blob: 19232d5ae49bcd388e91b6ac2b8be73257abac7b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/dma-buf.h>
#include <linux/iommu.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/ion_kernel.h>
#include <linux/msm_ion.h>
#include <dsp/msm_audio_ion.h>
#include <ipc/apr.h>
#include <dsp/msm_mdf.h>
#include <asm/dma-iommu.h>
#include <soc/qcom/secure_buffer.h>
#include <soc/qcom/subsystem_notif.h>
#include <soc/qcom/subsystem_restart.h>
#include <soc/qcom/scm.h>
#include <dsp/q6audio-v2.h>
#include <dsp/q6core.h>
#include <asm/cacheflush.h>
#define VMID_SSC_Q6 5
#define VMID_LPASS 6
#define VMID_MSS_MSA 15
#define VMID_CDSP 30
#define MSM_MDF_PROBED (1 << 0)
#define MSM_MDF_INITIALIZED (1 << 1)
#define MSM_MDF_MEM_ALLOCATED (1 << 2)
#define MSM_MDF_MEM_MAPPED (1 << 3)
#define MSM_MDF_MEM_PERMISSION (1 << 4) /* 0 - HLOS, 1 - Subsys */
/* TODO: Update IOVA range for subsys SMMUs */
#define MSM_MDF_IOVA_START 0x80000000
#define MSM_MDF_IOVA_LEN 0x800000
#define MSM_MDF_SMMU_SID_OFFSET 32
#define ADSP_STATE_READY_TIMEOUT_MS 3000
/* mem protection defines */
#define TZ_MPU_LOCK_NS_REGION 0x00000025
#define MEM_PROTECT_AC_PERM_READ 0x4
#define MEM_PROTECT_AC_PERM_WRITE 0x2
#define MSM_AUDIO_SMMU_SID_OFFSET 32
enum {
SUBSYS_ADSP, /* Audio DSP must have index 0 */
SUBSYS_SCC, /* Sensor DSP */
SUBSYS_MSS, /* Modem DSP */
SUBSYS_CDSP, /* Compute DSP */
SUBSYS_MAX,
};
struct msm_mdf_dest_vm_and_perm_info {
uint32_t dst_vm;
/* Destination VM defined by ACVirtualMachineId. */
uint32_t dst_vm_perm;
/* Permissions of the IPA to be mapped to VM, bitwise OR of AC_PERM. */
uint64_t ctx;
/* Destination of the VM-specific context information. */
uint32_t ctx_size;
/* Size of context buffer in bytes. */
};
struct msm_mdf_protect_mem {
uint64_t dma_start_address;
uint64_t dma_end_address;
struct msm_mdf_dest_vm_and_perm_info dest_info[SUBSYS_MAX];
uint32_t dest_info_size;
};
struct msm_mdf_mem {
struct device *dev;
uint8_t device_status;
uint32_t map_handle;
struct dma_buf *dma_buf;
dma_addr_t dma_addr;
size_t size;
void *va;
};
static struct msm_mdf_mem mdf_mem_data = {NULL,};
struct msm_mdf_smmu {
bool enabled;
char *subsys;
int vmid;
uint32_t proc_id;
struct device *cb_dev;
uint8_t device_status;
uint64_t sid;
struct dma_iommu_mapping *mapping;
u64 pa;
size_t pa_len;
};
static struct msm_mdf_smmu mdf_smmu_data[SUBSYS_MAX] = {
{
.subsys = "adsp",
.vmid = VMID_LPASS,
},
{
.subsys = "dsps",
.vmid = VMID_SSC_Q6,
.proc_id = AVS_MDF_SSC_PROC_ID,
},
{
.subsys = "modem",
.vmid = VMID_MSS_MSA,
.proc_id = AVS_MDF_MDSP_PROC_ID,
},
{
.subsys = "cdsp",
.vmid = VMID_CDSP,
.proc_id = AVS_MDF_CDSP_PROC_ID,
},
};
static void *ssr_handle;
static inline uint64_t buf_page_start(uint64_t buf)
{
uint64_t start = (uint64_t) buf & PAGE_MASK;
return start;
}
static inline uint64_t buf_page_offset(uint64_t buf)
{
uint64_t offset = (uint64_t) buf & (PAGE_SIZE - 1);
return offset;
}
static inline int buf_num_pages(uint64_t buf, ssize_t len)
{
uint64_t start = buf_page_start(buf) >> PAGE_SHIFT;
uint64_t end = (((uint64_t) buf + len - 1) & PAGE_MASK) >> PAGE_SHIFT;
int nPages = end - start + 1;
return nPages;
}
static inline uint64_t buf_page_size(uint32_t size)
{
uint64_t sz = (size + (PAGE_SIZE - 1)) & PAGE_MASK;
return sz > PAGE_SIZE ? sz : PAGE_SIZE;
}
static inline void *uint64_to_ptr(uint64_t addr)
{
void *ptr = (void *)((uintptr_t)addr);
return ptr;
}
static inline uint64_t ptr_to_uint64(void *ptr)
{
uint64_t addr = (uint64_t)((uintptr_t)ptr);
return addr;
}
static int msm_mdf_dma_buf_map(struct msm_mdf_mem *mem,
struct msm_mdf_smmu *smmu)
{
int rc = 0;
dma_addr_t pa = 0;
smmu->pa = 0;
if (!smmu)
return -EINVAL;
if (smmu->device_status & MSM_MDF_MEM_MAPPED)
return 0;
if (smmu->enabled) {
if (smmu->cb_dev == NULL) {
pr_err("%s: cb device is not initialized\n",
__func__);
/* Retry if LPASS cb device is not ready
* from audio ION during probing.
*/
if (!strcmp("adsp", smmu->subsys)) {
rc = msm_audio_ion_get_smmu_info(&smmu->cb_dev,
&smmu->sid);
if (rc) {
pr_err("%s: msm_audio_ion_get_smmu_info failed, rc = %d\n",
__func__, rc);
goto err;
}
} else
return -ENODEV;
}
pa = dma_map_single_attrs(smmu->cb_dev, mem->va,
mem->size, DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(smmu->cb_dev, smmu->pa)) {
rc = -ENOMEM;
pr_err("%s: failed to map single, rc = %d\n",
__func__, rc);
goto err;
}
smmu->pa |= pa;
smmu->pa_len = mem->size;
/* Append the SMMU SID information to the IOVA address */
if (smmu->sid)
smmu->pa |= smmu->sid;
} else {
smmu->pa |= mem->dma_addr;
smmu->pa_len = mem->size;
}
pr_err("%s: pa=%pa, pa_len=%zd\n", __func__,
&smmu->pa, smmu->pa_len);
smmu->device_status |= MSM_MDF_MEM_MAPPED;
return 0;
err:
return rc;
}
static int msm_mdf_alloc_dma_buf(struct msm_mdf_mem *mem)
{
int rc = 0;
if (!mem)
return -EINVAL;
if (mem->device_status & MSM_MDF_MEM_ALLOCATED)
return 0;
if (mem->dev == NULL) {
pr_err("%s: device is not initialized\n",
__func__);
return -ENODEV;
}
mem->va = dma_alloc_attrs(mem->dev, mem->size,
&mem->dma_addr, GFP_KERNEL, DMA_ATTR_NO_KERNEL_MAPPING);
if (IS_ERR_OR_NULL(mem->va)) {
pr_err("%s: failed to allocate dma memory, rc = %d\n",
__func__, rc);
return -ENOMEM;
}
mem->va = phys_to_virt(mem->dma_addr);
mem->device_status |= MSM_MDF_MEM_ALLOCATED;
return rc;
}
static int msm_mdf_free_dma_buf(struct msm_mdf_mem *mem)
{
if (!mem)
return -EINVAL;
if (mem->dev == NULL) {
pr_err("%s: device is not initialized\n",
__func__);
return -ENODEV;
}
//dma_free_coherent(mem->dev, mem->size, mem->va,
// mem->dma_addr);
mem->device_status &= ~MSM_MDF_MEM_ALLOCATED;
return 0;
}
static int msm_mdf_dma_buf_unmap(struct msm_mdf_mem *mem,
struct msm_mdf_smmu *smmu)
{
if (!smmu)
return -EINVAL;
if (smmu->enabled) {
if (smmu->cb_dev == NULL) {
pr_err("%s: cb device is not initialized\n",
__func__);
return -ENODEV;
}
//if (smmu->pa && mem->size)
//dma_unmap_single(smmu->cb_dev, smmu->pa,
// mem->size, DMA_BIDIRECTIONAL);
}
smmu->device_status &= ~MSM_MDF_MEM_MAPPED;
return 0;
}
static int msm_mdf_map_memory_to_subsys(struct msm_mdf_mem *mem,
struct msm_mdf_smmu *smmu)
{
int rc = 0;
if (!mem || !smmu)
return -EINVAL;
/* Map mdf shared memory to ADSP */
if (!strcmp("adsp", smmu->subsys)) {
rc = q6core_map_mdf_memory_regions((uint64_t *)&smmu->pa,
ADSP_MEMORY_MAP_MDF_SHMEM_4K_POOL,
(uint32_t *)&smmu->pa_len, 1, &mem->map_handle);
if (rc) {
pr_err("%s: q6core_map_memory_regions failed, rc = %d\n",
__func__, rc);
}
} else {
if (mem->map_handle) {
/* Map mdf shared memory to remote DSPs */
rc = q6core_map_mdf_shared_memory(mem->map_handle,
(uint64_t *)&smmu->pa, smmu->proc_id,
(uint32_t *)&smmu->pa_len, 1);
if (rc) {
pr_err("%s: q6core_map_mdf_shared_memory failed, rc = %d\n",
__func__, rc);
}
}
}
return rc;
}
static void msm_mdf_unmap_memory_to_subsys(struct msm_mdf_mem *mem,
struct msm_mdf_smmu *smmu)
{
if (!mem || !smmu)
return;
if (!strcmp("adsp", smmu->subsys)) {
if (mem->map_handle)
q6core_memory_unmap_regions(mem->map_handle);
}
}
static int msm_mdf_assign_memory_to_subsys(struct msm_mdf_mem *mem)
{
int ret = 0, i;
struct scm_desc desc = {0};
struct msm_mdf_protect_mem *scm_buffer;
uint32_t fnid;
scm_buffer = kzalloc(sizeof(struct msm_mdf_protect_mem), GFP_KERNEL);
if (!scm_buffer)
return -ENOMEM;
scm_buffer->dma_start_address = mem->dma_addr;
scm_buffer->dma_end_address = mem->dma_addr + buf_page_size(mem->size);
for (i = 0; i < SUBSYS_MAX; i++) {
scm_buffer->dest_info[i].dst_vm = mdf_smmu_data[i].vmid;
scm_buffer->dest_info[i].dst_vm_perm =
MEM_PROTECT_AC_PERM_READ | MEM_PROTECT_AC_PERM_WRITE;
scm_buffer->dest_info[i].ctx = 0;
scm_buffer->dest_info[i].ctx_size = 0;
}
scm_buffer->dest_info_size =
sizeof(struct msm_mdf_dest_vm_and_perm_info) * SUBSYS_MAX;
/* flush cache required by scm_call2 */
dmac_flush_range(scm_buffer, ((void *)scm_buffer) +
sizeof(struct msm_mdf_protect_mem));
desc.args[0] = scm_buffer->dma_start_address;
desc.args[1] = scm_buffer->dma_end_address;
desc.args[2] = virt_to_phys(&(scm_buffer->dest_info[0]));
desc.args[3] = scm_buffer->dest_info_size;
desc.arginfo = SCM_ARGS(4, SCM_VAL, SCM_VAL, SCM_RO, SCM_VAL);
fnid = SCM_SIP_FNID(SCM_SVC_MP, TZ_MPU_LOCK_NS_REGION);
ret = scm_call2(fnid, &desc);
if (ret < 0) {
pr_err("%s: SCM call2 failed, ret %d scm_resp %llu\n",
__func__, ret, desc.ret[0]);
}
/* No More need for scm_buffer, freeing the same */
kfree(scm_buffer);
return ret;
}
/**
* msm_mdf_mem_init - Initializes MDF memory pool and
* map memory to subsystem
*
* Returns 0 on success or ret on failure.
*/
int msm_mdf_mem_init(void)
{
int rc = 0, i, j;
struct msm_mdf_mem *mem = &mdf_mem_data;
struct msm_mdf_smmu *smmu;
unsigned long timeout = jiffies +
msecs_to_jiffies(ADSP_STATE_READY_TIMEOUT_MS);
int adsp_ready = 0;
if (!(mdf_mem_data.device_status & MSM_MDF_PROBED))
return -ENODEV;
if (mdf_mem_data.device_status & MSM_MDF_INITIALIZED)
return 0;
/* TODO: pulling may not be needed as Q6 Core state should be
* checked during machine driver probing.
*/
do {
if (!q6core_is_adsp_ready()) {
pr_err("%s: ADSP Audio NOT Ready\n",
__func__);
/* ADSP will be coming up after subsystem restart and
* it might not be fully up when the control reaches
* here. So, wait for 50msec before checking ADSP state
*/
msleep(50);
} else {
pr_debug("%s: ADSP Audio Ready\n",
__func__);
adsp_ready = 1;
break;
}
} while (time_after(timeout, jiffies));
if (!adsp_ready) {
pr_err("%s: timed out waiting for ADSP Audio\n",
__func__);
return -ETIMEDOUT;
}
if (mem->device_status & MSM_MDF_MEM_ALLOCATED) {
for (i = 0; i < SUBSYS_MAX; i++) {
smmu = &mdf_smmu_data[i];
rc = msm_mdf_dma_buf_map(mem, smmu);
if (rc) {
pr_err("%s: msm_mdf_dma_buf_map failed, rc = %d\n",
__func__, rc);
goto err;
}
}
rc = msm_mdf_assign_memory_to_subsys(mem);
if (rc) {
pr_err("%s: msm_mdf_assign_memory_to_subsys failed\n",
__func__);
goto err;
}
for (j = 0; j < SUBSYS_MAX; j++) {
smmu = &mdf_smmu_data[j];
rc = msm_mdf_map_memory_to_subsys(mem, smmu);
if (rc) {
pr_err("%s: msm_mdf_map_memory_to_subsys failed\n",
__func__);
goto err;
}
}
mdf_mem_data.device_status |= MSM_MDF_INITIALIZED;
}
return 0;
err:
return rc;
}
EXPORT_SYMBOL(msm_mdf_mem_init);
int msm_mdf_mem_deinit(void)
{
int rc = 0, i;
struct msm_mdf_mem *mem = &mdf_mem_data;
struct msm_mdf_smmu *smmu;
if (!(mdf_mem_data.device_status & MSM_MDF_INITIALIZED))
return -ENODEV;
for (i = SUBSYS_MAX - 1; i >= 0; i--) {
smmu = &mdf_smmu_data[i];
msm_mdf_unmap_memory_to_subsys(mem, smmu);
}
if (!rc) {
for (i = SUBSYS_MAX - 1; i >= 0; i--) {
smmu = &mdf_smmu_data[i];
msm_mdf_dma_buf_unmap(mem, smmu);
}
msm_mdf_free_dma_buf(mem);
mem->device_status &= ~MSM_MDF_MEM_ALLOCATED;
}
mdf_mem_data.device_status &= ~MSM_MDF_INITIALIZED;
return 0;
}
EXPORT_SYMBOL(msm_mdf_mem_deinit);
static int msm_mdf_restart_notifier_cb(struct notifier_block *this,
unsigned long code,
void *_cmd)
{
static int boot_count = 3;
/* During LPASS boot, HLOS receives events:
* SUBSYS_BEFORE_POWERUP
* SUBSYS_PROXY_VOTE
* SUBSYS_AFTER_POWERUP - need skip
* SUBSYS_PROXY_UNVOTE
*/
if (boot_count) {
boot_count--;
return NOTIFY_OK;
}
switch (code) {
case SUBSYS_BEFORE_SHUTDOWN:
pr_debug("Subsys Notify: Shutdown Started\n");
/* Unmap and free memory upon restart event. */
msm_mdf_mem_deinit();
break;
case SUBSYS_AFTER_SHUTDOWN:
pr_debug("Subsys Notify: Shutdown Completed\n");
break;
case SUBSYS_BEFORE_POWERUP:
pr_debug("Subsys Notify: Bootup Started\n");
break;
case SUBSYS_AFTER_POWERUP:
pr_debug("Subsys Notify: Bootup Completed\n");
/* Allocate and map memory after restart complete. */
if (msm_mdf_mem_init())
pr_err("msm_mdf_mem_init failed\n");
break;
default:
pr_err("Subsys Notify: Generel: %lu\n", code);
break;
}
return NOTIFY_DONE;
}
static const struct of_device_id msm_mdf_match_table[] = {
{ .compatible = "qcom,msm-mdf", },
{ .compatible = "qcom,msm-mdf-mem-region", },
{ .compatible = "qcom,msm-mdf-cb", },
{}
};
MODULE_DEVICE_TABLE(of, msm_mdf_match_table);
static int msm_mdf_cb_probe(struct device *dev)
{
struct msm_mdf_smmu *smmu;
u64 smmu_sid = 0;
u64 smmu_sid_mask = 0;
struct of_phandle_args iommuspec;
const char *subsys;
int rc = 0, i;
subsys = of_get_property(dev->of_node, "label", NULL);
if (!subsys) {
dev_err(dev, "%s: could not get label\n",
__func__);
return -EINVAL;
}
for (i = 0; i < SUBSYS_MAX; i++) {
if (!mdf_smmu_data[i].subsys)
continue;
if (!strcmp(subsys, mdf_smmu_data[i].subsys))
break;
}
if (i >= SUBSYS_MAX) {
dev_err(dev, "%s: subsys %s not supported\n",
__func__, subsys);
return -EINVAL;
}
smmu = &mdf_smmu_data[i];
smmu->enabled = of_property_read_bool(dev->of_node,
"qcom,smmu-enabled");
dev_info(dev, "%s: SMMU is %s for %s\n", __func__,
(smmu->enabled) ? "enabled" : "disabled",
smmu->subsys);
if (smmu->enabled) {
/* Get SMMU SID information from Devicetree */
rc = of_property_read_u64(dev->of_node,
"qcom,smmu-sid-mask",
&smmu_sid_mask);
if (rc) {
dev_err(dev,
"%s: qcom,smmu-sid-mask missing in DT node, using default\n",
__func__);
smmu_sid_mask = 0xF;
}
rc = of_parse_phandle_with_args(dev->of_node, "iommus",
"#iommu-cells", 0, &iommuspec);
if (rc)
dev_err(dev, "%s: could not get smmu SID, ret = %d\n",
__func__, rc);
else
smmu_sid = (iommuspec.args[0] & smmu_sid_mask);
smmu->sid =
smmu_sid << MSM_AUDIO_SMMU_SID_OFFSET;
smmu->cb_dev = dev;
}
return 0;
}
static int msm_mdf_remove(struct platform_device *pdev)
{
int rc = 0, i;
for (i = 0; i < SUBSYS_MAX; i++) {
if (!IS_ERR_OR_NULL(mdf_smmu_data[i].cb_dev))
arm_iommu_detach_device(mdf_smmu_data[i].cb_dev);
if (!IS_ERR_OR_NULL(mdf_smmu_data[i].mapping))
arm_iommu_release_mapping(mdf_smmu_data[i].mapping);
mdf_smmu_data[i].enabled = 0;
}
mdf_mem_data.device_status = 0;
return rc;
}
static int msm_mdf_probe(struct platform_device *pdev)
{
int rc = 0;
enum apr_subsys_state q6_state;
struct device *dev = &pdev->dev;
uint32_t mdf_mem_data_size = 0;
/* TODO: MDF probing should have no dependency
* on ADSP Q6 state.
*/
q6_state = apr_get_q6_state();
if (q6_state == APR_SUBSYS_DOWN) {
dev_dbg(dev, "defering %s, adsp_state %d\n",
__func__, q6_state);
rc = -EPROBE_DEFER;
goto err;
} else
dev_dbg(dev, "%s: adsp is ready\n", __func__);
if (of_device_is_compatible(dev->of_node,
"qcom,msm-mdf-cb"))
return msm_mdf_cb_probe(dev);
if (of_device_is_compatible(dev->of_node,
"qcom,msm-mdf-mem-region")) {
mdf_mem_data.dev = dev;
rc = of_property_read_u32(dev->of_node,
"qcom,msm-mdf-mem-data-size",
&mdf_mem_data_size);
if (rc) {
dev_dbg(&pdev->dev, "MDF mem data size entry not found\n");
goto err;
}
mdf_mem_data.size = mdf_mem_data_size;
dev_info(dev, "%s: mem region size %zd\n",
__func__, mdf_mem_data.size);
msm_mdf_alloc_dma_buf(&mdf_mem_data);
return 0;
}
rc = of_platform_populate(pdev->dev.of_node,
msm_mdf_match_table,
NULL, &pdev->dev);
if (rc) {
dev_err(&pdev->dev, "%s: failed to populate child nodes",
__func__);
goto err;
}
mdf_mem_data.device_status |= MSM_MDF_PROBED;
err:
return rc;
}
static struct platform_driver msm_mdf_driver = {
.probe = msm_mdf_probe,
.remove = msm_mdf_remove,
.driver = {
.name = "msm-mdf",
.owner = THIS_MODULE,
.of_match_table = msm_mdf_match_table,
.suppress_bind_attrs = true,
},
};
static struct notifier_block nb = {
.priority = 0,
.notifier_call = msm_mdf_restart_notifier_cb,
};
int __init msm_mdf_init(void)
{
/* Only need to monitor SSR from ADSP, which
* is the master DSP managing MDF memory.
*/
ssr_handle = subsys_notif_register_notifier("adsp", &nb);
return platform_driver_register(&msm_mdf_driver);
}
void __exit msm_mdf_exit(void)
{
platform_driver_unregister(&msm_mdf_driver);
if (ssr_handle)
subsys_notif_unregister_notifier(ssr_handle, &nb);
}
MODULE_DESCRIPTION("MSM MDF Module");
MODULE_LICENSE("GPL v2");