blob: f34c07a21801b59d2a635bbb973fbfe516d84663 [file] [log] [blame]
/* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/printk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/regmap.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include <linux/regulator/consumer.h>
#include <dsp/q6afe-v2.h>
#include <dsp/q6core.h>
#include <ipc/apr.h>
#include <soc/internal.h>
#include "sdm660-cdc-registers.h"
#include "msm-digital-cdc.h"
#include "msm-cdc-common.h"
#include "../../msm8952.h"
#define DRV_NAME "msm_digital_codec"
#define MCLK_RATE_9P6MHZ 9600000
#define MCLK_RATE_12P288MHZ 12288000
#define TX_MUX_CTL_CUT_OFF_FREQ_MASK 0x30
#define CF_MIN_3DB_4HZ 0x0
#define CF_MIN_3DB_75HZ 0x1
#define CF_MIN_3DB_150HZ 0x2
#define MSM_DIG_CDC_VERSION_ENTRY_SIZE 32
#define MAX_ON_DEMAND_DIG_SUPPLY_NAME_LENGTH 64
#define CODEC_DT_MAX_PROP_SIZE 40
static unsigned long rx_digital_gain_reg[] = {
MSM89XX_CDC_CORE_RX1_VOL_CTL_B2_CTL,
MSM89XX_CDC_CORE_RX2_VOL_CTL_B2_CTL,
MSM89XX_CDC_CORE_RX3_VOL_CTL_B2_CTL,
};
static unsigned long tx_digital_gain_reg[] = {
MSM89XX_CDC_CORE_TX1_VOL_CTL_GAIN,
MSM89XX_CDC_CORE_TX2_VOL_CTL_GAIN,
MSM89XX_CDC_CORE_TX3_VOL_CTL_GAIN,
MSM89XX_CDC_CORE_TX4_VOL_CTL_GAIN,
};
#define SDM660_TX_UNMUTE_DELAY_MS 40
static int tx_unmute_delay = SDM660_TX_UNMUTE_DELAY_MS;
module_param(tx_unmute_delay, int, 0664);
MODULE_PARM_DESC(tx_unmute_delay, "delay to unmute the tx path");
static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
struct snd_soc_codec *registered_digcodec;
struct hpf_work tx_hpf_work[NUM_DECIMATORS];
static int msm_dig_cdc_enable_on_demand_supply(
struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event);
static char on_demand_supply_name[][MAX_ON_DEMAND_DIG_SUPPLY_NAME_LENGTH] = {
"cdc-vdd-digital",
};
/* Codec supports 2 IIR filters */
enum {
IIR1 = 0,
IIR2,
IIR_MAX,
};
/*
* msm_digcdc_mclk_enable - add mclk support in digital codec
* @codec: codec instance
* @mclk_enable: mclk enable/disable
* @dapm: check for dapm widget
*/
int msm_digcdc_mclk_enable(struct snd_soc_codec *codec,
int mclk_enable, bool dapm)
{
dev_dbg(codec->dev, "%s: mclk_enable = %u, dapm = %d\n",
__func__, mclk_enable, dapm);
if (mclk_enable) {
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_MCLK_CTL, 0x01, 0x01);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TOP_CTL, 0x01, 0x01);
} else {
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TOP_CTL, 0x01, 0x00);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_MCLK_CTL, 0x01, 0x00);
}
return 0;
}
EXPORT_SYMBOL(msm_digcdc_mclk_enable);
static int msm_digcdc_clock_control(bool flag)
{
int ret = -EINVAL;
struct msm_asoc_mach_data *pdata = NULL;
struct msm_dig_priv *msm_dig_cdc =
snd_soc_codec_get_drvdata(registered_digcodec);
pdata = snd_soc_card_get_drvdata(registered_digcodec->component.card);
if (flag) {
mutex_lock(&pdata->cdc_int_mclk0_mutex);
if (atomic_read(&pdata->int_mclk0_enabled) == false) {
if (msm_dig_cdc->regmap->cache_only == true)
return ret;
pdata->digital_cdc_core_clk.clk_freq_in_hz =
DEFAULT_MCLK_RATE;
pdata->digital_cdc_core_clk.enable = 1;
ret = afe_set_lpass_clock_v2(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_core_clk);
if (ret < 0) {
pr_err("%s:failed to enable the MCLK\n",
__func__);
/*
* Avoid access to lpass register
* as clock enable failed during SSR.
*/
msm_dig_cdc->regmap->cache_only = true;
return ret;
}
pr_debug("enabled digital codec core clk\n");
atomic_set(&pdata->int_mclk0_enabled, true);
schedule_delayed_work(&pdata->disable_int_mclk0_work,
50);
}
} else {
mutex_unlock(&pdata->cdc_int_mclk0_mutex);
dev_dbg(registered_digcodec->dev,
"disable MCLK, workq to disable set already\n");
}
return 0;
}
static void enable_digital_callback(void *flag)
{
msm_digcdc_clock_control(true);
}
static void disable_digital_callback(void *flag)
{
msm_digcdc_clock_control(false);
pr_debug("disable mclk happens in workq\n");
}
static int msm_dig_cdc_put_dec_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget *w = snd_soc_dapm_kcontrol_widget(kcontrol);
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int dec_mux, decimator;
char *dec_name = NULL;
char *widget_name = NULL;
char *temp;
u16 tx_mux_ctl_reg;
u8 adc_dmic_sel = 0x0;
int ret = 0;
char *dec_num;
if (ucontrol->value.enumerated.item[0] > e->items) {
dev_err(codec->dev, "%s: Invalid enum value: %d\n",
__func__, ucontrol->value.enumerated.item[0]);
return -EINVAL;
}
dec_mux = ucontrol->value.enumerated.item[0];
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name) {
dev_err(codec->dev, "%s: failed to copy string\n",
__func__);
return -ENOMEM;
}
temp = widget_name;
dec_name = strsep(&widget_name, " ");
widget_name = temp;
if (!dec_name) {
dev_err(codec->dev, "%s: Invalid decimator = %s\n",
__func__, w->name);
ret = -EINVAL;
goto out;
}
dec_num = strpbrk(dec_name, "12");
if (dec_num == NULL) {
dev_err(codec->dev, "%s: Invalid DEC selected\n", __func__);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(dec_num, 10, &decimator);
if (ret < 0) {
dev_err(codec->dev, "%s: Invalid decimator = %s\n",
__func__, dec_name);
ret = -EINVAL;
goto out;
}
dev_dbg(w->dapm->dev, "%s(): widget = %s decimator = %u dec_mux = %u\n"
, __func__, w->name, decimator, dec_mux);
switch (decimator) {
case 1:
case 2:
if ((dec_mux == 4) || (dec_mux == 5))
adc_dmic_sel = 0x1;
else
adc_dmic_sel = 0x0;
break;
default:
dev_err(codec->dev, "%s: Invalid Decimator = %u\n",
__func__, decimator);
ret = -EINVAL;
goto out;
}
tx_mux_ctl_reg =
MSM89XX_CDC_CORE_TX1_MUX_CTL + 32 * (decimator - 1);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, adc_dmic_sel);
ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
out:
kfree(widget_name);
return ret;
}
static int msm_dig_cdc_codec_config_compander(struct snd_soc_codec *codec,
int interp_n, int event)
{
struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec);
int comp_ch_bits_set = 0x03;
int comp_ch_value;
dev_dbg(codec->dev, "%s: event %d shift %d, enabled %d\n",
__func__, event, interp_n,
dig_cdc->comp_enabled[interp_n]);
/* compander is invalid */
if (dig_cdc->comp_enabled[interp_n] != COMPANDER_1 &&
dig_cdc->comp_enabled[interp_n]) {
dev_dbg(codec->dev, "%s: Invalid compander %d\n", __func__,
dig_cdc->comp_enabled[interp_n]);
return 0;
}
if (SND_SOC_DAPM_EVENT_ON(event)) {
/* compander is not enabled */
if (!dig_cdc->comp_enabled[interp_n]) {
dig_cdc->set_compander_mode(dig_cdc->handle, 0x00);
return 0;
};
comp_ch_value = snd_soc_read(codec,
MSM89XX_CDC_CORE_COMP0_B1_CTL);
if (interp_n == 0) {
if (comp_ch_value & 0x02) {
dev_dbg(codec->dev,
"%s comp ch 1 already enabled\n",
__func__);
return 0;
}
}
if (interp_n == 1) {
if (comp_ch_value & 0x01) {
dev_dbg(codec->dev,
"%s comp ch 0 already enabled\n",
__func__);
return 0;
}
}
dig_cdc->set_compander_mode(dig_cdc->handle, 0x08);
/* Enable Compander Clock */
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B2_CTL, 0x0F, 0x09);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_RX_B2_CTL, 0x01, 0x01);
if (dig_cdc->comp_enabled[MSM89XX_RX1]) {
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B1_CTL,
0x02, 0x02);
}
if (dig_cdc->comp_enabled[MSM89XX_RX2]) {
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B1_CTL,
0x01, 0x01);
}
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B3_CTL, 0xFF, 0x01);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B2_CTL, 0xF0, 0x50);
/* add sleep for compander to settle */
usleep_range(1000, 1100);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B3_CTL, 0xFF, 0x28);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B2_CTL, 0xF0, 0xB0);
/* Enable Compander GPIO */
if (dig_cdc->codec_hph_comp_gpio)
dig_cdc->codec_hph_comp_gpio(1, codec);
} else if (SND_SOC_DAPM_EVENT_OFF(event)) {
/* Disable Compander GPIO */
if (dig_cdc->codec_hph_comp_gpio)
dig_cdc->codec_hph_comp_gpio(0, codec);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B1_CTL,
1 << interp_n, 0);
comp_ch_bits_set = snd_soc_read(codec,
MSM89XX_CDC_CORE_COMP0_B1_CTL);
if ((comp_ch_bits_set & 0x03) == 0x00) {
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_COMP0_B2_CTL, 0x0F, 0x05);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_RX_B2_CTL, 0x01, 0x00);
}
}
return 0;
}
/**
* msm_dig_cdc_hph_comp_cb - registers callback to codec by machine driver.
*
* @codec_hph_comp_gpio: function pointer to set comp gpio at machine driver
* @codec: codec pointer
*
*/
void msm_dig_cdc_hph_comp_cb(
int (*codec_hph_comp_gpio)(bool enable, struct snd_soc_codec *codec),
struct snd_soc_codec *codec)
{
struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec);
pr_debug("%s: Enter\n", __func__);
dig_cdc->codec_hph_comp_gpio = codec_hph_comp_gpio;
}
EXPORT_SYMBOL(msm_dig_cdc_hph_comp_cb);
static int msm_dig_cdc_codec_enable_interpolator(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct msm_dig_priv *msm_dig_cdc = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s %d %s\n", __func__, event, w->name);
if (w->shift >= MSM89XX_RX_MAX || w->shift < 0) {
dev_err(codec->dev, "%s: wrong RX index: %d\n",
__func__, w->shift);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_POST_PMU:
msm_dig_cdc_codec_config_compander(codec, w->shift, event);
/* apply the digital gain after the interpolator is enabled*/
if ((w->shift) < ARRAY_SIZE(rx_digital_gain_reg))
snd_soc_write(codec,
rx_digital_gain_reg[w->shift],
snd_soc_read(codec,
rx_digital_gain_reg[w->shift])
);
break;
case SND_SOC_DAPM_POST_PMD:
msm_dig_cdc_codec_config_compander(codec, w->shift, event);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_RX_RESET_CTL,
1 << w->shift, 1 << w->shift);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_RX_RESET_CTL,
1 << w->shift, 0x0);
/*
* disable the mute enabled during the PMD of this device
*/
if ((w->shift == 0) &&
(msm_dig_cdc->mute_mask & HPHL_PA_DISABLE)) {
pr_debug("disabling HPHL mute\n");
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B6_CTL, 0x01, 0x00);
msm_dig_cdc->mute_mask &= ~(HPHL_PA_DISABLE);
} else if ((w->shift == 1) &&
(msm_dig_cdc->mute_mask & HPHR_PA_DISABLE)) {
pr_debug("disabling HPHR mute\n");
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B6_CTL, 0x01, 0x00);
msm_dig_cdc->mute_mask &= ~(HPHR_PA_DISABLE);
} else if ((w->shift == 2) &&
(msm_dig_cdc->mute_mask & SPKR_PA_DISABLE)) {
pr_debug("disabling SPKR mute\n");
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX3_B6_CTL, 0x01, 0x00);
msm_dig_cdc->mute_mask &= ~(SPKR_PA_DISABLE);
}
}
return 0;
}
static int msm_dig_cdc_get_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
(snd_soc_read(codec,
(MSM89XX_CDC_CORE_IIR1_CTL + 64 * iir_idx)) &
(1 << band_idx)) != 0;
dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0]);
return 0;
}
static int msm_dig_cdc_put_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
/* Mask first 5 bits, 6-8 are reserved */
snd_soc_update_bits(codec,
(MSM89XX_CDC_CORE_IIR1_CTL + 64 * iir_idx),
(1 << band_idx), (value << band_idx));
dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
((snd_soc_read(codec,
(MSM89XX_CDC_CORE_IIR1_CTL + 64 * iir_idx)) &
(1 << band_idx)) != 0));
return 0;
}
static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
int coeff_idx)
{
uint32_t value = 0;
/* Address does not automatically update if reading */
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t)) & 0x7F);
value |= snd_soc_read(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx));
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 1) & 0x7F);
value |= (snd_soc_read(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 8);
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 2) & 0x7F);
value |= (snd_soc_read(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 16);
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 3) & 0x7F);
/* Mask bits top 2 bits since they are reserved */
value |= ((snd_soc_read(codec, (MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL
+ 64 * iir_idx)) & 0x3f) << 24);
return value;
}
static void set_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
uint32_t value)
{
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value & 0xFF));
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 8) & 0xFF);
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 16) & 0xFF);
/* Mask top 2 bits, 7-8 are reserved */
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 24) & 0x3F);
}
static int msm_dig_cdc_get_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
get_iir_band_coeff(codec, iir_idx, band_idx, 0);
ucontrol->value.integer.value[1] =
get_iir_band_coeff(codec, iir_idx, band_idx, 1);
ucontrol->value.integer.value[2] =
get_iir_band_coeff(codec, iir_idx, band_idx, 2);
ucontrol->value.integer.value[3] =
get_iir_band_coeff(codec, iir_idx, band_idx, 3);
ucontrol->value.integer.value[4] =
get_iir_band_coeff(codec, iir_idx, band_idx, 4);
dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[1],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[2],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[3],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[4]);
return 0;
}
static int msm_dig_cdc_put_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
/* Mask top bit it is reserved */
/* Updates addr automatically for each B2 write */
snd_soc_write(codec,
(MSM89XX_CDC_CORE_IIR1_COEF_B1_CTL + 64 * iir_idx),
(band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[0]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[1]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[2]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[3]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[4]);
dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 0),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 1),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 2),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 3),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 4));
return 0;
}
static void tx_hpf_corner_freq_callback(struct work_struct *work)
{
struct delayed_work *hpf_delayed_work;
struct hpf_work *hpf_work;
struct snd_soc_codec *codec;
struct msm_dig_priv *msm_dig_cdc;
u16 tx_mux_ctl_reg;
u8 hpf_cut_of_freq;
hpf_delayed_work = to_delayed_work(work);
hpf_work = container_of(hpf_delayed_work, struct hpf_work, dwork);
codec = hpf_work->dig_cdc->codec;
msm_dig_cdc = hpf_work->dig_cdc;
hpf_cut_of_freq = hpf_work->tx_hpf_cut_of_freq;
tx_mux_ctl_reg = MSM89XX_CDC_CORE_TX1_MUX_CTL +
(hpf_work->decimator - 1) * 32;
dev_dbg(codec->dev, "%s(): decimator %u hpf_cut_of_freq 0x%x\n",
__func__, hpf_work->decimator, (unsigned int)hpf_cut_of_freq);
if (msm_dig_cdc->update_clkdiv)
msm_dig_cdc->update_clkdiv(msm_dig_cdc->handle, 0x51);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, hpf_cut_of_freq << 4);
}
static int msm_dig_cdc_codec_set_iir_gain(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
int value = 0, reg;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
if (w->shift == 0)
reg = MSM89XX_CDC_CORE_IIR1_GAIN_B1_CTL;
else if (w->shift == 1)
reg = MSM89XX_CDC_CORE_IIR2_GAIN_B1_CTL;
else
goto ret;
value = snd_soc_read(codec, reg);
snd_soc_write(codec, reg, value);
break;
default:
pr_err("%s: event = %d not expected\n", __func__, event);
}
ret:
return 0;
}
static int msm_dig_cdc_compander_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec);
int comp_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int rx_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
dev_dbg(codec->dev, "%s: msm_dig_cdc->comp[%d]_enabled[%d] = %d\n",
__func__, comp_idx, rx_idx,
dig_cdc->comp_enabled[rx_idx]);
ucontrol->value.integer.value[0] = dig_cdc->comp_enabled[rx_idx];
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
return 0;
}
static int msm_dig_cdc_compander_set(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec);
int comp_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int rx_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
if (dig_cdc->version >= DIANGU) {
if (!value)
dig_cdc->comp_enabled[rx_idx] = 0;
else
dig_cdc->comp_enabled[rx_idx] = comp_idx;
}
dev_dbg(codec->dev, "%s: msm_dig_cdc->comp[%d]_enabled[%d] = %d\n",
__func__, comp_idx, rx_idx,
dig_cdc->comp_enabled[rx_idx]);
return 0;
}
static const struct snd_kcontrol_new compander_kcontrols[] = {
SOC_SINGLE_EXT("COMP0 RX1", COMPANDER_1, MSM89XX_RX1, 1, 0,
msm_dig_cdc_compander_get, msm_dig_cdc_compander_set),
SOC_SINGLE_EXT("COMP0 RX2", COMPANDER_1, MSM89XX_RX2, 1, 0,
msm_dig_cdc_compander_get, msm_dig_cdc_compander_set),
};
static int msm_dig_cdc_set_interpolator_rate(struct snd_soc_dai *dai,
u8 rx_fs_rate_reg_val,
u32 sample_rate)
{
snd_soc_update_bits(dai->codec,
MSM89XX_CDC_CORE_RX1_B5_CTL, 0xF0, rx_fs_rate_reg_val);
snd_soc_update_bits(dai->codec,
MSM89XX_CDC_CORE_RX2_B5_CTL, 0xF0, rx_fs_rate_reg_val);
return 0;
}
static int msm_dig_cdc_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
u8 tx_fs_rate, rx_fs_rate, rx_clk_fs_rate;
int ret;
dev_dbg(dai->codec->dev,
"%s: dai_name = %s DAI-ID %x rate %d num_ch %d format %d\n",
__func__, dai->name, dai->id, params_rate(params),
params_channels(params), params_format(params));
switch (params_rate(params)) {
case 8000:
tx_fs_rate = 0x00;
rx_fs_rate = 0x00;
rx_clk_fs_rate = 0x00;
break;
case 16000:
tx_fs_rate = 0x20;
rx_fs_rate = 0x20;
rx_clk_fs_rate = 0x01;
break;
case 32000:
tx_fs_rate = 0x40;
rx_fs_rate = 0x40;
rx_clk_fs_rate = 0x02;
break;
case 44100:
case 48000:
tx_fs_rate = 0x60;
rx_fs_rate = 0x60;
rx_clk_fs_rate = 0x03;
break;
case 96000:
tx_fs_rate = 0x80;
rx_fs_rate = 0x80;
rx_clk_fs_rate = 0x04;
break;
case 192000:
tx_fs_rate = 0xA0;
rx_fs_rate = 0xA0;
rx_clk_fs_rate = 0x05;
break;
default:
dev_err(dai->codec->dev,
"%s: Invalid sampling rate %d\n", __func__,
params_rate(params));
return -EINVAL;
}
snd_soc_update_bits(dai->codec,
MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 0x0F, rx_clk_fs_rate);
switch (substream->stream) {
case SNDRV_PCM_STREAM_CAPTURE:
break;
case SNDRV_PCM_STREAM_PLAYBACK:
ret = msm_dig_cdc_set_interpolator_rate(dai, rx_fs_rate,
params_rate(params));
if (ret < 0) {
dev_err(dai->codec->dev,
"%s: set decimator rate failed %d\n", __func__,
ret);
return ret;
}
break;
default:
dev_err(dai->codec->dev,
"%s: Invalid stream type %d\n", __func__,
substream->stream);
return -EINVAL;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
snd_soc_update_bits(dai->codec,
MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 0x20, 0x20);
break;
case SNDRV_PCM_FORMAT_S24_LE:
case SNDRV_PCM_FORMAT_S24_3LE:
snd_soc_update_bits(dai->codec,
MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 0x20, 0x00);
break;
default:
dev_err(dai->codec->dev, "%s: wrong format selected\n",
__func__);
return -EINVAL;
}
return 0;
}
static int msm_dig_cdc_codec_enable_dmic(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct msm_dig_priv *dig_cdc = snd_soc_codec_get_drvdata(codec);
u8 dmic_clk_en;
u16 dmic_clk_reg;
s32 *dmic_clk_cnt;
unsigned int dmic;
int ret;
char *dmic_num = strpbrk(w->name, "12");
if (dmic_num == NULL) {
dev_err(codec->dev, "%s: Invalid DMIC\n", __func__);
return -EINVAL;
}
ret = kstrtouint(dmic_num, 10, &dmic);
if (ret < 0) {
dev_err(codec->dev,
"%s: Invalid DMIC line on the codec\n", __func__);
return -EINVAL;
}
switch (dmic) {
case 1:
case 2:
dmic_clk_en = 0x01;
dmic_clk_cnt = &(dig_cdc->dmic_1_2_clk_cnt);
dmic_clk_reg = MSM89XX_CDC_CORE_CLK_DMIC_B1_CTL;
dev_dbg(codec->dev,
"%s() event %d DMIC%d dmic_1_2_clk_cnt %d\n",
__func__, event, dmic, *dmic_clk_cnt);
break;
default:
dev_err(codec->dev, "%s: Invalid DMIC Selection\n", __func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
(*dmic_clk_cnt)++;
if (*dmic_clk_cnt == 1) {
snd_soc_update_bits(codec, dmic_clk_reg,
0x0E, 0x04);
snd_soc_update_bits(codec, dmic_clk_reg,
dmic_clk_en, dmic_clk_en);
}
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TX1_DMIC_CTL + (dmic - 1) * 0x20,
0x07, 0x02);
break;
case SND_SOC_DAPM_POST_PMD:
(*dmic_clk_cnt)--;
if (*dmic_clk_cnt == 0)
snd_soc_update_bits(codec, dmic_clk_reg,
dmic_clk_en, 0);
break;
}
return 0;
}
static int msm_dig_cdc_codec_enable_dec(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct msm_asoc_mach_data *pdata = NULL;
unsigned int decimator;
struct msm_dig_priv *msm_dig_cdc = snd_soc_codec_get_drvdata(codec);
char *dec_name = NULL;
char *widget_name = NULL;
char *temp;
int ret = 0, i;
u16 dec_reset_reg, tx_vol_ctl_reg, tx_mux_ctl_reg;
u8 dec_hpf_cut_of_freq;
int offset;
char *dec_num;
pdata = snd_soc_card_get_drvdata(codec->component.card);
dev_dbg(codec->dev, "%s %d\n", __func__, event);
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name)
return -ENOMEM;
temp = widget_name;
dec_name = strsep(&widget_name, " ");
widget_name = temp;
if (!dec_name) {
dev_err(codec->dev,
"%s: Invalid decimator = %s\n", __func__, w->name);
ret = -EINVAL;
goto out;
}
dec_num = strpbrk(dec_name, "1234");
if (dec_num == NULL) {
dev_err(codec->dev, "%s: Invalid Decimator\n", __func__);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(dec_num, 10, &decimator);
if (ret < 0) {
dev_err(codec->dev,
"%s: Invalid decimator = %s\n", __func__, dec_name);
ret = -EINVAL;
goto out;
}
dev_dbg(codec->dev,
"%s(): widget = %s dec_name = %s decimator = %u\n", __func__,
w->name, dec_name, decimator);
if (w->reg == MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL) {
dec_reset_reg = MSM89XX_CDC_CORE_CLK_TX_RESET_B1_CTL;
offset = 0;
} else {
dev_err(codec->dev, "%s: Error, incorrect dec\n", __func__);
ret = -EINVAL;
goto out;
}
tx_vol_ctl_reg = MSM89XX_CDC_CORE_TX1_VOL_CTL_CFG +
32 * (decimator - 1);
tx_mux_ctl_reg = MSM89XX_CDC_CORE_TX1_MUX_CTL +
32 * (decimator - 1);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (decimator == 3 || decimator == 4) {
/* for WSA_VI */
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_DMIC_B2_CTL,
0xFF, 0x5);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x2);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x2);
}
/* Enableable TX digital mute */
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01);
for (i = 0; i < NUM_DECIMATORS; i++) {
if (decimator == i + 1)
msm_dig_cdc->dec_active[i] = true;
}
dec_hpf_cut_of_freq = snd_soc_read(codec, tx_mux_ctl_reg);
dec_hpf_cut_of_freq = (dec_hpf_cut_of_freq & 0x30) >> 4;
tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq =
dec_hpf_cut_of_freq;
if (dec_hpf_cut_of_freq != CF_MIN_3DB_150HZ) {
/* set cut of freq to CF_MIN_3DB_150HZ (0x1); */
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30,
CF_MIN_3DB_150HZ << 4);
}
if (msm_dig_cdc->update_clkdiv)
msm_dig_cdc->update_clkdiv(msm_dig_cdc->handle, 0x42);
break;
case SND_SOC_DAPM_POST_PMU:
/* enable HPF */
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x00);
schedule_delayed_work(
&msm_dig_cdc->tx_mute_dwork[decimator - 1].dwork,
msecs_to_jiffies(tx_unmute_delay));
if (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq !=
CF_MIN_3DB_150HZ) {
schedule_delayed_work(&tx_hpf_work[decimator - 1].dwork,
msecs_to_jiffies(300));
}
/* apply the digital gain after the decimator is enabled*/
if ((w->shift) < ARRAY_SIZE(tx_digital_gain_reg))
snd_soc_write(codec,
tx_digital_gain_reg[w->shift + offset],
snd_soc_read(codec,
tx_digital_gain_reg[w->shift + offset])
);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01);
msleep(20);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08);
cancel_delayed_work_sync(&tx_hpf_work[decimator - 1].dwork);
cancel_delayed_work_sync(
&msm_dig_cdc->tx_mute_dwork[decimator - 1].dwork);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift,
1 << w->shift);
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30,
(tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq) << 4);
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00);
for (i = 0; i < NUM_DECIMATORS; i++) {
if (decimator == i + 1)
msm_dig_cdc->dec_active[i] = false;
}
if (decimator == 3 || decimator == 4) {
/* for WSA_VI */
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_DMIC_B2_CTL,
0xFF, 0x0);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x0);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TX1_DMIC_CTL +
(decimator - 1) * 0x20, 0x7, 0x0);
}
break;
}
out:
kfree(widget_name);
return ret;
}
static int msm_dig_cdc_event_notify(struct notifier_block *block,
unsigned long val,
void *data)
{
enum dig_cdc_notify_event event = (enum dig_cdc_notify_event)val;
struct snd_soc_codec *codec = registered_digcodec;
struct msm_dig_priv *msm_dig_cdc = snd_soc_codec_get_drvdata(codec);
struct msm_asoc_mach_data *pdata = NULL;
int ret = -EINVAL;
struct msm_cap_mode *capmode = NULL;
pdata = snd_soc_card_get_drvdata(codec->component.card);
switch (event) {
case DIG_CDC_EVENT_CLK_ON:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_PDM_CTL, 0x03, 0x03);
if (pdata->mclk_freq == MCLK_RATE_9P6MHZ)
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_TOP_CTL, 0x01, 0x01);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_MCLK_CTL, 0x01, 0x01);
break;
case DIG_CDC_EVENT_CLK_OFF:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_PDM_CTL, 0x03, 0x00);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_CLK_MCLK_CTL, 0x01, 0x00);
break;
case DIG_CDC_EVENT_RX1_MUTE_ON:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B6_CTL, 0x01, 0x01);
msm_dig_cdc->mute_mask |= HPHL_PA_DISABLE;
break;
case DIG_CDC_EVENT_RX1_MUTE_OFF:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B6_CTL, 0x01, 0x00);
msm_dig_cdc->mute_mask &= (~HPHL_PA_DISABLE);
break;
case DIG_CDC_EVENT_RX2_MUTE_ON:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B6_CTL, 0x01, 0x01);
msm_dig_cdc->mute_mask |= HPHR_PA_DISABLE;
break;
case DIG_CDC_EVENT_RX2_MUTE_OFF:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B6_CTL, 0x01, 0x00);
msm_dig_cdc->mute_mask &= (~HPHR_PA_DISABLE);
break;
case DIG_CDC_EVENT_RX3_MUTE_ON:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX3_B6_CTL, 0x01, 0x01);
msm_dig_cdc->mute_mask |= SPKR_PA_DISABLE;
break;
case DIG_CDC_EVENT_RX3_MUTE_OFF:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX3_B6_CTL, 0x01, 0x00);
msm_dig_cdc->mute_mask &= (~SPKR_PA_DISABLE);
break;
case DIG_CDC_EVENT_PRE_RX1_INT_ON:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B3_CTL, 0x3C, 0x28);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B4_CTL, 0x18, 0x10);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B3_CTL, 0x80, 0x80);
break;
case DIG_CDC_EVENT_PRE_RX2_INT_ON:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B3_CTL, 0x3C, 0x28);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B4_CTL, 0x18, 0x10);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B3_CTL, 0x80, 0x80);
break;
case DIG_CDC_EVENT_POST_RX1_INT_OFF:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B3_CTL, 0x3C, 0x00);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B4_CTL, 0x18, 0xFF);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX1_B3_CTL, 0x80, 0x00);
break;
case DIG_CDC_EVENT_POST_RX2_INT_OFF:
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B3_CTL, 0x3C, 0x00);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B4_CTL, 0x18, 0xFF);
snd_soc_update_bits(codec,
MSM89XX_CDC_CORE_RX2_B3_CTL, 0x80, 0x00);
break;
case DIG_CDC_EVENT_SSR_DOWN:
regcache_cache_only(msm_dig_cdc->regmap, true);
mutex_lock(&pdata->cdc_int_mclk0_mutex);
atomic_set(&pdata->int_mclk0_enabled, false);
mutex_unlock(&pdata->cdc_int_mclk0_mutex);
break;
case DIG_CDC_EVENT_SSR_UP:
regcache_cache_only(msm_dig_cdc->regmap, false);
regcache_mark_dirty(msm_dig_cdc->regmap);
mutex_lock(&pdata->cdc_int_mclk0_mutex);
pdata->digital_cdc_core_clk.enable = 1;
ret = afe_set_lpass_clock_v2(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_core_clk);
if (ret < 0) {
pr_err("%s:failed to enable the MCLK\n",
__func__);
mutex_unlock(&pdata->cdc_int_mclk0_mutex);
break;
}
mutex_unlock(&pdata->cdc_int_mclk0_mutex);
regcache_sync(msm_dig_cdc->regmap);
mutex_lock(&pdata->cdc_int_mclk0_mutex);
pdata->digital_cdc_core_clk.enable = 0;
afe_set_lpass_clock_v2(
AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_core_clk);
mutex_unlock(&pdata->cdc_int_mclk0_mutex);
break;
case DIG_CDC_EVENT_CAP_CONFIGURE:
capmode = (struct msm_cap_mode *)data;
capmode->micbias1_cap_mode = pdata->micbias1_cap_mode;
capmode->micbias2_cap_mode = pdata->micbias2_cap_mode;
break;
case DIG_CDC_EVENT_INVALID:
default:
break;
}
return 0;
}
static ssize_t msm_dig_codec_version_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file,
char __user *buf, size_t count,
loff_t pos)
{
struct msm_dig_priv *msm_dig;
char buffer[MSM_DIG_CDC_VERSION_ENTRY_SIZE];
int len = 0;
msm_dig = (struct msm_dig_priv *) entry->private_data;
if (!msm_dig) {
pr_err("%s: msm_dig priv is null\n", __func__);
return -EINVAL;
}
switch (msm_dig->version) {
case DRAX_CDC:
case DIANGU:
case CAJON_2_0:
case CAJON:
case CONGA:
case TOMBAK_2_0:
case TOMBAK_1_0:
len = snprintf(buffer, sizeof(buffer), "SDM660-CDC_1_0\n");
break;
default:
len = snprintf(buffer, sizeof(buffer), "VER_UNDEFINED\n");
}
return simple_read_from_buffer(buf, count, &pos, buffer, len);
}
static struct snd_info_entry_ops msm_dig_codec_info_ops = {
.read = msm_dig_codec_version_read,
};
/*
* msm_dig_codec_info_create_codec_entry - creates msm_dig module
* @codec_root: The parent directory
* @codec: Codec instance
*
* Creates msm_dig module and version entry under the given
* parent directory.
*
* Return: 0 on success or negative error code on failure.
*/
int msm_dig_codec_info_create_codec_entry(struct snd_info_entry *codec_root,
struct snd_soc_codec *codec)
{
struct snd_info_entry *version_entry;
struct msm_dig_priv *msm_dig;
struct snd_soc_card *card;
if (!codec_root || !codec)
return -EINVAL;
msm_dig = snd_soc_codec_get_drvdata(codec);
card = codec->component.card;
msm_dig->entry = snd_info_create_subdir(codec_root->module,
"msm_digital_codec",
codec_root);
if (!msm_dig->entry) {
dev_dbg(codec->dev, "%s: failed to create msm_digital entry\n",
__func__);
return -ENOMEM;
}
version_entry = snd_info_create_card_entry(card->snd_card,
"version",
msm_dig->entry);
if (!version_entry) {
dev_dbg(codec->dev, "%s: failed to create msm_digital version entry\n",
__func__);
return -ENOMEM;
}
version_entry->private_data = msm_dig;
version_entry->size = MSM_DIG_CDC_VERSION_ENTRY_SIZE;
version_entry->content = SNDRV_INFO_CONTENT_DATA;
version_entry->c.ops = &msm_dig_codec_info_ops;
if (snd_info_register(version_entry) < 0) {
snd_info_free_entry(version_entry);
return -ENOMEM;
}
msm_dig->version_entry = version_entry;
if (msm_dig->get_cdc_version)
msm_dig->version = msm_dig->get_cdc_version(msm_dig->handle);
else
msm_dig->version = DRAX_CDC;
return 0;
}
EXPORT_SYMBOL(msm_dig_codec_info_create_codec_entry);
static void msm_dig_cdc_update_micbias_regulator(
const struct msm_dig_priv *dig_cdc,
const char *name,
struct on_demand_dig_supply *micbias_supply)
{
int i;
for (i = 0; i < dig_cdc->num_of_supplies; i++) {
if (dig_cdc->supplies[i].supply &&
!strcmp(dig_cdc->supplies[i].supply, name)) {
micbias_supply->supply =
dig_cdc->supplies[i].consumer;
micbias_supply->min_uv = dig_cdc->regulator[i].min_uv;
micbias_supply->max_uv = dig_cdc->regulator[i].max_uv;
micbias_supply->optimum_ua =
dig_cdc->regulator[i].optimum_ua;
return;
}
}
dev_dbg(dig_cdc->dev, "Error: regulator not found:%s\n", name);
}
static void sdm660_tx_mute_update_callback(struct work_struct *work)
{
struct tx_mute_work *tx_mute_dwork;
struct snd_soc_codec *codec = NULL;
struct msm_dig_priv *dig_cdc;
struct delayed_work *delayed_work;
u16 tx_vol_ctl_reg = 0;
u8 decimator = 0, i;
delayed_work = to_delayed_work(work);
tx_mute_dwork = container_of(delayed_work, struct tx_mute_work, dwork);
dig_cdc = tx_mute_dwork->dig_cdc;
codec = dig_cdc->codec;
for (i = 0; i < (NUM_DECIMATORS - 1); i++) {
if (dig_cdc->dec_active[i])
decimator = i + 1;
if (decimator && decimator < NUM_DECIMATORS) {
/* unmute decimators corresponding to Tx DAI's*/
tx_vol_ctl_reg =
MSM89XX_CDC_CORE_TX1_VOL_CTL_CFG +
32 * (decimator - 1);
snd_soc_update_bits(codec, tx_vol_ctl_reg,
0x01, 0x00);
}
decimator = 0;
}
}
static int msm_dig_cdc_soc_probe(struct snd_soc_codec *codec)
{
struct msm_dig_priv *msm_dig_cdc = dev_get_drvdata(codec->dev);
struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
int i, ret;
msm_dig_cdc->codec = codec;
snd_soc_add_codec_controls(codec, compander_kcontrols,
ARRAY_SIZE(compander_kcontrols));
for (i = 0; i < NUM_DECIMATORS; i++) {
tx_hpf_work[i].dig_cdc = msm_dig_cdc;
tx_hpf_work[i].decimator = i + 1;
INIT_DELAYED_WORK(&tx_hpf_work[i].dwork,
tx_hpf_corner_freq_callback);
msm_dig_cdc->tx_mute_dwork[i].dig_cdc = msm_dig_cdc;
msm_dig_cdc->tx_mute_dwork[i].decimator = i + 1;
INIT_DELAYED_WORK(&msm_dig_cdc->tx_mute_dwork[i].dwork,
sdm660_tx_mute_update_callback);
}
for (i = 0; i < MSM89XX_RX_MAX; i++)
msm_dig_cdc->comp_enabled[i] = COMPANDER_NONE;
/* Register event notifier */
msm_dig_cdc->nblock.notifier_call = msm_dig_cdc_event_notify;
if (msm_dig_cdc->register_notifier) {
ret = msm_dig_cdc->register_notifier(msm_dig_cdc->handle,
&msm_dig_cdc->nblock,
true);
if (ret) {
pr_err("%s: Failed to register notifier %d\n",
__func__, ret);
return ret;
}
}
msm_dig_cdc_update_micbias_regulator(
msm_dig_cdc,
on_demand_supply_name[ON_DEMAND_DIGITAL],
&msm_dig_cdc->on_demand_list[ON_DEMAND_DIGITAL]);
atomic_set(&msm_dig_cdc->on_demand_list[ON_DEMAND_DIGITAL].ref, 0);
registered_digcodec = codec;
snd_soc_dapm_ignore_suspend(dapm, "AIF1 Playback");
snd_soc_dapm_ignore_suspend(dapm, "AIF1 Capture");
snd_soc_dapm_ignore_suspend(dapm, "ADC1_IN");
snd_soc_dapm_ignore_suspend(dapm, "ADC2_IN");
snd_soc_dapm_ignore_suspend(dapm, "ADC3_IN");
snd_soc_dapm_ignore_suspend(dapm, "PDM_OUT_RX1");
snd_soc_dapm_ignore_suspend(dapm, "PDM_OUT_RX2");
snd_soc_dapm_ignore_suspend(dapm, "PDM_OUT_RX3");
snd_soc_dapm_sync(dapm);
return 0;
}
static int msm_dig_cdc_soc_remove(struct snd_soc_codec *codec)
{
struct msm_dig_priv *msm_dig_cdc = dev_get_drvdata(codec->dev);
if (msm_dig_cdc->register_notifier)
msm_dig_cdc->register_notifier(msm_dig_cdc->handle,
&msm_dig_cdc->nblock,
false);
iounmap(msm_dig_cdc->dig_base);
return 0;
}
static const struct snd_soc_dapm_route audio_dig_map[] = {
{"RX_I2S_CLK", NULL, "CDC_CONN"},
{"I2S RX1", NULL, "RX_I2S_CLK"},
{"I2S RX2", NULL, "RX_I2S_CLK"},
{"I2S RX3", NULL, "RX_I2S_CLK"},
{"I2S TX1", NULL, "TX_I2S_CLK"},
{"I2S TX2", NULL, "TX_I2S_CLK"},
{"AIF2 VI", NULL, "TX_I2S_CLK"},
{"I2S TX1", NULL, "DEC1 MUX"},
{"I2S TX2", NULL, "DEC2 MUX"},
{"AIF2 VI", NULL, "DEC3 MUX"},
{"AIF2 VI", NULL, "DEC4 MUX"},
{"PDM_OUT_RX1", NULL, "RX1 CHAIN"},
{"PDM_OUT_RX2", NULL, "RX2 CHAIN"},
{"PDM_OUT_RX3", NULL, "RX3 CHAIN"},
{"RX1 CHAIN", NULL, "RX1 MIX2"},
{"RX2 CHAIN", NULL, "RX2 MIX2"},
{"RX3 CHAIN", NULL, "RX3 MIX1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP2"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP3"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP1"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP2"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP1"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP2"},
{"RX1 MIX2", NULL, "RX1 MIX1"},
{"RX1 MIX2", NULL, "RX1 MIX2 INP1"},
{"RX2 MIX2", NULL, "RX2 MIX1"},
{"RX2 MIX2", NULL, "RX2 MIX2 INP1"},
{"RX1 MIX1 INP1", "RX1", "I2S RX1"},
{"RX1 MIX1 INP1", "RX2", "I2S RX2"},
{"RX1 MIX1 INP1", "RX3", "I2S RX3"},
{"RX1 MIX1 INP1", "IIR1", "IIR1"},
{"RX1 MIX1 INP1", "IIR2", "IIR2"},
{"RX1 MIX1 INP2", "RX1", "I2S RX1"},
{"RX1 MIX1 INP2", "RX2", "I2S RX2"},
{"RX1 MIX1 INP2", "RX3", "I2S RX3"},
{"RX1 MIX1 INP2", "IIR1", "IIR1"},
{"RX1 MIX1 INP2", "IIR2", "IIR2"},
{"RX1 MIX1 INP3", "RX1", "I2S RX1"},
{"RX1 MIX1 INP3", "RX2", "I2S RX2"},
{"RX1 MIX1 INP3", "RX3", "I2S RX3"},
{"RX2 MIX1 INP1", "RX1", "I2S RX1"},
{"RX2 MIX1 INP1", "RX2", "I2S RX2"},
{"RX2 MIX1 INP1", "RX3", "I2S RX3"},
{"RX2 MIX1 INP1", "IIR1", "IIR1"},
{"RX2 MIX1 INP1", "IIR2", "IIR2"},
{"RX2 MIX1 INP2", "RX1", "I2S RX1"},
{"RX2 MIX1 INP2", "RX2", "I2S RX2"},
{"RX2 MIX1 INP2", "RX3", "I2S RX3"},
{"RX2 MIX1 INP2", "IIR1", "IIR1"},
{"RX2 MIX1 INP2", "IIR2", "IIR2"},
{"RX2 MIX1 INP3", "RX1", "I2S RX1"},
{"RX2 MIX1 INP3", "RX2", "I2S RX2"},
{"RX2 MIX1 INP3", "RX3", "I2S RX3"},
{"RX3 MIX1 INP1", "RX1", "I2S RX1"},
{"RX3 MIX1 INP1", "RX2", "I2S RX2"},
{"RX3 MIX1 INP1", "RX3", "I2S RX3"},
{"RX3 MIX1 INP1", "IIR1", "IIR1"},
{"RX3 MIX1 INP1", "IIR2", "IIR2"},
{"RX3 MIX1 INP2", "RX1", "I2S RX1"},
{"RX3 MIX1 INP2", "RX2", "I2S RX2"},
{"RX3 MIX1 INP2", "RX3", "I2S RX3"},
{"RX3 MIX1 INP2", "IIR1", "IIR1"},
{"RX3 MIX1 INP2", "IIR2", "IIR2"},
{"RX3 MIX1 INP3", "RX1", "I2S RX1"},
{"RX3 MIX1 INP3", "RX2", "I2S RX2"},
{"RX3 MIX1 INP3", "RX3", "I2S RX3"},
{"RX1 MIX2 INP1", "IIR1", "IIR1"},
{"RX2 MIX2 INP1", "IIR1", "IIR1"},
{"RX1 MIX2 INP1", "IIR2", "IIR2"},
{"RX2 MIX2 INP1", "IIR2", "IIR2"},
/* Decimator Inputs */
{"DEC1 MUX", "DMIC1", "DMIC1"},
{"DEC1 MUX", "DMIC2", "DMIC2"},
{"DEC1 MUX", "ADC1", "ADC1_IN"},
{"DEC1 MUX", "ADC2", "ADC2_IN"},
{"DEC1 MUX", "ADC3", "ADC3_IN"},
{"DEC1 MUX", NULL, "CDC_CONN"},
{"DEC2 MUX", "DMIC1", "DMIC1"},
{"DEC2 MUX", "DMIC2", "DMIC2"},
{"DEC2 MUX", "ADC1", "ADC1_IN"},
{"DEC2 MUX", "ADC2", "ADC2_IN"},
{"DEC2 MUX", "ADC3", "ADC3_IN"},
{"DEC2 MUX", NULL, "CDC_CONN"},
{"DEC3 MUX", "DMIC3", "DMIC3"},
{"DEC4 MUX", "DMIC4", "DMIC4"},
{"DEC3 MUX", NULL, "CDC_CONN"},
{"DEC4 MUX", NULL, "CDC_CONN"},
{"IIR1", NULL, "IIR1 INP1 MUX"},
{"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"},
{"IIR2", NULL, "IIR2 INP1 MUX"},
{"IIR2 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR2 INP1 MUX", "DEC2", "DEC2 MUX"},
};
static const char * const rx_mix1_text[] = {
"ZERO", "IIR1", "IIR2", "RX1", "RX2", "RX3"
};
static const char * const rx_mix2_text[] = {
"ZERO", "IIR1", "IIR2"
};
static const char * const dec_mux_text[] = {
"ZERO", "ADC1", "ADC2", "ADC3", "DMIC1", "DMIC2"
};
static const char * const dec3_mux_text[] = {
"ZERO", "DMIC3"
};
static const char * const dec4_mux_text[] = {
"ZERO", "DMIC4"
};
static const char * const iir_inp1_text[] = {
"ZERO", "DEC1", "DEC2", "RX1", "RX2", "RX3"
};
/* RX1 MIX1 */
static const struct soc_enum rx_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B1_CTL,
0, 6, rx_mix1_text);
static const struct soc_enum rx_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B1_CTL,
3, 6, rx_mix1_text);
static const struct soc_enum rx_mix1_inp3_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B2_CTL,
0, 6, rx_mix1_text);
/* RX1 MIX2 */
static const struct soc_enum rx_mix2_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX1_B3_CTL,
0, 3, rx_mix2_text);
/* RX2 MIX1 */
static const struct soc_enum rx2_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B1_CTL,
0, 6, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B1_CTL,
3, 6, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp3_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B1_CTL,
0, 6, rx_mix1_text);
/* RX2 MIX2 */
static const struct soc_enum rx2_mix2_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX2_B3_CTL,
0, 3, rx_mix2_text);
/* RX3 MIX1 */
static const struct soc_enum rx3_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX3_B1_CTL,
0, 6, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX3_B1_CTL,
3, 6, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp3_chain_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_RX3_B1_CTL,
0, 6, rx_mix1_text);
/* DEC */
static const struct soc_enum dec1_mux_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_B1_CTL,
0, 6, dec_mux_text);
static const struct soc_enum dec2_mux_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_TX_B1_CTL,
3, 6, dec_mux_text);
static const struct soc_enum dec3_mux_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX3_MUX_CTL,
0, ARRAY_SIZE(dec3_mux_text), dec3_mux_text);
static const struct soc_enum dec4_mux_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX4_MUX_CTL,
0, ARRAY_SIZE(dec4_mux_text), dec4_mux_text);
static const struct soc_enum iir1_inp1_mux_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_EQ1_B1_CTL,
0, 6, iir_inp1_text);
static const struct soc_enum iir2_inp1_mux_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_CONN_EQ2_B1_CTL,
0, 6, iir_inp1_text);
/*cut of frequency for high pass filter*/
static const char * const cf_text[] = {
"MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz"
};
static const struct soc_enum cf_rxmix1_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_RX1_B4_CTL, 0, 3, cf_text);
static const struct soc_enum cf_rxmix2_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_RX2_B4_CTL, 0, 3, cf_text);
static const struct soc_enum cf_rxmix3_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_RX3_B4_CTL, 0, 3, cf_text);
static const struct snd_kcontrol_new rx3_mix1_inp1_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum);
#define MSM89XX_DEC_ENUM(xname, xenum) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_enum_double, \
.get = snd_soc_dapm_get_enum_double, \
.put = msm_dig_cdc_put_dec_enum, \
.private_value = (unsigned long)&xenum }
static const struct snd_kcontrol_new dec1_mux =
MSM89XX_DEC_ENUM("DEC1 MUX Mux", dec1_mux_enum);
static const struct snd_kcontrol_new dec2_mux =
MSM89XX_DEC_ENUM("DEC2 MUX Mux", dec2_mux_enum);
static const struct snd_kcontrol_new dec3_mux =
SOC_DAPM_ENUM("DEC3 MUX Mux", dec3_mux_enum);
static const struct snd_kcontrol_new dec4_mux =
SOC_DAPM_ENUM("DEC4 MUX Mux", dec4_mux_enum);
static const struct snd_kcontrol_new iir1_inp1_mux =
SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum);
static const struct snd_kcontrol_new iir2_inp1_mux =
SOC_DAPM_ENUM("IIR2 INP1 Mux", iir2_inp1_mux_enum);
static const struct snd_kcontrol_new rx_mix1_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp2_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp3_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP3 Mux", rx_mix1_inp3_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp2_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp3_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP3 Mux", rx2_mix1_inp3_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp2_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp3_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP3 Mux", rx3_mix1_inp3_chain_enum);
static const struct snd_kcontrol_new rx1_mix2_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX2 INP1 Mux", rx_mix2_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix2_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX2 INP1 Mux", rx2_mix2_inp1_chain_enum);
static const struct snd_soc_dapm_widget msm_dig_dapm_widgets[] = {
SND_SOC_DAPM_AIF_IN("I2S RX1", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("I2S RX2", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("I2S RX3", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("I2S TX1", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("I2S TX2", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIF2 VI", "AIF2 Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_MIXER_E("RX1 MIX2", MSM89XX_CDC_CORE_CLK_RX_B1_CTL,
MSM89XX_RX1, 0, NULL, 0,
msm_dig_cdc_codec_enable_interpolator,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX2 MIX2", MSM89XX_CDC_CORE_CLK_RX_B1_CTL,
MSM89XX_RX2, 0, NULL, 0,
msm_dig_cdc_codec_enable_interpolator,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER_E("RX3 MIX1", MSM89XX_CDC_CORE_CLK_RX_B1_CTL,
MSM89XX_RX3, 0, NULL, 0,
msm_dig_cdc_codec_enable_interpolator,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("RX1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX2 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX1 CHAIN", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX2 CHAIN", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX3 CHAIN", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP3", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp3_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP3", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp3_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP3", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp3_mux),
SND_SOC_DAPM_MUX("RX1 MIX2 INP1", SND_SOC_NOPM, 0, 0,
&rx1_mix2_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX2 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix2_inp1_mux),
SND_SOC_DAPM_SUPPLY_S("CDC_CONN", -2, MSM89XX_CDC_CORE_CLK_OTHR_CTL,
2, 0, NULL, 0),
SND_SOC_DAPM_MUX_E("DEC1 MUX",
MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 0, 0,
&dec1_mux, msm_dig_cdc_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC2 MUX",
MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 1, 0,
&dec2_mux, msm_dig_cdc_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC3 MUX",
MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 2, 0,
&dec3_mux, msm_dig_cdc_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC4 MUX",
MSM89XX_CDC_CORE_CLK_TX_CLK_EN_B1_CTL, 3, 0,
&dec4_mux, msm_dig_cdc_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
/* Sidetone */
SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux),
SND_SOC_DAPM_PGA_E("IIR1", MSM89XX_CDC_CORE_CLK_SD_CTL, 0, 0, NULL, 0,
msm_dig_cdc_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MUX("IIR2 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir2_inp1_mux),
SND_SOC_DAPM_PGA_E("IIR2", MSM89XX_CDC_CORE_CLK_SD_CTL, 1, 0, NULL, 0,
msm_dig_cdc_codec_set_iir_gain, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SUPPLY("RX_I2S_CLK",
MSM89XX_CDC_CORE_CLK_RX_I2S_CTL, 4, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TX_I2S_CLK",
MSM89XX_CDC_CORE_CLK_TX_I2S_CTL, 4, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DIGITAL_REGULATOR", SND_SOC_NOPM,
ON_DEMAND_DIGITAL, 0,
msm_dig_cdc_enable_on_demand_supply,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
/* Digital Mic Inputs */
SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0,
msm_dig_cdc_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0,
msm_dig_cdc_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_INPUT("DMIC3"),
SND_SOC_DAPM_INPUT("DMIC4"),
SND_SOC_DAPM_INPUT("ADC1_IN"),
SND_SOC_DAPM_INPUT("ADC2_IN"),
SND_SOC_DAPM_INPUT("ADC3_IN"),
SND_SOC_DAPM_OUTPUT("PDM_OUT_RX1"),
SND_SOC_DAPM_OUTPUT("PDM_OUT_RX2"),
SND_SOC_DAPM_OUTPUT("PDM_OUT_RX3"),
};
static const struct soc_enum cf_dec1_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX1_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec2_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX2_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec3_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX3_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec4_enum =
SOC_ENUM_SINGLE(MSM89XX_CDC_CORE_TX4_MUX_CTL, 4, 3, cf_text);
static const struct snd_kcontrol_new msm_dig_snd_controls[] = {
SOC_SINGLE_SX_TLV("DEC1 Volume",
MSM89XX_CDC_CORE_TX1_VOL_CTL_GAIN,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("DEC2 Volume",
MSM89XX_CDC_CORE_TX2_VOL_CTL_GAIN,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("DEC3 Volume",
MSM89XX_CDC_CORE_TX3_VOL_CTL_GAIN,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("DEC4 Volume",
MSM89XX_CDC_CORE_TX4_VOL_CTL_GAIN,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP1 Volume",
MSM89XX_CDC_CORE_IIR1_GAIN_B1_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP2 Volume",
MSM89XX_CDC_CORE_IIR1_GAIN_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP3 Volume",
MSM89XX_CDC_CORE_IIR1_GAIN_B3_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR1 INP4 Volume",
MSM89XX_CDC_CORE_IIR1_GAIN_B4_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("IIR2 INP1 Volume",
MSM89XX_CDC_CORE_IIR2_GAIN_B1_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("RX1 Digital Volume",
MSM89XX_CDC_CORE_RX1_VOL_CTL_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("RX2 Digital Volume",
MSM89XX_CDC_CORE_RX2_VOL_CTL_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("RX3 Digital Volume",
MSM89XX_CDC_CORE_RX3_VOL_CTL_B2_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0,
msm_dig_cdc_get_iir_enable_audio_mixer,
msm_dig_cdc_put_iir_enable_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5,
msm_dig_cdc_get_iir_band_audio_mixer,
msm_dig_cdc_put_iir_band_audio_mixer),
SOC_SINGLE("RX1 HPF Switch",
MSM89XX_CDC_CORE_RX1_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX2 HPF Switch",
MSM89XX_CDC_CORE_RX2_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX3 HPF Switch",
MSM89XX_CDC_CORE_RX3_B5_CTL, 2, 1, 0),
SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum),
SOC_ENUM("RX2 HPF cut off", cf_rxmix2_enum),
SOC_ENUM("RX3 HPF cut off", cf_rxmix3_enum),
SOC_ENUM("TX1 HPF cut off", cf_dec1_enum),
SOC_ENUM("TX2 HPF cut off", cf_dec2_enum),
SOC_ENUM("TX3 HPF cut off", cf_dec3_enum),
SOC_ENUM("TX4 HPF cut off", cf_dec4_enum),
SOC_SINGLE("TX1 HPF Switch",
MSM89XX_CDC_CORE_TX1_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX2 HPF Switch",
MSM89XX_CDC_CORE_TX2_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX3 HPF Switch",
MSM89XX_CDC_CORE_TX3_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX4 HPF Switch",
MSM89XX_CDC_CORE_TX4_MUX_CTL, 3, 1, 0),
};
static int msm_dig_cdc_enable_on_demand_supply(
struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
int ret = 0;
struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
struct msm_dig_priv *msm_dig_cdc = snd_soc_codec_get_drvdata(codec);
struct on_demand_dig_supply *supply;
if (w->shift >= ON_DEMAND_DIG_SUPPLIES_MAX) {
dev_err(codec->dev, "%s: error index >= MAX on demand supplies",
__func__);
ret = -EINVAL;
goto out;
}
dev_dbg(codec->dev, "%s: supply: %s event: %d ref: %d\n",
__func__, on_demand_supply_name[w->shift], event,
atomic_read(&msm_dig_cdc->on_demand_list[w->shift].ref));
supply = &msm_dig_cdc->on_demand_list[w->shift];
if (!supply->supply) {
dev_err(codec->dev, "%s: err supply not present ond for %d",
__func__, w->shift);
goto out;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (atomic_inc_return(&supply->ref) == 1) {
ret = regulator_set_voltage(supply->supply,
supply->min_uv,
supply->max_uv);
if (ret) {
dev_err(codec->dev,
"Setting regulator voltage(en) for micbias with err = %d\n",
ret);
goto out;
}
ret = regulator_set_load(supply->supply,
supply->optimum_ua);
if (ret < 0) {
dev_err(codec->dev,
"Setting regulator optimum mode(en) failed for micbias with err = %d\n",
ret);
goto out;
}
ret = regulator_enable(supply->supply);
if (ret)
dev_err(codec->dev, "%s: Failed to enable %s\n",
__func__,
on_demand_supply_name[w->shift]);
}
break;
case SND_SOC_DAPM_POST_PMD:
if (atomic_read(&supply->ref) == 0) {
dev_dbg(codec->dev, "%s: %s supply has been disabled.\n",
__func__, on_demand_supply_name[w->shift]);
goto out;
}
if (atomic_dec_return(&supply->ref) == 0) {
ret = regulator_disable(supply->supply);
if (ret)
dev_err(codec->dev, "%s: Failed to disable %s\n",
__func__,
on_demand_supply_name[w->shift]);
ret = regulator_set_voltage(supply->supply,
0,
supply->max_uv);
if (ret) {
dev_err(codec->dev,
"Setting regulator voltage(dis) failed for micbias with err = %d\n",
ret);
goto out;
}
ret = regulator_set_load(supply->supply, 0);
if (ret < 0)
dev_err(codec->dev,
"Setting regulator optimum mode(dis) failed for micbias with err = %d\n",
ret);
}
break;
default:
break;
}
out:
return ret;
}
static int msm_digital_cdc_init_supplies(struct msm_dig_priv *msm_cdc)
{
int ret;
int i;
msm_cdc->supplies = devm_kzalloc(msm_cdc->dev,
sizeof(struct regulator_bulk_data) *
ARRAY_SIZE(msm_cdc->regulator),
GFP_KERNEL);
if (!msm_cdc->supplies) {
ret = -ENOMEM;
goto err;
}
msm_cdc->num_of_supplies = 0;
if (ARRAY_SIZE(msm_cdc->regulator) > MAX_REGULATOR) {
dev_err(msm_cdc->dev, "%s: Array Size out of bound\n",
__func__);
ret = -EINVAL;
goto err;
}
for (i = 0; i < ARRAY_SIZE(msm_cdc->regulator); i++) {
if (msm_cdc->regulator[i].name) {
msm_cdc->supplies[i].supply =
msm_cdc->regulator[i].name;
msm_cdc->num_of_supplies++;
}
}
ret = devm_regulator_bulk_get(msm_cdc->dev,
msm_cdc->num_of_supplies,
msm_cdc->supplies);
if (ret != 0) {
dev_err(msm_cdc->dev,
"Failed to get supplies: err = %d\n",
ret);
goto err_supplies;
}
for (i = 0; i < msm_cdc->num_of_supplies; i++) {
if (regulator_count_voltages(
msm_cdc->supplies[i].consumer) <= 0)
continue;
ret = regulator_set_voltage(
msm_cdc->supplies[i].consumer,
msm_cdc->regulator[i].min_uv,
msm_cdc->regulator[i].max_uv);
if (ret) {
dev_err(msm_cdc->dev,
"Setting regulator voltage failed for regulator %s err = %d\n",
msm_cdc->supplies[i].supply, ret);
goto err_supplies;
}
ret = regulator_set_load(msm_cdc->supplies[i].consumer,
msm_cdc->regulator[i].optimum_ua);
if (ret < 0) {
dev_err(msm_cdc->dev,
"Setting regulator optimum mode failed for regulator %s err = %d\n",
msm_cdc->supplies[i].supply, ret);
goto err_supplies;
} else {
ret = 0;
}
}
return ret;
err_supplies:
err:
return ret;
}
static int msm_digital_cdc_dt_parse_vreg_info(struct device *dev,
struct dig_cdc_regulator *vreg, const char *vreg_name)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[CODEC_DT_MAX_PROP_SIZE];
struct device_node *regnode = NULL;
u32 prop_val;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE, "%s-supply",
vreg_name);
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
if (!regnode) {
dev_err(dev, "Looking up %s property in node %s failed\n",
prop_name, dev->of_node->full_name);
return -ENODEV;
}
dev_dbg(dev, "Looking up %s property in node %s\n",
prop_name, dev->of_node->full_name);
vreg->name = vreg_name;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,%s-voltage", vreg_name);
prop = of_get_property(dev->of_node, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
dev_err(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
return -EINVAL;
}
vreg->min_uv = be32_to_cpup(&prop[0]);
vreg->max_uv = be32_to_cpup(&prop[1]);
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,%s-current", vreg_name);
ret = of_property_read_u32(dev->of_node, prop_name, &prop_val);
if (ret) {
dev_err(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
return -EFAULT;
}
vreg->optimum_ua = prop_val;
dev_dbg(dev, "%s: vol=[%d %d]uV, curr=[%d]uA\n", vreg->name,
vreg->min_uv, vreg->max_uv, vreg->optimum_ua);
return 0;
}
static struct snd_soc_dai_ops msm_dig_dai_ops = {
.hw_params = msm_dig_cdc_hw_params,
};
static struct snd_soc_dai_driver msm_codec_dais[] = {
{
.name = "msm_dig_cdc_dai_rx1",
.id = AIF1_PB,
.playback = { /* Support maximum range */
.stream_name = "AIF1 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.rate_max = 192000,
.rate_min = 8000,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S24_3LE,
},
.ops = &msm_dig_dai_ops,
},
{
.name = "msm_dig_cdc_dai_tx1",
.id = AIF1_CAP,
.capture = { /* Support maximum range */
.stream_name = "AIF1 Capture",
.channels_min = 1,
.channels_max = 4,
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &msm_dig_dai_ops,
},
{
.name = "msm_dig_cdc_dai_vifeed",
.id = AIF2_VIFEED,
.capture = { /* Support maximum range */
.stream_name = "AIF2 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &msm_dig_dai_ops,
},
};
static struct regmap *msm_digital_get_regmap(struct device *dev)
{
struct msm_dig_priv *msm_dig_cdc = dev_get_drvdata(dev);
return msm_dig_cdc->regmap;
}
static int msm_dig_cdc_suspend(struct snd_soc_codec *codec)
{
struct msm_dig_priv *msm_dig_cdc = dev_get_drvdata(codec->dev);
msm_dig_cdc->dapm_bias_off = 1;
return 0;
}
static int msm_dig_cdc_resume(struct snd_soc_codec *codec)
{
struct msm_dig_priv *msm_dig_cdc = dev_get_drvdata(codec->dev);
msm_dig_cdc->dapm_bias_off = 0;
return 0;
}
static struct snd_soc_codec_driver soc_msm_dig_codec = {
.probe = msm_dig_cdc_soc_probe,
.remove = msm_dig_cdc_soc_remove,
.suspend = msm_dig_cdc_suspend,
.resume = msm_dig_cdc_resume,
.get_regmap = msm_digital_get_regmap,
.component_driver = {
.controls = msm_dig_snd_controls,
.num_controls = ARRAY_SIZE(msm_dig_snd_controls),
.dapm_widgets = msm_dig_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(msm_dig_dapm_widgets),
.dapm_routes = audio_dig_map,
.num_dapm_routes = ARRAY_SIZE(audio_dig_map),
},
};
const struct regmap_config msm_digital_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 8,
.lock = enable_digital_callback,
.unlock = disable_digital_callback,
.cache_type = REGCACHE_FLAT,
.reg_defaults = msm89xx_cdc_core_defaults,
.num_reg_defaults = MSM89XX_CDC_CORE_MAX_REGISTER,
.writeable_reg = msm89xx_cdc_core_writeable_reg,
.readable_reg = msm89xx_cdc_core_readable_reg,
.volatile_reg = msm89xx_cdc_core_volatile_reg,
.reg_format_endian = REGMAP_ENDIAN_NATIVE,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
.max_register = MSM89XX_CDC_CORE_MAX_REGISTER,
};
static bool msm_digital_cdc_populate_dt_pdata(
struct device *dev,
struct msm_dig_priv *dig_priv)
{
int ret, ond_cnt, i, idx = 0;
const char *name = NULL;
const char *ond_prop_name = "qcom,cdc-on-demand-supplies";
ond_cnt = of_property_count_strings(dev->of_node, ond_prop_name);
if (ond_cnt < 0)
ond_cnt = 0;
if (ond_cnt > ARRAY_SIZE(dig_priv->regulator)) {
ret = -EINVAL;
goto err;
}
for (i = 0; i < ond_cnt; i++, idx++) {
ret = of_property_read_string_index(dev->of_node, ond_prop_name,
i, &name);
if (ret) {
dev_err(dev, "%s: err parsing on_demand for %s idx %d\n",
__func__, ond_prop_name, i);
goto err;
}
dev_dbg(dev, "%s: Found on-demand cdc supply %s\n", __func__,
name);
ret = msm_digital_cdc_dt_parse_vreg_info(dev,
&dig_priv->regulator[idx],
name);
if (ret) {
dev_err(dev, "%s: err parsing vreg on_demand for %s idx %d\n",
__func__, name, idx);
goto err;
}
}
return true;
err:
dev_err(dev, "%s: Failed to populate DT data ret = %d\n",
__func__, ret);
return false;
}
static void msm_digital_cdc_disable_supplies(struct msm_dig_priv *msm_cdc)
{
int i;
if (!msm_cdc->supplies)
return;
regulator_bulk_disable(msm_cdc->num_of_supplies,
msm_cdc->supplies);
for (i = 0; i < msm_cdc->num_of_supplies; i++) {
if (regulator_count_voltages(
msm_cdc->supplies[i].consumer) <= 0)
continue;
regulator_set_voltage(msm_cdc->supplies[i].consumer, 0,
msm_cdc->regulator[i].max_uv);
regulator_set_load(msm_cdc->supplies[i].consumer, 0);
}
regulator_bulk_free(msm_cdc->num_of_supplies,
msm_cdc->supplies);
devm_kfree(msm_cdc->dev, msm_cdc->supplies);
}
static int msm_dig_cdc_probe(struct platform_device *pdev)
{
int ret = -EINVAL;
u32 dig_cdc_addr;
struct msm_dig_priv *msm_dig_cdc;
struct dig_ctrl_platform_data *pdata = NULL;
bool no_analog_codec = false;
int adsp_state = 0;
adsp_state = apr_get_subsys_state();
if ((adsp_state != APR_SUBSYS_LOADED) || (!q6core_is_adsp_ready())) {
dev_err(&pdev->dev, "Adsp is not loaded yet %d\n",
adsp_state);
return -EPROBE_DEFER;
}
device_init_wakeup(&pdev->dev, true);
msm_dig_cdc = devm_kzalloc(&pdev->dev, sizeof(struct msm_dig_priv),
GFP_KERNEL);
if (!msm_dig_cdc)
return -ENOMEM;
msm_dig_cdc->dev = &pdev->dev;
if (pdev->dev.of_node == NULL)
return -EINVAL;
if (pdev->dev.of_node)
no_analog_codec = of_property_read_bool(pdev->dev.of_node,
"qcom,no-analog-codec");
if (no_analog_codec) {
dev_dbg(&pdev->dev, "%s:Platform data from device tree\n",
__func__);
if (msm_digital_cdc_populate_dt_pdata(&pdev->dev,
msm_dig_cdc)) {
ret = msm_digital_cdc_init_supplies(
msm_dig_cdc);
if (ret) {
dev_err(&pdev->dev,
"%s: Fail to enable Codec supplies\n",
__func__);
goto rtn;
}
}
} else {
pdata = dev_get_platdata(&pdev->dev);
if (!pdata) {
dev_err(&pdev->dev, "%s: pdata from parent is NULL\n",
__func__);
ret = -EINVAL;
goto err_supplies;
}
msm_dig_cdc->update_clkdiv = pdata->update_clkdiv;
msm_dig_cdc->set_compander_mode = pdata->set_compander_mode;
msm_dig_cdc->get_cdc_version = pdata->get_cdc_version;
msm_dig_cdc->handle = pdata->handle;
msm_dig_cdc->register_notifier = pdata->register_notifier;
}
ret = of_property_read_u32(pdev->dev.of_node, "reg",
&dig_cdc_addr);
if (ret) {
dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
__func__, "reg");
goto err_supplies;
}
msm_dig_cdc->dig_base = ioremap(dig_cdc_addr,
MSM89XX_CDC_CORE_MAX_REGISTER);
if (msm_dig_cdc->dig_base == NULL) {
dev_err(&pdev->dev, "%s ioremap failed\n", __func__);
ret = -ENOMEM;
goto err_supplies;
}
msm_dig_cdc->regmap =
devm_regmap_init_mmio_clk(&pdev->dev, NULL,
msm_dig_cdc->dig_base, &msm_digital_regmap_config);
dev_set_drvdata(&pdev->dev, msm_dig_cdc);
snd_soc_register_codec(&pdev->dev, &soc_msm_dig_codec,
msm_codec_dais, ARRAY_SIZE(msm_codec_dais));
dev_dbg(&pdev->dev, "%s: registered DIG CODEC 0x%x\n",
__func__, dig_cdc_addr);
return ret;
err_supplies:
if (no_analog_codec)
msm_digital_cdc_disable_supplies(msm_dig_cdc);
rtn:
return ret;
}
static int msm_dig_cdc_remove(struct platform_device *pdev)
{
struct msm_dig_priv *msm_cdc = dev_get_drvdata(&pdev->dev);
snd_soc_unregister_codec(&pdev->dev);
msm_digital_cdc_disable_supplies(msm_cdc);
return 0;
}
#ifdef CONFIG_PM
static int msm_dig_suspend(struct device *dev)
{
struct msm_asoc_mach_data *pdata;
struct msm_dig_priv *msm_dig_cdc = dev_get_drvdata(dev);
if (!registered_digcodec || !msm_dig_cdc) {
pr_debug("%s:digcodec not initialized, return\n", __func__);
return 0;
}
pdata = snd_soc_card_get_drvdata(registered_digcodec->component.card);
if (!pdata) {
pr_debug("%s:card not initialized, return\n", __func__);
return 0;
}
if (msm_dig_cdc->dapm_bias_off) {
pr_debug("%s: mclk cnt = %d, mclk_enabled = %d\n",
__func__, atomic_read(&pdata->int_mclk0_rsc_ref),
atomic_read(&pdata->int_mclk0_enabled));
if (atomic_read(&pdata->int_mclk0_enabled) == true) {
cancel_delayed_work_sync(
&pdata->disable_int_mclk0_work);
mutex_lock(&pdata->cdc_int_mclk0_mutex);
pdata->digital_cdc_core_clk.enable = 0;
afe_set_lpass_clock_v2(AFE_PORT_ID_PRIMARY_MI2S_RX,
&pdata->digital_cdc_core_clk);
atomic_set(&pdata->int_mclk0_enabled, false);
mutex_unlock(&pdata->cdc_int_mclk0_mutex);
}
}
return 0;
}
static int msm_dig_resume(struct device *dev)
{
return 0;
}
static const struct dev_pm_ops msm_dig_pm_ops = {
.suspend_late = msm_dig_suspend,
.resume_early = msm_dig_resume,
};
#endif
static const struct of_device_id msm_dig_cdc_of_match[] = {
{.compatible = "qcom,msm-digital-codec"},
{},
};
static struct platform_driver msm_digcodec_driver = {
.driver = {
.owner = THIS_MODULE,
.name = DRV_NAME,
.of_match_table = msm_dig_cdc_of_match,
#ifdef CONFIG_PM
.pm = &msm_dig_pm_ops,
#endif
},
.probe = msm_dig_cdc_probe,
.remove = msm_dig_cdc_remove,
};
module_platform_driver(msm_digcodec_driver);
MODULE_DESCRIPTION("MSM Audio Digital codec driver");
MODULE_LICENSE("GPL v2");