blob: 6683348686aae816a3bdcbb05d42120da8f1c23d [file] [log] [blame]
/*
* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <soc/qcom/glink.h>
#include <ipc/apr_tal.h>
#define APR_MAXIMUM_NUM_OF_RETRIES 2
struct apr_tx_buf {
struct apr_pkt_priv pkt_priv;
char buf[APR_MAX_BUF];
};
struct link_state {
uint32_t dest;
void *handle;
enum glink_link_state link_state;
wait_queue_head_t wait;
};
static struct link_state link_state[APR_DEST_MAX];
static char *svc_names[APR_DEST_MAX][APR_CLIENT_MAX] = {
{
"apr_audio_svc",
"apr_voice_svc",
},
{
"apr_audio_svc",
"apr_voice_svc",
},
};
static struct apr_svc_ch_dev
apr_svc_ch[APR_DL_MAX][APR_DEST_MAX][APR_CLIENT_MAX];
static struct apr_tx_buf *apr_alloc_buf(int len)
{
if (len > APR_MAX_BUF) {
pr_err("%s: buf too large [%d]\n", __func__, len);
return ERR_PTR(-EINVAL);
}
return kzalloc(sizeof(struct apr_tx_buf), GFP_ATOMIC);
}
static void apr_free_buf(const void *ptr)
{
struct apr_pkt_priv *apr_pkt_priv = (struct apr_pkt_priv *)ptr;
struct apr_tx_buf *tx_buf;
if (!apr_pkt_priv) {
pr_err("%s: Invalid apr_pkt_priv\n", __func__);
return;
}
if (apr_pkt_priv->pkt_owner == APR_PKT_OWNER_DRIVER) {
tx_buf = container_of((void *)apr_pkt_priv,
struct apr_tx_buf, pkt_priv);
pr_debug("%s: Freeing buffer %pK", __func__, tx_buf);
kfree(tx_buf);
}
}
static int __apr_tal_write(struct apr_svc_ch_dev *apr_ch, void *data,
struct apr_pkt_priv *pkt_priv, int len)
{
int rc = 0;
unsigned long flags;
spin_lock_irqsave(&apr_ch->w_lock, flags);
rc = glink_tx(apr_ch->handle, pkt_priv, data, len, GLINK_TX_ATOMIC);
spin_unlock_irqrestore(&apr_ch->w_lock, flags);
if (rc)
pr_err("%s: glink_tx failed, rc[%d]\n", __func__, rc);
else
rc = len;
return rc;
}
int apr_tal_write(struct apr_svc_ch_dev *apr_ch, void *data,
struct apr_pkt_priv *pkt_priv, int len)
{
int rc = 0, retries = 0;
void *pkt_data = NULL;
struct apr_tx_buf *tx_buf = NULL;
struct apr_pkt_priv *pkt_priv_ptr = pkt_priv;
if (!apr_ch->handle || !pkt_priv)
return -EINVAL;
if (pkt_priv->pkt_owner == APR_PKT_OWNER_DRIVER) {
tx_buf = apr_alloc_buf(len);
if (IS_ERR_OR_NULL(tx_buf)) {
rc = -EINVAL;
goto exit;
}
memcpy(tx_buf->buf, data, len);
memcpy(&tx_buf->pkt_priv, pkt_priv, sizeof(tx_buf->pkt_priv));
pkt_priv_ptr = &tx_buf->pkt_priv;
pkt_data = tx_buf->buf;
} else {
pkt_data = data;
}
do {
if (rc == -EAGAIN)
udelay(50);
rc = __apr_tal_write(apr_ch, pkt_data, pkt_priv_ptr, len);
} while (rc == -EAGAIN && retries++ < APR_MAXIMUM_NUM_OF_RETRIES);
if (rc < 0) {
pr_err("%s: Unable to send the packet, rc:%d\n", __func__, rc);
if (pkt_priv->pkt_owner == APR_PKT_OWNER_DRIVER)
kfree(tx_buf);
}
exit:
return rc;
}
void apr_tal_notify_rx(void *handle, const void *priv, const void *pkt_priv,
const void *ptr, size_t size)
{
struct apr_svc_ch_dev *apr_ch = (struct apr_svc_ch_dev *)priv;
unsigned long flags;
if (!apr_ch || !ptr) {
pr_err("%s: Invalid apr_ch or ptr\n", __func__);
return;
}
pr_debug("%s: Rx packet received\n", __func__);
spin_lock_irqsave(&apr_ch->r_lock, flags);
if (apr_ch->func)
apr_ch->func((void *)ptr, size, (void *)pkt_priv);
spin_unlock_irqrestore(&apr_ch->r_lock, flags);
glink_rx_done(apr_ch->handle, ptr, true);
}
static void apr_tal_notify_tx_abort(void *handle, const void *priv,
const void *pkt_priv)
{
pr_debug("%s: tx_abort received for pkt_priv:%pK\n",
__func__, pkt_priv);
apr_free_buf(pkt_priv);
}
void apr_tal_notify_tx_done(void *handle, const void *priv,
const void *pkt_priv, const void *ptr)
{
pr_debug("%s: tx_done received for pkt_priv:%pK\n",
__func__, pkt_priv);
apr_free_buf(pkt_priv);
}
bool apr_tal_notify_rx_intent_req(void *handle, const void *priv,
size_t req_size)
{
struct apr_svc_ch_dev *apr_ch = (struct apr_svc_ch_dev *)priv;
if (!apr_ch) {
pr_err("%s: Invalid apr_ch\n", __func__);
return false;
}
pr_err("%s: No rx intents queued, unable to receive\n", __func__);
return false;
}
static void apr_tal_notify_remote_rx_intent(void *handle, const void *priv,
size_t size)
{
struct apr_svc_ch_dev *apr_ch = (struct apr_svc_ch_dev *)priv;
if (!apr_ch) {
pr_err("%s: Invalid apr_ch\n", __func__);
return;
}
/*
* This is to make sure that the far end has queued at least one intent
* before we attmpt any IPC. A simple bool flag is used here instead of
* a counter, as the far end is required to guarantee intent
* availability for all use cases once the channel is fully opened.
*/
pr_debug("%s: remote queued an intent\n", __func__);
apr_ch->if_remote_intent_ready = true;
wake_up(&apr_ch->wait);
}
void apr_tal_notify_state(void *handle, const void *priv, unsigned int event)
{
struct apr_svc_ch_dev *apr_ch = (struct apr_svc_ch_dev *)priv;
if (!apr_ch) {
pr_err("%s: Invalid apr_ch\n", __func__);
return;
}
apr_ch->channel_state = event;
pr_info("%s: Channel state[%d]\n", __func__, event);
if (event == GLINK_CONNECTED)
wake_up(&apr_ch->wait);
}
int apr_tal_rx_intents_config(struct apr_svc_ch_dev *apr_ch,
int num_of_intents, uint32_t size)
{
int i;
int rc = 0;
if (!apr_ch || !num_of_intents || !size) {
pr_err("%s: Invalid parameter\n", __func__);
return -EINVAL;
}
for (i = 0; i < num_of_intents; i++) {
rc = glink_queue_rx_intent(apr_ch->handle, apr_ch, size);
if (rc) {
pr_err("%s: Failed to queue rx intent, iteration[%d]\n",
__func__, i);
break;
}
}
return rc;
}
struct apr_svc_ch_dev *apr_tal_open(uint32_t clnt, uint32_t dest, uint32_t dl,
apr_svc_cb_fn func, void *priv)
{
int rc;
struct glink_open_config open_cfg;
struct apr_svc_ch_dev *apr_ch;
if ((clnt >= APR_CLIENT_MAX) || (dest >= APR_DEST_MAX) ||
(dl >= APR_DL_MAX)) {
pr_err("%s: Invalid params, clnt:%d, dest:%d, dl:%d\n",
__func__, clnt, dest, dl);
return NULL;
}
apr_ch = &apr_svc_ch[dl][dest][clnt];
mutex_lock(&apr_ch->m_lock);
if (apr_ch->handle) {
pr_err("%s: This channel is already opened\n", __func__);
rc = -EBUSY;
goto unlock;
}
if (link_state[dest].link_state != GLINK_LINK_STATE_UP) {
rc = wait_event_timeout(link_state[dest].wait,
link_state[dest].link_state == GLINK_LINK_STATE_UP,
msecs_to_jiffies(APR_OPEN_TIMEOUT_MS));
if (rc == 0) {
pr_err("%s: Open timeout, dest:%d\n", __func__, dest);
rc = -ETIMEDOUT;
goto unlock;
}
pr_debug("%s: Wakeup done, dest:%d\n", __func__, dest);
}
memset(&open_cfg, 0, sizeof(struct glink_open_config));
open_cfg.options = GLINK_OPT_INITIAL_XPORT;
if (dest == APR_DEST_MODEM)
open_cfg.edge = "mpss";
else
open_cfg.edge = "lpass";
open_cfg.name = svc_names[dest][clnt];
open_cfg.notify_rx = apr_tal_notify_rx;
open_cfg.notify_tx_done = apr_tal_notify_tx_done;
open_cfg.notify_state = apr_tal_notify_state;
open_cfg.notify_rx_intent_req = apr_tal_notify_rx_intent_req;
open_cfg.notify_remote_rx_intent = apr_tal_notify_remote_rx_intent;
open_cfg.notify_tx_abort = apr_tal_notify_tx_abort;
open_cfg.priv = apr_ch;
open_cfg.transport = "smem";
apr_ch->channel_state = GLINK_REMOTE_DISCONNECTED;
apr_ch->handle = glink_open(&open_cfg);
if (IS_ERR_OR_NULL(apr_ch->handle)) {
pr_err("%s: glink_open failed %s\n", __func__,
svc_names[dest][clnt]);
apr_ch->handle = NULL;
rc = -EINVAL;
goto unlock;
}
rc = wait_event_timeout(apr_ch->wait,
(apr_ch->channel_state == GLINK_CONNECTED), 5 * HZ);
if (rc == 0) {
pr_err("%s: TIMEOUT for OPEN event\n", __func__);
rc = -ETIMEDOUT;
goto close_link;
}
/*
* Remote intent is not required for GLINK <--> SMD IPC, so this is
* designed not to fail the open call.
*/
rc = wait_event_timeout(apr_ch->wait,
apr_ch->if_remote_intent_ready, 5 * HZ);
if (rc == 0)
pr_err("%s: TIMEOUT for remote intent readiness\n", __func__);
rc = apr_tal_rx_intents_config(apr_ch, APR_DEFAULT_NUM_OF_INTENTS,
APR_MAX_BUF);
if (rc) {
pr_err("%s: Unable to queue intents\n", __func__);
goto close_link;
}
apr_ch->func = func;
apr_ch->priv = priv;
close_link:
if (rc) {
glink_close(apr_ch->handle);
apr_ch->handle = NULL;
}
unlock:
mutex_unlock(&apr_ch->m_lock);
return rc ? NULL : apr_ch;
}
int apr_tal_start_rx_rt(struct apr_svc_ch_dev *apr_ch)
{
int rc = 0;
if (!apr_ch || !apr_ch->handle) {
rc = -EINVAL;
goto exit;
}
mutex_lock(&apr_ch->m_lock);
rc = glink_start_rx_rt(apr_ch->handle);
mutex_unlock(&apr_ch->m_lock);
exit:
return rc;
}
int apr_tal_end_rx_rt(struct apr_svc_ch_dev *apr_ch)
{
int rc = 0;
if (!apr_ch || !apr_ch->handle) {
rc = -EINVAL;
goto exit;
}
mutex_lock(&apr_ch->m_lock);
rc = glink_end_rx_rt(apr_ch->handle);
mutex_unlock(&apr_ch->m_lock);
exit:
return rc;
}
int apr_tal_close(struct apr_svc_ch_dev *apr_ch)
{
int rc;
if (!apr_ch || !apr_ch->handle) {
rc = -EINVAL;
goto exit;
}
mutex_lock(&apr_ch->m_lock);
rc = glink_close(apr_ch->handle);
apr_ch->handle = NULL;
apr_ch->func = NULL;
apr_ch->priv = NULL;
apr_ch->if_remote_intent_ready = false;
mutex_unlock(&apr_ch->m_lock);
exit:
return rc;
}
static void apr_tal_link_state_cb(struct glink_link_state_cb_info *cb_info,
void *priv)
{
uint32_t dest;
if (!cb_info) {
pr_err("%s: Invalid cb_info\n", __func__);
return;
}
if (!strcmp(cb_info->edge, "mpss"))
dest = APR_DEST_MODEM;
else if (!strcmp(cb_info->edge, "lpass"))
dest = APR_DEST_QDSP6;
else {
pr_err("%s:Unknown edge[%s]\n", __func__, cb_info->edge);
return;
}
pr_info("%s: edge[%s] link state[%d]\n", __func__, cb_info->edge,
cb_info->link_state);
link_state[dest].link_state = cb_info->link_state;
if (link_state[dest].link_state == GLINK_LINK_STATE_UP)
wake_up(&link_state[dest].wait);
}
static struct glink_link_info mpss_link_info = {
.transport = "smem",
.edge = "mpss",
.glink_link_state_notif_cb = apr_tal_link_state_cb,
};
static struct glink_link_info lpass_link_info = {
.transport = "smem",
.edge = "lpass",
.glink_link_state_notif_cb = apr_tal_link_state_cb,
};
int apr_tal_init(void)
{
int i, j, k;
for (i = 0; i < APR_DL_MAX; i++) {
for (j = 0; j < APR_DEST_MAX; j++) {
for (k = 0; k < APR_CLIENT_MAX; k++) {
init_waitqueue_head(&apr_svc_ch[i][j][k].wait);
spin_lock_init(&apr_svc_ch[i][j][k].w_lock);
spin_lock_init(&apr_svc_ch[i][j][k].r_lock);
mutex_init(&apr_svc_ch[i][j][k].m_lock);
}
}
}
for (i = 0; i < APR_DEST_MAX; i++)
init_waitqueue_head(&link_state[i].wait);
link_state[APR_DEST_MODEM].link_state = GLINK_LINK_STATE_DOWN;
link_state[APR_DEST_MODEM].handle =
glink_register_link_state_cb(&mpss_link_info, NULL);
if (!link_state[APR_DEST_MODEM].handle)
pr_err("%s: Unable to register mpss link state\n", __func__);
link_state[APR_DEST_QDSP6].link_state = GLINK_LINK_STATE_DOWN;
link_state[APR_DEST_QDSP6].handle =
glink_register_link_state_cb(&lpass_link_info, NULL);
if (!link_state[APR_DEST_QDSP6].handle)
pr_err("%s: Unable to register lpass link state\n", __func__);
return 0;
}