blob: 97a126a97f66cf3e6e22d0f8ae12ada2cced0d62 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "experimental.h"
#include "slicer/code_ir.h"
#include "slicer/control_flow_graph.h"
#include "slicer/dex_ir.h"
#include "slicer/dex_ir_builder.h"
#include "slicer/instrumentation.h"
#include <string.h>
#include <map>
#include <memory>
#include <vector>
namespace experimental {
// Rewrites every method through raising to code IR -> back to bytecode
// (also stress the CFG creation)
void FullRewrite(std::shared_ptr<ir::DexFile> dex_ir) {
for (auto& ir_method : dex_ir->encoded_methods) {
if (ir_method->code != nullptr) {
lir::CodeIr code_ir(ir_method.get(), dex_ir);
lir::ControlFlowGraph cfg_compact(&code_ir, false);
lir::ControlFlowGraph cfg_verbose(&code_ir, true);
code_ir.Assemble();
}
}
}
// For every method body in the .dex image, replace invoke-virtual[/range]
// instances with a invoke-static[/range] to a fictitious Tracer.WrapInvoke(<args...>)
// WrapInvoke() is a static method which takes the same arguments as the
// original method plus an explicit "this" argument, and returns the same
// type as the original method.
void StressWrapInvoke(std::shared_ptr<ir::DexFile> dex_ir) {
for (auto& ir_method : dex_ir->encoded_methods) {
if (ir_method->code == nullptr) {
continue;
}
lir::CodeIr code_ir(ir_method.get(), dex_ir);
ir::Builder builder(dex_ir);
// search for invoke-virtual[/range] bytecodes
//
// NOTE: we may be removing the current bytecode
// from the instructions list so we must use a
// different iteration style (it++ is done before
// handling *it, not after as in a normal iteration)
//
auto it = code_ir.instructions.begin();
while (it != code_ir.instructions.end()) {
auto instr = *it++;
auto bytecode = dynamic_cast<lir::Bytecode*>(instr);
if (bytecode == nullptr) {
continue;
}
dex::Opcode new_call_opcode = dex::OP_NOP;
switch (bytecode->opcode) {
case dex::OP_INVOKE_VIRTUAL:
new_call_opcode = dex::OP_INVOKE_STATIC;
break;
case dex::OP_INVOKE_VIRTUAL_RANGE:
new_call_opcode = dex::OP_INVOKE_STATIC_RANGE;
break;
default:
// skip instruction ...
continue;
}
assert(new_call_opcode != dex::OP_NOP);
auto orig_method = bytecode->CastOperand<lir::Method>(1)->ir_method;
// construct the wrapper method declaration
std::vector<ir::Type*> param_types;
param_types.push_back(orig_method->parent);
if (orig_method->prototype->param_types != nullptr) {
const auto& orig_param_types = orig_method->prototype->param_types->types;
param_types.insert(param_types.end(), orig_param_types.begin(), orig_param_types.end());
}
auto ir_proto = builder.GetProto(orig_method->prototype->return_type,
builder.GetTypeList(param_types));
auto ir_method_decl = builder.GetMethodDecl(builder.GetAsciiString("WrapInvoke"),
ir_proto,
builder.GetType("LTracer;"));
auto wraper_method = code_ir.Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
// new call bytecode
auto new_call = code_ir.Alloc<lir::Bytecode>();
new_call->opcode = new_call_opcode;
new_call->operands.push_back(bytecode->operands[0]);
new_call->operands.push_back(wraper_method);
code_ir.instructions.InsertBefore(bytecode, new_call);
// remove the old call bytecode
//
// NOTE: we can mutate the original bytecode directly
// since the instructions can't have multiple references
// in the code IR, but for testing purposes we'll do it
// the hard way here
//
code_ir.instructions.Remove(bytecode);
}
code_ir.Assemble();
}
}
// For every method in the .dex image, insert an "entry hook" call
// to a fictitious method: Tracer.OnEntry(<args...>). OnEntry() has the
// same argument types as the instrumented method plus an explicit
// "this" for non-static methods. On entry to the instumented method
// we'll call OnEntry() with the values of the incoming arguments.
//
// NOTE: the entry hook will forward all the incoming arguments
// so we need to define an Tracer.OnEntry overload for every method
// signature. This means that for very large .dex images, approaching
// the 64k method limit, we might not be able to allocate new method declarations.
// (which is ok, and a good test case, since this is a stress scenario)
//
void StressEntryHook(std::shared_ptr<ir::DexFile> dex_ir) {
for (auto& ir_method : dex_ir->encoded_methods) {
if (ir_method->code == nullptr) {
continue;
}
lir::CodeIr code_ir(ir_method.get(), dex_ir);
ir::Builder builder(dex_ir);
// 1. construct call target
std::vector<ir::Type*> param_types;
if ((ir_method->access_flags & dex::kAccStatic) == 0) {
param_types.push_back(ir_method->decl->parent);
}
if (ir_method->decl->prototype->param_types != nullptr) {
const auto& orig_param_types = ir_method->decl->prototype->param_types->types;
param_types.insert(param_types.end(), orig_param_types.begin(), orig_param_types.end());
}
auto ir_proto = builder.GetProto(builder.GetType("V"),
builder.GetTypeList(param_types));
auto ir_method_decl = builder.GetMethodDecl(builder.GetAsciiString("OnEntry"),
ir_proto,
builder.GetType("LTracer;"));
auto target_method = code_ir.Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
// 2. argument registers
auto regs = ir_method->code->registers;
auto args_count = ir_method->code->ins_count;
auto args = code_ir.Alloc<lir::VRegRange>(regs - args_count, args_count);
// 3. call bytecode
auto call = code_ir.Alloc<lir::Bytecode>();
call->opcode = dex::OP_INVOKE_STATIC_RANGE;
call->operands.push_back(args);
call->operands.push_back(target_method);
// 4. insert the hook before the first bytecode
for (auto instr : code_ir.instructions) {
auto bytecode = dynamic_cast<lir::Bytecode*>(instr);
if (bytecode == nullptr) {
continue;
}
code_ir.instructions.InsertBefore(bytecode, call);
break;
}
code_ir.Assemble();
}
}
// For every method in the .dex image, insert an "exit hook" call
// to a fictitious method: Tracer.OnExit(<return value...>).
// OnExit() is called right before returning from the instrumented
// method (on the non-exceptional path) and it will be passed the return
// value, if any. For non-void return types, the return value from OnExit()
// will also be used as the return value of the instrumented method.
void StressExitHook(std::shared_ptr<ir::DexFile> dex_ir) {
for (auto& ir_method : dex_ir->encoded_methods) {
if (ir_method->code == nullptr) {
continue;
}
lir::CodeIr code_ir(ir_method.get(), dex_ir);
ir::Builder builder(dex_ir);
// do we have a void-return method?
bool return_void =
::strcmp(ir_method->decl->prototype->return_type->descriptor->c_str(), "V") == 0;
// 1. construct call target
std::vector<ir::Type*> param_types;
if (!return_void) {
param_types.push_back(ir_method->decl->prototype->return_type);
}
auto ir_proto = builder.GetProto(ir_method->decl->prototype->return_type,
builder.GetTypeList(param_types));
auto ir_method_decl = builder.GetMethodDecl(builder.GetAsciiString("OnExit"),
ir_proto,
builder.GetType("LTracer;"));
auto target_method = code_ir.Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
// 2. find and instrument the return instructions
for (auto instr : code_ir.instructions) {
auto bytecode = dynamic_cast<lir::Bytecode*>(instr);
if (bytecode == nullptr) {
continue;
}
dex::Opcode move_result_opcode = dex::OP_NOP;
dex::u4 reg = 0;
int reg_count = 0;
switch (bytecode->opcode) {
case dex::OP_RETURN_VOID:
SLICER_CHECK(return_void);
break;
case dex::OP_RETURN:
SLICER_CHECK(!return_void);
move_result_opcode = dex::OP_MOVE_RESULT;
reg = bytecode->CastOperand<lir::VReg>(0)->reg;
reg_count = 1;
break;
case dex::OP_RETURN_OBJECT:
SLICER_CHECK(!return_void);
move_result_opcode = dex::OP_MOVE_RESULT_OBJECT;
reg = bytecode->CastOperand<lir::VReg>(0)->reg;
reg_count = 1;
break;
case dex::OP_RETURN_WIDE:
SLICER_CHECK(!return_void);
move_result_opcode = dex::OP_MOVE_RESULT_WIDE;
reg = bytecode->CastOperand<lir::VRegPair>(0)->base_reg;
reg_count = 2;
break;
default:
// skip the bytecode...
continue;
}
// the call bytecode
auto args = code_ir.Alloc<lir::VRegRange>(reg, reg_count);
auto call = code_ir.Alloc<lir::Bytecode>();
call->opcode = dex::OP_INVOKE_STATIC_RANGE;
call->operands.push_back(args);
call->operands.push_back(target_method);
code_ir.instructions.InsertBefore(bytecode, call);
// move result back to the right register
//
// NOTE: we're reusing the original return's operand,
// which is valid and more efficient than allocating
// a new LIR node, but it's also fragile: we need to be
// very careful about mutating shared nodes.
//
if (move_result_opcode != dex::OP_NOP) {
auto move_result = code_ir.Alloc<lir::Bytecode>();
move_result->opcode = move_result_opcode;
move_result->operands.push_back(bytecode->operands[0]);
code_ir.instructions.InsertBefore(bytecode, move_result);
}
}
code_ir.Assemble();
}
}
// Test slicer::MethodInstrumenter
void TestMethodInstrumenter(std::shared_ptr<ir::DexFile> dex_ir) {
slicer::MethodInstrumenter mi(dex_ir);
mi.AddTransformation<slicer::EntryHook>(ir::MethodId("LTracer;", "onFooEntry"), true);
mi.AddTransformation<slicer::EntryHook>(ir::MethodId("LTracer;", "onFooEntry"), false);
mi.AddTransformation<slicer::ExitHook>(ir::MethodId("LTracer;", "onFooExit"));
mi.AddTransformation<slicer::DetourVirtualInvoke>(
ir::MethodId("LBase;", "foo", "(ILjava/lang/String;)I"),
ir::MethodId("LTracer;", "wrapFoo"));
mi.AddTransformation<slicer::DetourInterfaceInvoke>(
ir::MethodId("LIBase;", "bar", "(Ljava/lang/String;)V"),
ir::MethodId("LTracer;", "wrapBar"));
auto method1 = ir::MethodId("LTarget;", "foo", "(ILjava/lang/String;)I");
SLICER_CHECK(mi.InstrumentMethod(method1));
auto method2 = ir::MethodId("LTarget;", "foo", "(I[[Ljava/lang/String;)Ljava/lang/Integer;");
SLICER_CHECK(mi.InstrumentMethod(method2));
}
// Stress scratch register allocation
void StressScratchRegs(std::shared_ptr<ir::DexFile> dex_ir) {
slicer::MethodInstrumenter mi(dex_ir);
// queue multiple allocations to stress corner cases (various counts and alignments)
auto t1 = mi.AddTransformation<slicer::AllocateScratchRegs>(1, false);
auto t2 = mi.AddTransformation<slicer::AllocateScratchRegs>(1, false);
auto t3 = mi.AddTransformation<slicer::AllocateScratchRegs>(1);
auto t4 = mi.AddTransformation<slicer::AllocateScratchRegs>(20);
// apply the transformations to every single method
for (auto& ir_method : dex_ir->encoded_methods) {
if (ir_method->code != nullptr) {
SLICER_CHECK(mi.InstrumentMethod(ir_method.get()));
SLICER_CHECK(t1->ScratchRegs().size() == 1);
SLICER_CHECK(t2->ScratchRegs().size() == 1);
SLICER_CHECK(t3->ScratchRegs().size() == 1);
SLICER_CHECK(t4->ScratchRegs().size() == 20);
}
}
}
// Sample code coverage instrumentation: on the entry of every
// basic block, inject a call to a tracing method:
//
// CodeCoverage.TraceBasicBlock(block_id)
//
void CodeCoverage(std::shared_ptr<ir::DexFile> dex_ir) {
ir::Builder builder(dex_ir);
slicer::AllocateScratchRegs alloc_regs(1);
int basic_block_id = 1;
constexpr const char* kTracerClass = "LCodeCoverage;";
// create the tracing method declaration
std::vector<ir::Type*> param_types { builder.GetType("I") };
auto ir_proto =
builder.GetProto(builder.GetType("V"),
builder.GetTypeList(param_types));
auto ir_method_decl =
builder.GetMethodDecl(builder.GetAsciiString("TraceBasicBlock"),
ir_proto,
builder.GetType(kTracerClass));
// instrument every method (except for the tracer class methods)
for (auto& ir_method : dex_ir->encoded_methods) {
if (ir_method->code == nullptr) {
continue;
}
// don't instrument the methods of the tracer class
if (std::strcmp(ir_method->decl->parent->descriptor->c_str(), kTracerClass) == 0) {
continue;
}
lir::CodeIr code_ir(ir_method.get(), dex_ir);
lir::ControlFlowGraph cfg(&code_ir, true);
// allocate a scratch register
//
// NOTE: we're assuming this does not change the CFG!
// (this is the case here, but transformations which
// alter the basic blocks boundaries or the code flow
// would invalidate existing CFGs)
//
alloc_regs.Apply(&code_ir);
dex::u4 scratch_reg = *alloc_regs.ScratchRegs().begin();
// TODO: handle very "high" registers
if (scratch_reg > 0xff) {
printf("WARNING: can't instrument method %s.%s%s\n",
ir_method->decl->parent->Decl().c_str(),
ir_method->decl->name->c_str(),
ir_method->decl->prototype->Signature().c_str());
continue;
}
auto tracing_method = code_ir.Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
// instrument each basic block entry point
for (const auto& block : cfg.basic_blocks) {
// generate the map of basic blocks
printf("%8u: mi=%u s=%u e=%u\n",
static_cast<dex::u4>(basic_block_id),
ir_method->decl->orig_index,
block.region.first->offset,
block.region.last->offset);
// find first bytecode in the basic block
lir::Instruction* trace_point = nullptr;
for (auto instr = block.region.first; instr != nullptr; instr = instr->next) {
trace_point = dynamic_cast<lir::Bytecode*>(instr);
if (trace_point != nullptr || instr == block.region.last) {
break;
}
}
SLICER_CHECK(trace_point != nullptr);
// special case: don't separate 'move-result-<kind>' from the preceding invoke
auto opcode = static_cast<lir::Bytecode*>(trace_point)->opcode;
if (opcode == dex::OP_MOVE_RESULT ||
opcode == dex::OP_MOVE_RESULT_WIDE ||
opcode == dex::OP_MOVE_RESULT_OBJECT) {
trace_point = trace_point->next;
}
// arg_reg = block_id
auto load_block_id = code_ir.Alloc<lir::Bytecode>();
load_block_id->opcode = dex::OP_CONST;
load_block_id->operands.push_back(code_ir.Alloc<lir::VReg>(scratch_reg));
load_block_id->operands.push_back(code_ir.Alloc<lir::Const32>(basic_block_id));
code_ir.instructions.InsertBefore(trace_point, load_block_id);
// call the tracing method
auto trace_call = code_ir.Alloc<lir::Bytecode>();
trace_call->opcode = dex::OP_INVOKE_STATIC_RANGE;
trace_call->operands.push_back(code_ir.Alloc<lir::VRegRange>(scratch_reg, 1));
trace_call->operands.push_back(tracing_method);
code_ir.instructions.InsertBefore(trace_point, trace_call);
++basic_block_id;
}
code_ir.Assemble();
}
}
// Stress the roundtrip: EncodedMethod -> MethodId -> FindMethod -> EncodedMethod
// NOTE: until we start indexing methods this test is slow on debug builds + large .dex images
void StressFindMethod(std::shared_ptr<ir::DexFile> dex_ir) {
ir::Builder builder(dex_ir);
int method_count = 0;
for (auto& ir_method : dex_ir->encoded_methods) {
auto decl = ir_method->decl;
auto signature = decl->prototype->Signature();
auto class_descriptor = decl->parent->descriptor;
ir::MethodId method_id(class_descriptor->c_str(), decl->name->c_str(), signature.c_str());
SLICER_CHECK(builder.FindMethod(method_id) == ir_method.get());
++method_count;
}
printf("Everything looks fine, found %d methods.\n", method_count);
}
static void PrintHistogram(const std::map<int, int> histogram, const char* name) {
constexpr int kHistogramWidth = 100;
int max_count = 0;
for (const auto& kv : histogram) {
max_count = std::max(max_count, kv.second);
}
printf("\nHistogram: %s [max_count=%d]\n\n", name, max_count);
for (const auto& kv : histogram) {
printf("%6d [ %3d ] ", kv.second, kv.first);
int hist_len = static_cast<int>(static_cast<double>(kv.second) / max_count * kHistogramWidth);
for (int i = 0; i <= hist_len; ++i) {
printf("*");
}
printf("\n");
}
}
// Builds a histogram of registers count per method
void RegsHistogram(std::shared_ptr<ir::DexFile> dex_ir) {
std::map<int, int> regs_histogram;
std::map<int, int> param_histogram;
std::map<int, int> extra_histogram;
for (auto& ir_method : dex_ir->encoded_methods) {
if (ir_method->code != nullptr) {
const int regs = ir_method->code->registers;
const int ins = ir_method->code->ins_count;
SLICER_CHECK(regs >= ins);
regs_histogram[regs]++;
param_histogram[ins]++;
extra_histogram[regs - ins]++;
}
}
PrintHistogram(regs_histogram, "Method registers");
PrintHistogram(param_histogram, "Method parameter registers");
PrintHistogram(regs_histogram, "Method extra registers (total - parameters)");
}
void ListExperiments(std::shared_ptr<ir::DexFile> dex_ir);
using Experiment = void (*)(std::shared_ptr<ir::DexFile>);
// the registry of available experiments
std::map<std::string, Experiment> experiments_registry = {
{ "list_experiments", &ListExperiments },
{ "full_rewrite", &FullRewrite },
{ "stress_entry_hook", &StressEntryHook },
{ "stress_exit_hook", &StressExitHook },
{ "stress_wrap_invoke", &StressWrapInvoke },
{ "test_method_instrumenter", &TestMethodInstrumenter },
{ "stress_find_method", &StressFindMethod },
{ "stress_scratch_regs", &StressScratchRegs },
{ "regs_histogram", &RegsHistogram },
{ "code_coverage", &CodeCoverage },
};
// Lists all the registered experiments
void ListExperiments(std::shared_ptr<ir::DexFile> dex_ir) {
printf("\nAvailable experiments:\n");
printf("-------------------------\n");
for (auto& e : experiments_registry) {
printf(" %s\n", e.first.c_str());
}
printf("-------------------------\n\n");
}
// Driver for running experiments
void Run(const char* experiment, std::shared_ptr<ir::DexFile> dex_ir) {
auto it = experiments_registry.find(experiment);
if (it == experiments_registry.end()) {
printf("\nUnknown experiment '%s'\n", experiment);
ListExperiments(dex_ir);
exit(1);
}
// running the experiment entry point
(*it->second)(dex_ir);
}
} // namespace experimental