blob: 33a7c974cd7cf00ccc27e8dc874be6940e642f3d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/kernel.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/regmap.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include "aqt1000.h"
#include "aqt1000-api.h"
#include "aqt1000-mbhc.h"
#include "aqt1000-registers.h"
#include "aqt1000-irq.h"
#include "pdata.h"
#include <asoc/wcdcal-hwdep.h>
#include <asoc/wcd-mbhc-v2-api.h>
#define AQT_ZDET_SUPPORTED true
/* Z value defined in milliohm */
#define AQT_ZDET_VAL_32 32000
#define AQT_ZDET_VAL_400 400000
#define AQT_ZDET_VAL_1200 1200000
#define AQT_ZDET_VAL_100K 100000000
/* Z floating defined in ohms */
#define AQT_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE
#define AQT_ZDET_NUM_MEASUREMENTS 900
#define AQT_MBHC_GET_C1(c) ((c & 0xC000) >> 14)
#define AQT_MBHC_GET_X1(x) (x & 0x3FFF)
/* Z value compared in milliOhm */
#define AQT_MBHC_IS_SECOND_RAMP_REQUIRED(z) ((z > 400000) || (z < 32000))
#define AQT_MBHC_ZDET_CONST (86 * 16384)
#define AQT_MBHC_MOISTURE_RREF R_24_KOHM
static struct wcd_mbhc_register
wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = {
WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN",
AQT1000_ANA_MBHC_MECH, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN",
AQT1000_ANA_MBHC_MECH, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE",
AQT1000_ANA_MBHC_MECH, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL",
AQT1000_MBHC_NEW_PLUG_DETECT_CTL, 0x30, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE",
AQT1000_ANA_MBHC_ELECT, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL",
AQT1000_MBHC_NEW_INT_MECH_DET_CURRENT, 0x1F, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL",
AQT1000_ANA_MBHC_MECH, 0x04, 2, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE",
AQT1000_ANA_MBHC_MECH, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE",
AQT1000_ANA_MBHC_MECH, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND",
AQT1000_ANA_MBHC_MECH, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC",
AQT1000_ANA_MBHC_ELECT, 0x06, 1, 0),
WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN",
AQT1000_ANA_MBHC_ELECT, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC",
AQT1000_MBHC_NEW_PLUG_DETECT_CTL, 0x0F, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC",
AQT1000_MBHC_NEW_CTL_1, 0x03, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF",
AQT1000_MBHC_NEW_CTL_2, 0x03, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT",
AQT1000_ANA_MBHC_RESULT_3, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT",
AQT1000_ANA_MBHC_RESULT_3, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT",
AQT1000_ANA_MBHC_RESULT_3, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT",
AQT1000_ANA_MBHC_RESULT_3, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN",
AQT1000_HPH_OCP_CTL, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT",
AQT1000_ANA_MBHC_RESULT_3, 0x07, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL",
AQT1000_ANA_MBHC_ELECT, 0x70, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT",
AQT1000_ANA_MBHC_RESULT_3, 0xFF, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL",
AQT1000_ANA_MICB1, 0xC0, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME",
AQT1000_HPH_CNP_WG_TIME, 0xFF, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN",
AQT1000_ANA_HPH, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN",
AQT1000_ANA_HPH, 0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN",
AQT1000_ANA_HPH, 0xC0, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE",
AQT1000_ANA_MBHC_RESULT_3, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL",
0, 0, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN",
AQT1000_MBHC_CTL_BCS, 0x02, 1, 0),
WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS",
AQT1000_MBHC_NEW_FSM_STATUS, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL",
AQT1000_MBHC_NEW_CTL_2, 0x70, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_DET_EN",
AQT1000_HPH_L_TEST, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_DET_EN",
AQT1000_HPH_R_TEST, 0x01, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_STATUS",
AQT1000_INTR_CTRL_INT_STATUS_2, 0x20, 5, 0),
WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_STATUS",
AQT1000_INTR_CTRL_INT_STATUS_2, 0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_EN",
AQT1000_MBHC_NEW_CTL_1, 0x08, 3, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_COMPLETE", AQT1000_MBHC_NEW_FSM_STATUS,
0x40, 6, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_TIMEOUT", AQT1000_MBHC_NEW_FSM_STATUS,
0x80, 7, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_RESULT", AQT1000_MBHC_NEW_ADC_RESULT,
0xFF, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_MICB2_VOUT", AQT1000_ANA_MICB1, 0x3F, 0, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ADC_MODE",
AQT1000_MBHC_NEW_CTL_1, 0x10, 4, 0),
WCD_MBHC_REGISTER("WCD_MBHC_DETECTION_DONE",
AQT1000_MBHC_NEW_CTL_1, 0x04, 2, 0),
WCD_MBHC_REGISTER("WCD_MBHC_ELECT_ISRC_EN",
AQT1000_ANA_MBHC_ZDET, 0x02, 1, 0),
};
static const struct wcd_mbhc_intr intr_ids = {
.mbhc_sw_intr = AQT1000_IRQ_MBHC_SW_DET,
.mbhc_btn_press_intr = AQT1000_IRQ_MBHC_BUTTON_PRESS_DET,
.mbhc_btn_release_intr = AQT1000_IRQ_MBHC_BUTTON_RELEASE_DET,
.mbhc_hs_ins_intr = AQT1000_IRQ_MBHC_ELECT_INS_REM_LEG_DET,
.mbhc_hs_rem_intr = AQT1000_IRQ_MBHC_ELECT_INS_REM_DET,
.hph_left_ocp = AQT1000_IRQ_HPH_PA_OCPL_FAULT,
.hph_right_ocp = AQT1000_IRQ_HPH_PA_OCPR_FAULT,
};
struct aqt_mbhc_zdet_param {
u16 ldo_ctl;
u16 noff;
u16 nshift;
u16 btn5;
u16 btn6;
u16 btn7;
};
static int aqt_mbhc_request_irq(struct snd_soc_component *component,
int irq, irq_handler_t handler,
const char *name, void *data)
{
struct aqt1000 *aqt = dev_get_drvdata(component->dev);
return aqt_request_irq(aqt, irq, name, handler, data);
}
static void aqt_mbhc_irq_control(struct snd_soc_component *component,
int irq, bool enable)
{
struct aqt1000 *aqt = dev_get_drvdata(component->dev);
if (enable)
aqt_enable_irq(aqt, irq);
else
aqt_disable_irq(aqt, irq);
}
static int aqt_mbhc_free_irq(struct snd_soc_component *component,
int irq, void *data)
{
struct aqt1000 *aqt = dev_get_drvdata(component->dev);
aqt_free_irq(aqt, irq, data);
return 0;
}
static void aqt_mbhc_clk_setup(struct snd_soc_component *component,
bool enable)
{
if (enable)
snd_soc_component_update_bits(component,
AQT1000_MBHC_NEW_CTL_1,
0x80, 0x80);
else
snd_soc_component_update_bits(component,
AQT1000_MBHC_NEW_CTL_1,
0x80, 0x00);
}
static int aqt_mbhc_btn_to_num(struct snd_soc_component *component)
{
return snd_soc_component_read32(component,
AQT1000_ANA_MBHC_RESULT_3) & 0x7;
}
static void aqt_mbhc_mbhc_bias_control(struct snd_soc_component *component,
bool enable)
{
if (enable)
snd_soc_component_update_bits(component,
AQT1000_ANA_MBHC_ELECT,
0x01, 0x01);
else
snd_soc_component_update_bits(component,
AQT1000_ANA_MBHC_ELECT,
0x01, 0x00);
}
static void aqt_mbhc_program_btn_thr(struct snd_soc_component *component,
s16 *btn_low, s16 *btn_high,
int num_btn, bool is_micbias)
{
int i;
int vth;
if (num_btn > WCD_MBHC_DEF_BUTTONS) {
dev_err(component->dev, "%s: invalid number of buttons: %d\n",
__func__, num_btn);
return;
}
for (i = 0; i < num_btn; i++) {
vth = ((btn_high[i] * 2) / 25) & 0x3F;
snd_soc_component_update_bits(component,
AQT1000_ANA_MBHC_BTN0 + i,
0xFC, vth << 2);
dev_dbg(component->dev, "%s: btn_high[%d]: %d, vth: %d\n",
__func__, i, btn_high[i], vth);
}
}
static bool aqt_mbhc_lock_sleep(struct wcd_mbhc *mbhc, bool lock)
{
struct snd_soc_component *component = mbhc->component;
struct aqt1000 *aqt = dev_get_drvdata(component->dev);
bool ret = 0;
dev_dbg(aqt->dev, "%s: lock: %d\n", __func__, lock);
return ret;
}
static int aqt_mbhc_register_notifier(struct wcd_mbhc *mbhc,
struct notifier_block *nblock,
bool enable)
{
struct aqt1000_mbhc *aqt_mbhc;
aqt_mbhc = container_of(mbhc, struct aqt1000_mbhc, wcd_mbhc);
if (enable)
return blocking_notifier_chain_register(&aqt_mbhc->notifier,
nblock);
else
return blocking_notifier_chain_unregister(
&aqt_mbhc->notifier, nblock);
}
static bool aqt_mbhc_micb_en_status(struct wcd_mbhc *mbhc, int micb_num)
{
u8 val;
if (micb_num == MIC_BIAS_1) {
val = ((snd_soc_component_read32(
mbhc->component, AQT1000_ANA_MICB1) & 0xC0)
>> 6);
if (val == 0x01)
return true;
}
return false;
}
static bool aqt_mbhc_hph_pa_on_status(struct snd_soc_component *component)
{
return (snd_soc_component_read32(component, AQT1000_ANA_HPH) & 0xC0) ?
true : false;
}
static void aqt_mbhc_hph_l_pull_up_control(struct snd_soc_component *component,
int pull_up_cur)
{
/* Default pull up current to 2uA */
if (pull_up_cur > HS_PULLUP_I_OFF || pull_up_cur < HS_PULLUP_I_3P0_UA ||
pull_up_cur == HS_PULLUP_I_DEFAULT)
pull_up_cur = HS_PULLUP_I_2P0_UA;
dev_dbg(component->dev, "%s: HS pull up current:%d\n",
__func__, pull_up_cur);
snd_soc_component_update_bits(component,
AQT1000_MBHC_NEW_INT_MECH_DET_CURRENT,
0x1F, pull_up_cur);
}
static int aqt_mbhc_request_micbias(struct snd_soc_component *component,
int micb_num, int req)
{
int ret = 0;
/*
* If micbias is requested, make sure that there
* is vote to enable mclk
*/
if (req == MICB_ENABLE)
aqt_cdc_mclk_enable(component, true);
ret = aqt_micbias_control(component, micb_num, req, false);
/*
* Release vote for mclk while requesting for
* micbias disable
*/
if (req == MICB_DISABLE)
aqt_cdc_mclk_enable(component, false);
return ret;
}
static void aqt_mbhc_micb_ramp_control(struct snd_soc_component *component,
bool enable)
{
if (enable) {
snd_soc_component_update_bits(component,
AQT1000_ANA_MICB1_RAMP,
0x1C, 0x0C);
snd_soc_component_update_bits(component,
AQT1000_ANA_MICB1_RAMP,
0x80, 0x80);
} else {
snd_soc_component_update_bits(component,
AQT1000_ANA_MICB1_RAMP,
0x80, 0x00);
snd_soc_component_update_bits(component,
AQT1000_ANA_MICB1_RAMP,
0x1C, 0x00);
}
}
static struct firmware_cal *aqt_get_hwdep_fw_cal(struct wcd_mbhc *mbhc,
enum wcd_cal_type type)
{
struct aqt1000_mbhc *aqt_mbhc;
struct firmware_cal *hwdep_cal;
struct snd_soc_component *component = mbhc->component;
aqt_mbhc = container_of(mbhc, struct aqt1000_mbhc, wcd_mbhc);
if (!component) {
pr_err("%s: NULL codec pointer\n", __func__);
return NULL;
}
hwdep_cal = wcdcal_get_fw_cal(aqt_mbhc->fw_data, type);
if (!hwdep_cal)
dev_err(component->dev, "%s: cal not sent by %d\n",
__func__, type);
return hwdep_cal;
}
static int aqt_mbhc_micb_ctrl_threshold_mic(
struct snd_soc_component *component,
int micb_num, bool req_en)
{
struct aqt1000_pdata *pdata = dev_get_platdata(component->dev);
int rc, micb_mv;
if (micb_num != MIC_BIAS_1)
return -EINVAL;
/*
* If device tree micbias level is already above the minimum
* voltage needed to detect threshold microphone, then do
* not change the micbias, just return.
*/
if (pdata->micbias.micb1_mv >= WCD_MBHC_THR_HS_MICB_MV)
return 0;
micb_mv = req_en ? WCD_MBHC_THR_HS_MICB_MV : pdata->micbias.micb1_mv;
rc = aqt_mbhc_micb_adjust_voltage(component, micb_mv, MIC_BIAS_1);
return rc;
}
static inline void aqt_mbhc_get_result_params(struct aqt1000 *aqt,
s16 *d1_a, u16 noff,
int32_t *zdet)
{
int i;
int val, val1;
s16 c1;
s32 x1, d1;
int32_t denom;
int minCode_param[] = {
3277, 1639, 820, 410, 205, 103, 52, 26
};
regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x20, 0x20);
for (i = 0; i < AQT_ZDET_NUM_MEASUREMENTS; i++) {
regmap_read(aqt->regmap, AQT1000_ANA_MBHC_RESULT_2, &val);
if (val & 0x80)
break;
}
val = val << 0x8;
regmap_read(aqt->regmap, AQT1000_ANA_MBHC_RESULT_1, &val1);
val |= val1;
regmap_update_bits(aqt->regmap, AQT1000_ANA_MBHC_ZDET, 0x20, 0x00);
x1 = AQT_MBHC_GET_X1(val);
c1 = AQT_MBHC_GET_C1(val);
/* If ramp is not complete, give additional 5ms */
if ((c1 < 2) && x1)
usleep_range(5000, 5050);
if (!c1 || !x1) {
dev_dbg(aqt->dev,
"%s: Impedance detect ramp error, c1=%d, x1=0x%x\n",
__func__, c1, x1);
goto ramp_down;
}
d1 = d1_a[c1];
denom = (x1 * d1) - (1 << (14 - noff));
if (denom > 0)
*zdet = (AQT_MBHC_ZDET_CONST * 1000) / denom;
else if (x1 < minCode_param[noff])
*zdet = AQT_ZDET_FLOATING_IMPEDANCE;
dev_dbg(aqt->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n",
__func__, d1, c1, x1, *zdet);
ramp_down:
i = 0;
while (x1) {
regmap_bulk_read(aqt->regmap,
AQT1000_ANA_MBHC_RESULT_1, (u8 *)&val, 2);
x1 = AQT_MBHC_GET_X1(val);
i++;
if (i == AQT_ZDET_NUM_MEASUREMENTS)
break;
}
}
static void aqt_mbhc_zdet_ramp(struct snd_soc_component *component,
struct aqt_mbhc_zdet_param *zdet_param,
int32_t *zl, int32_t *zr, s16 *d1_a)
{
struct aqt1000 *aqt = dev_get_drvdata(component->dev);
int32_t zdet = 0;
snd_soc_component_update_bits(component,
AQT1000_MBHC_NEW_ZDET_ANA_CTL, 0x70,
zdet_param->ldo_ctl << 4);
snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_BTN5,
0xFC, zdet_param->btn5);
snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_BTN6,
0xFC, zdet_param->btn6);
snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_BTN7,
0xFC, zdet_param->btn7);
snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_ZDET_ANA_CTL,
0x0F, zdet_param->noff);
snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_ZDET_RAMP_CTL,
0x0F, zdet_param->nshift);
if (!zl)
goto z_right;
/* Start impedance measurement for HPH_L */
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_ZDET, 0x80, 0x80);
dev_dbg(aqt->dev, "%s: ramp for HPH_L, noff = %d\n",
__func__, zdet_param->noff);
aqt_mbhc_get_result_params(aqt, d1_a, zdet_param->noff, &zdet);
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_ZDET, 0x80, 0x00);
*zl = zdet;
z_right:
if (!zr)
return;
/* Start impedance measurement for HPH_R */
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_ZDET, 0x40, 0x40);
dev_dbg(aqt->dev, "%s: ramp for HPH_R, noff = %d\n",
__func__, zdet_param->noff);
aqt_mbhc_get_result_params(aqt, d1_a, zdet_param->noff, &zdet);
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_ZDET, 0x40, 0x00);
*zr = zdet;
}
static inline void aqt_wcd_mbhc_qfuse_cal(struct snd_soc_component *component,
int32_t *z_val, int flag_l_r)
{
s16 q1;
int q1_cal;
if (*z_val < (AQT_ZDET_VAL_400/1000))
q1 = snd_soc_component_read32(component,
AQT1000_CHIP_CFG0_EFUSE_VAL_OUT1 + (2 * flag_l_r));
else
q1 = snd_soc_component_read32(component,
AQT1000_CHIP_CFG0_EFUSE_VAL_OUT2 + (2 * flag_l_r));
if (q1 & 0x80)
q1_cal = (10000 - ((q1 & 0x7F) * 25));
else
q1_cal = (10000 + (q1 * 25));
if (q1_cal > 0)
*z_val = ((*z_val) * 10000) / q1_cal;
}
static void aqt_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl,
uint32_t *zr)
{
struct snd_soc_component *component = mbhc->component;
struct aqt1000 *aqt = dev_get_drvdata(component->dev);
s16 reg0, reg1, reg2, reg3, reg4;
int32_t z1L, z1R, z1Ls;
int zMono, z_diff1, z_diff2;
bool is_fsm_disable = false;
struct aqt_mbhc_zdet_param zdet_param[] = {
{4, 0, 4, 0x08, 0x14, 0x18}, /* < 32ohm */
{2, 0, 3, 0x18, 0x7C, 0x90}, /* 32ohm < Z < 400ohm */
{1, 4, 5, 0x18, 0x7C, 0x90}, /* 400ohm < Z < 1200ohm */
{1, 6, 7, 0x18, 0x7C, 0x90}, /* >1200ohm */
};
struct aqt_mbhc_zdet_param *zdet_param_ptr = NULL;
s16 d1_a[][4] = {
{0, 30, 90, 30},
{0, 30, 30, 5},
{0, 30, 30, 5},
{0, 30, 30, 5},
};
s16 *d1 = NULL;
WCD_MBHC_RSC_ASSERT_LOCKED(mbhc);
reg0 = snd_soc_component_read32(component, AQT1000_ANA_MBHC_BTN5);
reg1 = snd_soc_component_read32(component, AQT1000_ANA_MBHC_BTN6);
reg2 = snd_soc_component_read32(component, AQT1000_ANA_MBHC_BTN7);
reg3 = snd_soc_component_read32(component, AQT1000_MBHC_CTL_CLK);
reg4 = snd_soc_component_read32(component,
AQT1000_MBHC_NEW_ZDET_ANA_CTL);
if (snd_soc_component_read32(component,
AQT1000_ANA_MBHC_ELECT) & 0x80) {
is_fsm_disable = true;
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_ELECT, 0x80, 0x00);
}
/* For NO-jack, disable L_DET_EN before Z-det measurements */
if (mbhc->hphl_swh)
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_MECH, 0x80, 0x00);
/* Turn off 100k pull down on HPHL */
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_MECH, 0x01, 0x00);
/* First get impedance on Left */
d1 = d1_a[1];
zdet_param_ptr = &zdet_param[1];
aqt_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
if (!AQT_MBHC_IS_SECOND_RAMP_REQUIRED(z1L))
goto left_ch_impedance;
/* Second ramp for left ch */
if (z1L < AQT_ZDET_VAL_32) {
zdet_param_ptr = &zdet_param[0];
d1 = d1_a[0];
} else if ((z1L > AQT_ZDET_VAL_400) && (z1L <= AQT_ZDET_VAL_1200)) {
zdet_param_ptr = &zdet_param[2];
d1 = d1_a[2];
} else if (z1L > AQT_ZDET_VAL_1200) {
zdet_param_ptr = &zdet_param[3];
d1 = d1_a[3];
}
aqt_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
left_ch_impedance:
if ((z1L == AQT_ZDET_FLOATING_IMPEDANCE) ||
(z1L > AQT_ZDET_VAL_100K)) {
*zl = AQT_ZDET_FLOATING_IMPEDANCE;
zdet_param_ptr = &zdet_param[1];
d1 = d1_a[1];
} else {
*zl = z1L/1000;
aqt_wcd_mbhc_qfuse_cal(component, zl, 0);
}
dev_dbg(component->dev, "%s: impedance on HPH_L = %d(ohms)\n",
__func__, *zl);
/* Start of right impedance ramp and calculation */
aqt_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1);
if (AQT_MBHC_IS_SECOND_RAMP_REQUIRED(z1R)) {
if (((z1R > AQT_ZDET_VAL_1200) &&
(zdet_param_ptr->noff == 0x6)) ||
((*zl) != AQT_ZDET_FLOATING_IMPEDANCE))
goto right_ch_impedance;
/* Second ramp for right ch */
if (z1R < AQT_ZDET_VAL_32) {
zdet_param_ptr = &zdet_param[0];
d1 = d1_a[0];
} else if ((z1R > AQT_ZDET_VAL_400) &&
(z1R <= AQT_ZDET_VAL_1200)) {
zdet_param_ptr = &zdet_param[2];
d1 = d1_a[2];
} else if (z1R > AQT_ZDET_VAL_1200) {
zdet_param_ptr = &zdet_param[3];
d1 = d1_a[3];
}
aqt_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1);
}
right_ch_impedance:
if ((z1R == AQT_ZDET_FLOATING_IMPEDANCE) ||
(z1R > AQT_ZDET_VAL_100K)) {
*zr = AQT_ZDET_FLOATING_IMPEDANCE;
} else {
*zr = z1R/1000;
aqt_wcd_mbhc_qfuse_cal(component, zr, 1);
}
dev_dbg(component->dev, "%s: impedance on HPH_R = %d(ohms)\n",
__func__, *zr);
/* Mono/stereo detection */
if ((*zl == AQT_ZDET_FLOATING_IMPEDANCE) &&
(*zr == AQT_ZDET_FLOATING_IMPEDANCE)) {
dev_dbg(component->dev,
"%s: plug type is invalid or extension cable\n",
__func__);
goto zdet_complete;
}
if ((*zl == AQT_ZDET_FLOATING_IMPEDANCE) ||
(*zr == AQT_ZDET_FLOATING_IMPEDANCE) ||
((*zl < WCD_MONO_HS_MIN_THR) && (*zr > WCD_MONO_HS_MIN_THR)) ||
((*zl > WCD_MONO_HS_MIN_THR) && (*zr < WCD_MONO_HS_MIN_THR))) {
dev_dbg(component->dev,
"%s: Mono plug type with one ch floating or shorted to GND\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_MONO;
goto zdet_complete;
}
snd_soc_component_update_bits(component, AQT1000_HPH_R_ATEST,
0x02, 0x02);
snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2,
0x40, 0x01);
if (*zl < (AQT_ZDET_VAL_32/1000))
aqt_mbhc_zdet_ramp(component, &zdet_param[0], &z1Ls, NULL, d1);
else
aqt_mbhc_zdet_ramp(component, &zdet_param[1], &z1Ls, NULL, d1);
snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2,
0x40, 0x00);
snd_soc_component_update_bits(component, AQT1000_HPH_R_ATEST,
0x02, 0x00);
z1Ls /= 1000;
aqt_wcd_mbhc_qfuse_cal(component, &z1Ls, 0);
/* Parallel of left Z and 9 ohm pull down resistor */
zMono = ((*zl) * 9) / ((*zl) + 9);
z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls);
z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl));
if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) {
dev_dbg(component->dev, "%s: stereo plug type detected\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_STEREO;
} else {
dev_dbg(component->dev, "%s: MONO plug type detected\n",
__func__);
mbhc->hph_type = WCD_MBHC_HPH_MONO;
}
zdet_complete:
snd_soc_component_write(component, AQT1000_ANA_MBHC_BTN5, reg0);
snd_soc_component_write(component, AQT1000_ANA_MBHC_BTN6, reg1);
snd_soc_component_write(component, AQT1000_ANA_MBHC_BTN7, reg2);
/* Turn on 100k pull down on HPHL */
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_MECH, 0x01, 0x01);
/* For NO-jack, re-enable L_DET_EN after Z-det measurements */
if (mbhc->hphl_swh)
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_MECH, 0x80, 0x80);
snd_soc_component_write(component, AQT1000_MBHC_NEW_ZDET_ANA_CTL,
reg4);
snd_soc_component_write(component, AQT1000_MBHC_CTL_CLK, reg3);
if (is_fsm_disable)
regmap_update_bits(aqt->regmap,
AQT1000_ANA_MBHC_ELECT, 0x80, 0x80);
}
static void aqt_mbhc_gnd_det_ctrl(struct snd_soc_component *component,
bool enable)
{
if (enable) {
snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH,
0x02, 0x02);
snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH,
0x40, 0x40);
} else {
snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH,
0x40, 0x00);
snd_soc_component_update_bits(component, AQT1000_ANA_MBHC_MECH,
0x02, 0x00);
}
}
static void aqt_mbhc_hph_pull_down_ctrl(struct snd_soc_component *component,
bool enable)
{
if (enable) {
snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2,
0x40, 0x40);
snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2,
0x10, 0x10);
} else {
snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2,
0x40, 0x00);
snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL2,
0x10, 0x00);
}
}
static void aqt_mbhc_moisture_config(struct wcd_mbhc *mbhc)
{
struct snd_soc_component *component = mbhc->component;
if ((mbhc->moist_rref == R_OFF) ||
(mbhc->mbhc_cfg->enable_usbc_analog)) {
snd_soc_component_update_bits(component,
AQT1000_MBHC_NEW_CTL_2,
0x0C, R_OFF << 2);
return;
}
/* Do not enable moisture detection if jack type is NC */
if (!mbhc->hphl_swh) {
dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
__func__);
snd_soc_component_update_bits(component,
AQT1000_MBHC_NEW_CTL_2,
0x0C, R_OFF << 2);
return;
}
snd_soc_component_update_bits(component, AQT1000_MBHC_NEW_CTL_2,
0x0C, mbhc->moist_rref << 2);
}
static void aqt_update_anc_state(struct snd_soc_component *component,
bool enable, int anc_num)
{
if (enable)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0 + (20 * anc_num),
0x10, 0x10);
else
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0 + (20 * anc_num),
0x10, 0x00);
}
static bool aqt_is_anc_on(struct wcd_mbhc *mbhc)
{
bool anc_on = false;
u16 ancl, ancr;
ancl =
(snd_soc_component_read32(mbhc->component,
AQT1000_CDC_RX1_RX_PATH_CFG0)) & 0x10;
ancr =
(snd_soc_component_read32(mbhc->component,
AQT1000_CDC_RX2_RX_PATH_CFG0)) & 0x10;
anc_on = !!(ancl | ancr);
return anc_on;
}
static const struct wcd_mbhc_cb mbhc_cb = {
.request_irq = aqt_mbhc_request_irq,
.irq_control = aqt_mbhc_irq_control,
.free_irq = aqt_mbhc_free_irq,
.clk_setup = aqt_mbhc_clk_setup,
.map_btn_code_to_num = aqt_mbhc_btn_to_num,
.mbhc_bias = aqt_mbhc_mbhc_bias_control,
.set_btn_thr = aqt_mbhc_program_btn_thr,
.lock_sleep = aqt_mbhc_lock_sleep,
.register_notifier = aqt_mbhc_register_notifier,
.micbias_enable_status = aqt_mbhc_micb_en_status,
.hph_pa_on_status = aqt_mbhc_hph_pa_on_status,
.hph_pull_up_control_v2 = aqt_mbhc_hph_l_pull_up_control,
.mbhc_micbias_control = aqt_mbhc_request_micbias,
.mbhc_micb_ramp_control = aqt_mbhc_micb_ramp_control,
.get_hwdep_fw_cal = aqt_get_hwdep_fw_cal,
.mbhc_micb_ctrl_thr_mic = aqt_mbhc_micb_ctrl_threshold_mic,
.compute_impedance = aqt_wcd_mbhc_calc_impedance,
.mbhc_gnd_det_ctrl = aqt_mbhc_gnd_det_ctrl,
.hph_pull_down_ctrl = aqt_mbhc_hph_pull_down_ctrl,
.mbhc_moisture_config = aqt_mbhc_moisture_config,
.update_anc_state = aqt_update_anc_state,
.is_anc_on = aqt_is_anc_on,
};
static int aqt_get_hph_type(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
struct aqt1000_mbhc *aqt_mbhc = aqt->mbhc;
struct wcd_mbhc *mbhc;
if (!aqt_mbhc) {
dev_err(component->dev, "%s: mbhc not initialized!\n",
__func__);
return -EINVAL;
}
mbhc = &aqt_mbhc->wcd_mbhc;
ucontrol->value.integer.value[0] = (u32) mbhc->hph_type;
dev_dbg(component->dev, "%s: hph_type = %u\n", __func__,
mbhc->hph_type);
return 0;
}
static int aqt_hph_impedance_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
uint32_t zl, zr;
bool hphr;
struct soc_multi_mixer_control *mc;
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
struct aqt1000_mbhc *aqt_mbhc = aqt->mbhc;
if (!aqt_mbhc) {
dev_err(component->dev, "%s: mbhc not initialized!\n",
__func__);
return -EINVAL;
}
mc = (struct soc_multi_mixer_control *)(kcontrol->private_value);
hphr = mc->shift;
wcd_mbhc_get_impedance(&aqt_mbhc->wcd_mbhc, &zl, &zr);
dev_dbg(component->dev, "%s: zl=%u(ohms), zr=%u(ohms)\n", __func__,
zl, zr);
ucontrol->value.integer.value[0] = hphr ? zr : zl;
return 0;
}
static const struct snd_kcontrol_new hph_type_detect_controls[] = {
SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0,
aqt_get_hph_type, NULL),
};
static const struct snd_kcontrol_new impedance_detect_controls[] = {
SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0,
aqt_hph_impedance_get, NULL),
SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0,
aqt_hph_impedance_get, NULL),
};
/*
* aqt_mbhc_get_impedance: get impedance of headphone left and right channels
* @aqt_mbhc: handle to struct aqt_mbhc *
* @zl: handle to left-ch impedance
* @zr: handle to right-ch impedance
* return 0 for success or error code in case of failure
*/
int aqt_mbhc_get_impedance(struct aqt1000_mbhc *aqt_mbhc,
uint32_t *zl, uint32_t *zr)
{
if (!aqt_mbhc) {
pr_err("%s: mbhc not initialized!\n", __func__);
return -EINVAL;
}
if (!zl || !zr) {
pr_err("%s: zl or zr null!\n", __func__);
return -EINVAL;
}
return wcd_mbhc_get_impedance(&aqt_mbhc->wcd_mbhc, zl, zr);
}
EXPORT_SYMBOL(aqt_mbhc_get_impedance);
/*
* aqt_mbhc_hs_detect: starts mbhc insertion/removal functionality
* @component: handle to snd_soc_component *
* @mbhc_cfg: handle to mbhc configuration structure
* return 0 if mbhc_start is success or error code in case of failure
*/
int aqt_mbhc_hs_detect(struct snd_soc_component *component,
struct wcd_mbhc_config *mbhc_cfg)
{
struct aqt1000 *aqt;
struct aqt1000_mbhc *aqt_mbhc;
if (!component) {
pr_err("%s: codec is NULL\n", __func__);
return -EINVAL;
}
aqt = snd_soc_component_get_drvdata(component);
if (!aqt) {
pr_err("%s: aqt is NULL\n", __func__);
return -EINVAL;
}
aqt_mbhc = aqt->mbhc;
if (!aqt_mbhc) {
dev_err(component->dev, "%s: mbhc not initialized!\n",
__func__);
return -EINVAL;
}
return wcd_mbhc_start(&aqt_mbhc->wcd_mbhc, mbhc_cfg);
}
EXPORT_SYMBOL(aqt_mbhc_hs_detect);
/*
* aqt_mbhc_hs_detect_exit: stop mbhc insertion/removal functionality
* @component: handle to snd_soc_component *
*/
void aqt_mbhc_hs_detect_exit(struct snd_soc_component *component)
{
struct aqt1000 *aqt;
struct aqt1000_mbhc *aqt_mbhc;
if (!component) {
pr_err("%s: codec is NULL\n", __func__);
return;
}
aqt = snd_soc_component_get_drvdata(component);
if (!aqt) {
pr_err("%s: aqt is NULL\n", __func__);
return;
}
aqt_mbhc = aqt->mbhc;
if (!aqt_mbhc) {
dev_err(component->dev, "%s: mbhc not initialized!\n",
__func__);
return;
}
wcd_mbhc_stop(&aqt_mbhc->wcd_mbhc);
}
EXPORT_SYMBOL(aqt_mbhc_hs_detect_exit);
/*
* aqt_mbhc_post_ssr_init: initialize mbhc for aqt post subsystem restart
* @mbhc: poniter to aqt_mbhc structure
* @component: handle to snd_soc_component *
*
* return 0 if mbhc_init is success or error code in case of failure
*/
int aqt_mbhc_post_ssr_init(struct aqt1000_mbhc *mbhc,
struct snd_soc_component *component)
{
int ret;
struct wcd_mbhc *wcd_mbhc;
if (!mbhc || !component)
return -EINVAL;
wcd_mbhc = &mbhc->wcd_mbhc;
if (wcd_mbhc == NULL) {
pr_err("%s: wcd_mbhc is NULL\n", __func__);
return -EINVAL;
}
wcd_mbhc_deinit(wcd_mbhc);
ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids,
wcd_mbhc_registers, AQT_ZDET_SUPPORTED);
if (ret) {
dev_err(component->dev, "%s: mbhc initialization failed\n",
__func__);
goto done;
}
done:
return ret;
}
EXPORT_SYMBOL(aqt_mbhc_post_ssr_init);
/*
* aqt_mbhc_init: initialize mbhc for aqt
* @mbhc: poniter to aqt_mbhc struct pointer to store the configs
* @component: handle to snd_soc_component *
* @fw_data: handle to firmware data
*
* return 0 if mbhc_init is success or error code in case of failure
*/
int aqt_mbhc_init(struct aqt1000_mbhc **mbhc,
struct snd_soc_component *component,
struct fw_info *fw_data)
{
struct aqt1000_mbhc *aqt_mbhc;
struct wcd_mbhc *wcd_mbhc;
int ret;
if (!component) {
pr_err("%s: codec is NULL\n", __func__);
return -EINVAL;
}
aqt_mbhc = devm_kzalloc(component->dev, sizeof(struct aqt1000_mbhc),
GFP_KERNEL);
if (!aqt_mbhc)
return -ENOMEM;
aqt_mbhc->aqt = dev_get_drvdata(component->dev);
aqt_mbhc->fw_data = fw_data;
BLOCKING_INIT_NOTIFIER_HEAD(&aqt_mbhc->notifier);
wcd_mbhc = &aqt_mbhc->wcd_mbhc;
if (wcd_mbhc == NULL) {
pr_err("%s: wcd_mbhc is NULL\n", __func__);
ret = -EINVAL;
goto err;
}
/* Setting default mbhc detection logic to ADC */
wcd_mbhc->mbhc_detection_logic = WCD_DETECTION_ADC;
ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb,
&intr_ids, wcd_mbhc_registers,
AQT_ZDET_SUPPORTED);
if (ret) {
dev_err(component->dev, "%s: mbhc initialization failed\n",
__func__);
goto err;
}
(*mbhc) = aqt_mbhc;
snd_soc_add_component_controls(component, impedance_detect_controls,
ARRAY_SIZE(impedance_detect_controls));
snd_soc_add_component_controls(component, hph_type_detect_controls,
ARRAY_SIZE(hph_type_detect_controls));
return 0;
err:
devm_kfree(component->dev, aqt_mbhc);
return ret;
}
EXPORT_SYMBOL(aqt_mbhc_init);
/*
* aqt_mbhc_deinit: deinitialize mbhc for aqt
* @component: handle to snd_soc_component *
*/
void aqt_mbhc_deinit(struct snd_soc_component *component)
{
struct aqt1000 *aqt;
struct aqt1000_mbhc *aqt_mbhc;
if (!component) {
pr_err("%s: component is NULL\n", __func__);
return;
}
aqt = snd_soc_component_get_drvdata(component);
if (!aqt) {
pr_err("%s: aqt is NULL\n", __func__);
return;
}
aqt_mbhc = aqt->mbhc;
if (aqt_mbhc) {
wcd_mbhc_deinit(&aqt_mbhc->wcd_mbhc);
devm_kfree(component->dev, aqt_mbhc);
}
}
EXPORT_SYMBOL(aqt_mbhc_deinit);