empty()) {
__android_log_print(ANDROID_LOG_WARN, LOG_TAG,
"Input/output vector is empty");
return true;
}
float inferenceTotal = 0.0;
for (int seqInferenceIndex = 0; seqInferenceIndex < seqInferencesMaxCount;
++seqInferenceIndex) {
resetStates();
const int inputOutputSequenceIndex = seqInferenceIndex % inOutData.size();
const InferenceInOutSequence& seq = inOutData[inputOutputSequenceIndex];
const bool sampleResults = (flags & FLAG_SAMPLE_BENCHMARK_RESULTS) != 0;
for (int i = 0; i < seq.size(); ++i) {
const InferenceInOut& data = seq[i];
// For NNAPI systrace usage documentation, see
// frameworks/ml/nn/common/include/Tracing.h.
kTraceFunc.ATrace_beginSection("[NN_LA_PE]BenchmarkModel::benchmark");
kTraceFunc.ATrace_beginSection("[NN_LA_PIO]BenchmarkModel::input");
if (data.input) {
setInput(data.input, data.input_size);
} else {
int input = mTfliteInterpreter->inputs()[0];
auto* input_tensor = mTfliteInterpreter->tensor(input);
if (!data.createInput((uint8_t*)input_tensor->data.raw,
input_tensor->bytes)) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Input creation %d failed", i);
return false;
}
}
kTraceFunc.ATrace_endSection();
long long startTime = currentTimeInUsec();
const bool success = runInference();
kTraceFunc.ATrace_endSection();
long long endTime = currentTimeInUsec();
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Inference %d failed",
i);
return false;
}
float inferenceTime =
static_cast<float>(endTime - startTime) / 1000000.0f;
size_t outputsCount = mTfliteInterpreter->outputs().size();
InferenceResult result{
inferenceTime, {}, {}, {}, inputOutputSequenceIndex, i};
result.meanSquareErrors.resize(outputsCount);
result.maxSingleErrors.resize(outputsCount);
result.inferenceOutputs.resize(outputsCount);
if ((flags & FLAG_IGNORE_GOLDEN_OUTPUT) == 0) {
if (outputsCount != data.outputs.size()) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Golden/actual outputs (%zu/%zu) count mismatch",
data.outputs.size(), outputsCount);
return false;
}
for (int j = 0; j < outputsCount; ++j) {
getOutputError(data.outputs[j].ptr, data.outputs[j].size, &result, j);
}
}
if ((flags & FLAG_DISCARD_INFERENCE_OUTPUT) == 0) {
for (int j = 0; j < outputsCount; ++j) {
saveInferenceOutput(&result, j);
}
}
if (!sampleResults || (seqInferenceIndex % INFERENCE_OUT_SAMPLE_RATE) == 0) {
results->push_back(result);
}
inferenceTotal += inferenceTime;
}
// Timeout?
if (timeout > 0.001 && inferenceTotal > timeout) {
return true;
}
}
return true;
}
// If cacheDir is not nullptr, compilation caching will be used with NNAPI.
bool BenchmarkModel::runCompilation(const char* cacheDir, bool useNnapiSl) {
std::unique_ptr<tflite::StatefulNnApiDelegate> delegate;
std::unique_ptr<tflite::Interpreter> interpreter;
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(*mTfliteModel, resolver)(&interpreter);
if (!interpreter) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to create TFlite interpreter");
return false;
}
// Allow Fp16 precision for all models
interpreter->SetAllowFp16PrecisionForFp32(true);
if (mTfliteBackend == TFLITE_NNAPI) {
tflite::StatefulNnApiDelegate::Options nnapi_options;
nnapi_options.accelerator_name = mNnApiDeviceName.empty() ? nullptr : mNnApiDeviceName.c_str();
if (cacheDir) {
nnapi_options.cache_dir = cacheDir;
nnapi_options.model_token = mModelFile.c_str();
}
if (useNnapiSl) {
__android_log_print(ANDROID_LOG_INFO, LOG_TAG,
"Use NNAPI SL in compilation caching benchmark.");
if (!mNnApiSl) {
__android_log_print(ANDROID_LOG_ERROR,
LOG_TAG,
"NNAPI SL is null pointer when running compilation caching benchmark.");
return false;
}
delegate = std::make_unique<tflite::StatefulNnApiDelegate>(mNnApiSl, nnapi_options);
} else {
delegate = std::make_unique<tflite::StatefulNnApiDelegate>(nnapi_options);
}
int delegationStatus = interpreter->ModifyGraphWithDelegate(delegate.get());
auto nnapiErrno = delegate->GetNnApiErrno();
if (delegationStatus != kTfLiteOk || nnapiErrno != ANEURALNETWORKS_NO_ERROR) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to initialize NNAPI Delegate for model %s, nnapi_errno is %d",
mModelFile.c_str(), nnapiErrno);
return false;
} else {
int nnapiPartitions =
CountPartitionsDelegatedTo(interpreter.get(), delegate.get());
if (nnapiPartitions == 0) {
__android_log_print(
ANDROID_LOG_ERROR, LOG_TAG,
"NNAPI Delegate (%s) for model %s was delegated with %d partitions delegated to NNAPI!!",
mNnApiDeviceName.c_str(), mModelFile.c_str(), nnapiPartitions);
return false;
}
}
}
return true;
}
// A helper class to manage the lifetime of a temporary cache directory.
class ScopedTempDirectory {
public:
ScopedTempDirectory(std::string base) : mBase(std::move(base)) {}
~ScopedTempDirectory() { cleanup(); }
// Create a new temp directory, remove the old one if needed.
void recreate() {
cleanup();
mTempDir = mBase + "/XXXXXX";
mkdtemp(&mTempDir[0]);
}
// Get the path to the temp directory.
const char* get() const { return mTempDir.empty() ? nullptr : mTempDir.c_str(); }
private:
void cleanup() {
if (mTempDir.empty()) {
return;
}
auto callback = [](const char* entry, const struct stat*, int, struct FTW*) {
return remove(entry);
};
nftw(mTempDir.c_str(), callback, 128, FTW_DEPTH | FTW_MOUNT | FTW_PHYS);
mTempDir.clear();
}
std::string mBase;
std::string mTempDir;
};
bool BenchmarkModel::getCompilationCacheSize(int* cacheSizeBytes, bool useNnapiSl) {
if (cacheSizeBytes == nullptr) return false;
// Create cache files.
ScopedTempDirectory tempDir(mCacheDir.value());
tempDir.recreate();
const bool success = runCompilation(tempDir.get(), useNnapiSl);
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Save to cache failed");
return false;
}
// Compute total size of cache files.
int totalSize = 0;
DIR* dir = opendir(tempDir.get());
if (dir == nullptr) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to open cache directory");
return false;
}
struct dirent* dp = nullptr;
while ((dp = readdir(dir)) != nullptr) {
char fullPath[1024];
snprintf(fullPath, 1024, "%s/%s", tempDir.get(), dp->d_name);
struct stat st;
int err = stat(fullPath, &st);
if (err != 0) {
closedir(dir);
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to stat %s", fullPath);
return false;
}
// Only accumulate sizes of regular files. This will exclude '.' and '..'.
if (S_ISREG(st.st_mode)) {
totalSize += st.st_size;
}
}
closedir(dir);
*cacheSizeBytes = totalSize;
return true;
}
bool BenchmarkModel::benchmarkSingleTypeOfCompilation(CompilationBenchmarkType type,
int maxNumIterations, float timeout,
bool useNnapiSl,
std::vector<float>* results) {
if (results != nullptr) {
results->clear();
}
ScopedTempDirectory tempDir(mCacheDir.value());
// Initialize cache files to benchmark cache hit.
if (type == CompilationBenchmarkType::PREPARE_FROM_CACHE) {
tempDir.recreate();
const bool success = runCompilation(tempDir.get(), useNnapiSl);
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Save to cache failed");
return false;
}
}
float compilationTotal = 0.0;
for (int i = 0; i < maxNumIterations; i++) {
const char* cacheDir = nullptr;
switch (type) {
case CompilationBenchmarkType::WITHOUT_CACHE:
cacheDir = nullptr;
break;
case CompilationBenchmarkType::SAVE_TO_CACHE:
// Remove the cache files from the last iteration to benchmark cache miss.
tempDir.recreate();
[[fallthrough]];
case CompilationBenchmarkType::PREPARE_FROM_CACHE:
cacheDir = tempDir.get();
break;
default:
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Unknown CompilationBenchmarkType: %d",
static_cast<int>(type));
return false;
}
kTraceFunc.ATrace_beginSection("[NN_LA_PC]BenchmarkModel::benchmarkCompilation");
const long long startTime = currentTimeInUsec();
const bool success = runCompilation(cacheDir, useNnapiSl);
const long long endTime = currentTimeInUsec();
kTraceFunc.ATrace_endSection();
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Compilation %d failed", i);
return false;
}
const float compilationTime = static_cast<float>(endTime - startTime) / 1000000.0f;
if (results != nullptr) {
results->push_back(compilationTime);
}
// Timeout?
compilationTotal += compilationTime;
if (timeout > 0.001 && compilationTotal > timeout) {
return true;
}
}
return true;
}
bool BenchmarkModel::benchmarkSingleTypeOfCompilationWithWarmup(CompilationBenchmarkType type,
int maxNumIterations,
float warmupTimeout,
float runTimeout,
bool useNnapiSl,
std::vector<float>* results) {
kTraceFunc.ATrace_beginSection(
"[NN_LA_PWM]BenchmarkModel::benchmarkSingleTypeOfCompilationWithWarmup");
bool success = benchmarkSingleTypeOfCompilation(type,
maxNumIterations,
warmupTimeout,
useNnapiSl,
nullptr);
kTraceFunc.ATrace_endSection();
if (!success) return false;
kTraceFunc.ATrace_beginSection(
"[NN_LA_PBM]BenchmarkModel::benchmarkSingleTypeOfCompilationWithWarmup");
success = benchmarkSingleTypeOfCompilation(type,
maxNumIterations,
runTimeout,
useNnapiSl,
results);
kTraceFunc.ATrace_endSection();
return success;
}
bool BenchmarkModel::benchmarkCompilation(int maxNumIterations, float warmupTimeout,
float runTimeout, bool useNnapiSl,
CompilationBenchmarkResult* result) {
if (result == nullptr) return false;
// Benchmark compile without cache.
bool success = benchmarkSingleTypeOfCompilationWithWarmup(
CompilationBenchmarkType::WITHOUT_CACHE, maxNumIterations,
warmupTimeout, runTimeout, useNnapiSl,
&result->compileWithoutCacheTimeSec);
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"Failed to benchmark compilation without cache");
return false;
}
// Get compilation cache size.
success = getCompilationCacheSize(&result->cacheSizeBytes, useNnapiSl);
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to retrieve compilation cache size");
return false;
}
// Benchmark saving to cache and preparing from cache only if supported.
if (result->cacheSizeBytes > 0) {
// Benchmark saving to cache.
auto& saveToCacheTimeSec = result->saveToCacheTimeSec.emplace();
success = benchmarkSingleTypeOfCompilationWithWarmup(
CompilationBenchmarkType::SAVE_TO_CACHE, maxNumIterations,
warmupTimeout, runTimeout, useNnapiSl,
&saveToCacheTimeSec);
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to benchmark saving to cache");
return false;
}
// Benchmark preparing from cache.
auto& prepareFromCacheTimeSec = result->prepareFromCacheTimeSec.emplace();
success = benchmarkSingleTypeOfCompilationWithWarmup(
CompilationBenchmarkType::PREPARE_FROM_CACHE, maxNumIterations,
warmupTimeout, runTimeout, useNnapiSl,
&prepareFromCacheTimeSec);
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Failed to benchmark preparing from cache");
return false;
}
}
return result;
}
bool BenchmarkModel::dumpAllLayers(
const char* path, const std::vector<InferenceInOutSequence>& inOutData) {
if (inOutData.empty()) {
FATAL("Input/output vector is empty");
}
for (int seqInferenceIndex = 0; seqInferenceIndex < inOutData.size();
++seqInferenceIndex) {
resetStates();
const InferenceInOutSequence& seq = inOutData[seqInferenceIndex];
for (int i = 0; i < seq.size(); ++i) {
const InferenceInOut& data = seq[i];
setInput(data.input, data.input_size);
const bool success = runInference();
if (!success) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, "Inference %d failed",
i);
return false;
}
// The order of the tensor is not sorted by the tensor index
for (int tensor_order = 0; tensor_order < outputs.size(); ++tensor_order) {
int tensor_index = outputs[tensor_order];
auto* output_tensor = mTfliteInterpreter->tensor(tensor_index);
if (output_tensor->data.raw == nullptr) {
__android_log_print(ANDROID_LOG_ERROR, LOG_TAG,
"output_tensor->data.raw == nullptr at index %d ", tensor_index);
continue;
}
char fullpath[1024];
snprintf(fullpath, 1024, "%s/dump_%.3d_seq_%.3d_order_%.3d_tensor_%.3d", path,
seqInferenceIndex, i, tensor_order, tensor_index);
FILE* f = fopen(fullpath, "wb");
fwrite(output_tensor->data.raw, output_tensor->bytes, 1, f);
fclose(f);
}
}
}
return true;
}