blob: a92a1541c4184b8a891eb53296df7c2bd323c727 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/debugfs.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/gpio.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include <sound/info.h>
#include <asoc/wcdcal-hwdep.h>
#include "aqt1000-registers.h"
#include "aqt1000.h"
#include "aqt1000-api.h"
#include "aqt1000-mbhc.h"
#include "aqt1000-routing.h"
#include "aqt1000-internal.h"
#define DRV_NAME "aqt_codec"
#define AQT1000_TX_UNMUTE_DELAY_MS 40
#define TX_HPF_CUT_OFF_FREQ_MASK 0x60
#define CF_MIN_3DB_4HZ 0x0
#define CF_MIN_3DB_75HZ 0x1
#define CF_MIN_3DB_150HZ 0x2
#define AQT_VERSION_ENTRY_SIZE 17
#define AQT_VOUT_CTL_TO_MICB(x) (1000 + x *50)
static struct interp_sample_rate sr_val_tbl[] = {
{8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
{192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
{176400, 0xB}, {352800, 0xC},
};
static int tx_unmute_delay = AQT1000_TX_UNMUTE_DELAY_MS;
module_param(tx_unmute_delay, int, 0664);
MODULE_PARM_DESC(tx_unmute_delay, "delay to unmute the tx path");
static void aqt_codec_set_tx_hold(struct snd_soc_component *, u16, bool);
/* Cutoff frequency for high pass filter */
static const char * const cf_text[] = {
"CF_NEG_3DB_4HZ", "CF_NEG_3DB_75HZ", "CF_NEG_3DB_150HZ"
};
static const char * const rx_cf_text[] = {
"CF_NEG_3DB_4HZ", "CF_NEG_3DB_75HZ", "CF_NEG_3DB_150HZ",
"CF_NEG_3DB_0P48HZ"
};
struct aqt1000_anc_header {
u32 reserved[3];
u32 num_anc_slots;
};
static SOC_ENUM_SINGLE_DECL(cf_dec0_enum, AQT1000_CDC_TX0_TX_PATH_CFG0, 5,
cf_text);
static SOC_ENUM_SINGLE_DECL(cf_dec1_enum, AQT1000_CDC_TX1_TX_PATH_CFG0, 5,
cf_text);
static SOC_ENUM_SINGLE_DECL(cf_dec2_enum, AQT1000_CDC_TX2_TX_PATH_CFG0, 5,
cf_text);
static SOC_ENUM_SINGLE_DECL(cf_int1_1_enum, AQT1000_CDC_RX1_RX_PATH_CFG2, 0,
rx_cf_text);
static SOC_ENUM_SINGLE_DECL(cf_int1_2_enum, AQT1000_CDC_RX1_RX_PATH_MIX_CFG, 2,
rx_cf_text);
static SOC_ENUM_SINGLE_DECL(cf_int2_1_enum, AQT1000_CDC_RX2_RX_PATH_CFG2, 0,
rx_cf_text);
static SOC_ENUM_SINGLE_DECL(cf_int2_2_enum, AQT1000_CDC_RX2_RX_PATH_MIX_CFG, 2,
rx_cf_text);
static const DECLARE_TLV_DB_SCALE(hph_gain, -3000, 150, 0);
static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 150, 0);
static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
static int aqt_get_anc_slot(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = aqt->anc_slot;
return 0;
}
static int aqt_put_anc_slot(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
aqt->anc_slot = ucontrol->value.integer.value[0];
return 0;
}
static int aqt_get_anc_func(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = (aqt->anc_func == true ? 1 : 0);
return 0;
}
static int aqt_put_anc_func(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
struct snd_soc_dapm_context *dapm =
snd_soc_component_get_dapm(component);
mutex_lock(&aqt->codec_mutex);
aqt->anc_func = (!ucontrol->value.integer.value[0] ? false : true);
dev_dbg(component->dev, "%s: anc_func %x", __func__, aqt->anc_func);
if (aqt->anc_func == true) {
snd_soc_dapm_enable_pin(dapm, "ANC HPHL PA");
snd_soc_dapm_enable_pin(dapm, "ANC HPHR PA");
snd_soc_dapm_enable_pin(dapm, "ANC HPHL");
snd_soc_dapm_enable_pin(dapm, "ANC HPHR");
snd_soc_dapm_disable_pin(dapm, "HPHL PA");
snd_soc_dapm_disable_pin(dapm, "HPHR PA");
snd_soc_dapm_disable_pin(dapm, "HPHL");
snd_soc_dapm_disable_pin(dapm, "HPHR");
} else {
snd_soc_dapm_disable_pin(dapm, "ANC HPHL PA");
snd_soc_dapm_disable_pin(dapm, "ANC HPHR PA");
snd_soc_dapm_disable_pin(dapm, "ANC HPHL");
snd_soc_dapm_disable_pin(dapm, "ANC HPHR");
snd_soc_dapm_enable_pin(dapm, "HPHL");
snd_soc_dapm_enable_pin(dapm, "HPHR");
snd_soc_dapm_enable_pin(dapm, "HPHL PA");
snd_soc_dapm_enable_pin(dapm, "HPHR PA");
}
mutex_unlock(&aqt->codec_mutex);
snd_soc_dapm_sync(dapm);
return 0;
}
static const char *const aqt_anc_func_text[] = {"OFF", "ON"};
static const struct soc_enum aqt_anc_func_enum =
SOC_ENUM_SINGLE_EXT(2, aqt_anc_func_text);
static int aqt_rx_hph_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = aqt->hph_mode;
return 0;
}
static int aqt_rx_hph_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
u32 mode_val;
mode_val = ucontrol->value.enumerated.item[0];
dev_dbg(component->dev, "%s: mode: %d\n", __func__, mode_val);
if (mode_val == 0) {
dev_warn(component->dev, "%s:Invalid HPH Mode, default to Cls-H LOHiFi\n",
__func__);
mode_val = CLS_H_LOHIFI;
}
aqt->hph_mode = mode_val;
return 0;
}
static const char * const rx_hph_mode_mux_text[] = {
"CLS_H_INVALID", "CLS_H_HIFI", "CLS_H_LP", "CLS_AB", "CLS_H_LOHIFI",
"CLS_H_ULP", "CLS_AB_HIFI",
};
static const struct soc_enum rx_hph_mode_mux_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(rx_hph_mode_mux_text),
rx_hph_mode_mux_text);
static int aqt_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] = (snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_CTL) &
(1 << band_idx)) != 0;
dev_dbg(component->dev, "%s: IIR0 band #%d enable %d\n", __func__,
band_idx, (uint32_t)ucontrol->value.integer.value[0]);
return 0;
}
static int aqt_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
bool iir_band_en_status;
int value = ucontrol->value.integer.value[0];
/* Mask first 5 bits, 6-8 are reserved */
snd_soc_component_update_bits(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_CTL,
(1 << band_idx), (value << band_idx));
iir_band_en_status = ((snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_CTL) &
(1 << band_idx)) != 0);
dev_dbg(component->dev, "%s: IIR0 band #%d enable %d\n", __func__,
band_idx, iir_band_en_status);
return 0;
}
static uint32_t aqt_get_iir_band_coeff(struct snd_soc_component *component,
int band_idx, int coeff_idx)
{
uint32_t value = 0;
/* Address does not automatically update if reading */
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B1_CTL,
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t)) & 0x7F);
value |= snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL);
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B1_CTL,
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 1) & 0x7F);
value |= (snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL) << 8);
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B1_CTL,
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 2) & 0x7F);
value |= (snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL) << 16);
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B1_CTL,
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 3) & 0x7F);
/* Mask bits top 2 bits since they are reserved */
value |= ((snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL)
& 0x3F) << 24);
return value;
}
static int aqt_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
aqt_get_iir_band_coeff(component, band_idx, 0);
ucontrol->value.integer.value[1] =
aqt_get_iir_band_coeff(component, band_idx, 1);
ucontrol->value.integer.value[2] =
aqt_get_iir_band_coeff(component, band_idx, 2);
ucontrol->value.integer.value[3] =
aqt_get_iir_band_coeff(component, band_idx, 3);
ucontrol->value.integer.value[4] =
aqt_get_iir_band_coeff(component, band_idx, 4);
dev_dbg(component->dev, "%s: IIR band #%d b0 = 0x%x\n"
"%s: IIR band #%d b1 = 0x%x\n"
"%s: IIR band #%d b2 = 0x%x\n"
"%s: IIR band #%d a1 = 0x%x\n"
"%s: IIR band #%d a2 = 0x%x\n",
__func__, band_idx,
(uint32_t)ucontrol->value.integer.value[0],
__func__, band_idx,
(uint32_t)ucontrol->value.integer.value[1],
__func__, band_idx,
(uint32_t)ucontrol->value.integer.value[2],
__func__, band_idx,
(uint32_t)ucontrol->value.integer.value[3],
__func__, band_idx,
(uint32_t)ucontrol->value.integer.value[4]);
return 0;
}
static void aqt_set_iir_band_coeff(struct snd_soc_component *component,
int band_idx, uint32_t value)
{
snd_soc_component_write(component,
(AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL),
(value & 0xFF));
snd_soc_component_write(component,
(AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL),
(value >> 8) & 0xFF);
snd_soc_component_write(component,
(AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL),
(value >> 16) & 0xFF);
/* Mask top 2 bits, 7-8 are reserved */
snd_soc_component_write(component,
(AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B2_CTL),
(value >> 24) & 0x3F);
}
static int aqt_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int coeff_idx;
/*
* Mask top bit it is reserved
* Updates addr automatically for each B2 write
*/
snd_soc_component_write(component,
(AQT1000_CDC_SIDETONE_IIR0_IIR_COEF_B1_CTL),
(band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
for (coeff_idx = 0; coeff_idx < AQT1000_CDC_SIDETONE_IIR_COEFF_MAX;
coeff_idx++) {
aqt_set_iir_band_coeff(component, band_idx,
ucontrol->value.integer.value[coeff_idx]);
}
dev_dbg(component->dev, "%s: IIR band #%d b0 = 0x%x\n"
"%s: IIR band #%d b1 = 0x%x\n"
"%s: IIR band #%d b2 = 0x%x\n"
"%s: IIR band #%d a1 = 0x%x\n"
"%s: IIR band #%d a2 = 0x%x\n",
__func__, band_idx,
aqt_get_iir_band_coeff(component, band_idx, 0),
__func__, band_idx,
aqt_get_iir_band_coeff(component, band_idx, 1),
__func__, band_idx,
aqt_get_iir_band_coeff(component, band_idx, 2),
__func__, band_idx,
aqt_get_iir_band_coeff(component, band_idx, 3),
__func__, band_idx,
aqt_get_iir_band_coeff(component, band_idx, 4));
return 0;
}
static int aqt_compander_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
int comp = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = aqt->comp_enabled[comp];
return 0;
}
static int aqt_compander_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int comp = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
__func__, comp + 1, aqt->comp_enabled[comp], value);
aqt->comp_enabled[comp] = value;
/* Any specific register configuration for compander */
switch (comp) {
case COMPANDER_1:
/* Set Gain Source Select based on compander enable/disable */
snd_soc_component_update_bits(component,
AQT1000_HPH_L_EN, 0x20,
(value ? 0x00 : 0x20));
break;
case COMPANDER_2:
snd_soc_component_update_bits(component,
AQT1000_HPH_R_EN, 0x20,
(value ? 0x00 : 0x20));
break;
default:
/*
* if compander is not enabled for any interpolator,
* it does not cause any audio failure, so do not
* return error in this case, but just print a log
*/
dev_warn(component->dev, "%s: unknown compander: %d\n",
__func__, comp);
};
return 0;
}
static int aqt_hph_asrc_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int index = -EINVAL;
if (!strcmp(kcontrol->id.name, "AQT ASRC0 Output Mode"))
index = ASRC0;
if (!strcmp(kcontrol->id.name, "AQT ASRC1 Output Mode"))
index = ASRC1;
if (aqt && (index >= 0) && (index < ASRC_MAX))
aqt->asrc_output_mode[index] =
ucontrol->value.integer.value[0];
return 0;
}
static int aqt_hph_asrc_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int val = 0;
int index = -EINVAL;
if (!strcmp(kcontrol->id.name, "AQT ASRC0 Output Mode"))
index = ASRC0;
if (!strcmp(kcontrol->id.name, "AQT ASRC1 Output Mode"))
index = ASRC1;
if (aqt && (index >= 0) && (index < ASRC_MAX))
val = aqt->asrc_output_mode[index];
ucontrol->value.integer.value[0] = val;
return 0;
}
static const char * const asrc_mode_text[] = {
"INT", "FRAC"
};
static SOC_ENUM_SINGLE_EXT_DECL(asrc_mode_enum, asrc_mode_text);
static int aqt_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int val = 0;
if (aqt)
val = aqt->idle_det_cfg.hph_idle_detect_en;
ucontrol->value.integer.value[0] = val;
return 0;
}
static int aqt_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
if (aqt)
aqt->idle_det_cfg.hph_idle_detect_en =
ucontrol->value.integer.value[0];
return 0;
}
static const char * const hph_idle_detect_text[] = {
"OFF", "ON"
};
static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
static int aqt_amic_pwr_lvl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
u16 amic_reg = 0;
if (!strcmp(kcontrol->id.name, "AQT AMIC_1_2 PWR MODE"))
amic_reg = AQT1000_ANA_AMIC1;
if (!strcmp(kcontrol->id.name, "AQT AMIC_3 PWR MODE"))
amic_reg = AQT1000_ANA_AMIC3;
if (amic_reg)
ucontrol->value.integer.value[0] =
(snd_soc_component_read32(component, amic_reg) &
AQT1000_AMIC_PWR_LVL_MASK) >>
AQT1000_AMIC_PWR_LVL_SHIFT;
return 0;
}
static int aqt_amic_pwr_lvl_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
u32 mode_val;
u16 amic_reg = 0;
mode_val = ucontrol->value.enumerated.item[0];
dev_dbg(component->dev, "%s: mode: %d\n", __func__, mode_val);
if (!strcmp(kcontrol->id.name, "AQT AMIC_1_2 PWR MODE"))
amic_reg = AQT1000_ANA_AMIC1;
if (!strcmp(kcontrol->id.name, "AQT AMIC_3 PWR MODE"))
amic_reg = AQT1000_ANA_AMIC3;
if (amic_reg)
snd_soc_component_update_bits(component, amic_reg,
AQT1000_AMIC_PWR_LVL_MASK,
mode_val << AQT1000_AMIC_PWR_LVL_SHIFT);
return 0;
}
static const char * const amic_pwr_lvl_text[] = {
"LOW_PWR", "DEFAULT", "HIGH_PERF", "HYBRID"
};
static SOC_ENUM_SINGLE_EXT_DECL(amic_pwr_lvl_enum, amic_pwr_lvl_text);
static const struct snd_kcontrol_new aqt_snd_controls[] = {
SOC_SINGLE_TLV("AQT HPHL Volume", AQT1000_HPH_L_EN, 0, 24, 1, hph_gain),
SOC_SINGLE_TLV("AQT HPHR Volume", AQT1000_HPH_R_EN, 0, 24, 1, hph_gain),
SOC_SINGLE_TLV("AQT ADC1 Volume", AQT1000_ANA_AMIC1, 0, 20, 0,
analog_gain),
SOC_SINGLE_TLV("AQT ADC2 Volume", AQT1000_ANA_AMIC2, 0, 20, 0,
analog_gain),
SOC_SINGLE_TLV("AQT ADC3 Volume", AQT1000_ANA_AMIC3, 0, 20, 0,
analog_gain),
SOC_SINGLE_SX_TLV("AQT RX1 Digital Volume", AQT1000_CDC_RX1_RX_VOL_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("AQT RX2 Digital Volume", AQT1000_CDC_RX2_RX_VOL_CTL,
0, -84, 40, digital_gain),
SOC_SINGLE_SX_TLV("AQT DEC0 Volume", AQT1000_CDC_TX0_TX_VOL_CTL, 0,
-84, 40, digital_gain),
SOC_SINGLE_SX_TLV("AQT DEC1 Volume", AQT1000_CDC_TX1_TX_VOL_CTL, 0,
-84, 40, digital_gain),
SOC_SINGLE_SX_TLV("AQT DEC2 Volume", AQT1000_CDC_TX2_TX_VOL_CTL, 0,
-84, 40, digital_gain),
SOC_SINGLE_SX_TLV("AQT IIR0 INP0 Volume",
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B1_CTL, 0, -84, 40,
digital_gain),
SOC_SINGLE_SX_TLV("AQT IIR0 INP1 Volume",
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B2_CTL, 0, -84, 40,
digital_gain),
SOC_SINGLE_SX_TLV("AQT IIR0 INP2 Volume",
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B3_CTL, 0, -84, 40,
digital_gain),
SOC_SINGLE_SX_TLV("AQT IIR0 INP3 Volume",
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B4_CTL, 0, -84, 40,
digital_gain),
SOC_SINGLE_EXT("AQT ANC Slot", SND_SOC_NOPM, 0, 100, 0,
aqt_get_anc_slot, aqt_put_anc_slot),
SOC_ENUM_EXT("AQT ANC Function", aqt_anc_func_enum, aqt_get_anc_func,
aqt_put_anc_func),
SOC_ENUM("AQT TX0 HPF cut off", cf_dec0_enum),
SOC_ENUM("AQT TX1 HPF cut off", cf_dec1_enum),
SOC_ENUM("AQT TX2 HPF cut off", cf_dec2_enum),
SOC_ENUM("AQT RX INT1_1 HPF cut off", cf_int1_1_enum),
SOC_ENUM("AQT RX INT1_2 HPF cut off", cf_int1_2_enum),
SOC_ENUM("AQT RX INT2_1 HPF cut off", cf_int2_1_enum),
SOC_ENUM("AQT RX INT2_2 HPF cut off", cf_int2_2_enum),
SOC_ENUM_EXT("AQT RX HPH Mode", rx_hph_mode_mux_enum,
aqt_rx_hph_mode_get, aqt_rx_hph_mode_put),
SOC_SINGLE_EXT("AQT IIR0 Enable Band1", IIR0, BAND1, 1, 0,
aqt_iir_enable_audio_mixer_get,
aqt_iir_enable_audio_mixer_put),
SOC_SINGLE_EXT("AQT IIR0 Enable Band2", IIR0, BAND2, 1, 0,
aqt_iir_enable_audio_mixer_get,
aqt_iir_enable_audio_mixer_put),
SOC_SINGLE_EXT("AQT IIR0 Enable Band3", IIR0, BAND3, 1, 0,
aqt_iir_enable_audio_mixer_get,
aqt_iir_enable_audio_mixer_put),
SOC_SINGLE_EXT("AQT IIR0 Enable Band4", IIR0, BAND4, 1, 0,
aqt_iir_enable_audio_mixer_get,
aqt_iir_enable_audio_mixer_put),
SOC_SINGLE_EXT("AQT IIR0 Enable Band5", IIR0, BAND5, 1, 0,
aqt_iir_enable_audio_mixer_get,
aqt_iir_enable_audio_mixer_put),
SOC_SINGLE_MULTI_EXT("AQT IIR0 Band1", IIR0, BAND1, 255, 0, 5,
aqt_iir_band_audio_mixer_get, aqt_iir_band_audio_mixer_put),
SOC_SINGLE_MULTI_EXT("AQT IIR0 Band2", IIR0, BAND2, 255, 0, 5,
aqt_iir_band_audio_mixer_get, aqt_iir_band_audio_mixer_put),
SOC_SINGLE_MULTI_EXT("AQT IIR0 Band3", IIR0, BAND3, 255, 0, 5,
aqt_iir_band_audio_mixer_get, aqt_iir_band_audio_mixer_put),
SOC_SINGLE_MULTI_EXT("AQT IIR0 Band4", IIR0, BAND4, 255, 0, 5,
aqt_iir_band_audio_mixer_get, aqt_iir_band_audio_mixer_put),
SOC_SINGLE_MULTI_EXT("AQT IIR0 Band5", IIR0, BAND5, 255, 0, 5,
aqt_iir_band_audio_mixer_get, aqt_iir_band_audio_mixer_put),
SOC_SINGLE_EXT("AQT COMP1 Switch", SND_SOC_NOPM, COMPANDER_1, 1, 0,
aqt_compander_get, aqt_compander_put),
SOC_SINGLE_EXT("AQT COMP2 Switch", SND_SOC_NOPM, COMPANDER_2, 1, 0,
aqt_compander_get, aqt_compander_put),
SOC_ENUM_EXT("AQT ASRC0 Output Mode", asrc_mode_enum,
aqt_hph_asrc_mode_get, aqt_hph_asrc_mode_put),
SOC_ENUM_EXT("AQT ASRC1 Output Mode", asrc_mode_enum,
aqt_hph_asrc_mode_get, aqt_hph_asrc_mode_put),
SOC_ENUM_EXT("AQT HPH Idle Detect", hph_idle_detect_enum,
aqt_hph_idle_detect_get, aqt_hph_idle_detect_put),
SOC_ENUM_EXT("AQT AMIC_1_2 PWR MODE", amic_pwr_lvl_enum,
aqt_amic_pwr_lvl_get, aqt_amic_pwr_lvl_put),
SOC_ENUM_EXT("AQT AMIC_3 PWR MODE", amic_pwr_lvl_enum,
aqt_amic_pwr_lvl_get, aqt_amic_pwr_lvl_put),
};
static int aqt_codec_enable_rx_bias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
aqt->rx_bias_count++;
if (aqt->rx_bias_count == 1) {
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
0x01, 0x01);
}
break;
case SND_SOC_DAPM_POST_PMD:
aqt->rx_bias_count--;
if (!aqt->rx_bias_count)
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES,
0x01, 0x00);
break;
};
dev_dbg(component->dev, "%s: Current RX BIAS user count: %d\n",
__func__, aqt->rx_bias_count);
return 0;
}
/*
* aqt_mbhc_micb_adjust_voltage: adjust specific micbias voltage
* @component: handle to snd_soc_component *
* @req_volt: micbias voltage to be set
* @micb_num: micbias to be set, e.g. micbias1 or micbias2
*
* return 0 if adjustment is success or error code in case of failure
*/
int aqt_mbhc_micb_adjust_voltage(struct snd_soc_component *component,
int req_volt, int micb_num)
{
struct aqt1000 *aqt;
int cur_vout_ctl, req_vout_ctl;
int micb_reg, micb_val, micb_en;
int ret = 0;
if (!component) {
pr_err("%s: Invalid component pointer\n", __func__);
return -EINVAL;
}
if (micb_num != MIC_BIAS_1)
return -EINVAL;
else
micb_reg = AQT1000_ANA_MICB1;
aqt = snd_soc_component_get_drvdata(component);
mutex_lock(&aqt->micb_lock);
/*
* If requested micbias voltage is same as current micbias
* voltage, then just return. Otherwise, adjust voltage as
* per requested value. If micbias is already enabled, then
* to avoid slow micbias ramp-up or down enable pull-up
* momentarily, change the micbias value and then re-enable
* micbias.
*/
micb_val = snd_soc_component_read32(component, micb_reg);
micb_en = (micb_val & 0xC0) >> 6;
cur_vout_ctl = micb_val & 0x3F;
req_vout_ctl = aqt_get_micb_vout_ctl_val(req_volt);
if (req_vout_ctl < 0) {
ret = -EINVAL;
goto exit;
}
if (cur_vout_ctl == req_vout_ctl) {
ret = 0;
goto exit;
}
dev_dbg(component->dev, "%s: micb_num: %d, cur_mv: %d, req_mv: %d, micb_en: %d\n",
__func__, micb_num, AQT_VOUT_CTL_TO_MICB(cur_vout_ctl),
req_volt, micb_en);
if (micb_en == 0x1)
snd_soc_component_update_bits(component, micb_reg, 0xC0, 0x80);
snd_soc_component_update_bits(component, micb_reg, 0x3F, req_vout_ctl);
if (micb_en == 0x1) {
snd_soc_component_update_bits(component, micb_reg, 0xC0, 0x40);
/*
* Add 2ms delay as per HW requirement after enabling
* micbias
*/
usleep_range(2000, 2100);
}
exit:
mutex_unlock(&aqt->micb_lock);
return ret;
}
EXPORT_SYMBOL(aqt_mbhc_micb_adjust_voltage);
/*
* aqt_micbias_control: enable/disable micbias
* @component: handle to snd_soc_component *
* @micb_num: micbias to be enabled/disabled, e.g. micbias1 or micbias2
* @req: control requested, enable/disable or pullup enable/disable
* @is_dapm: triggered by dapm or not
*
* return 0 if control is success or error code in case of failure
*/
int aqt_micbias_control(struct snd_soc_component *component,
int micb_num, int req, bool is_dapm)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
u16 micb_reg;
int pre_off_event = 0, post_off_event = 0;
int post_on_event = 0, post_dapm_off = 0;
int post_dapm_on = 0;
int ret = 0;
switch (micb_num) {
case MIC_BIAS_1:
micb_reg = AQT1000_ANA_MICB1;
pre_off_event = AQT_EVENT_PRE_MICBIAS_1_OFF;
post_off_event = AQT_EVENT_POST_MICBIAS_1_OFF;
post_on_event = AQT_EVENT_POST_MICBIAS_1_ON;
post_dapm_on = AQT_EVENT_POST_DAPM_MICBIAS_1_ON;
post_dapm_off = AQT_EVENT_POST_DAPM_MICBIAS_1_OFF;
break;
default:
dev_err(component->dev, "%s: Invalid micbias number: %d\n",
__func__, micb_num);
return -EINVAL;
}
mutex_lock(&aqt->micb_lock);
switch (req) {
case MICB_PULLUP_ENABLE:
aqt->pullup_ref++;
if ((aqt->pullup_ref == 1) &&
(aqt->micb_ref == 0))
snd_soc_component_update_bits(component, micb_reg,
0xC0, 0x80);
break;
case MICB_PULLUP_DISABLE:
if (aqt->pullup_ref > 0)
aqt->pullup_ref--;
if ((aqt->pullup_ref == 0) &&
(aqt->micb_ref == 0))
snd_soc_component_update_bits(component, micb_reg,
0xC0, 0x00);
break;
case MICB_ENABLE:
aqt->micb_ref++;
if (aqt->micb_ref == 1) {
snd_soc_component_update_bits(component, micb_reg,
0xC0, 0x40);
if (post_on_event && aqt->mbhc)
blocking_notifier_call_chain(
&aqt->mbhc->notifier,
post_on_event,
&aqt->mbhc->wcd_mbhc);
}
if (is_dapm && post_dapm_on && aqt->mbhc)
blocking_notifier_call_chain(&aqt->mbhc->notifier,
post_dapm_on, &aqt->mbhc->wcd_mbhc);
break;
case MICB_DISABLE:
if (aqt->micb_ref > 0)
aqt->micb_ref--;
if ((aqt->micb_ref == 0) &&
(aqt->pullup_ref > 0))
snd_soc_component_update_bits(component, micb_reg,
0xC0, 0x80);
else if ((aqt->micb_ref == 0) &&
(aqt->pullup_ref == 0)) {
if (pre_off_event && aqt->mbhc)
blocking_notifier_call_chain(
&aqt->mbhc->notifier,
pre_off_event,
&aqt->mbhc->wcd_mbhc);
snd_soc_component_update_bits(component, micb_reg,
0xC0, 0x00);
if (post_off_event && aqt->mbhc)
blocking_notifier_call_chain(
&aqt->mbhc->notifier,
post_off_event,
&aqt->mbhc->wcd_mbhc);
}
if (is_dapm && post_dapm_off && aqt->mbhc)
blocking_notifier_call_chain(&aqt->mbhc->notifier,
post_dapm_off, &aqt->mbhc->wcd_mbhc);
break;
default:
dev_err(component->dev, "%s: Invalid micbias request: %d\n",
__func__, req);
ret = -EINVAL;
break;
};
if (!ret)
dev_dbg(component->dev,
"%s: micb_num:%d, micb_ref: %d, pullup_ref: %d\n",
__func__, micb_num, aqt->micb_ref, aqt->pullup_ref);
mutex_unlock(&aqt->micb_lock);
return ret;
}
EXPORT_SYMBOL(aqt_micbias_control);
static int __aqt_codec_enable_micbias(struct snd_soc_dapm_widget *w,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
int micb_num;
dev_dbg(component->dev, "%s: wname: %s, event: %d\n",
__func__, w->name, event);
if (strnstr(w->name, "AQT MIC BIAS1", sizeof("AQT MIC BIAS1")))
micb_num = MIC_BIAS_1;
else
return -EINVAL;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/*
* MIC BIAS can also be requested by MBHC,
* so use ref count to handle micbias pullup
* and enable requests
*/
aqt_micbias_control(component, micb_num, MICB_ENABLE, true);
break;
case SND_SOC_DAPM_POST_PMU:
/* wait for cnp time */
usleep_range(1000, 1100);
break;
case SND_SOC_DAPM_POST_PMD:
aqt_micbias_control(component, micb_num, MICB_DISABLE, true);
break;
};
return 0;
}
static int aqt_codec_enable_micbias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
return __aqt_codec_enable_micbias(w, event);
}
static int aqt_codec_enable_i2s_block(struct snd_soc_component *component)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
mutex_lock(&aqt->i2s_lock);
if (++aqt->i2s_users == 1)
snd_soc_component_update_bits(component, AQT1000_I2S_I2S_0_CTL,
0x01, 0x01);
mutex_unlock(&aqt->i2s_lock);
return 0;
}
static int aqt_codec_disable_i2s_block(struct snd_soc_component *component)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
mutex_lock(&aqt->i2s_lock);
if (--aqt->i2s_users == 0)
snd_soc_component_update_bits(component, AQT1000_I2S_I2S_0_CTL,
0x01, 0x00);
if (aqt->i2s_users < 0)
dev_warn(component->dev, "%s: i2s_users count (%d) < 0\n",
__func__, aqt->i2s_users);
mutex_unlock(&aqt->i2s_lock);
return 0;
}
static int aqt_codec_enable_i2s_tx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
aqt_codec_enable_i2s_block(component);
break;
case SND_SOC_DAPM_POST_PMD:
aqt_codec_disable_i2s_block(component);
break;
}
dev_dbg(component->dev, "%s: event: %d\n", __func__, event);
return 0;
}
static int aqt_codec_enable_i2s_rx(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
aqt_codec_enable_i2s_block(component);
break;
case SND_SOC_DAPM_POST_PMD:
aqt_codec_disable_i2s_block(component);
break;
}
dev_dbg(component->dev, "%s: event: %d\n", __func__, event);
return 0;
}
static const char * const tx_mux_text[] = {
"ZERO", "DEC_L", "DEC_R", "DEC_V",
};
AQT_DAPM_ENUM(tx0, AQT1000_CDC_IF_ROUTER_TX_MUX_CFG0, 0, tx_mux_text);
AQT_DAPM_ENUM(tx1, AQT1000_CDC_IF_ROUTER_TX_MUX_CFG0, 2, tx_mux_text);
static const char * const tx_adc_mux_text[] = {
"AMIC", "ANC_FB0", "ANC_FB1",
};
AQT_DAPM_ENUM(tx_adc0, AQT1000_CDC_TX_INP_MUX_ADC_MUX0_CFG1, 0,
tx_adc_mux_text);
AQT_DAPM_ENUM(tx_adc1, AQT1000_CDC_TX_INP_MUX_ADC_MUX1_CFG1, 0,
tx_adc_mux_text);
AQT_DAPM_ENUM(tx_adc2, AQT1000_CDC_TX_INP_MUX_ADC_MUX2_CFG1, 0,
tx_adc_mux_text);
static int aqt_find_amic_input(struct snd_soc_component *component,
int adc_mux_n)
{
u8 mask;
u16 adc_mux_in_reg = 0, amic_mux_sel_reg = 0;
bool is_amic;
if (adc_mux_n > 2)
return 0;
if (adc_mux_n < 3) {
adc_mux_in_reg = AQT1000_CDC_TX_INP_MUX_ADC_MUX0_CFG1 +
adc_mux_n;
mask = 0x03;
amic_mux_sel_reg = AQT1000_CDC_TX_INP_MUX_ADC_MUX0_CFG0 +
2 * adc_mux_n;
}
is_amic = (
((snd_soc_component_read32(component, adc_mux_in_reg)
& mask)) == 0);
if (!is_amic)
return 0;
return snd_soc_component_read32(component, amic_mux_sel_reg) & 0x07;
}
static u16 aqt_codec_get_amic_pwlvl_reg(
struct snd_soc_component *component, int amic)
{
u16 pwr_level_reg = 0;
switch (amic) {
case 1:
case 2:
pwr_level_reg = AQT1000_ANA_AMIC1;
break;
case 3:
pwr_level_reg = AQT1000_ANA_AMIC3;
break;
default:
dev_dbg(component->dev, "%s: invalid amic: %d\n",
__func__, amic);
break;
}
return pwr_level_reg;
}
static void aqt_tx_hpf_corner_freq_callback(struct work_struct *work)
{
struct delayed_work *hpf_delayed_work;
struct hpf_work *hpf_work;
struct aqt1000 *aqt;
struct snd_soc_component *component;
u16 dec_cfg_reg, amic_reg, go_bit_reg;
u8 hpf_cut_off_freq;
int amic_n;
hpf_delayed_work = to_delayed_work(work);
hpf_work = container_of(hpf_delayed_work, struct hpf_work, dwork);
aqt = hpf_work->aqt;
component = aqt->component;
hpf_cut_off_freq = hpf_work->hpf_cut_off_freq;
dec_cfg_reg = AQT1000_CDC_TX0_TX_PATH_CFG0 + 16 * hpf_work->decimator;
go_bit_reg = dec_cfg_reg + 7;
dev_dbg(component->dev, "%s: decimator %u hpf_cut_of_freq 0x%x\n",
__func__, hpf_work->decimator, hpf_cut_off_freq);
amic_n = aqt_find_amic_input(component, hpf_work->decimator);
if (amic_n) {
amic_reg = AQT1000_ANA_AMIC1 + amic_n - 1;
aqt_codec_set_tx_hold(component, amic_reg, false);
}
snd_soc_component_update_bits(component, dec_cfg_reg,
TX_HPF_CUT_OFF_FREQ_MASK,
hpf_cut_off_freq << 5);
snd_soc_component_update_bits(component, go_bit_reg, 0x02, 0x02);
/* Minimum 1 clk cycle delay is required as per HW spec */
usleep_range(1000, 1010);
snd_soc_component_update_bits(component, go_bit_reg, 0x02, 0x00);
}
static void aqt_tx_mute_update_callback(struct work_struct *work)
{
struct tx_mute_work *tx_mute_dwork;
struct aqt1000 *aqt;
struct delayed_work *delayed_work;
struct snd_soc_component *component;
u16 tx_vol_ctl_reg, hpf_gate_reg;
delayed_work = to_delayed_work(work);
tx_mute_dwork = container_of(delayed_work, struct tx_mute_work, dwork);
aqt = tx_mute_dwork->aqt;
component = aqt->component;
tx_vol_ctl_reg = AQT1000_CDC_TX0_TX_PATH_CTL +
16 * tx_mute_dwork->decimator;
hpf_gate_reg = AQT1000_CDC_TX0_TX_PATH_SEC2 +
16 * tx_mute_dwork->decimator;
snd_soc_component_update_bits(component, tx_vol_ctl_reg, 0x10, 0x00);
}
static int aqt_codec_enable_dec(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
char *widget_name = NULL;
char *dec = NULL;
unsigned int decimator = 0;
u8 amic_n = 0;
u16 tx_vol_ctl_reg, pwr_level_reg = 0, dec_cfg_reg, hpf_gate_reg;
u16 tx_gain_ctl_reg;
int ret = 0;
u8 hpf_cut_off_freq;
dev_dbg(component->dev, "%s: event: %d\n", __func__, event);
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name)
return -ENOMEM;
dec = strpbrk(widget_name, "012");
if (!dec) {
dev_err(component->dev, "%s: decimator index not found\n",
__func__);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(dec, 10, &decimator);
if (ret < 0) {
dev_err(component->dev, "%s: Invalid decimator = %s\n",
__func__, widget_name);
ret = -EINVAL;
goto out;
}
dev_dbg(component->dev, "%s(): widget = %s decimator = %u\n", __func__,
w->name, decimator);
tx_vol_ctl_reg = AQT1000_CDC_TX0_TX_PATH_CTL + 16 * decimator;
hpf_gate_reg = AQT1000_CDC_TX0_TX_PATH_SEC2 + 16 * decimator;
dec_cfg_reg = AQT1000_CDC_TX0_TX_PATH_CFG0 + 16 * decimator;
tx_gain_ctl_reg = AQT1000_CDC_TX0_TX_VOL_CTL + 16 * decimator;
amic_n = aqt_find_amic_input(component, decimator);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (amic_n)
pwr_level_reg = aqt_codec_get_amic_pwlvl_reg(component,
amic_n);
if (pwr_level_reg) {
switch ((snd_soc_component_read32(
component, pwr_level_reg) &
AQT1000_AMIC_PWR_LVL_MASK) >>
AQT1000_AMIC_PWR_LVL_SHIFT) {
case AQT1000_AMIC_PWR_LEVEL_LP:
snd_soc_component_update_bits(
component, dec_cfg_reg,
AQT1000_DEC_PWR_LVL_MASK,
AQT1000_DEC_PWR_LVL_LP);
break;
case AQT1000_AMIC_PWR_LEVEL_HP:
snd_soc_component_update_bits(
component, dec_cfg_reg,
AQT1000_DEC_PWR_LVL_MASK,
AQT1000_DEC_PWR_LVL_HP);
break;
case AQT1000_AMIC_PWR_LEVEL_DEFAULT:
default:
snd_soc_component_update_bits(
component, dec_cfg_reg,
AQT1000_DEC_PWR_LVL_MASK,
AQT1000_DEC_PWR_LVL_DF);
break;
}
}
/* Enable TX PGA Mute */
snd_soc_component_update_bits(component, tx_vol_ctl_reg,
0x10, 0x10);
break;
case SND_SOC_DAPM_POST_PMU:
hpf_cut_off_freq = (snd_soc_component_read32(
component, dec_cfg_reg) &
TX_HPF_CUT_OFF_FREQ_MASK) >> 5;
aqt->tx_hpf_work[decimator].hpf_cut_off_freq =
hpf_cut_off_freq;
if (hpf_cut_off_freq != CF_MIN_3DB_150HZ) {
snd_soc_component_update_bits(component, dec_cfg_reg,
TX_HPF_CUT_OFF_FREQ_MASK,
CF_MIN_3DB_150HZ << 5);
snd_soc_component_update_bits(component, hpf_gate_reg,
0x02, 0x02);
/*
* Minimum 1 clk cycle delay is required as per
* HW spec.
*/
usleep_range(1000, 1010);
snd_soc_component_update_bits(component, hpf_gate_reg,
0x02, 0x00);
}
/* schedule work queue to Remove Mute */
schedule_delayed_work(&aqt->tx_mute_dwork[decimator].dwork,
msecs_to_jiffies(tx_unmute_delay));
if (aqt->tx_hpf_work[decimator].hpf_cut_off_freq !=
CF_MIN_3DB_150HZ)
schedule_delayed_work(
&aqt->tx_hpf_work[decimator].dwork,
msecs_to_jiffies(300));
/* apply gain after decimator is enabled */
snd_soc_component_write(component, tx_gain_ctl_reg,
snd_soc_component_read32(
component, tx_gain_ctl_reg));
break;
case SND_SOC_DAPM_PRE_PMD:
hpf_cut_off_freq =
aqt->tx_hpf_work[decimator].hpf_cut_off_freq;
snd_soc_component_update_bits(component, tx_vol_ctl_reg,
0x10, 0x10);
if (cancel_delayed_work_sync(
&aqt->tx_hpf_work[decimator].dwork)) {
if (hpf_cut_off_freq != CF_MIN_3DB_150HZ) {
snd_soc_component_update_bits(
component, dec_cfg_reg,
TX_HPF_CUT_OFF_FREQ_MASK,
hpf_cut_off_freq << 5);
snd_soc_component_update_bits(
component, hpf_gate_reg,
0x02, 0x02);
/*
* Minimum 1 clk cycle delay is required as per
* HW spec.
*/
usleep_range(1000, 1010);
snd_soc_component_update_bits(
component, hpf_gate_reg,
0x02, 0x00);
}
}
cancel_delayed_work_sync(
&aqt->tx_mute_dwork[decimator].dwork);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_component_update_bits(component, tx_vol_ctl_reg,
0x10, 0x00);
snd_soc_component_update_bits(component, dec_cfg_reg,
AQT1000_DEC_PWR_LVL_MASK,
AQT1000_DEC_PWR_LVL_DF);
break;
}
out:
kfree(widget_name);
return ret;
}
static const char * const tx_amic_text[] = {
"ZERO", "ADC_L", "ADC_R", "ADC_V",
};
AQT_DAPM_ENUM(tx_amic0, AQT1000_CDC_TX_INP_MUX_ADC_MUX0_CFG0, 0, tx_amic_text);
AQT_DAPM_ENUM(tx_amic1, AQT1000_CDC_TX_INP_MUX_ADC_MUX1_CFG0, 0, tx_amic_text);
AQT_DAPM_ENUM(tx_amic2, AQT1000_CDC_TX_INP_MUX_ADC_MUX2_CFG0, 0, tx_amic_text);
AQT_DAPM_ENUM(tx_amic10, AQT1000_CDC_TX_INP_MUX_ADC_MUX10_CFG0, 0,
tx_amic_text);
AQT_DAPM_ENUM(tx_amic11, AQT1000_CDC_TX_INP_MUX_ADC_MUX11_CFG0, 0,
tx_amic_text);
AQT_DAPM_ENUM(tx_amic12, AQT1000_CDC_TX_INP_MUX_ADC_MUX12_CFG0, 0,
tx_amic_text);
AQT_DAPM_ENUM(tx_amic13, AQT1000_CDC_TX_INP_MUX_ADC_MUX13_CFG0, 0,
tx_amic_text);
static int aqt_codec_enable_adc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
aqt_codec_set_tx_hold(component, w->reg, true);
break;
default:
break;
}
return 0;
}
static const struct snd_kcontrol_new anc_hphl_pa_switch =
SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0);
static const struct snd_kcontrol_new anc_hphr_pa_switch =
SOC_DAPM_SINGLE("Switch", SND_SOC_NOPM, 0, 1, 0);
static int aqt_config_compander(struct snd_soc_component *component,
int interp_n, int event)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int comp;
u16 comp_ctl0_reg, rx_path_cfg0_reg;
comp = interp_n;
dev_dbg(component->dev, "%s: event %d compander %d, enabled %d\n",
__func__, event, comp, aqt->comp_enabled[comp]);
if (!aqt->comp_enabled[comp])
return 0;
comp_ctl0_reg = AQT1000_CDC_COMPANDER1_CTL0 + (comp * 8);
rx_path_cfg0_reg = AQT1000_CDC_RX1_RX_PATH_CFG0 + (comp * 20);
if (SND_SOC_DAPM_EVENT_ON(event)) {
/* Enable Compander Clock */
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x01, 0x01);
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x02, 0x02);
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x02, 0x00);
snd_soc_component_update_bits(
component, rx_path_cfg0_reg, 0x02, 0x02);
}
if (SND_SOC_DAPM_EVENT_OFF(event)) {
snd_soc_component_update_bits(
component, rx_path_cfg0_reg, 0x02, 0x00);
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x04, 0x04);
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x02, 0x02);
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x02, 0x00);
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x01, 0x00);
snd_soc_component_update_bits(
component, comp_ctl0_reg, 0x04, 0x00);
}
return 0;
}
static void aqt_codec_idle_detect_control(struct snd_soc_component *component,
int interp, int event)
{
int reg = 0, mask, val;
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
if (!aqt->idle_det_cfg.hph_idle_detect_en)
return;
if (interp == INTERP_HPHL) {
reg = AQT1000_CDC_RX_IDLE_DET_PATH_CTL;
mask = 0x01;
val = 0x01;
}
if (interp == INTERP_HPHR) {
reg = AQT1000_CDC_RX_IDLE_DET_PATH_CTL;
mask = 0x02;
val = 0x02;
}
if (reg && SND_SOC_DAPM_EVENT_ON(event))
snd_soc_component_update_bits(component, reg, mask, val);
if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
snd_soc_component_update_bits(component, reg, mask, 0x00);
aqt->idle_det_cfg.hph_idle_thr = 0;
snd_soc_component_write(component,
AQT1000_CDC_RX_IDLE_DET_CFG3, 0x0);
}
}
static void aqt_codec_hphdelay_lutbypass(struct snd_soc_component *component,
u16 interp_idx, int event)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
u8 hph_dly_mask;
u16 hph_lut_bypass_reg = 0;
u16 hph_comp_ctrl7 = 0;
switch (interp_idx) {
case INTERP_HPHL:
hph_dly_mask = 1;
hph_lut_bypass_reg = AQT1000_CDC_TOP_HPHL_COMP_LUT;
hph_comp_ctrl7 = AQT1000_CDC_COMPANDER1_CTL7;
break;
case INTERP_HPHR:
hph_dly_mask = 2;
hph_lut_bypass_reg = AQT1000_CDC_TOP_HPHR_COMP_LUT;
hph_comp_ctrl7 = AQT1000_CDC_COMPANDER2_CTL7;
break;
default:
break;
}
if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_TEST0,
hph_dly_mask, 0x0);
snd_soc_component_update_bits(component, hph_lut_bypass_reg,
0x80, 0x80);
if (aqt->hph_mode == CLS_H_ULP)
snd_soc_component_update_bits(component, hph_comp_ctrl7,
0x20, 0x20);
}
if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_TEST0,
hph_dly_mask, hph_dly_mask);
snd_soc_component_update_bits(component, hph_lut_bypass_reg,
0x80, 0x00);
snd_soc_component_update_bits(component, hph_comp_ctrl7,
0x20, 0x0);
}
}
static int aqt_codec_enable_interp_clk(struct snd_soc_component *component,
int event, int interp_idx)
{
struct aqt1000 *aqt;
u16 main_reg, dsm_reg;
if (!component) {
pr_err("%s: component is NULL\n", __func__);
return -EINVAL;
}
aqt = snd_soc_component_get_drvdata(component);
main_reg = AQT1000_CDC_RX1_RX_PATH_CTL + (interp_idx * 20);
dsm_reg = AQT1000_CDC_RX1_RX_PATH_DSMDEM_CTL + (interp_idx * 20);
if (SND_SOC_DAPM_EVENT_ON(event)) {
if (aqt->main_clk_users[interp_idx] == 0) {
/* Main path PGA mute enable */
snd_soc_component_update_bits(component, main_reg,
0x10, 0x10);
/* Clk enable */
snd_soc_component_update_bits(component, dsm_reg,
0x01, 0x01);
snd_soc_component_update_bits(component, main_reg,
0x20, 0x20);
aqt_codec_idle_detect_control(component, interp_idx,
event);
aqt_codec_hphdelay_lutbypass(component, interp_idx,
event);
aqt_config_compander(component, interp_idx, event);
}
aqt->main_clk_users[interp_idx]++;
}
if (SND_SOC_DAPM_EVENT_OFF(event)) {
aqt->main_clk_users[interp_idx]--;
if (aqt->main_clk_users[interp_idx] <= 0) {
aqt->main_clk_users[interp_idx] = 0;
aqt_config_compander(component, interp_idx, event);
aqt_codec_hphdelay_lutbypass(component, interp_idx,
event);
aqt_codec_idle_detect_control(component, interp_idx,
event);
/* Clk Disable */
snd_soc_component_update_bits(component, main_reg,
0x20, 0x00);
snd_soc_component_update_bits(component, dsm_reg,
0x01, 0x00);
/* Reset enable and disable */
snd_soc_component_update_bits(component, main_reg,
0x40, 0x40);
snd_soc_component_update_bits(component, main_reg,
0x40, 0x00);
/* Reset rate to 48K*/
snd_soc_component_update_bits(component, main_reg,
0x0F, 0x04);
}
}
dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
__func__, event, aqt->main_clk_users[interp_idx]);
return aqt->main_clk_users[interp_idx];
}
static int aqt_anc_out_switch_cb(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
aqt_codec_enable_interp_clk(component, event, w->shift);
return 0;
}
static const char * const anc0_fb_mux_text[] = {
"ZERO", "ANC_IN_HPHL",
};
static const char * const anc1_fb_mux_text[] = {
"ZERO", "ANC_IN_HPHR",
};
AQT_DAPM_ENUM(anc0_fb, AQT1000_CDC_RX_INP_MUX_ANC_CFG0, 0, anc0_fb_mux_text);
AQT_DAPM_ENUM(anc1_fb, AQT1000_CDC_RX_INP_MUX_ANC_CFG0, 3, anc1_fb_mux_text);
static const char *const rx_int1_1_mux_text[] = {
"ZERO", "MAIN_DMA_L", "I2S0_L", "I2S0_R", "DEC_L", "DEC_R", "DEC_V",
"SHADOW_I2S0_L", "MAIN_DMA_R"
};
static const char *const rx_int1_2_mux_text[] = {
"ZERO", "MIX_DMA_L", "I2S0_L", "I2S0_R", "DEC_L", "DEC_R", "DEC_V",
"IIR0", "MIX_DMA_R"
};
static const char *const rx_int2_1_mux_text[] = {
"ZERO", "MAIN_DMA_R", "I2S0_L", "I2S0_R", "DEC_L", "DEC_R", "DEC_V",
"SHADOW_I2S0_R", "MAIN_DMA_L"
};
static const char *const rx_int2_2_mux_text[] = {
"ZERO", "MIX_DMA_R", "I2S0_L", "I2S0_R", "DEC_L", "DEC_R", "DEC_V",
"IIR0", "MIX_DMA_L"
};
AQT_DAPM_ENUM(rx_int1_1, AQT1000_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
rx_int1_1_mux_text);
AQT_DAPM_ENUM(rx_int1_2, AQT1000_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
rx_int1_2_mux_text);
AQT_DAPM_ENUM(rx_int2_1, AQT1000_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
rx_int2_1_mux_text);
AQT_DAPM_ENUM(rx_int2_2, AQT1000_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
rx_int2_2_mux_text);
static int aqt_codec_set_idle_detect_thr(struct snd_soc_component *component,
int interp, int path_type)
{
int port_id[4] = { 0, 0, 0, 0 };
int *port_ptr, num_ports;
int bit_width = 0;
int mux_reg = 0, mux_reg_val = 0;
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int idle_thr;
if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
return 0;
if (!aqt->idle_det_cfg.hph_idle_detect_en)
return 0;
port_ptr = &port_id[0];
num_ports = 0;
if (path_type == INTERP_MIX_PATH) {
if (interp == INTERP_HPHL)
mux_reg = AQT1000_CDC_RX_INP_MUX_RX_INT1_CFG1;
else
mux_reg = AQT1000_CDC_RX_INP_MUX_RX_INT2_CFG1;
}
if (path_type == INTERP_MAIN_PATH) {
if (interp == INTERP_HPHL)
mux_reg = AQT1000_CDC_RX_INP_MUX_RX_INT1_CFG0;
else
mux_reg = AQT1000_CDC_RX_INP_MUX_RX_INT2_CFG0;
}
mux_reg_val = snd_soc_component_read32(component, mux_reg);
/* Read bit width from I2S reg if mux is set to I2S0_L or I2S0_R */
if (mux_reg_val == 0x02 || mux_reg_val == 0x03)
bit_width = ((snd_soc_component_read32(
component, AQT1000_I2S_I2S_0_CTL) &
0x40) >> 6);
switch (bit_width) {
case 1: /* 16 bit */
idle_thr = 0xff; /* F16 */
break;
case 0: /* 32 bit */
default:
idle_thr = 0x03; /* F22 */
break;
}
dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
__func__, idle_thr, aqt->idle_det_cfg.hph_idle_thr);
if ((aqt->idle_det_cfg.hph_idle_thr == 0) ||
(idle_thr < aqt->idle_det_cfg.hph_idle_thr)) {
snd_soc_component_write(component, AQT1000_CDC_RX_IDLE_DET_CFG3,
idle_thr);
aqt->idle_det_cfg.hph_idle_thr = idle_thr;
}
return 0;
}
static int aqt_codec_enable_main_path(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
u16 gain_reg = 0;
int val = 0;
dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
if (w->shift >= AQT1000_NUM_INTERPOLATORS) {
dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
__func__, w->shift, w->name);
return -EINVAL;
};
gain_reg = AQT1000_CDC_RX1_RX_VOL_CTL + (w->shift *
AQT1000_RX_PATH_CTL_OFFSET);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
aqt_codec_enable_interp_clk(component, event, w->shift);
break;
case SND_SOC_DAPM_POST_PMU:
aqt_codec_set_idle_detect_thr(component, w->shift,
INTERP_MAIN_PATH);
/* apply gain after int clk is enabled */
val = snd_soc_component_read32(component, gain_reg);
snd_soc_component_write(component, gain_reg, val);
break;
case SND_SOC_DAPM_POST_PMD:
aqt_codec_enable_interp_clk(component, event, w->shift);
break;
};
return 0;
}
static int aqt_codec_enable_mix_path(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
u16 gain_reg = 0;
u16 mix_reg = 0;
if (w->shift >= AQT1000_NUM_INTERPOLATORS) {
dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
__func__, w->shift, w->name);
return -EINVAL;
};
gain_reg = AQT1000_CDC_RX1_RX_VOL_MIX_CTL +
(w->shift * AQT1000_RX_PATH_CTL_OFFSET);
mix_reg = AQT1000_CDC_RX1_RX_PATH_MIX_CTL +
(w->shift * AQT1000_RX_PATH_CTL_OFFSET);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
aqt_codec_enable_interp_clk(component, event, w->shift);
/* Clk enable */
snd_soc_component_update_bits(component, mix_reg, 0x20, 0x20);
break;
case SND_SOC_DAPM_POST_PMU:
aqt_codec_set_idle_detect_thr(component, w->shift,
INTERP_MIX_PATH);
break;
case SND_SOC_DAPM_POST_PMD:
/* Clk Disable */
snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
aqt_codec_enable_interp_clk(component, event, w->shift);
/* Reset enable and disable */
snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
break;
};
dev_dbg(component->dev, "%s event %d name %s\n", __func__,
event, w->name);
return 0;
}
static const char * const rx_int1_1_interp_mux_text[] = {
"ZERO", "RX INT1_1 MUX",
};
static const char * const rx_int2_1_interp_mux_text[] = {
"ZERO", "RX INT2_1 MUX",
};
static const char * const rx_int1_2_interp_mux_text[] = {
"ZERO", "RX INT1_2 MUX",
};
static const char * const rx_int2_2_interp_mux_text[] = {
"ZERO", "RX INT2_2 MUX",
};
AQT_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0, rx_int1_1_interp_mux_text);
AQT_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0, rx_int2_1_interp_mux_text);
AQT_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0, rx_int1_2_interp_mux_text);
AQT_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0, rx_int2_2_interp_mux_text);
static const char * const asrc0_mux_text[] = {
"ZERO", "ASRC_IN_HPHL",
};
static const char * const asrc1_mux_text[] = {
"ZERO", "ASRC_IN_HPHR",
};
AQT_DAPM_ENUM(asrc0, AQT1000_CDC_RX_INP_MUX_SPLINE_ASRC_CFG0, 0,
asrc0_mux_text);
AQT_DAPM_ENUM(asrc1, AQT1000_CDC_RX_INP_MUX_SPLINE_ASRC_CFG0, 2,
asrc1_mux_text);
static int aqt_get_asrc_mode(struct aqt1000 *aqt, int asrc,
u8 main_sr, u8 mix_sr)
{
u8 asrc_output_mode;
int asrc_mode = CONV_88P2K_TO_384K;
if ((asrc < 0) || (asrc >= ASRC_MAX))
return 0;
asrc_output_mode = aqt->asrc_output_mode[asrc];
if (asrc_output_mode) {
/*
* If Mix sample rate is < 96KHz, use 96K to 352.8K
* conversion, or else use 384K to 352.8K conversion
*/
if (mix_sr < 5)
asrc_mode = CONV_96K_TO_352P8K;
else
asrc_mode = CONV_384K_TO_352P8K;
} else {
/* Integer main and Fractional mix path */
if (main_sr < 8 && mix_sr > 9) {
asrc_mode = CONV_352P8K_TO_384K;
} else if (main_sr > 8 && mix_sr < 8) {
/* Fractional main and Integer mix path */
if (mix_sr < 5)
asrc_mode = CONV_96K_TO_352P8K;
else
asrc_mode = CONV_384K_TO_352P8K;
} else if (main_sr < 8 && mix_sr < 8) {
/* Integer main and Integer mix path */
asrc_mode = CONV_96K_TO_384K;
}
}
return asrc_mode;
}
static int aqt_codec_enable_asrc_resampler(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int asrc = 0, ret = 0;
u8 cfg;
u16 cfg_reg = 0;
u16 ctl_reg = 0;
u16 clk_reg = 0;
u16 asrc_ctl = 0;
u16 mix_ctl_reg = 0;
u16 paired_reg = 0;
u8 main_sr, mix_sr, asrc_mode = 0;
cfg = snd_soc_component_read32(component,
AQT1000_CDC_RX_INP_MUX_SPLINE_ASRC_CFG0);
if (!(cfg & 0xFF)) {
dev_err(component->dev, "%s: ASRC%u input not selected\n",
__func__, w->shift);
return -EINVAL;
}
switch (w->shift) {
case ASRC0:
if ((cfg & 0x03) == 0x01) {
cfg_reg = AQT1000_CDC_RX1_RX_PATH_CFG0;
ctl_reg = AQT1000_CDC_RX1_RX_PATH_CTL;
clk_reg = AQT1000_MIXING_ASRC0_CLK_RST_CTL;
paired_reg = AQT1000_MIXING_ASRC1_CLK_RST_CTL;
asrc_ctl = AQT1000_MIXING_ASRC0_CTL1;
}
break;
case ASRC1:
if ((cfg & 0x0C) == 0x4) {
cfg_reg = AQT1000_CDC_RX2_RX_PATH_CFG0;
ctl_reg = AQT1000_CDC_RX2_RX_PATH_CTL;
clk_reg = AQT1000_MIXING_ASRC1_CLK_RST_CTL;
paired_reg = AQT1000_MIXING_ASRC0_CLK_RST_CTL;
asrc_ctl = AQT1000_MIXING_ASRC1_CTL1;
}
break;
default:
dev_err(component->dev, "%s: Invalid asrc:%u\n", __func__,
w->shift);
ret = -EINVAL;
break;
};
if ((cfg_reg == 0) || (ctl_reg == 0) || (clk_reg == 0) ||
(asrc_ctl == 0) || ret)
goto done;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if ((snd_soc_component_read32(component, clk_reg) & 0x02) ||
(snd_soc_component_read32(component, paired_reg) & 0x02)) {
snd_soc_component_update_bits(component, clk_reg,
0x02, 0x00);
snd_soc_component_update_bits(component, paired_reg,
0x02, 0x00);
}
snd_soc_component_update_bits(component, cfg_reg, 0x80, 0x80);
snd_soc_component_update_bits(component, clk_reg, 0x01, 0x01);
main_sr = snd_soc_component_read32(component, ctl_reg) & 0x0F;
mix_ctl_reg = ctl_reg + 5;
mix_sr = snd_soc_component_read32(
component, mix_ctl_reg) & 0x0F;
asrc_mode = aqt_get_asrc_mode(aqt, asrc,
main_sr, mix_sr);
dev_dbg(component->dev, "%s: main_sr:%d mix_sr:%d asrc_mode %d\n",
__func__, main_sr, mix_sr, asrc_mode);
snd_soc_component_update_bits(
component, asrc_ctl, 0x07, asrc_mode);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_component_update_bits(component, asrc_ctl, 0x07, 0x00);
snd_soc_component_update_bits(component, cfg_reg, 0x80, 0x00);
snd_soc_component_update_bits(component, clk_reg, 0x03, 0x02);
break;
};
done:
return ret;
}
static int aqt_codec_enable_anc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
const char *filename;
const struct firmware *fw;
int i;
int ret = 0;
int num_anc_slots;
struct aqt1000_anc_header *anc_head;
struct firmware_cal *hwdep_cal = NULL;
u32 anc_writes_size = 0;
u32 anc_cal_size = 0;
int anc_size_remaining;
u32 *anc_ptr;
u16 reg;
u8 mask, val;
size_t cal_size;
const void *data;
if (!aqt->anc_func)
return 0;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
hwdep_cal = wcdcal_get_fw_cal(aqt->fw_data, WCD9XXX_ANC_CAL);
if (hwdep_cal) {
data = hwdep_cal->data;
cal_size = hwdep_cal->size;
dev_dbg(component->dev, "%s: using hwdep calibration, cal_size %zd",
__func__, cal_size);
} else {
filename = "AQT1000/AQT1000_anc.bin";
ret = request_firmware(&fw, filename, component->dev);
if (ret < 0) {
dev_err(component->dev, "%s: Failed to acquire ANC data: %d\n",
__func__, ret);
return ret;
}
if (!fw) {
dev_err(component->dev, "%s: Failed to get anc fw\n",
__func__);
return -ENODEV;
}
data = fw->data;
cal_size = fw->size;
dev_dbg(component->dev, "%s: using request_firmware calibration\n",
__func__);
}
if (cal_size < sizeof(struct aqt1000_anc_header)) {
dev_err(component->dev, "%s: Invalid cal_size %zd\n",
__func__, cal_size);
ret = -EINVAL;
goto err;
}
/* First number is the number of register writes */
anc_head = (struct aqt1000_anc_header *)(data);
anc_ptr = (u32 *)(data + sizeof(struct aqt1000_anc_header));
anc_size_remaining = cal_size -
sizeof(struct aqt1000_anc_header);
num_anc_slots = anc_head->num_anc_slots;
if (aqt->anc_slot >= num_anc_slots) {
dev_err(component->dev, "%s: Invalid ANC slot selected\n",
__func__);
ret = -EINVAL;
goto err;
}
for (i = 0; i < num_anc_slots; i++) {
if (anc_size_remaining < AQT1000_PACKED_REG_SIZE) {
dev_err(component->dev, "%s: Invalid register format\n",
__func__);
ret = -EINVAL;
goto err;
}
anc_writes_size = (u32)(*anc_ptr);
anc_size_remaining -= sizeof(u32);
anc_ptr += 1;
if ((anc_writes_size * AQT1000_PACKED_REG_SIZE) >
anc_size_remaining) {
dev_err(component->dev, "%s: Invalid register format\n",
__func__);
ret = -EINVAL;
goto err;
}
if (aqt->anc_slot == i)
break;
anc_size_remaining -= (anc_writes_size *
AQT1000_PACKED_REG_SIZE);
anc_ptr += anc_writes_size;
}
if (i == num_anc_slots) {
dev_err(component->dev, "%s: Selected ANC slot not present\n",
__func__);
ret = -EINVAL;
goto err;
}
i = 0;
anc_cal_size = anc_writes_size;
/* Rate converter clk enable and set bypass mode */
if (!strcmp(w->name, "AQT RX INT1 DAC")) {
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_RC_COMMON_CTL,
0x05, 0x05);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_FIFO_COMMON_CTL,
0x66, 0x66);
anc_writes_size = anc_cal_size / 2;
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_CLK_RESET_CTL, 0x39, 0x39);
} else if (!strcmp(w->name, "AQT RX INT2 DAC")) {
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_RC_COMMON_CTL,
0x05, 0x05);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_FIFO_COMMON_CTL,
0x66, 0x66);
i = anc_cal_size / 2;
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_CLK_RESET_CTL, 0x39, 0x39);
}
for (; i < anc_writes_size; i++) {
AQT1000_CODEC_UNPACK_ENTRY(anc_ptr[i], reg, mask, val);
snd_soc_component_write(component, reg, (val & mask));
}
if (!strcmp(w->name, "AQT RX INT1 DAC"))
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_CLK_RESET_CTL, 0x08, 0x08);
else if (!strcmp(w->name, "AQT RX INT2 DAC"))
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_CLK_RESET_CTL, 0x08, 0x08);
if (!hwdep_cal)
release_firmware(fw);
break;
case SND_SOC_DAPM_POST_PMU:
/* Remove ANC Rx from reset */
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_CLK_RESET_CTL,
0x08, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_CLK_RESET_CTL,
0x08, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_RC_COMMON_CTL,
0x05, 0x00);
if (!strcmp(w->name, "AQT ANC HPHL PA")) {
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_MODE_1_CTL,
0x30, 0x00);
/* 50 msec sleep is needed to avoid click and pop as
* per HW requirement
*/
msleep(50);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_MODE_1_CTL,
0x01, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_CLK_RESET_CTL,
0x38, 0x38);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_CLK_RESET_CTL,
0x07, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC0_CLK_RESET_CTL,
0x38, 0x00);
} else if (!strcmp(w->name, "AQT ANC HPHR PA")) {
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_MODE_1_CTL,
0x30, 0x00);
/* 50 msec sleep is needed to avoid click and pop as
* per HW requirement
*/
msleep(50);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_MODE_1_CTL,
0x01, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_CLK_RESET_CTL,
0x38, 0x38);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_CLK_RESET_CTL,
0x07, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_ANC1_CLK_RESET_CTL,
0x38, 0x00);
}
break;
}
return 0;
err:
if (!hwdep_cal)
release_firmware(fw);
return ret;
}
static void aqt_codec_override(struct snd_soc_component *component, int mode,
int event)
{
if (mode == CLS_AB || mode == CLS_AB_HIFI) {
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
case SND_SOC_DAPM_POST_PMU:
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES, 0x02, 0x02);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_component_update_bits(component,
AQT1000_ANA_RX_SUPPLIES, 0x02, 0x00);
break;
}
}
}
static void aqt_codec_set_tx_hold(struct snd_soc_component *component,
u16 amic_reg, bool set)
{
u8 mask = 0x20;
u8 val;
if (amic_reg == AQT1000_ANA_AMIC1 ||
amic_reg == AQT1000_ANA_AMIC3)
mask = 0x40;
val = set ? mask : 0x00;
switch (amic_reg) {
case AQT1000_ANA_AMIC1:
case AQT1000_ANA_AMIC2:
snd_soc_component_update_bits(component, AQT1000_ANA_AMIC2,
mask, val);
break;
case AQT1000_ANA_AMIC3:
snd_soc_component_update_bits(component, AQT1000_ANA_AMIC3_HPF,
mask, val);
break;
default:
dev_dbg(component->dev, "%s: invalid amic: %d\n",
__func__, amic_reg);
break;
}
}
static void aqt_codec_clear_anc_tx_hold(struct aqt1000 *aqt)
{
if (test_and_clear_bit(ANC_MIC_AMIC1, &aqt->status_mask))
aqt_codec_set_tx_hold(aqt->component, AQT1000_ANA_AMIC1, false);
if (test_and_clear_bit(ANC_MIC_AMIC2, &aqt->status_mask))
aqt_codec_set_tx_hold(aqt->component, AQT1000_ANA_AMIC2, false);
if (test_and_clear_bit(ANC_MIC_AMIC3, &aqt->status_mask))
aqt_codec_set_tx_hold(aqt->component, AQT1000_ANA_AMIC3, false);
}
static const char * const rx_int_dem_inp_mux_text[] = {
"NORMAL_DSM_OUT", "CLSH_DSM_OUT",
};
static int aqt_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget *widget =
snd_soc_dapm_kcontrol_widget(kcontrol);
struct snd_soc_component *component =
snd_soc_dapm_to_component(widget->dapm);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int val;
unsigned short look_ahead_dly_reg = AQT1000_CDC_RX1_RX_PATH_CFG0;
val = ucontrol->value.enumerated.item[0];
if (val >= e->items)
return -EINVAL;
dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
widget->name, val);
if (e->reg == AQT1000_CDC_RX1_RX_PATH_SEC0)
look_ahead_dly_reg = AQT1000_CDC_RX1_RX_PATH_CFG0;
else if (e->reg == AQT1000_CDC_RX2_RX_PATH_SEC0)
look_ahead_dly_reg = AQT1000_CDC_RX2_RX_PATH_CFG0;
/* Set Look Ahead Delay */
snd_soc_component_update_bits(component, look_ahead_dly_reg,
0x08, (val ? 0x08 : 0x00));
/* Set DEM INP Select */
return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
}
AQT_DAPM_ENUM_EXT(rx_int1_dem, AQT1000_CDC_RX1_RX_PATH_SEC0, 0,
rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
aqt_int_dem_inp_mux_put);
AQT_DAPM_ENUM_EXT(rx_int2_dem, AQT1000_CDC_RX2_RX_PATH_SEC0, 0,
rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
aqt_int_dem_inp_mux_put);
static int aqt_codec_hphl_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int hph_mode = aqt->hph_mode;
u8 dem_inp;
int ret = 0;
uint32_t impedl = 0;
uint32_t impedr = 0;
dev_dbg(component->dev, "%s wname: %s event: %d hph_mode: %d\n",
__func__, w->name, event, hph_mode);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (aqt->anc_func) {
ret = aqt_codec_enable_anc(w, kcontrol, event);
/* 40 msec delay is needed to avoid click and pop */
msleep(40);
}
/* Read DEM INP Select */
dem_inp = snd_soc_component_read32(
component, AQT1000_CDC_RX1_RX_PATH_SEC0) &
0x03;
if (((hph_mode == CLS_H_HIFI) || (hph_mode == CLS_H_LOHIFI) ||
(hph_mode == CLS_H_LP)) && (dem_inp != 0x01)) {
dev_err(component->dev, "%s: DEM Input not set correctly, hph_mode: %d\n",
__func__, hph_mode);
return -EINVAL;
}
/* Disable AutoChop timer during power up */
snd_soc_component_update_bits(component,
AQT1000_HPH_NEW_INT_HPH_TIMER1,
0x02, 0x00);
aqt_clsh_fsm(component, &aqt->clsh_d,
AQT_CLSH_EVENT_PRE_DAC,
AQT_CLSH_STATE_HPHL,
hph_mode);
if (aqt->anc_func)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0,
0x10, 0x10);
ret = aqt_mbhc_get_impedance(aqt->mbhc,
&impedl, &impedr);
if (!ret) {
aqt_clsh_imped_config(component, impedl, false);
set_bit(CLSH_Z_CONFIG, &aqt->status_mask);
} else {
dev_dbg(component->dev, "%s: Failed to get mbhc impedance %d\n",
__func__, ret);
ret = 0;
}
break;
case SND_SOC_DAPM_POST_PMD:
/* 1000us required as per HW requirement */
usleep_range(1000, 1100);
aqt_clsh_fsm(component, &aqt->clsh_d,
AQT_CLSH_EVENT_POST_PA,
AQT_CLSH_STATE_HPHL,
hph_mode);
if (test_bit(CLSH_Z_CONFIG, &aqt->status_mask)) {
aqt_clsh_imped_config(component, impedl, true);
clear_bit(CLSH_Z_CONFIG, &aqt->status_mask);
}
break;
default:
break;
};
return ret;
}
static int aqt_codec_hphr_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int hph_mode = aqt->hph_mode;
u8 dem_inp;
int ret = 0;
dev_dbg(component->dev, "%s wname: %s event: %d hph_mode: %d\n",
__func__, w->name, event, hph_mode);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (aqt->anc_func) {
ret = aqt_codec_enable_anc(w, kcontrol, event);
/* 40 msec delay is needed to avoid click and pop */
msleep(40);
}
/* Read DEM INP Select */
dem_inp = snd_soc_component_read32(
component, AQT1000_CDC_RX2_RX_PATH_SEC0) &
0x03;
if (((hph_mode == CLS_H_HIFI) || (hph_mode == CLS_H_LOHIFI) ||
(hph_mode == CLS_H_LP)) && (dem_inp != 0x01)) {
dev_err(component->dev, "%s: DEM Input not set correctly, hph_mode: %d\n",
__func__, hph_mode);
return -EINVAL;
}
/* Disable AutoChop timer during power up */
snd_soc_component_update_bits(component,
AQT1000_HPH_NEW_INT_HPH_TIMER1,
0x02, 0x00);
aqt_clsh_fsm(component, &aqt->clsh_d,
AQT_CLSH_EVENT_PRE_DAC,
AQT_CLSH_STATE_HPHR,
hph_mode);
if (aqt->anc_func)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CFG0,
0x10, 0x10);
break;
case SND_SOC_DAPM_POST_PMD:
/* 1000us required as per HW requirement */
usleep_range(1000, 1100);
aqt_clsh_fsm(component, &aqt->clsh_d,
AQT_CLSH_EVENT_POST_PA,
AQT_CLSH_STATE_HPHR,
hph_mode);
break;
default:
break;
};
return 0;
}
static int aqt_codec_enable_hphr_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int ret = 0;
dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if ((!(strcmp(w->name, "AQT ANC HPHR PA"))) &&
(test_bit(HPH_PA_DELAY, &aqt->status_mask)))
snd_soc_component_update_bits(component,
AQT1000_ANA_HPH, 0xC0, 0xC0);
set_bit(HPH_PA_DELAY, &aqt->status_mask);
break;
case SND_SOC_DAPM_POST_PMU:
if ((!(strcmp(w->name, "AQT ANC HPHR PA")))) {
if ((snd_soc_component_read32(
component, AQT1000_ANA_HPH) & 0xC0)
!= 0xC0)
/*
* If PA_EN is not set (potentially in ANC case)
* then do nothing for POST_PMU and let left
* channel handle everything.
*/
break;
}
/*
* 7ms sleep is required after PA is enabled as per
* HW requirement. If compander is disabled, then
* 20ms delay is needed.
*/
if (test_bit(HPH_PA_DELAY, &aqt->status_mask)) {
if (!aqt->comp_enabled[COMPANDER_2])
usleep_range(20000, 20100);
else
usleep_range(7000, 7100);
clear_bit(HPH_PA_DELAY, &aqt->status_mask);
}
if (aqt->anc_func) {
/* Clear Tx FE HOLD if both PAs are enabled */
if ((snd_soc_component_read32(
aqt->component, AQT1000_ANA_HPH) &
0xC0) == 0xC0)
aqt_codec_clear_anc_tx_hold(aqt);
}
snd_soc_component_update_bits(
component, AQT1000_HPH_R_TEST, 0x01, 0x01);
/* Remove mute */
snd_soc_component_update_bits(
component, AQT1000_CDC_RX2_RX_PATH_CTL,
0x10, 0x00);
/* Enable GM3 boost */
snd_soc_component_update_bits(
component, AQT1000_HPH_CNP_WG_CTL,
0x80, 0x80);
/* Enable AutoChop timer at the end of power up */
snd_soc_component_update_bits(component,
AQT1000_HPH_NEW_INT_HPH_TIMER1,
0x02, 0x02);
/* Remove mix path mute if it is enabled */
if ((snd_soc_component_read32(
component, AQT1000_CDC_RX2_RX_PATH_MIX_CTL)) &
0x10)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_MIX_CTL,
0x10, 0x00);
if (!(strcmp(w->name, "AQT ANC HPHR PA"))) {
dev_dbg(component->dev,
"%s:Do everything needed for left channel\n",
__func__);
/* Do everything needed for left channel */
snd_soc_component_update_bits(
component, AQT1000_HPH_L_TEST,
0x01, 0x01);
/* Remove mute */
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CTL,
0x10, 0x00);
/* Remove mix path mute if it is enabled */
if ((snd_soc_component_read32(component,
AQT1000_CDC_RX1_RX_PATH_MIX_CTL)) &
0x10)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_MIX_CTL,
0x10, 0x00);
/* Remove ANC Rx from reset */
ret = aqt_codec_enable_anc(w, kcontrol, event);
}
aqt_codec_override(component, aqt->hph_mode, event);
break;
case SND_SOC_DAPM_PRE_PMD:
blocking_notifier_call_chain(&aqt->mbhc->notifier,
AQT_EVENT_PRE_HPHR_PA_OFF,
&aqt->mbhc->wcd_mbhc);
snd_soc_component_update_bits(component,
AQT1000_HPH_R_TEST, 0x01, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CTL,
0x10, 0x10);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_MIX_CTL,
0x10, 0x10);
if (!(strcmp(w->name, "AQT ANC HPHR PA")))
snd_soc_component_update_bits(component,
AQT1000_ANA_HPH, 0x40, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
/*
* 5ms sleep is required after PA disable. If compander is
* disabled, then 20ms delay is needed after PA disable.
*/
if (!aqt->comp_enabled[COMPANDER_2])
usleep_range(20000, 20100);
else
usleep_range(5000, 5100);
aqt_codec_override(component, aqt->hph_mode, event);
blocking_notifier_call_chain(&aqt->mbhc->notifier,
AQT_EVENT_POST_HPHR_PA_OFF,
&aqt->mbhc->wcd_mbhc);
if (!(strcmp(w->name, "AQT ANC HPHR PA"))) {
ret = aqt_codec_enable_anc(w, kcontrol, event);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CFG0,
0x10, 0x00);
}
break;
};
return ret;
}
static int aqt_codec_enable_hphl_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
int ret = 0;
dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if ((!(strcmp(w->name, "AQT ANC HPHL PA"))) &&
(test_bit(HPH_PA_DELAY, &aqt->status_mask)))
snd_soc_component_update_bits(component,
AQT1000_ANA_HPH,
0xC0, 0xC0);
set_bit(HPH_PA_DELAY, &aqt->status_mask);
break;
case SND_SOC_DAPM_POST_PMU:
if (!(strcmp(w->name, "AQT ANC HPHL PA"))) {
if ((snd_soc_component_read32(
component, AQT1000_ANA_HPH) & 0xC0)
!= 0xC0)
/*
* If PA_EN is not set (potentially in ANC
* case) then do nothing for POST_PMU and
* let right channel handle everything.
*/
break;
}
/*
* 7ms sleep is required after PA is enabled as per
* HW requirement. If compander is disabled, then
* 20ms delay is needed.
*/
if (test_bit(HPH_PA_DELAY, &aqt->status_mask)) {
if (!aqt->comp_enabled[COMPANDER_1])
usleep_range(20000, 20100);
else
usleep_range(7000, 7100);
clear_bit(HPH_PA_DELAY, &aqt->status_mask);
}
if (aqt->anc_func) {
/* Clear Tx FE HOLD if both PAs are enabled */
if ((snd_soc_component_read32(
aqt->component, AQT1000_ANA_HPH) &
0xC0) == 0xC0)
aqt_codec_clear_anc_tx_hold(aqt);
}
snd_soc_component_update_bits(component,
AQT1000_HPH_L_TEST, 0x01, 0x01);
/* Remove Mute on primary path */
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CTL,
0x10, 0x00);
/* Enable GM3 boost */
snd_soc_component_update_bits(component,
AQT1000_HPH_CNP_WG_CTL,
0x80, 0x80);
/* Enable AutoChop timer at the end of power up */
snd_soc_component_update_bits(component,
AQT1000_HPH_NEW_INT_HPH_TIMER1,
0x02, 0x02);
/* Remove mix path mute if it is enabled */
if ((snd_soc_component_read32(component,
AQT1000_CDC_RX1_RX_PATH_MIX_CTL)) &
0x10)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_MIX_CTL,
0x10, 0x00);
if (!(strcmp(w->name, "AQT ANC HPHL PA"))) {
dev_dbg(component->dev,
"%s:Do everything needed for right channel\n",
__func__);
/* Do everything needed for right channel */
snd_soc_component_update_bits(component,
AQT1000_HPH_R_TEST,
0x01, 0x01);
/* Remove mute */
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_CTL,
0x10, 0x00);
/* Remove mix path mute if it is enabled */
if ((snd_soc_component_read32(component,
AQT1000_CDC_RX2_RX_PATH_MIX_CTL)) &
0x10)
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_MIX_CTL,
0x10, 0x00);
/* Remove ANC Rx from reset */
ret = aqt_codec_enable_anc(w, kcontrol, event);
}
aqt_codec_override(component, aqt->hph_mode, event);
break;
case SND_SOC_DAPM_PRE_PMD:
blocking_notifier_call_chain(&aqt->mbhc->notifier,
AQT_EVENT_PRE_HPHL_PA_OFF,
&aqt->mbhc->wcd_mbhc);
snd_soc_component_update_bits(component,
AQT1000_HPH_L_TEST, 0x01, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CTL, 0x10, 0x10);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_MIX_CTL, 0x10, 0x10);
if (!(strcmp(w->name, "AQT ANC HPHL PA")))
snd_soc_component_update_bits(component,
AQT1000_ANA_HPH, 0x80, 0x00);
break;
case SND_SOC_DAPM_POST_PMD:
/*
* 5ms sleep is required after PA disable. If compander is
* disabled, then 20ms delay is needed after PA disable.
*/
if (!aqt->comp_enabled[COMPANDER_1])
usleep_range(20000, 20100);
else
usleep_range(5000, 5100);
aqt_codec_override(component, aqt->hph_mode, event);
blocking_notifier_call_chain(&aqt->mbhc->notifier,
AQT_EVENT_POST_HPHL_PA_OFF,
&aqt->mbhc->wcd_mbhc);
if (!(strcmp(w->name, "AQT ANC HPHL PA"))) {
ret = aqt_codec_enable_anc(w, kcontrol, event);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_CFG0, 0x10, 0x00);
}
break;
};
return ret;
}
static int aqt_codec_set_iir_gain(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_POST_PMU: /* fall through */
case SND_SOC_DAPM_PRE_PMD:
if (strnstr(w->name, "AQT IIR0", sizeof("AQT IIR0"))) {
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
snd_soc_component_write(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
snd_soc_component_read32(component,
AQT1000_CDC_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
}
break;
}
return 0;
}
static int aqt_enable_native_supply(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (++aqt->native_clk_users == 1) {
snd_soc_component_update_bits(component,
AQT1000_CLK_SYS_PLL_ENABLES,
0x01, 0x01);
/* 100usec is needed as per HW requirement */
usleep_range(100, 120);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_MCLK_CONTROL,
0x02, 0x02);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_FS_CNT_CONTROL,
0x10, 0x10);
}
break;
case SND_SOC_DAPM_PRE_PMD:
if (aqt->native_clk_users &&
(--aqt->native_clk_users == 0)) {
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_FS_CNT_CONTROL,
0x10, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_MCLK_CONTROL,
0x02, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CLK_SYS_PLL_ENABLES,
0x01, 0x00);
}
break;
}
dev_dbg(component->dev, "%s: native_clk_users: %d, event: %d\n",
__func__, aqt->native_clk_users, event);
return 0;
}
static const char * const native_mux_text[] = {
"OFF", "ON",
};
AQT_DAPM_ENUM(int1_1_native, SND_SOC_NOPM, 0, native_mux_text);
AQT_DAPM_ENUM(int2_1_native, SND_SOC_NOPM, 0, native_mux_text);
static int aqt_mclk_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
int ret = 0;
dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
ret = aqt_cdc_mclk_enable(component, true);
break;
case SND_SOC_DAPM_POST_PMD:
ret = aqt_cdc_mclk_enable(component, false);
break;
}
return ret;
}
static int aif_cap_mixer_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
return 0;
}
static int aif_cap_mixer_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
return 0;
}
static const struct snd_kcontrol_new aif1_cap_mixer[] = {
SOC_SINGLE_EXT("TX0", SND_SOC_NOPM, AQT_TX0, 1, 0,
aif_cap_mixer_get, aif_cap_mixer_put),
SOC_SINGLE_EXT("TX1", SND_SOC_NOPM, AQT_TX1, 1, 0,
aif_cap_mixer_get, aif_cap_mixer_put),
};
static const char * const rx_inp_st_mux_text[] = {
"ZERO", "SRC0",
};
AQT_DAPM_ENUM(rx_inp_st, AQT1000_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
rx_inp_st_mux_text);
static const struct snd_soc_dapm_widget aqt_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("AQT MCLK", SND_SOC_NOPM, 0, 0, aqt_mclk_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_OUT_E("AQT AIF1 CAP", "AQT AIF1 Capture", 0,
SND_SOC_NOPM, AIF1_CAP, 0, aqt_codec_enable_i2s_tx,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("AQT AIF1 CAP Mixer", SND_SOC_NOPM, AIF1_CAP, 0,
aif1_cap_mixer, ARRAY_SIZE(aif1_cap_mixer)),
AQT_DAPM_MUX("AQT TX0_MUX", 0, tx0),
AQT_DAPM_MUX("AQT TX1_MUX", 0, tx1),
SND_SOC_DAPM_MUX_E("AQT ADC0 MUX", AQT1000_CDC_TX0_TX_PATH_CTL, 5, 0,
&tx_adc0_mux, aqt_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("AQT ADC1 MUX", AQT1000_CDC_TX1_TX_PATH_CTL, 5, 0,
&tx_adc1_mux, aqt_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("AQT ADC2 MUX", AQT1000_CDC_TX2_TX_PATH_CTL, 5, 0,
&tx_adc2_mux, aqt_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
AQT_DAPM_MUX("AQT AMIC0_MUX", 0, tx_amic0),
AQT_DAPM_MUX("AQT AMIC1_MUX", 0, tx_amic1),
AQT_DAPM_MUX("AQT AMIC2_MUX", 0, tx_amic2),
SND_SOC_DAPM_ADC_E("AQT ADC_L", NULL, AQT1000_ANA_AMIC1, 7, 0,
aqt_codec_enable_adc, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_ADC_E("AQT ADC_R", NULL, AQT1000_ANA_AMIC2, 7, 0,
aqt_codec_enable_adc, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_ADC_E("AQT ADC_V", NULL, AQT1000_ANA_AMIC3, 7, 0,
aqt_codec_enable_adc, SND_SOC_DAPM_PRE_PMU),
AQT_DAPM_MUX("AQT AMIC10_MUX", 0, tx_amic10),
AQT_DAPM_MUX("AQT AMIC11_MUX", 0, tx_amic11),
AQT_DAPM_MUX("AQT AMIC12_MUX", 0, tx_amic12),
AQT_DAPM_MUX("AQT AMIC13_MUX", 0, tx_amic13),
SND_SOC_DAPM_SWITCH_E("AQT ANC OUT HPHL Enable", SND_SOC_NOPM,
INTERP_HPHL, 0, &anc_hphl_pa_switch, aqt_anc_out_switch_cb,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SWITCH_E("AQT ANC OUT HPHR Enable", SND_SOC_NOPM,
INTERP_HPHR, 0, &anc_hphr_pa_switch, aqt_anc_out_switch_cb,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_MIXER("AQT RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("AQT RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
AQT_DAPM_MUX("AQT ANC0 FB MUX", 0, anc0_fb),
AQT_DAPM_MUX("AQT ANC1 FB MUX", 0, anc1_fb),
SND_SOC_DAPM_INPUT("AQT AMIC1"),
SND_SOC_DAPM_INPUT("AQT AMIC2"),
SND_SOC_DAPM_INPUT("AQT AMIC3"),
SND_SOC_DAPM_MIXER("AQT I2S_L RX", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("AQT I2S_R RX", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_AIF_IN_E("AQT AIF1 PB", "AQT AIF1 Playback", 0,
SND_SOC_NOPM, AIF1_PB, 0, aqt_codec_enable_i2s_rx,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("AQT RX INT1_1 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
&rx_int1_1_mux, aqt_codec_enable_main_path,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("AQT RX INT2_1 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
&rx_int2_1_mux, aqt_codec_enable_main_path,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("AQT RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
&rx_int1_2_mux, aqt_codec_enable_mix_path,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("AQT RX INT2_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
&rx_int2_2_mux, aqt_codec_enable_mix_path,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
AQT_DAPM_MUX("AQT RX INT1_1 INTERP", 0, rx_int1_1_interp),
AQT_DAPM_MUX("AQT RX INT1_2 INTERP", 0, rx_int1_2_interp),
AQT_DAPM_MUX("AQT RX INT2_1 INTERP", 0, rx_int2_1_interp),
AQT_DAPM_MUX("AQT RX INT2_2 INTERP", 0, rx_int2_2_interp),
SND_SOC_DAPM_MIXER("AQT RX INT1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("AQT RX INT2 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX_E("AQT ASRC0 MUX", SND_SOC_NOPM, ASRC0, 0,
&asrc0_mux, aqt_codec_enable_asrc_resampler,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("AQT ASRC1 MUX", SND_SOC_NOPM, ASRC1, 0,
&asrc1_mux, aqt_codec_enable_asrc_resampler,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
AQT_DAPM_MUX("AQT RX INT1 DEM MUX", 0, rx_int1_dem),
AQT_DAPM_MUX("AQT RX INT2 DEM MUX", 0, rx_int2_dem),
SND_SOC_DAPM_DAC_E("AQT RX INT1 DAC", NULL, AQT1000_ANA_HPH,
5, 0, aqt_codec_hphl_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("AQT RX INT2 DAC", NULL, AQT1000_ANA_HPH,
4, 0, aqt_codec_hphr_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("AQT HPHL PA", AQT1000_ANA_HPH, 7, 0, NULL, 0,
aqt_codec_enable_hphl_pa,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("AQT HPHR PA", AQT1000_ANA_HPH, 6, 0, NULL, 0,
aqt_codec_enable_hphr_pa,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("AQT ANC HPHL PA", SND_SOC_NOPM, 0, 0, NULL, 0,
aqt_codec_enable_hphl_pa,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("AQT ANC HPHR PA", SND_SOC_NOPM, 0, 0, NULL, 0,
aqt_codec_enable_hphr_pa,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_OUTPUT("AQT HPHL"),
SND_SOC_DAPM_OUTPUT("AQT HPHR"),
SND_SOC_DAPM_OUTPUT("AQT ANC HPHL"),
SND_SOC_DAPM_OUTPUT("AQT ANC HPHR"),
SND_SOC_DAPM_MIXER_E("AQT IIR0", AQT1000_CDC_SIDETONE_IIR0_IIR_PATH_CTL,
4, 0, NULL, 0, aqt_codec_set_iir_gain,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_MIXER("AQT SRC0",
AQT1000_CDC_SIDETONE_SRC0_ST_SRC_PATH_CTL,
4, 0, NULL, 0),
SND_SOC_DAPM_MICBIAS_E("AQT MIC BIAS1", SND_SOC_NOPM, 0, 0,
aqt_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("AQT RX_BIAS", SND_SOC_NOPM, 0, 0,
aqt_codec_enable_rx_bias,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("AQT RX INT1 NATIVE SUPPLY", SND_SOC_NOPM,
INTERP_HPHL, 0, aqt_enable_native_supply,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SUPPLY("AQT RX INT2 NATIVE SUPPLY", SND_SOC_NOPM,
INTERP_HPHR, 0, aqt_enable_native_supply,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD),
AQT_DAPM_MUX("AQT RX INT1_1 NATIVE MUX", 0, int1_1_native),
AQT_DAPM_MUX("AQT RX INT2_1 NATIVE MUX", 0, int2_1_native),
SND_SOC_DAPM_MUX("AQT RX ST MUX",
AQT1000_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2, 0,
&rx_inp_st_mux),
};
static int aqt_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
pr_debug("%s(): substream = %s stream = %d\n", __func__,
substream->name, substream->stream);
return 0;
}
static void aqt_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
pr_debug("%s(): substream = %s stream = %d\n", __func__,
substream->name, substream->stream);
}
static int aqt_set_decimator_rate(struct snd_soc_dai *dai,
u32 sample_rate)
{
struct snd_soc_component *component = dai->component;
u8 tx_fs_rate = 0;
u8 tx_mux_sel = 0, tx0_mux_sel = 0, tx1_mux_sel = 0;
u16 tx_path_ctl_reg = 0;
switch (sample_rate) {
case 8000:
tx_fs_rate = 0;
break;
case 16000:
tx_fs_rate = 1;
break;
case 32000:
tx_fs_rate = 3;
break;
case 48000:
tx_fs_rate = 4;
break;
case 96000:
tx_fs_rate = 5;
break;
case 192000:
tx_fs_rate = 6;
break;
default:
dev_err(component->dev, "%s: Invalid TX sample rate: %d\n",
__func__, sample_rate);
return -EINVAL;
};
/* Find which decimator path is enabled */
tx_mux_sel = snd_soc_component_read32(component,
AQT1000_CDC_IF_ROUTER_TX_MUX_CFG0);
tx0_mux_sel = (tx_mux_sel & 0x03);
tx1_mux_sel = (tx_mux_sel & 0xC0);
if (tx0_mux_sel) {
tx_path_ctl_reg = AQT1000_CDC_TX0_TX_PATH_CTL +
((tx0_mux_sel - 1) * 16);
snd_soc_component_update_bits(component, tx_path_ctl_reg,
0x0F, tx_fs_rate);
}
if (tx1_mux_sel) {
tx_path_ctl_reg = AQT1000_CDC_TX0_TX_PATH_CTL +
((tx1_mux_sel - 1) * 16);
snd_soc_component_update_bits(component, tx_path_ctl_reg,
0x0F, tx_fs_rate);
}
return 0;
}
static int aqt_set_interpolator_rate(struct snd_soc_dai *dai,
u32 sample_rate)
{
struct snd_soc_component *component = dai->component;
int rate_val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
if (sample_rate == sr_val_tbl[i].sample_rate) {
rate_val = sr_val_tbl[i].rate_val;
break;
}
}
if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
__func__, sample_rate);
return -EINVAL;
}
/* TODO - Set the rate only to enabled path */
/* Set Primary interpolator rate */
snd_soc_component_update_bits(component, AQT1000_CDC_RX1_RX_PATH_CTL,
0x0F, (u8)rate_val);
snd_soc_component_update_bits(component, AQT1000_CDC_RX2_RX_PATH_CTL,
0x0F, (u8)rate_val);
/* Set mixing path interpolator rate */
snd_soc_component_update_bits(component,
AQT1000_CDC_RX1_RX_PATH_MIX_CTL,
0x0F, (u8)rate_val);
snd_soc_component_update_bits(component,
AQT1000_CDC_RX2_RX_PATH_MIX_CTL,
0x0F, (u8)rate_val);
return 0;
}
static int aqt_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
pr_debug("%s(): substream = %s stream = %d\n", __func__,
substream->name, substream->stream);
return 0;
}
static int aqt_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(dai->component);
int ret = 0;
dev_dbg(aqt->dev, "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n",
__func__, dai->name, dai->id, params_rate(params),
params_channels(params));
switch (substream->stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
ret = aqt_set_interpolator_rate(dai, params_rate(params));
if (ret) {
dev_err(aqt->dev, "%s: cannot set sample rate: %u\n",
__func__, params_rate(params));
return ret;
}
switch (params_width(params)) {
case 16:
aqt->dai[dai->id].bit_width = 16;
break;
case 24:
aqt->dai[dai->id].bit_width = 24;
break;
case 32:
aqt->dai[dai->id].bit_width = 32;
break;
default:
return -EINVAL;
}
aqt->dai[dai->id].rate = params_rate(params);
break;
case SNDRV_PCM_STREAM_CAPTURE:
ret = aqt_set_decimator_rate(dai, params_rate(params));
if (ret) {
dev_err(aqt->dev,
"%s: cannot set TX Decimator rate: %d\n",
__func__, ret);
return ret;
}
switch (params_width(params)) {
case 16:
aqt->dai[dai->id].bit_width = 16;
break;
case 24:
aqt->dai[dai->id].bit_width = 24;
break;
default:
dev_err(aqt->dev, "%s: Invalid format 0x%x\n",
__func__, params_width(params));
return -EINVAL;
};
aqt->dai[dai->id].rate = params_rate(params);
break;
default:
dev_err(aqt->dev, "%s: Invalid stream type %d\n", __func__,
substream->stream);
return -EINVAL;
};
return 0;
}
static struct snd_soc_dai_ops aqt_dai_ops = {
.startup = aqt_startup,
.shutdown = aqt_shutdown,
.hw_params = aqt_hw_params,
.prepare = aqt_prepare,
};
struct snd_soc_dai_driver aqt_dai[] = {
{
.name = "aqt_rx1",
.id = AIF1_PB,
.playback = {
.stream_name = "AQT AIF1 Playback",
.rates = AQT1000_RATES_MASK | AQT1000_FRAC_RATES_MASK,
.formats = AQT1000_FORMATS_S16_S24_S32_LE,
.rate_min = 8000,
.rate_max = 384000,
.channels_min = 1,
.channels_max = 2,
},
.ops = &aqt_dai_ops,
},
{
.name = "aqt_tx1",
.id = AIF1_CAP,
.capture = {
.stream_name = "AQT AIF1 Capture",
.rates = AQT1000_RATES_MASK,
.formats = AQT1000_FORMATS_S16_S24_LE,
.rate_min = 8000,
.rate_max = 192000,
.channels_min = 1,
.channels_max = 2,
},
.ops = &aqt_dai_ops,
},
};
static int aqt_enable_mclk(struct aqt1000 *aqt)
{
struct snd_soc_component *component = aqt->component;
/* Enable mclk requires master bias to be enabled first */
if (aqt->master_bias_users <= 0) {
dev_err(aqt->dev,
"%s: Cannot turn on MCLK, BG is not enabled\n",
__func__);
return -EINVAL;
}
if (++aqt->mclk_users == 1) {
/* Set clock div 2 */
snd_soc_component_update_bits(component,
AQT1000_CLK_SYS_MCLK1_PRG, 0x0C, 0x04);
snd_soc_component_update_bits(component,
AQT1000_CLK_SYS_MCLK1_PRG, 0x10, 0x10);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_FS_CNT_CONTROL,
0x01, 0x01);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_MCLK_CONTROL,
0x01, 0x01);
/*
* 10us sleep is required after clock is enabled
* as per HW requirement
*/
usleep_range(10, 15);
}
dev_dbg(aqt->dev, "%s: mclk_users: %d\n", __func__, aqt->mclk_users);
return 0;
}
static int aqt_disable_mclk(struct aqt1000 *aqt)
{
struct snd_soc_component *component = aqt->component;
if (aqt->mclk_users <= 0) {
dev_err(aqt->dev, "%s: No mclk users, cannot disable mclk\n",
__func__);
return -EINVAL;
}
if (--aqt->mclk_users == 0) {
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_MCLK_CONTROL,
0x01, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CDC_CLK_RST_CTRL_FS_CNT_CONTROL,
0x01, 0x00);
snd_soc_component_update_bits(component,
AQT1000_CLK_SYS_MCLK1_PRG, 0x10, 0x00);
}
dev_dbg(component->dev, "%s: mclk_users: %d\n", __func__,
aqt->mclk_users);
return 0;
}
static int aqt_enable_master_bias(struct aqt1000 *aqt)
{
struct snd_soc_component *component = aqt->component;
mutex_lock(&aqt->master_bias_lock);
aqt->master_bias_users++;
if (aqt->master_bias_users == 1) {
snd_soc_component_update_bits(component, AQT1000_ANA_BIAS,
0x80, 0x80);
snd_soc_component_update_bits(component, AQT1000_ANA_BIAS,
0x40, 0x40);
/*
* 1ms delay is required after pre-charge is enabled
* as per HW requirement
*/
usleep_range(1000, 1100);
snd_soc_component_update_bits(component, AQT1000_ANA_BIAS,
0x40, 0x00);
}
mutex_unlock(&aqt->master_bias_lock);
return 0;
}
static int aqt_disable_master_bias(struct aqt1000 *aqt)
{
struct snd_soc_component *component = aqt->component;
mutex_lock(&aqt->master_bias_lock);
if (aqt->master_bias_users <= 0) {
mutex_unlock(&aqt->master_bias_lock);
return -EINVAL;
}
aqt->master_bias_users--;
if (aqt->master_bias_users == 0)
snd_soc_component_update_bits(component, AQT1000_ANA_BIAS,
0x80, 0x00);
mutex_unlock(&aqt->master_bias_lock);
return 0;
}
static int aqt_cdc_req_mclk_enable(struct aqt1000 *aqt,
bool enable)
{
int ret = 0;
if (enable) {
ret = clk_prepare_enable(aqt->ext_clk);
if (ret) {
dev_err(aqt->dev, "%s: ext clk enable failed\n",
__func__);
goto done;
}
/* Get BG */
aqt_enable_master_bias(aqt);
/* Get MCLK */
aqt_enable_mclk(aqt);
} else {
/* put MCLK */
aqt_disable_mclk(aqt);
/* put BG */
if (aqt_disable_master_bias(aqt))
dev_err(aqt->dev, "%s: master bias disable failed\n",
__func__);
clk_disable_unprepare(aqt->ext_clk);
}
done:
return ret;
}
static int __aqt_cdc_mclk_enable_locked(struct aqt1000 *aqt,
bool enable)
{
int ret = 0;
dev_dbg(aqt->dev, "%s: mclk_enable = %u\n", __func__, enable);
if (enable)
ret = aqt_cdc_req_mclk_enable(aqt, true);
else
aqt_cdc_req_mclk_enable(aqt, false);
return ret;
}
static int __aqt_cdc_mclk_enable(struct aqt1000 *aqt,
bool enable)
{
int ret;
mutex_lock(&aqt->cdc_bg_clk_lock);
ret = __aqt_cdc_mclk_enable_locked(aqt, enable);
mutex_unlock(&aqt->cdc_bg_clk_lock);
return ret;
}
/**
* aqt_cdc_mclk_enable - Enable/disable codec mclk
*
* @component: codec component instance
* @enable: Indicates clk enable or disable
*
* Returns 0 on Success and error on failure
*/
int aqt_cdc_mclk_enable(struct snd_soc_component *component, bool enable)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
return __aqt_cdc_mclk_enable(aqt, enable);
}
EXPORT_SYMBOL(aqt_cdc_mclk_enable);
/*
* aqt_get_micb_vout_ctl_val: converts micbias from volts to register value
* @micb_mv: micbias in mv
*
* return register value converted
*/
int aqt_get_micb_vout_ctl_val(u32 micb_mv)
{
/* min micbias voltage is 1V and maximum is 2.85V */
if (micb_mv < 1000 || micb_mv > 2850) {
pr_err("%s: unsupported micbias voltage\n", __func__);
return -EINVAL;
}
return (micb_mv - 1000) / 50;
}
EXPORT_SYMBOL(aqt_get_micb_vout_ctl_val);
static int aqt_set_micbias(struct aqt1000 *aqt,
struct aqt1000_pdata *pdata)
{
struct snd_soc_component *component = aqt->component;
int vout_ctl_1;
if (!pdata) {
dev_err(component->dev, "%s: NULL pdata\n", __func__);
return -ENODEV;
}
/* set micbias voltage */
vout_ctl_1 = aqt_get_micb_vout_ctl_val(pdata->micbias.micb1_mv);
if (vout_ctl_1 < 0)
return -EINVAL;
snd_soc_component_update_bits(component, AQT1000_ANA_MICB1,
0x3F, vout_ctl_1);
return 0;
}
static ssize_t aqt_codec_version_read(struct snd_info_entry *entry,
void *file_private_data,
struct file *file,
char __user *buf, size_t count,
loff_t pos)
{
char buffer[AQT_VERSION_ENTRY_SIZE];
int len = 0;
len = snprintf(buffer, sizeof(buffer), "AQT1000_1_0\n");
return simple_read_from_buffer(buf, count, &pos, buffer, len);
}
static struct snd_info_entry_ops aqt_codec_info_ops = {
.read = aqt_codec_version_read,
};
/*
* aqt_codec_info_create_codec_entry - creates aqt1000 module
* @codec_root: The parent directory
* @component: Codec component instance
*
* Creates aqt1000 module and version entry under the given
* parent directory.
*
* Return: 0 on success or negative error code on failure.
*/
int aqt_codec_info_create_codec_entry(struct snd_info_entry *codec_root,
struct snd_soc_component *component)
{
struct snd_info_entry *version_entry;
struct aqt1000 *aqt;
struct snd_soc_card *card;
if (!codec_root || !component)
return -EINVAL;
aqt = snd_soc_component_get_drvdata(component);
if (!aqt) {
dev_dbg(component->dev, "%s: aqt is NULL\n", __func__);
return -EINVAL;
}
card = component->card;
aqt->entry = snd_info_create_subdir(codec_root->module,
"aqt1000", codec_root);
if (!aqt->entry) {
dev_dbg(component->dev, "%s: failed to create aqt1000 entry\n",
__func__);
return -ENOMEM;
}
version_entry = snd_info_create_card_entry(card->snd_card,
"version",
aqt->entry);
if (!version_entry) {
dev_dbg(component->dev, "%s: failed to create aqt1000 version entry\n",
__func__);
return -ENOMEM;
}
version_entry->private_data = aqt;
version_entry->size = AQT_VERSION_ENTRY_SIZE;
version_entry->content = SNDRV_INFO_CONTENT_DATA;
version_entry->c.ops = &aqt_codec_info_ops;
if (snd_info_register(version_entry) < 0) {
snd_info_free_entry(version_entry);
return -ENOMEM;
}
aqt->version_entry = version_entry;
return 0;
}
EXPORT_SYMBOL(aqt_codec_info_create_codec_entry);
static const struct aqt_reg_mask_val aqt_codec_reg_init[] = {
{AQT1000_CHIP_CFG0_EFUSE_CTL, 0x01, 0x01},
};
static const struct aqt_reg_mask_val aqt_codec_reg_update[] = {
{AQT1000_LDOH_MODE, 0x1F, 0x0B},
{AQT1000_MICB1_TEST_CTL_2, 0x07, 0x01},
{AQT1000_MICB1_MISC_MICB1_INM_RES_BIAS, 0x03, 0x02},
{AQT1000_MICB1_MISC_MICB1_INM_RES_BIAS, 0x0C, 0x08},
{AQT1000_MICB1_MISC_MICB1_INM_RES_BIAS, 0x30, 0x20},
{AQT1000_CDC_TX0_TX_PATH_CFG1, 0x01, 0x00},
{AQT1000_CDC_TX1_TX_PATH_CFG1, 0x01, 0x00},
{AQT1000_CDC_TX2_TX_PATH_CFG1, 0x01, 0x00},
};
static void aqt_codec_init_reg(struct aqt1000 *priv)
{
struct snd_soc_component *component = priv->component;
u32 i;
for (i = 0; i < ARRAY_SIZE(aqt_codec_reg_init); i++)
snd_soc_component_update_bits(component,
aqt_codec_reg_init[i].reg,
aqt_codec_reg_init[i].mask,
aqt_codec_reg_init[i].val);
}
static void aqt_codec_update_reg(struct aqt1000 *priv)
{
struct snd_soc_component *component = priv->component;
u32 i;
for (i = 0; i < ARRAY_SIZE(aqt_codec_reg_update); i++)
snd_soc_component_update_bits(component,
aqt_codec_reg_update[i].reg,
aqt_codec_reg_update[i].mask,
aqt_codec_reg_update[i].val);
}
static int aqt_soc_codec_probe(struct snd_soc_component *component)
{
struct aqt1000 *aqt;
struct aqt1000_pdata *pdata;
struct snd_soc_dapm_context *dapm =
snd_soc_component_get_dapm(component);
int i, ret = 0;
dev_dbg(component->dev, "%s()\n", __func__);
aqt = snd_soc_component_get_drvdata(component);
snd_soc_component_init_regmap(component, aqt->regmap);
mutex_init(&aqt->codec_mutex);
mutex_init(&aqt->i2s_lock);
/* Class-H Init */
aqt_clsh_init(&aqt->clsh_d);
/* Default HPH Mode to Class-H Low HiFi */
aqt->hph_mode = CLS_H_LOHIFI;
aqt->fw_data = devm_kzalloc(component->dev, sizeof(*(aqt->fw_data)),
GFP_KERNEL);
if (!aqt->fw_data)
goto err;
set_bit(WCD9XXX_ANC_CAL, aqt->fw_data->cal_bit);
set_bit(WCD9XXX_MBHC_CAL, aqt->fw_data->cal_bit);
/* Register for Clock */
aqt->ext_clk = clk_get(aqt->dev, "aqt_clk");
if (IS_ERR(aqt->ext_clk)) {
dev_err(aqt->dev, "%s: clk get %s failed\n",
__func__, "aqt_ext_clk");
goto err_clk;
}
ret = wcd_cal_create_hwdep(aqt->fw_data,
AQT1000_CODEC_HWDEP_NODE, component);
if (ret < 0) {
dev_err(component->dev, "%s hwdep failed %d\n", __func__, ret);
goto err_hwdep;
}
/* Initialize MBHC module */
ret = aqt_mbhc_init(&aqt->mbhc, component, aqt->fw_data);
if (ret) {
pr_err("%s: mbhc initialization failed\n", __func__);
goto err_hwdep;
}
aqt->component = component;
for (i = 0; i < COMPANDER_MAX; i++)
aqt->comp_enabled[i] = 0;
aqt_cdc_mclk_enable(component, true);
aqt_codec_init_reg(aqt);
aqt_cdc_mclk_enable(component, false);
/* Add 100usec delay as per HW requirement */
usleep_range(100, 110);
aqt_codec_update_reg(aqt);
pdata = dev_get_platdata(component->dev);
/* If 1.8v is supplied externally, then disable internal 1.8v supply */
for (i = 0; i < pdata->num_supplies; i++) {
if (!strcmp(pdata->regulator->name, "aqt_vdd1p8")) {
snd_soc_component_update_bits(component,
AQT1000_BUCK_5V_EN_CTL,
0x03, 0x00);
dev_dbg(component->dev, "%s: Disabled internal supply\n",
__func__);
break;
}
}
aqt_set_micbias(aqt, pdata);
snd_soc_dapm_add_routes(dapm, aqt_audio_map,
ARRAY_SIZE(aqt_audio_map));
for (i = 0; i < NUM_CODEC_DAIS; i++) {
INIT_LIST_HEAD(&aqt->dai[i].ch_list);
init_waitqueue_head(&aqt->dai[i].dai_wait);
}
for (i = 0; i < AQT1000_NUM_DECIMATORS; i++) {
aqt->tx_hpf_work[i].aqt = aqt;
aqt->tx_hpf_work[i].decimator = i;
INIT_DELAYED_WORK(&aqt->tx_hpf_work[i].dwork,
aqt_tx_hpf_corner_freq_callback);
aqt->tx_mute_dwork[i].aqt = aqt;
aqt->tx_mute_dwork[i].decimator = i;
INIT_DELAYED_WORK(&aqt->tx_mute_dwork[i].dwork,
aqt_tx_mute_update_callback);
}
mutex_lock(&aqt->codec_mutex);
snd_soc_dapm_disable_pin(dapm, "AQT ANC HPHL PA");
snd_soc_dapm_disable_pin(dapm, "AQT ANC HPHR PA");
snd_soc_dapm_disable_pin(dapm, "AQT ANC HPHL");
snd_soc_dapm_disable_pin(dapm, "AQT ANC HPHR");
mutex_unlock(&aqt->codec_mutex);
snd_soc_dapm_ignore_suspend(dapm, "AQT AIF1 Playback");
snd_soc_dapm_ignore_suspend(dapm, "AQT AIF1 Capture");
snd_soc_dapm_sync(dapm);
return ret;
err_hwdep:
clk_put(aqt->ext_clk);
err_clk:
devm_kfree(component->dev, aqt->fw_data);
aqt->fw_data = NULL;
err:
mutex_destroy(&aqt->i2s_lock);
mutex_destroy(&aqt->codec_mutex);
return ret;
}
static void aqt_soc_codec_remove(struct snd_soc_component *component)
{
struct aqt1000 *aqt = snd_soc_component_get_drvdata(component);
/* Deinitialize MBHC module */
aqt_mbhc_deinit(component);
aqt->mbhc = NULL;
mutex_destroy(&aqt->i2s_lock);
mutex_destroy(&aqt->codec_mutex);
clk_put(aqt->ext_clk);
return;
}
static const struct snd_soc_component_driver snd_cdc_dev_aqt = {
.name = DRV_NAME,
.probe = aqt_soc_codec_probe,
.remove = aqt_soc_codec_remove,
.controls = aqt_snd_controls,
.num_controls = ARRAY_SIZE(aqt_snd_controls),
.dapm_widgets = aqt_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(aqt_dapm_widgets),
.dapm_routes = aqt_audio_map,
.num_dapm_routes = ARRAY_SIZE(aqt_audio_map),
};
/*
* aqt_register_codec: Register the device to ASoC
* @dev: device
*
* return 0 success or error code in case of failure
*/
int aqt_register_codec(struct device *dev)
{
return snd_soc_register_component(dev, &snd_cdc_dev_aqt, aqt_dai,
ARRAY_SIZE(aqt_dai));
}
EXPORT_SYMBOL(aqt_register_codec);