blob: 269d26ade138806db0a96996ec53fed9dc356eb6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/list.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/err.h>
#include "msm_drv.h"
#include "sde_connector.h"
#include "msm_mmu.h"
#include "dsi_display.h"
#include "dsi_panel.h"
#include "dsi_ctrl.h"
#include "dsi_ctrl_hw.h"
#include "dsi_drm.h"
#include "dsi_clk.h"
#include "dsi_pwr.h"
#include "sde_dbg.h"
#include "dsi_parser.h"
#if defined(CONFIG_PXLW_IRIS)
#include "iris/dsi_iris6_api.h"
#include "iris/dsi_iris6_log.h"
#include "iris/dsi_iris6_lp.h"
#include "iris/dsi_iris6_lightup.h"
#include <video/mipi_display.h>
extern u8 panel_mcf_data[512];
#endif
#ifdef CONFIG_TOUCHSCREEN_FTS
extern int fts_esd_check(void);
#endif
#define to_dsi_display(x) container_of(x, struct dsi_display, host)
#define INT_BASE_10 10
#define MISR_BUFF_SIZE 256
#define ESD_MODE_STRING_MAX_LEN 256
#define ESD_TRIGGER_STRING_MAX_LEN 10
#define MAX_NAME_SIZE 64
#define DSI_CLOCK_BITRATE_RADIX 10
#define MAX_TE_SOURCE_ID 2
static char dsi_display_primary[MAX_CMDLINE_PARAM_LEN];
static char dsi_display_secondary[MAX_CMDLINE_PARAM_LEN];
static struct dsi_display_boot_param boot_displays[MAX_DSI_ACTIVE_DISPLAY] = {
{.boot_param = dsi_display_primary},
{.boot_param = dsi_display_secondary},
};
static const struct of_device_id dsi_display_dt_match[] = {
{.compatible = "qcom,dsi-display"},
{}
};
static void dsi_display_mask_ctrl_error_interrupts(struct dsi_display *display,
u32 mask, bool enable)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
dsi_ctrl_mask_error_status_interrupts(ctrl->ctrl, mask, enable);
}
}
static int dsi_display_config_clk_gating(struct dsi_display *display,
bool enable)
{
int rc = 0, i = 0;
struct dsi_display_ctrl *mctrl, *ctrl;
enum dsi_clk_gate_type clk_selection;
enum dsi_clk_gate_type const default_clk_select = PIXEL_CLK | DSI_PHY;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (display->panel->host_config.force_hs_clk_lane) {
DSI_DEBUG("no dsi clock gating for continuous clock mode\n");
return 0;
}
mctrl = &display->ctrl[display->clk_master_idx];
if (!mctrl) {
DSI_ERR("Invalid controller\n");
return -EINVAL;
}
clk_selection = display->clk_gating_config;
if (!enable) {
/* for disable path, make sure to disable all clk gating */
clk_selection = DSI_CLK_ALL;
} else if (!clk_selection || clk_selection > DSI_CLK_NONE) {
/* Default selection, no overrides */
clk_selection = default_clk_select;
} else if (clk_selection == DSI_CLK_NONE) {
clk_selection = 0;
}
DSI_DEBUG("%s clock gating Byte:%s Pixel:%s PHY:%s\n",
enable ? "Enabling" : "Disabling",
clk_selection & BYTE_CLK ? "yes" : "no",
clk_selection & PIXEL_CLK ? "yes" : "no",
clk_selection & DSI_PHY ? "yes" : "no");
rc = dsi_ctrl_config_clk_gating(mctrl->ctrl, enable, clk_selection);
if (rc) {
DSI_ERR("[%s] failed to %s clk gating for clocks %d, rc=%d\n",
display->name, enable ? "enable" : "disable",
clk_selection, rc);
return rc;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == mctrl))
continue;
/**
* In Split DSI usecase we should not enable clock gating on
* DSI PHY1 to ensure no display atrifacts are seen.
*/
clk_selection &= ~DSI_PHY;
rc = dsi_ctrl_config_clk_gating(ctrl->ctrl, enable,
clk_selection);
if (rc) {
DSI_ERR("[%s] failed to %s clk gating for clocks %d, rc=%d\n",
display->name, enable ? "enable" : "disable",
clk_selection, rc);
return rc;
}
}
return 0;
}
static void dsi_display_set_ctrl_esd_check_flag(struct dsi_display *display,
bool enable)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
ctrl->ctrl->esd_check_underway = enable;
}
}
static void dsi_display_ctrl_irq_update(struct dsi_display *display, bool en)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
dsi_ctrl_irq_update(ctrl->ctrl, en);
}
}
void dsi_rect_intersect(const struct dsi_rect *r1,
const struct dsi_rect *r2,
struct dsi_rect *result)
{
int l, t, r, b;
if (!r1 || !r2 || !result)
return;
l = max(r1->x, r2->x);
t = max(r1->y, r2->y);
r = min((r1->x + r1->w), (r2->x + r2->w));
b = min((r1->y + r1->h), (r2->y + r2->h));
if (r <= l || b <= t) {
memset(result, 0, sizeof(*result));
} else {
result->x = l;
result->y = t;
result->w = r - l;
result->h = b - t;
}
}
int dsi_display_set_backlight(struct drm_connector *connector,
void *display, u32 bl_lvl)
{
struct dsi_display *dsi_display = display;
struct dsi_panel *panel;
u32 bl_scale, bl_scale_sv;
u64 bl_temp;
int rc = 0;
if (dsi_display == NULL || dsi_display->panel == NULL)
return -EINVAL;
panel = dsi_display->panel;
mutex_lock(&panel->panel_lock);
if (!dsi_panel_initialized(panel)) {
rc = -EINVAL;
goto error;
}
panel->bl_config.bl_level = bl_lvl;
/* scale backlight */
bl_scale = panel->bl_config.bl_scale;
bl_temp = bl_lvl * bl_scale / MAX_BL_SCALE_LEVEL;
bl_scale_sv = panel->bl_config.bl_scale_sv;
bl_temp = (u32)bl_temp * bl_scale_sv / MAX_SV_BL_SCALE_LEVEL;
DSI_DEBUG("bl_scale = %u, bl_scale_sv = %u, bl_lvl = %u\n",
bl_scale, bl_scale_sv, (u32)bl_temp);
rc = dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n",
dsi_display->name, rc);
goto error;
}
rc = dsi_panel_set_backlight(panel, (u32)bl_temp);
if (rc)
DSI_ERR("unable to set backlight\n");
rc = dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc) {
DSI_ERR("[%s] failed to disable DSI core clocks, rc=%d\n",
dsi_display->name, rc);
goto error;
}
error:
mutex_unlock(&panel->panel_lock);
return rc;
}
static int dsi_display_cmd_engine_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->cmd_master_idx];
mutex_lock(&m_ctrl->ctrl->ctrl_lock);
if (display->cmd_engine_refcount > 0) {
display->cmd_engine_refcount++;
goto done;
}
rc = dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_ERR("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto done;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_cmd_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_ERR("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
display->cmd_engine_refcount++;
goto done;
error_disable_master:
(void)dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
done:
mutex_unlock(&m_ctrl->ctrl->ctrl_lock);
return rc;
}
static int dsi_display_cmd_engine_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->cmd_master_idx];
mutex_lock(&m_ctrl->ctrl->ctrl_lock);
if (display->cmd_engine_refcount == 0) {
DSI_ERR("[%s] Invalid refcount\n", display->name);
goto done;
} else if (display->cmd_engine_refcount > 1) {
display->cmd_engine_refcount--;
goto done;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_cmd_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_OFF);
if (rc)
DSI_ERR("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
}
rc = dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
if (rc) {
DSI_ERR("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto error;
}
error:
display->cmd_engine_refcount = 0;
done:
mutex_unlock(&m_ctrl->ctrl->ctrl_lock);
return rc;
}
static void dsi_display_aspace_cb_locked(void *cb_data, bool is_detach)
{
struct dsi_display *display;
struct dsi_display_ctrl *display_ctrl;
int rc, cnt;
if (!cb_data) {
DSI_ERR("aspace cb called with invalid cb_data\n");
return;
}
display = (struct dsi_display *)cb_data;
/*
* acquire panel_lock to make sure no commands are in-progress
* while detaching the non-secure context banks
*/
dsi_panel_acquire_panel_lock(display->panel);
if (is_detach) {
/* invalidate the stored iova */
display->cmd_buffer_iova = 0;
/* return the virtual address mapping */
msm_gem_put_vaddr(display->tx_cmd_buf);
msm_gem_vunmap(display->tx_cmd_buf, OBJ_LOCK_NORMAL);
} else {
rc = msm_gem_get_iova(display->tx_cmd_buf,
display->aspace, &(display->cmd_buffer_iova));
if (rc) {
DSI_ERR("failed to get the iova rc %d\n", rc);
goto end;
}
display->vaddr =
(void *) msm_gem_get_vaddr(display->tx_cmd_buf);
if (IS_ERR_OR_NULL(display->vaddr)) {
DSI_ERR("failed to get va rc %d\n", rc);
goto end;
}
}
display_for_each_ctrl(cnt, display) {
display_ctrl = &display->ctrl[cnt];
display_ctrl->ctrl->cmd_buffer_size = display->cmd_buffer_size;
display_ctrl->ctrl->cmd_buffer_iova = display->cmd_buffer_iova;
display_ctrl->ctrl->vaddr = display->vaddr;
display_ctrl->ctrl->secure_mode = is_detach;
}
end:
/* release panel_lock */
dsi_panel_release_panel_lock(display->panel);
}
static irqreturn_t dsi_display_panel_te_irq_handler(int irq, void *data)
{
struct dsi_display *display = (struct dsi_display *)data;
/*
* This irq handler is used for sole purpose of identifying
* ESD attacks on panel and we can safely assume IRQ_HANDLED
* in case of display not being initialized yet
*/
if (!display)
return IRQ_HANDLED;
SDE_EVT32(SDE_EVTLOG_FUNC_CASE1);
complete_all(&display->esd_te_gate);
return IRQ_HANDLED;
}
static void dsi_display_change_te_irq_status(struct dsi_display *display,
bool enable)
{
if (!display) {
DSI_ERR("Invalid params\n");
return;
}
/* Handle unbalanced irq enable/disable calls */
if (enable && !display->is_te_irq_enabled) {
enable_irq(gpio_to_irq(display->disp_te_gpio));
display->is_te_irq_enabled = true;
} else if (!enable && display->is_te_irq_enabled) {
disable_irq(gpio_to_irq(display->disp_te_gpio));
display->is_te_irq_enabled = false;
}
}
static void dsi_display_register_te_irq(struct dsi_display *display)
{
int rc = 0;
struct platform_device *pdev;
struct device *dev;
unsigned int te_irq;
pdev = display->pdev;
if (!pdev) {
DSI_ERR("invalid platform device\n");
return;
}
dev = &pdev->dev;
if (!dev) {
DSI_ERR("invalid device\n");
return;
}
if (!gpio_is_valid(display->disp_te_gpio)) {
rc = -EINVAL;
goto error;
}
init_completion(&display->esd_te_gate);
te_irq = gpio_to_irq(display->disp_te_gpio);
/* Avoid deferred spurious irqs with disable_irq() */
irq_set_status_flags(te_irq, IRQ_DISABLE_UNLAZY);
rc = devm_request_irq(dev, te_irq, dsi_display_panel_te_irq_handler,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"TE_GPIO", display);
if (rc) {
DSI_ERR("TE request_irq failed for ESD rc:%d\n", rc);
irq_clear_status_flags(te_irq, IRQ_DISABLE_UNLAZY);
goto error;
}
disable_irq(te_irq);
display->is_te_irq_enabled = false;
return;
error:
/* disable the TE based ESD check */
DSI_WARN("Unable to register for TE IRQ\n");
if (display->panel->esd_config.status_mode == ESD_MODE_PANEL_TE)
display->panel->esd_config.esd_enabled = false;
}
/* Allocate memory for cmd dma tx buffer */
static int dsi_host_alloc_cmd_tx_buffer(struct dsi_display *display)
{
int rc = 0, cnt = 0;
struct dsi_display_ctrl *display_ctrl;
display->tx_cmd_buf = msm_gem_new(display->drm_dev,
#if defined(CONFIG_PXLW_IRIS)
SZ_256K,
#else
SZ_4K,
#endif
MSM_BO_UNCACHED);
if ((display->tx_cmd_buf) == NULL) {
DSI_ERR("Failed to allocate cmd tx buf memory\n");
rc = -ENOMEM;
goto error;
}
#if defined(CONFIG_PXLW_IRIS)
display->cmd_buffer_size = SZ_256K;
#else
display->cmd_buffer_size = SZ_4K;
#endif
display->aspace = msm_gem_smmu_address_space_get(
display->drm_dev, MSM_SMMU_DOMAIN_UNSECURE);
if (!display->aspace) {
DSI_ERR("failed to get aspace\n");
rc = -EINVAL;
goto free_gem;
}
/* register to aspace */
rc = msm_gem_address_space_register_cb(display->aspace,
dsi_display_aspace_cb_locked, (void *)display);
if (rc) {
DSI_ERR("failed to register callback %d\n", rc);
goto free_gem;
}
rc = msm_gem_get_iova(display->tx_cmd_buf, display->aspace,
&(display->cmd_buffer_iova));
if (rc) {
DSI_ERR("failed to get the iova rc %d\n", rc);
goto free_aspace_cb;
}
display->vaddr =
(void *) msm_gem_get_vaddr(display->tx_cmd_buf);
if (IS_ERR_OR_NULL(display->vaddr)) {
DSI_ERR("failed to get va rc %d\n", rc);
rc = -EINVAL;
goto put_iova;
}
display_for_each_ctrl(cnt, display) {
display_ctrl = &display->ctrl[cnt];
#if defined(CONFIG_PXLW_IRIS)
display_ctrl->ctrl->cmd_buffer_size = SZ_256K;
#else
display_ctrl->ctrl->cmd_buffer_size = SZ_4K;
#endif
display_ctrl->ctrl->cmd_buffer_iova =
display->cmd_buffer_iova;
display_ctrl->ctrl->vaddr = display->vaddr;
display_ctrl->ctrl->tx_cmd_buf = display->tx_cmd_buf;
}
return rc;
put_iova:
msm_gem_put_iova(display->tx_cmd_buf, display->aspace);
free_aspace_cb:
msm_gem_address_space_unregister_cb(display->aspace,
dsi_display_aspace_cb_locked, display);
free_gem:
mutex_lock(&display->drm_dev->struct_mutex);
msm_gem_free_object(display->tx_cmd_buf);
mutex_unlock(&display->drm_dev->struct_mutex);
error:
return rc;
}
static bool dsi_display_validate_reg_read(struct dsi_panel *panel)
{
int i, j = 0;
int len = 0, *lenp;
int group = 0, count = 0;
struct drm_panel_esd_config *config;
if (!panel)
return false;
config = &(panel->esd_config);
lenp = config->status_valid_params ?: config->status_cmds_rlen;
count = config->status_cmd.count;
for (i = 0; i < count; i++)
len += lenp[i];
for (i = 0; i < len; i++)
j += len;
for (j = 0; j < config->groups; ++j) {
for (i = 0; i < len; ++i) {
if (config->return_buf[i] !=
config->status_value[group + i]) {
DRM_ERROR("mismatch: 0x%x\n",
config->return_buf[i]);
break;
}
}
if (i == len)
return true;
group += len;
}
return false;
}
static void dsi_display_parse_te_data(struct dsi_display *display)
{
struct platform_device *pdev;
struct device *dev;
int rc = 0;
u32 val = 0;
pdev = display->pdev;
if (!pdev) {
DSI_ERR("Invalid platform device\n");
return;
}
dev = &pdev->dev;
if (!dev) {
DSI_ERR("Invalid platform device\n");
return;
}
display->disp_te_gpio = of_get_named_gpio(dev->of_node,
"qcom,platform-te-gpio", 0);
if (display->fw)
rc = dsi_parser_read_u32(display->parser_node,
"qcom,panel-te-source", &val);
else
rc = of_property_read_u32(dev->of_node,
"qcom,panel-te-source", &val);
if (rc || (val > MAX_TE_SOURCE_ID)) {
DSI_ERR("invalid vsync source selection\n");
val = 0;
}
display->te_source = val;
}
static int dsi_display_read_status(struct dsi_display_ctrl *ctrl,
struct dsi_panel *panel)
{
int i, rc = 0, count = 0, start = 0, *lenp;
struct drm_panel_esd_config *config;
struct dsi_cmd_desc *cmds;
u32 flags = 0;
if (!panel || !ctrl || !ctrl->ctrl)
return -EINVAL;
/*
* When DSI controller is not in initialized state, we do not want to
* report a false ESD failure and hence we defer until next read
* happen.
*/
if (!dsi_ctrl_validate_host_state(ctrl->ctrl))
return 1;
config = &(panel->esd_config);
lenp = config->status_valid_params ?: config->status_cmds_rlen;
count = config->status_cmd.count;
cmds = config->status_cmd.cmds;
flags |= (DSI_CTRL_CMD_FETCH_MEMORY | DSI_CTRL_CMD_READ |
DSI_CTRL_CMD_CUSTOM_DMA_SCHED);
for (i = 0; i < count; ++i) {
memset(config->status_buf, 0x0, SZ_4K);
if (cmds[i].last_command) {
cmds[i].msg.flags |= MIPI_DSI_MSG_LASTCOMMAND;
flags |= DSI_CTRL_CMD_LAST_COMMAND;
}
if (config->status_cmd.state == DSI_CMD_SET_STATE_LP)
cmds[i].msg.flags |= MIPI_DSI_MSG_USE_LPM;
cmds[i].msg.rx_buf = config->status_buf;
cmds[i].msg.rx_len = config->status_cmds_rlen[i];
rc = dsi_ctrl_cmd_transfer(ctrl->ctrl, &cmds[i].msg, &flags);
if (rc <= 0) {
DSI_ERR("rx cmd transfer failed rc=%d\n", rc);
return rc;
}
memcpy(config->return_buf + start,
config->status_buf, lenp[i]);
start += lenp[i];
}
return rc;
}
static int dsi_display_validate_status(struct dsi_display_ctrl *ctrl,
struct dsi_panel *panel)
{
int rc = 0;
#if defined(CONFIG_PXLW_IRIS)
rc = iris_status_get(ctrl, panel);
return rc;
#endif
rc = dsi_display_read_status(ctrl, panel);
if (rc <= 0) {
goto exit;
} else {
/*
* panel status read successfully.
* check for validity of the data read back.
*/
rc = dsi_display_validate_reg_read(panel);
if (!rc) {
rc = -EINVAL;
goto exit;
}
}
exit:
return rc;
}
static int dsi_display_status_reg_read(struct dsi_display *display)
{
int rc = 0, i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
DSI_DEBUG(" ++\n");
m_ctrl = &display->ctrl[display->cmd_master_idx];
if (display->tx_cmd_buf == NULL) {
rc = dsi_host_alloc_cmd_tx_buffer(display);
if (rc) {
DSI_ERR("failed to allocate cmd tx buffer memory\n");
goto done;
}
}
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
DSI_ERR("cmd engine enable failed\n");
return -EPERM;
}
rc = dsi_display_validate_status(m_ctrl, display->panel);
if (rc <= 0) {
DSI_ERR("[%s] read status failed on master,rc=%d\n",
display->name, rc);
goto exit;
}
if (!display->panel->sync_broadcast_en)
goto exit;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (ctrl == m_ctrl)
continue;
rc = dsi_display_validate_status(ctrl, display->panel);
if (rc <= 0) {
DSI_ERR("[%s] read status failed on slave,rc=%d\n",
display->name, rc);
goto exit;
}
}
exit:
dsi_display_cmd_engine_disable(display);
done:
return rc;
}
static int dsi_display_status_bta_request(struct dsi_display *display)
{
int rc = 0;
DSI_DEBUG(" ++\n");
/* TODO: trigger SW BTA and wait for acknowledgment */
return rc;
}
static int dsi_display_status_check_te(struct dsi_display *display)
{
int rc = 1;
int const esd_te_timeout = msecs_to_jiffies(3*20);
#if defined(CONFIG_PXLW_IRIS)
struct dsi_display_ctrl *ctrl;
ctrl = &display->ctrl[display->cmd_master_idx];
rc = iris_status_get(ctrl, display->panel);
if (rc < 0)
return rc;
#endif
dsi_display_change_te_irq_status(display, true);
reinit_completion(&display->esd_te_gate);
if (!wait_for_completion_timeout(&display->esd_te_gate,
esd_te_timeout)) {
DSI_ERR("TE check failed\n");
rc = -EINVAL;
}
dsi_display_change_te_irq_status(display, false);
return rc;
}
int dsi_display_check_status(struct drm_connector *connector, void *display,
bool te_check_override)
{
struct dsi_display *dsi_display = display;
struct dsi_panel *panel;
u32 status_mode;
int rc = 0x1, ret;
u32 mask;
if (!dsi_display || !dsi_display->panel)
return -EINVAL;
panel = dsi_display->panel;
dsi_panel_acquire_panel_lock(panel);
if (!panel->panel_initialized) {
DSI_DEBUG("Panel not initialized\n");
goto release_panel_lock;
}
/* Prevent another ESD check,when ESD recovery is underway */
if (atomic_read(&panel->esd_recovery_pending))
goto release_panel_lock;
status_mode = panel->esd_config.status_mode;
if (status_mode == ESD_MODE_SW_SIM_SUCCESS)
goto release_panel_lock;
if (status_mode == ESD_MODE_SW_SIM_FAILURE) {
rc = -EINVAL;
goto release_panel_lock;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, status_mode, te_check_override);
if (te_check_override && gpio_is_valid(dsi_display->disp_te_gpio))
status_mode = ESD_MODE_PANEL_TE;
if (status_mode == ESD_MODE_PANEL_TE) {
rc = dsi_display_status_check_te(dsi_display);
goto exit;
}
ret = dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
if (ret)
goto release_panel_lock;
/* Mask error interrupts before attempting ESD read */
mask = BIT(DSI_FIFO_OVERFLOW) | BIT(DSI_FIFO_UNDERFLOW);
dsi_display_set_ctrl_esd_check_flag(dsi_display, true);
dsi_display_mask_ctrl_error_interrupts(dsi_display, mask, true);
#if defined(CONFIG_PXLW_IRIS)
iris_dma_ch1_trigger(false, 0);
#endif
if (status_mode == ESD_MODE_REG_READ) {
rc = dsi_display_status_reg_read(dsi_display);
} else if (status_mode == ESD_MODE_SW_BTA) {
rc = dsi_display_status_bta_request(dsi_display);
} else if (status_mode == ESD_MODE_PANEL_TE) {
rc = dsi_display_status_check_te(dsi_display);
#ifdef CONFIG_TOUCHSCREEN_FTS
} else if (status_mode == ESD_MODE_I2C_REG_READ) {
rc = fts_esd_check();
#endif
} else {
DSI_WARN("Unsupported check status mode: %d\n", status_mode);
panel->esd_config.esd_enabled = false;
}
#if defined(CONFIG_PXLW_IRIS)
iris_dma_ch1_trigger(true, 0);
#endif
/* Unmask error interrupts if check passed*/
if (rc > 0) {
dsi_display_set_ctrl_esd_check_flag(dsi_display, false);
dsi_display_mask_ctrl_error_interrupts(dsi_display, mask,
false);
}
dsi_display_clk_ctrl(dsi_display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
exit:
/* Handle Panel failures during display disable sequence */
if (rc <=0)
atomic_set(&panel->esd_recovery_pending, 1);
release_panel_lock:
dsi_panel_release_panel_lock(panel);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, rc);
return rc;
}
static int dsi_display_cmd_prepare(const char *cmd_buf, u32 cmd_buf_len,
struct dsi_cmd_desc *cmd, u8 *payload, u32 payload_len)
{
int i;
memset(cmd, 0x00, sizeof(*cmd));
cmd->msg.type = cmd_buf[0];
cmd->last_command = (cmd_buf[1] == 1);
cmd->msg.channel = cmd_buf[2];
cmd->msg.flags = cmd_buf[3];
cmd->msg.ctrl = 0;
cmd->post_wait_ms = cmd->msg.wait_ms = cmd_buf[4];
cmd->msg.tx_len = ((cmd_buf[5] << 8) | (cmd_buf[6]));
if (cmd->msg.tx_len > payload_len) {
DSI_ERR("Incorrect payload length tx_len %zu, payload_len %d\n",
cmd->msg.tx_len, payload_len);
return -EINVAL;
}
if (cmd->last_command)
cmd->msg.flags |= MIPI_DSI_MSG_LASTCOMMAND;
for (i = 0; i < cmd->msg.tx_len; i++)
payload[i] = cmd_buf[7 + i];
cmd->msg.tx_buf = payload;
return 0;
}
static int dsi_display_ctrl_get_host_init_state(struct dsi_display *dsi_display,
bool *state)
{
struct dsi_display_ctrl *ctrl;
int i, rc = -EINVAL;
display_for_each_ctrl(i, dsi_display) {
ctrl = &dsi_display->ctrl[i];
rc = dsi_ctrl_get_host_engine_init_state(ctrl->ctrl, state);
if (rc)
break;
}
return rc;
}
int dsi_display_cmd_transfer(struct drm_connector *connector,
void *display, const char *cmd_buf,
u32 cmd_buf_len)
{
struct dsi_display *dsi_display = display;
struct dsi_cmd_desc cmd;
u8 cmd_payload[MAX_CMD_PAYLOAD_SIZE];
int rc = 0;
bool state = false;
if (!dsi_display || !cmd_buf) {
DSI_ERR("[DSI] invalid params\n");
return -EINVAL;
}
DSI_DEBUG("[DSI] Display command transfer\n");
rc = dsi_display_cmd_prepare(cmd_buf, cmd_buf_len,
&cmd, cmd_payload, MAX_CMD_PAYLOAD_SIZE);
if (rc) {
DSI_ERR("[DSI] command prepare failed. rc %d\n", rc);
return rc;
}
mutex_lock(&dsi_display->display_lock);
rc = dsi_display_ctrl_get_host_init_state(dsi_display, &state);
/**
* Handle scenario where a command transfer is initiated through
* sysfs interface when device is in suepnd state.
*/
if (!rc && !state) {
pr_warn_ratelimited("Command xfer attempted while device is in suspend state\n"
);
rc = -EPERM;
goto end;
}
if (rc || !state) {
DSI_ERR("[DSI] Invalid host state %d rc %d\n",
state, rc);
rc = -EPERM;
goto end;
}
rc = dsi_display->host.ops->transfer(&dsi_display->host,
&cmd.msg);
end:
mutex_unlock(&dsi_display->display_lock);
return rc;
}
static void _dsi_display_continuous_clk_ctrl(struct dsi_display *display,
bool enable)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display || !display->panel->host_config.force_hs_clk_lane)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
/*
* For phy ver 4.0 chipsets, configure DSI controller and
* DSI PHY to force clk lane to HS mode always whereas
* for other phy ver chipsets, configure DSI controller only.
*/
if (ctrl->phy->hw.ops.set_continuous_clk) {
dsi_ctrl_hs_req_sel(ctrl->ctrl, true);
dsi_ctrl_set_continuous_clk(ctrl->ctrl, enable);
dsi_phy_set_continuous_clk(ctrl->phy, enable);
} else {
dsi_ctrl_set_continuous_clk(ctrl->ctrl, enable);
}
}
}
int dsi_display_soft_reset(void *display)
{
struct dsi_display *dsi_display;
struct dsi_display_ctrl *ctrl;
int rc = 0;
int i;
if (!display)
return -EINVAL;
dsi_display = display;
display_for_each_ctrl(i, dsi_display) {
ctrl = &dsi_display->ctrl[i];
rc = dsi_ctrl_soft_reset(ctrl->ctrl);
if (rc) {
DSI_ERR("[%s] failed to soft reset host_%d, rc=%d\n",
dsi_display->name, i, rc);
break;
}
}
return rc;
}
enum dsi_pixel_format dsi_display_get_dst_format(
struct drm_connector *connector,
void *display)
{
enum dsi_pixel_format format = DSI_PIXEL_FORMAT_MAX;
struct dsi_display *dsi_display = (struct dsi_display *)display;
if (!dsi_display || !dsi_display->panel) {
DSI_ERR("Invalid params(s) dsi_display %pK, panel %pK\n",
dsi_display,
((dsi_display) ? dsi_display->panel : NULL));
return format;
}
format = dsi_display->panel->host_config.dst_format;
return format;
}
static void _dsi_display_setup_misr(struct dsi_display *display)
{
int i;
display_for_each_ctrl(i, display) {
dsi_ctrl_setup_misr(display->ctrl[i].ctrl,
display->misr_enable,
display->misr_frame_count);
}
}
int dsi_display_set_power(struct drm_connector *connector,
int power_mode, void *disp)
{
struct dsi_display *display = disp;
int rc = 0;
if (!display || !display->panel) {
DSI_ERR("invalid display/panel\n");
return -EINVAL;
}
switch (power_mode) {
case SDE_MODE_DPMS_LP1:
rc = dsi_panel_set_lp1(display->panel);
break;
case SDE_MODE_DPMS_LP2:
rc = dsi_panel_set_lp2(display->panel);
break;
case SDE_MODE_DPMS_ON:
if ((display->panel->power_mode == SDE_MODE_DPMS_LP1) ||
(display->panel->power_mode == SDE_MODE_DPMS_LP2))
rc = dsi_panel_set_nolp(display->panel);
break;
case SDE_MODE_DPMS_OFF:
default:
return rc;
}
SDE_EVT32(display->panel->power_mode, power_mode, rc);
DSI_DEBUG("Power mode transition from %d to %d %s",
display->panel->power_mode, power_mode,
rc ? "failed" : "successful");
if (!rc)
display->panel->power_mode = power_mode;
return rc;
}
#ifdef CONFIG_DEBUG_FS
static bool dsi_display_is_te_based_esd(struct dsi_display *display)
{
u32 status_mode = 0;
if (!display->panel) {
DSI_ERR("Invalid panel data\n");
return false;
}
status_mode = display->panel->esd_config.status_mode;
if (status_mode == ESD_MODE_PANEL_TE &&
gpio_is_valid(display->disp_te_gpio))
return true;
return false;
}
static ssize_t debugfs_dump_info_read(struct file *file,
char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
u32 len = 0;
int i;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(SZ_4K, GFP_KERNEL);
if (!buf)
return -ENOMEM;
len += snprintf(buf + len, (SZ_4K - len), "name = %s\n", display->name);
len += snprintf(buf + len, (SZ_4K - len),
"\tResolution = %dx%d\n",
display->config.video_timing.h_active,
display->config.video_timing.v_active);
display_for_each_ctrl(i, display) {
len += snprintf(buf + len, (SZ_4K - len),
"\tCTRL_%d:\n\t\tctrl = %s\n\t\tphy = %s\n",
i, display->ctrl[i].ctrl->name,
display->ctrl[i].phy->name);
}
len += snprintf(buf + len, (SZ_4K - len),
"\tPanel = %s\n", display->panel->name);
len += snprintf(buf + len, (SZ_4K - len),
"\tClock master = %s\n",
display->ctrl[display->clk_master_idx].ctrl->name);
if (len > user_len)
len = user_len;
if (copy_to_user(user_buf, buf, len)) {
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static ssize_t debugfs_misr_setup(struct file *file,
const char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
int rc = 0;
size_t len;
u32 enable, frame_count;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(MISR_BUFF_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* leave room for termination char */
len = min_t(size_t, user_len, MISR_BUFF_SIZE - 1);
if (copy_from_user(buf, user_buf, len)) {
rc = -EINVAL;
goto error;
}
buf[len] = '\0'; /* terminate the string */
if (sscanf(buf, "%u %u", &enable, &frame_count) != 2) {
rc = -EINVAL;
goto error;
}
display->misr_enable = enable;
display->misr_frame_count = frame_count;
mutex_lock(&display->display_lock);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto unlock;
}
_dsi_display_setup_misr(display);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc) {
DSI_ERR("[%s] failed to disable DSI core clocks, rc=%d\n",
display->name, rc);
goto unlock;
}
rc = user_len;
unlock:
mutex_unlock(&display->display_lock);
error:
kfree(buf);
return rc;
}
static ssize_t debugfs_misr_read(struct file *file,
char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
u32 len = 0;
int rc = 0;
struct dsi_ctrl *dsi_ctrl;
int i;
u32 misr;
size_t max_len = min_t(size_t, user_len, MISR_BUFF_SIZE);
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(max_len, GFP_KERNEL);
if (ZERO_OR_NULL_PTR(buf))
return -ENOMEM;
mutex_lock(&display->display_lock);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
dsi_ctrl = display->ctrl[i].ctrl;
misr = dsi_ctrl_collect_misr(display->ctrl[i].ctrl);
len += snprintf((buf + len), max_len - len,
"DSI_%d MISR: 0x%x\n", dsi_ctrl->cell_index, misr);
if (len >= max_len)
break;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc) {
DSI_ERR("[%s] failed to disable DSI core clocks, rc=%d\n",
display->name, rc);
goto error;
}
if (copy_to_user(user_buf, buf, max_len)) {
rc = -EFAULT;
goto error;
}
*ppos += len;
error:
mutex_unlock(&display->display_lock);
kfree(buf);
return len;
}
static ssize_t debugfs_esd_trigger_check(struct file *file,
const char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char *buf;
int rc = 0;
struct drm_panel_esd_config *esd_config = &display->panel->esd_config;
u32 esd_trigger;
size_t len;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
if (user_len > sizeof(u32))
return -EINVAL;
if (!user_len || !user_buf)
return -EINVAL;
if (!display->panel ||
atomic_read(&display->panel->esd_recovery_pending))
return user_len;
if (!esd_config->esd_enabled) {
DSI_ERR("ESD feature is not enabled\n");
return -EINVAL;
}
buf = kzalloc(ESD_TRIGGER_STRING_MAX_LEN, GFP_KERNEL);
if (!buf)
return -ENOMEM;
len = min_t(size_t, user_len, ESD_TRIGGER_STRING_MAX_LEN - 1);
if (copy_from_user(buf, user_buf, len)) {
rc = -EINVAL;
goto error;
}
buf[len] = '\0'; /* terminate the string */
if (kstrtouint(buf, 10, &esd_trigger)) {
rc = -EINVAL;
goto error;
}
if (esd_trigger != 1) {
rc = -EINVAL;
goto error;
}
display->esd_trigger = esd_trigger;
if (display->esd_trigger) {
DSI_INFO("ESD attack triggered by user\n");
rc = dsi_panel_trigger_esd_attack(display->panel);
if (rc) {
DSI_ERR("Failed to trigger ESD attack\n");
goto error;
}
}
rc = len;
error:
kfree(buf);
return rc;
}
static ssize_t debugfs_alter_esd_check_mode(struct file *file,
const char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
struct drm_panel_esd_config *esd_config;
char *buf;
int rc = 0;
size_t len;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(ESD_MODE_STRING_MAX_LEN, GFP_KERNEL);
if (ZERO_OR_NULL_PTR(buf))
return -ENOMEM;
len = min_t(size_t, user_len, ESD_MODE_STRING_MAX_LEN - 1);
if (copy_from_user(buf, user_buf, len)) {
rc = -EINVAL;
goto error;
}
buf[len] = '\0'; /* terminate the string */
if (!display->panel) {
rc = -EINVAL;
goto error;
}
esd_config = &display->panel->esd_config;
if (!esd_config) {
DSI_ERR("Invalid panel esd config\n");
rc = -EINVAL;
goto error;
}
if (!esd_config->esd_enabled)
goto error;
if (!strcmp(buf, "te_signal_check\n")) {
if (display->panel->panel_mode == DSI_OP_VIDEO_MODE) {
DSI_INFO("TE based ESD check for Video Mode panels is not allowed\n");
goto error;
}
DSI_INFO("ESD check is switched to TE mode by user\n");
esd_config->status_mode = ESD_MODE_PANEL_TE;
dsi_display_change_te_irq_status(display, true);
}
if (!strcmp(buf, "reg_read\n")) {
DSI_INFO("ESD check is switched to reg read by user\n");
rc = dsi_panel_parse_esd_reg_read_configs(display->panel);
if (rc) {
DSI_ERR("failed to alter esd check mode,rc=%d\n",
rc);
rc = user_len;
goto error;
}
esd_config->status_mode = ESD_MODE_REG_READ;
if (dsi_display_is_te_based_esd(display))
dsi_display_change_te_irq_status(display, false);
}
if (!strcmp(buf, "esd_sw_sim_success\n"))
esd_config->status_mode = ESD_MODE_SW_SIM_SUCCESS;
if (!strcmp(buf, "esd_sw_sim_failure\n"))
esd_config->status_mode = ESD_MODE_SW_SIM_FAILURE;
rc = len;
error:
kfree(buf);
return rc;
}
static ssize_t debugfs_read_esd_check_mode(struct file *file,
char __user *user_buf,
size_t user_len,
loff_t *ppos)
{
struct dsi_display *display = file->private_data;
struct drm_panel_esd_config *esd_config;
char *buf;
int rc = 0;
size_t len;
if (!display)
return -ENODEV;
if (*ppos)
return 0;
if (!display->panel) {
DSI_ERR("invalid panel data\n");
return -EINVAL;
}
buf = kzalloc(ESD_MODE_STRING_MAX_LEN, GFP_KERNEL);
if (ZERO_OR_NULL_PTR(buf))
return -ENOMEM;
esd_config = &display->panel->esd_config;
if (!esd_config) {
DSI_ERR("Invalid panel esd config\n");
rc = -EINVAL;
goto error;
}
len = min_t(size_t, user_len, ESD_MODE_STRING_MAX_LEN - 1);
if (!esd_config->esd_enabled) {
rc = snprintf(buf, len, "ESD feature not enabled");
goto output_mode;
}
switch (esd_config->status_mode) {
case ESD_MODE_REG_READ:
rc = snprintf(buf, len, "reg_read");
break;
case ESD_MODE_PANEL_TE:
rc = snprintf(buf, len, "te_signal_check");
break;
case ESD_MODE_SW_SIM_FAILURE:
rc = snprintf(buf, len, "esd_sw_sim_failure");
break;
case ESD_MODE_SW_SIM_SUCCESS:
rc = snprintf(buf, len, "esd_sw_sim_success");
break;
default:
rc = snprintf(buf, len, "invalid");
break;
}
output_mode:
if (!rc) {
rc = -EINVAL;
goto error;
}
if (copy_to_user(user_buf, buf, len)) {
rc = -EFAULT;
goto error;
}
*ppos += len;
error:
kfree(buf);
return len;
}
static const struct file_operations dump_info_fops = {
.open = simple_open,
.read = debugfs_dump_info_read,
};
static const struct file_operations misr_data_fops = {
.open = simple_open,
.read = debugfs_misr_read,
.write = debugfs_misr_setup,
};
static const struct file_operations esd_trigger_fops = {
.open = simple_open,
.write = debugfs_esd_trigger_check,
};
static const struct file_operations esd_check_mode_fops = {
.open = simple_open,
.write = debugfs_alter_esd_check_mode,
.read = debugfs_read_esd_check_mode,
};
#if defined(CONFIG_PXLW_IRIS)
static int panel_debug_base_open(struct inode *inode, struct file *file)
{
/* non-seekable */
file->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
file->private_data = inode->i_private;
return 0;
}
static int panel_debug_base_release(struct inode *inode, struct file *file)
{
return 0;
}
#define PANEL_REG_MAX_OFFSET 1024 // FIXME
static ssize_t panel_debug_base_offset_write(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct dsi_display *display = file->private_data;
u32 off, cnt;
char buf[64];
if (!display)
return -ENODEV;
if (count >= sizeof(buf))
return -EINVAL;
if (copy_from_user(buf, user_buf, count))
return -EFAULT;
buf[count] = 0; /* end of string */
if (sscanf(buf, "%x %u", &off, &cnt) != 2)
return -EINVAL;
if (off > PANEL_REG_MAX_OFFSET)
return -EINVAL;
if (cnt > (PANEL_REG_MAX_OFFSET - off))
cnt = PANEL_REG_MAX_OFFSET - off;
display->off = off;
display->cnt = cnt;
pr_debug("offset=%x cnt=%d\n", off, cnt);
return count;
}
static ssize_t panel_debug_base_offset_read(struct file *file,
char __user *buff, size_t count, loff_t *ppos)
{
struct dsi_display *display = file->private_data;
int len;
char buf[64];
if (!display)
return -ENODEV;
if (*ppos)
return 0; /* the end */
len = snprintf(buf, sizeof(buf), "0x%02x %x\n", display->off, display->cnt);
if (len < 0 || len >= sizeof(buf))
return -EINVAL;
if (count < sizeof(buf))
return -EINVAL;
if (copy_to_user(buff, buf, len))
return -EFAULT;
*ppos += len; /* increase offset */
return len;
}
/* Hex number + whitespace */
#define NEXT_VALUE_OFFSET 3
#define PANEL_CMD_MIN_TX_COUNT 2
static ssize_t panel_debug_base_reg_write(struct file *file,
const char __user *user_buf, size_t count, loff_t *ppos)
{
struct dsi_display *display = file->private_data;
char buf[64];
char reg[64];
u32 len = 0, value = 0;
char *bufp;
bool state = false;
int rc;
struct dsi_cmd_desc cmds = {
{ 0 }, // msg
1, // last
0 // wait
};
#ifndef IRIS_ABYP_LIGHTUP
struct dsi_panel_cmd_set cmdset = {
.state = DSI_CMD_SET_STATE_HS,
.count = 1,
.cmds = &cmds,
};
#endif
if (!display)
return -ENODEV;
/* get command string from user */
if (count >= sizeof(buf))
return -EINVAL;
if (copy_from_user(buf, user_buf, count))
return -EFAULT;
buf[count] = 0; /* end of string */
bufp = buf;
/* End of a hex value in given string */
bufp[NEXT_VALUE_OFFSET - 1] = 0;
while (kstrtouint(bufp, 16, &value) == 0) {
reg[len++] = value;
if (len >= sizeof(reg)) {
pr_err("wrong input reg len\n");
return -EINVAL;
}
bufp += NEXT_VALUE_OFFSET;
if ((bufp >= (buf + count)) || (bufp < buf)) {
pr_warn("%s,buffer out-of-bounds\n", __func__);
break;
}
/* End of a hex value in given string */
if ((bufp + NEXT_VALUE_OFFSET - 1) < (buf + count))
bufp[NEXT_VALUE_OFFSET - 1] = 0;
}
if (len < PANEL_CMD_MIN_TX_COUNT) {
pr_err("wrong input reg len\n");
return -EINVAL;
}
cmds.msg.type = display->cmd_data_type;
cmds.msg.flags = MIPI_DSI_MSG_LASTCOMMAND;
cmds.msg.tx_len = len;
cmds.msg.tx_buf = reg;
rc = dsi_display_ctrl_get_host_init_state(display, &state);
if (!rc && state) {
dsi_panel_acquire_panel_lock(display->panel);
#ifdef IRIS_ABYP_LIGHTUP
rc = display->host.ops->transfer(&display->host, &cmds.msg);
#else
iris_pt_send_panel_cmd(display->panel, &cmdset);
#endif
dsi_panel_release_panel_lock(display->panel);
}
return rc ? rc : count;
}
#define PANEL_REG_ADDR_LEN 8
#define PANEL_REG_FORMAT_LEN 5
static ssize_t panel_debug_base_reg_read(struct file *file,
char __user *user_buf, size_t count, loff_t *ppos)
{
struct dsi_display *display = file->private_data;
u32 i, len = 0, reg_buf_len = 0;
char *panel_reg_buf, *rx_buf;
int rc;
bool state = false;
char panel_reg[2] = { 0 };
struct dsi_cmd_desc cmds = {
{ 0 }, // msg
1, // last
0 // wait
};
#ifndef IRIS_ABYP_LIGHTUP
struct dsi_panel_cmd_set cmdset = {
.state = DSI_CMD_SET_STATE_HS,
.count = 1,
.cmds = &cmds,
};
#endif
if (!display)
return -ENODEV;
if (!display->cnt)
return 0;
if (*ppos)
return 0; /* the end */
/* '0x' + 2 digit + blank = 5 bytes for each number */
reg_buf_len = (display->cnt * PANEL_REG_FORMAT_LEN)
+ PANEL_REG_ADDR_LEN + 1;
if (count < reg_buf_len)
return -EINVAL;
rx_buf = kzalloc(display->cnt, GFP_KERNEL);
panel_reg_buf = kzalloc(reg_buf_len, GFP_KERNEL);
if (!rx_buf || !panel_reg_buf) {
pr_err("not enough memory to hold panel reg dump\n");
rc = -ENOMEM;
goto read_reg_fail;
}
panel_reg[0] = display->off;
cmds.msg.type = MIPI_DSI_DCS_READ;
cmds.msg.flags = MIPI_DSI_MSG_LASTCOMMAND | MIPI_DSI_MSG_REQ_ACK;
cmds.msg.tx_len = 2;
cmds.msg.tx_buf = panel_reg;
cmds.msg.rx_len = display->cnt;
cmds.msg.rx_buf = rx_buf;
rc = dsi_display_ctrl_get_host_init_state(display, &state);
if (!rc && state) {
dsi_panel_acquire_panel_lock(display->panel);
#ifdef IRIS_ABYP_LIGHTUP
rc = display->host.ops->transfer(&display->host, &cmds.msg);
#else
iris_pt_send_panel_cmd(display->panel, &cmdset);
#endif
dsi_panel_release_panel_lock(display->panel);
}
if (rc)
goto read_reg_fail;
len = scnprintf(panel_reg_buf, reg_buf_len, "0x%02x: ", display->off);
for (i = 0; (len < reg_buf_len) && (i < display->cnt); i++)
len += scnprintf(panel_reg_buf + len, reg_buf_len - len,
"0x%02x ", rx_buf[i]);
if (len)
panel_reg_buf[len - 1] = '\n';
if (copy_to_user(user_buf, panel_reg_buf, len)) {
rc = -EFAULT;
goto read_reg_fail;
}
*ppos += len; /* increase offset */
rc = len;
read_reg_fail:
kfree(rx_buf);
kfree(panel_reg_buf);
return rc;
}
static const struct file_operations panel_off_fops = {
.open = panel_debug_base_open,
.release = panel_debug_base_release,
.read = panel_debug_base_offset_read,
.write = panel_debug_base_offset_write,
};
static const struct file_operations panel_reg_fops = {
.open = panel_debug_base_open,
.release = panel_debug_base_release,
.read = panel_debug_base_reg_read,
.write = panel_debug_base_reg_write,
};
#endif
static int dsi_display_debugfs_init(struct dsi_display *display)
{
int rc = 0;
struct dentry *dir, *dump_file, *misr_data;
char name[MAX_NAME_SIZE];
int i;
dir = debugfs_create_dir(display->name, NULL);
if (IS_ERR_OR_NULL(dir)) {
rc = PTR_ERR(dir);
DSI_ERR("[%s] debugfs create dir failed, rc = %d\n",
display->name, rc);
goto error;
}
dump_file = debugfs_create_file("dump_info",
0400,
dir,
display,
&dump_info_fops);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
DSI_ERR("[%s] debugfs create dump info file failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
dump_file = debugfs_create_file("esd_trigger",
0644,
dir,
display,
&esd_trigger_fops);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
DSI_ERR("[%s] debugfs for esd trigger file failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
dump_file = debugfs_create_file("esd_check_mode",
0644,
dir,
display,
&esd_check_mode_fops);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
DSI_ERR("[%s] debugfs for esd check mode failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
misr_data = debugfs_create_file("misr_data",
0600,
dir,
display,
&misr_data_fops);
if (IS_ERR_OR_NULL(misr_data)) {
rc = PTR_ERR(misr_data);
DSI_ERR("[%s] debugfs create misr datafile failed, rc=%d\n",
display->name, rc);
goto error_remove_dir;
}
display_for_each_ctrl(i, display) {
struct msm_dsi_phy *phy = display->ctrl[i].phy;
if (!phy || !phy->name)
continue;
snprintf(name, ARRAY_SIZE(name),
"%s_allow_phy_power_off", phy->name);
dump_file = debugfs_create_bool(name, 0600, dir,
&phy->allow_phy_power_off);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
DSI_ERR("[%s] debugfs create %s failed, rc=%d\n",
display->name, name, rc);
goto error_remove_dir;
}
snprintf(name, ARRAY_SIZE(name),
"%s_regulator_min_datarate_bps", phy->name);
dump_file = debugfs_create_u32(name, 0600, dir,
&phy->regulator_min_datarate_bps);
if (IS_ERR_OR_NULL(dump_file)) {
rc = PTR_ERR(dump_file);
DSI_ERR("[%s] debugfs create %s failed, rc=%d\n",
display->name, name, rc);
goto error_remove_dir;
}
}
if (!debugfs_create_bool("ulps_feature_enable", 0600, dir,
&display->panel->ulps_feature_enabled)) {
DSI_ERR("[%s] debugfs create ulps feature enable file failed\n",
display->name);
goto error_remove_dir;
}
if (!debugfs_create_bool("ulps_suspend_feature_enable", 0600, dir,
&display->panel->ulps_suspend_enabled)) {
DSI_ERR("[%s] debugfs create ulps-suspend feature enable file failed\n",
display->name);
goto error_remove_dir;
}
if (!debugfs_create_bool("ulps_status", 0400, dir,
&display->ulps_enabled)) {
DSI_ERR("[%s] debugfs create ulps status file failed\n",
display->name);
goto error_remove_dir;
}
if (!debugfs_create_u32("clk_gating_config", 0600, dir,
&display->clk_gating_config)) {
DSI_ERR("[%s] debugfs create clk gating config failed\n",
display->name);
goto error_remove_dir;
}
#if defined(CONFIG_PXLW_IRIS)
display->off = 0x0a;
display->cnt = 1;
display->cmd_data_type = MIPI_DSI_DCS_LONG_WRITE;
dump_file = debugfs_create_x8("cmd_data_type", 0600, dir, &display->cmd_data_type);
if (IS_ERR_OR_NULL(dump_file))
pr_err("[%s] debugfs create panel cmd_data_type file failed, rc=%ld\n",
display->name, PTR_ERR(dump_file));
dump_file = debugfs_create_file("off",
0600,
dir,
display,
&panel_off_fops);
if (IS_ERR_OR_NULL(dump_file))
pr_err("[%s] debugfs create panel off file failed, rc=%ld\n",
display->name, PTR_ERR(dump_file));
dump_file = debugfs_create_file("reg",
0600,
dir,
display,
&panel_reg_fops);
if (IS_ERR_OR_NULL(dump_file))
pr_err("[%s] debugfs create panel reg file failed, rc=%ld\n",
display->name, PTR_ERR(dump_file));
#endif
display->root = dir;
dsi_parser_dbg_init(display->parser, dir);
return rc;
error_remove_dir:
debugfs_remove(dir);
error:
return rc;
}
static int dsi_display_debugfs_deinit(struct dsi_display *display)
{
debugfs_remove_recursive(display->root);
return 0;
}
#else
static int dsi_display_debugfs_init(struct dsi_display *display)
{
return 0;
}
static int dsi_display_debugfs_deinit(struct dsi_display *display)
{
return 0;
}
#endif /* CONFIG_DEBUG_FS */
static void adjust_timing_by_ctrl_count(const struct dsi_display *display,
struct dsi_display_mode *mode)
{
struct dsi_host_common_cfg *host = &display->panel->host_config;
bool is_split_link = host->split_link.split_link_enabled;
u32 sublinks_count = host->split_link.num_sublinks;
if (is_split_link && sublinks_count > 1) {
mode->timing.h_active /= sublinks_count;
mode->timing.h_front_porch /= sublinks_count;
mode->timing.h_sync_width /= sublinks_count;
mode->timing.h_back_porch /= sublinks_count;
mode->timing.h_skew /= sublinks_count;
mode->pixel_clk_khz /= sublinks_count;
} else {
mode->timing.h_active /= display->ctrl_count;
mode->timing.h_front_porch /= display->ctrl_count;
mode->timing.h_sync_width /= display->ctrl_count;
mode->timing.h_back_porch /= display->ctrl_count;
mode->timing.h_skew /= display->ctrl_count;
mode->pixel_clk_khz /= display->ctrl_count;
}
}
static int dsi_display_is_ulps_req_valid(struct dsi_display *display,
bool enable)
{
/* TODO: make checks based on cont. splash */
DSI_DEBUG("checking ulps req validity\n");
if (atomic_read(&display->panel->esd_recovery_pending)) {
DSI_DEBUG("%s: ESD recovery sequence underway\n", __func__);
return false;
}
if (!dsi_panel_ulps_feature_enabled(display->panel) &&
!display->panel->ulps_suspend_enabled) {
DSI_DEBUG("%s: ULPS feature is not enabled\n", __func__);
return false;
}
if (!dsi_panel_initialized(display->panel) &&
!display->panel->ulps_suspend_enabled) {
DSI_DEBUG("%s: panel not yet initialized\n", __func__);
return false;
}
if (enable && display->ulps_enabled) {
DSI_DEBUG("ULPS already enabled\n");
return false;
} else if (!enable && !display->ulps_enabled) {
DSI_DEBUG("ULPS already disabled\n");
return false;
}
/*
* No need to enter ULPS when transitioning from splash screen to
* boot animation since it is expected that the clocks would be turned
* right back on.
*/
if (enable && display->is_cont_splash_enabled)
return false;
return true;
}
/**
* dsi_display_set_ulps() - set ULPS state for DSI lanes.
* @dsi_display: DSI display handle.
* @enable: enable/disable ULPS.
*
* ULPS can be enabled/disabled after DSI host engine is turned on.
*
* Return: error code.
*/
static int dsi_display_set_ulps(struct dsi_display *display, bool enable)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (!dsi_display_is_ulps_req_valid(display, enable)) {
DSI_DEBUG("%s: skipping ULPS config, enable=%d\n",
__func__, enable);
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
/*
* ULPS entry-exit can be either through the DSI controller or
* the DSI PHY depending on hardware variation. For some chipsets,
* both controller version and phy version ulps entry-exit ops can
* be present. To handle such cases, send ulps request through PHY,
* if ulps request is handled in PHY, then no need to send request
* through controller.
*/
rc = dsi_phy_set_ulps(m_ctrl->phy, &display->config, enable,
display->clamp_enabled);
if (rc == DSI_PHY_ULPS_ERROR) {
DSI_ERR("Ulps PHY state change(%d) failed\n", enable);
return -EINVAL;
}
else if (rc == DSI_PHY_ULPS_HANDLED) {
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_set_ulps(ctrl->phy, &display->config,
enable, display->clamp_enabled);
if (rc == DSI_PHY_ULPS_ERROR) {
DSI_ERR("Ulps PHY state change(%d) failed\n",
enable);
return -EINVAL;
}
}
}
else if (rc == DSI_PHY_ULPS_NOT_HANDLED) {
rc = dsi_ctrl_set_ulps(m_ctrl->ctrl, enable);
if (rc) {
DSI_ERR("Ulps controller state change(%d) failed\n",
enable);
return rc;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_ulps(ctrl->ctrl, enable);
if (rc) {
DSI_ERR("Ulps controller state change(%d) failed\n",
enable);
return rc;
}
}
}
display->ulps_enabled = enable;
return 0;
}
/**
* dsi_display_set_clamp() - set clamp state for DSI IO.
* @dsi_display: DSI display handle.
* @enable: enable/disable clamping.
*
* Return: error code.
*/
static int dsi_display_set_clamp(struct dsi_display *display, bool enable)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
bool ulps_enabled = false;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
ulps_enabled = display->ulps_enabled;
/*
* Clamp control can be either through the DSI controller or
* the DSI PHY depending on hardware variation
*/
rc = dsi_ctrl_set_clamp_state(m_ctrl->ctrl, enable, ulps_enabled);
if (rc) {
DSI_ERR("DSI ctrl clamp state change(%d) failed\n", enable);
return rc;
}
rc = dsi_phy_set_clamp_state(m_ctrl->phy, enable);
if (rc) {
DSI_ERR("DSI phy clamp state change(%d) failed\n", enable);
return rc;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_clamp_state(ctrl->ctrl, enable, ulps_enabled);
if (rc) {
DSI_ERR("DSI Clamp state change(%d) failed\n", enable);
return rc;
}
rc = dsi_phy_set_clamp_state(ctrl->phy, enable);
if (rc) {
DSI_ERR("DSI phy clamp state change(%d) failed\n",
enable);
return rc;
}
DSI_DEBUG("Clamps %s for ctrl%d\n",
enable ? "enabled" : "disabled", i);
}
display->clamp_enabled = enable;
return 0;
}
/**
* dsi_display_setup_ctrl() - setup DSI controller.
* @dsi_display: DSI display handle.
*
* Return: error code.
*/
static int dsi_display_ctrl_setup(struct dsi_display *display)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *ctrl, *m_ctrl;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_setup(m_ctrl->ctrl);
if (rc) {
DSI_ERR("DSI controller setup failed\n");
return rc;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_setup(ctrl->ctrl);
if (rc) {
DSI_ERR("DSI controller setup failed\n");
return rc;
}
}
return 0;
}
static int dsi_display_phy_enable(struct dsi_display *display);
/**
* dsi_display_phy_idle_on() - enable DSI PHY while coming out of idle screen.
* @dsi_display: DSI display handle.
* @mmss_clamp: True if clamp is enabled.
*
* Return: error code.
*/
static int dsi_display_phy_idle_on(struct dsi_display *display,
bool mmss_clamp)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (mmss_clamp && !display->phy_idle_power_off) {
dsi_display_phy_enable(display);
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_phy_idle_ctrl(m_ctrl->phy, true);
if (rc) {
DSI_ERR("DSI controller setup failed\n");
return rc;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_idle_ctrl(ctrl->phy, true);
if (rc) {
DSI_ERR("DSI controller setup failed\n");
return rc;
}
}
display->phy_idle_power_off = false;
return 0;
}
/**
* dsi_display_phy_idle_off() - disable DSI PHY while going to idle screen.
* @dsi_display: DSI display handle.
*
* Return: error code.
*/
static int dsi_display_phy_idle_off(struct dsi_display *display)
{
int rc = 0;
int i = 0;
struct dsi_display_ctrl *m_ctrl, *ctrl;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
display_for_each_ctrl(i, display) {
struct msm_dsi_phy *phy = display->ctrl[i].phy;
if (!phy)
continue;
if (!phy->allow_phy_power_off) {
DSI_DEBUG("phy doesn't support this feature\n");
return 0;
}
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_phy_idle_ctrl(m_ctrl->phy, false);
if (rc) {
DSI_ERR("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
return rc;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_idle_ctrl(ctrl->phy, false);
if (rc) {
DSI_ERR("DSI controller setup failed\n");
return rc;
}
}
display->phy_idle_power_off = true;
return 0;
}
void dsi_display_enable_event(struct drm_connector *connector,
struct dsi_display *display,
uint32_t event_idx, struct dsi_event_cb_info *event_info,
bool enable)
{
uint32_t irq_status_idx = DSI_STATUS_INTERRUPT_COUNT;
int i;
if (!display) {
DSI_ERR("invalid display\n");
return;
}
if (event_info)
event_info->event_idx = event_idx;
switch (event_idx) {
case SDE_CONN_EVENT_VID_DONE:
irq_status_idx = DSI_SINT_VIDEO_MODE_FRAME_DONE;
break;
case SDE_CONN_EVENT_CMD_DONE:
irq_status_idx = DSI_SINT_CMD_FRAME_DONE;
break;
case SDE_CONN_EVENT_VID_FIFO_OVERFLOW:
case SDE_CONN_EVENT_CMD_FIFO_UNDERFLOW:
if (event_info) {
display_for_each_ctrl(i, display)
display->ctrl[i].ctrl->recovery_cb =
*event_info;
}
break;
default:
/* nothing to do */
DSI_DEBUG("[%s] unhandled event %d\n", display->name, event_idx);
return;
}
if (enable) {
display_for_each_ctrl(i, display)
dsi_ctrl_enable_status_interrupt(
display->ctrl[i].ctrl, irq_status_idx,
event_info);
} else {
display_for_each_ctrl(i, display)
dsi_ctrl_disable_status_interrupt(
display->ctrl[i].ctrl, irq_status_idx);
}
}
/**
* dsi_config_host_engine_state_for_cont_splash()- update host engine state
* during continuous splash.
* @display: Handle to dsi display
*
*/
static void dsi_config_host_engine_state_for_cont_splash
(struct dsi_display *display)
{
int i;
struct dsi_display_ctrl *ctrl;
enum dsi_engine_state host_state = DSI_CTRL_ENGINE_ON;
/* Sequence does not matter for split dsi usecases */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
dsi_ctrl_update_host_engine_state_for_cont_splash(ctrl->ctrl,
host_state);
}
}
static int dsi_display_ctrl_power_on(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
rc = dsi_ctrl_set_power_state(ctrl->ctrl,
DSI_CTRL_POWER_VREG_ON);
if (rc) {
DSI_ERR("[%s] Failed to set power state, rc=%d\n",
ctrl->ctrl->name, rc);
goto error;
}
}
return rc;
error:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
(void)dsi_ctrl_set_power_state(ctrl->ctrl,
DSI_CTRL_POWER_VREG_OFF);
}
return rc;
}
static int dsi_display_ctrl_power_off(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
rc = dsi_ctrl_set_power_state(ctrl->ctrl,
DSI_CTRL_POWER_VREG_OFF);
if (rc) {
DSI_ERR("[%s] Failed to power off, rc=%d\n",
ctrl->ctrl->name, rc);
goto error;
}
}
error:
return rc;
}
static void dsi_display_parse_cmdline_topology(struct dsi_display *display,
unsigned int display_type)
{
char *boot_str = NULL;
char *str = NULL;
char *sw_te = NULL;
unsigned long cmdline_topology = NO_OVERRIDE;
unsigned long cmdline_timing = NO_OVERRIDE;
if (display_type >= MAX_DSI_ACTIVE_DISPLAY) {
DSI_ERR("display_type=%d not supported\n", display_type);
goto end;
}
if (display_type == DSI_PRIMARY)
boot_str = dsi_display_primary;
else
boot_str = dsi_display_secondary;
sw_te = strnstr(boot_str, ":swte", strlen(boot_str));
if (sw_te)
display->sw_te_using_wd = true;
str = strnstr(boot_str, ":config", strlen(boot_str));
if (str) {
if (sscanf(str, ":config%lu", &cmdline_topology) != 1) {
DSI_ERR("invalid config index override: %s\n",
boot_str);
goto end;
}
}
str = strnstr(boot_str, ":timing", strlen(boot_str));
if (str) {
if (sscanf(str, ":timing%lu", &cmdline_timing) != 1) {
DSI_ERR("invalid timing index override: %s\n",
boot_str);
cmdline_topology = NO_OVERRIDE;
goto end;
}
}
DSI_DEBUG("successfully parsed command line topology and timing\n");
end:
display->cmdline_topology = cmdline_topology;
display->cmdline_timing = cmdline_timing;
}
/**
* dsi_display_parse_boot_display_selection()- Parse DSI boot display name
*
* Return: returns error status
*/
static int dsi_display_parse_boot_display_selection(void)
{
char *pos = NULL;
char disp_buf[MAX_CMDLINE_PARAM_LEN] = {'\0'};
int i, j;
for (i = 0; i < MAX_DSI_ACTIVE_DISPLAY; i++) {
strlcpy(disp_buf, boot_displays[i].boot_param,
MAX_CMDLINE_PARAM_LEN);
pos = strnstr(disp_buf, ":", MAX_CMDLINE_PARAM_LEN);
/* Use ':' as a delimiter to retrieve the display name */
if (!pos) {
DSI_DEBUG("display name[%s]is not valid\n", disp_buf);
continue;
}
for (j = 0; (disp_buf + j) < pos; j++)
boot_displays[i].name[j] = *(disp_buf + j);
boot_displays[i].name[j] = '\0';
boot_displays[i].boot_disp_en = true;
}
return 0;
}
static int dsi_display_phy_power_on(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
rc = dsi_phy_set_power_state(ctrl->phy, true);
if (rc) {
DSI_ERR("[%s] Failed to set power state, rc=%d\n",
ctrl->phy->name, rc);
goto error;
}
}
return rc;
error:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
if (!ctrl->phy)
continue;
(void)dsi_phy_set_power_state(ctrl->phy, false);
}
return rc;
}
static int dsi_display_phy_power_off(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* Sequence does not matter for split dsi usecases */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->phy)
continue;
rc = dsi_phy_set_power_state(ctrl->phy, false);
if (rc) {
DSI_ERR("[%s] Failed to power off, rc=%d\n",
ctrl->ctrl->name, rc);
goto error;
}
}
error:
return rc;
}
static int dsi_display_set_clk_src(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
/*
* For CPHY mode, the parent of mux_clks need to be set
* to Cphy_clks to have correct dividers for byte and
* pixel clocks.
*/
if (display->panel->host_config.phy_type == DSI_PHY_TYPE_CPHY) {
rc = dsi_clk_update_parent(&display->clock_info.cphy_clks,
&display->clock_info.mux_clks);
if (rc) {
DSI_ERR("failed update mux parent to shadow\n");
return rc;
}
}
/*
* In case of split DSI usecases, the clock for master controller should
* be enabled before the other controller. Master controller in the
* clock context refers to the controller that sources the clock.
*/
m_ctrl = &display->ctrl[display->clk_master_idx];
rc = dsi_ctrl_set_clock_source(m_ctrl->ctrl,
&display->clock_info.mux_clks);
if (rc) {
DSI_ERR("[%s] failed to set source clocks for master, rc=%d\n",
display->name, rc);
return rc;
}
/* Turn on rest of the controllers */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_clock_source(ctrl->ctrl,
&display->clock_info.mux_clks);
if (rc) {
DSI_ERR("[%s] failed to set source clocks, rc=%d\n",
display->name, rc);
return rc;
}
}
return 0;
}
static int dsi_display_phy_reset_config(struct dsi_display *display,
bool enable)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_phy_reset_config(ctrl->ctrl, enable);
if (rc) {
DSI_ERR("[%s] failed to %s phy reset, rc=%d\n",
display->name, enable ? "mask" : "unmask", rc);
return rc;
}
}
return 0;
}
static void dsi_display_toggle_resync_fifo(struct dsi_display *display)
{
struct dsi_display_ctrl *ctrl;
int i;
if (!display)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
dsi_phy_toggle_resync_fifo(ctrl->phy);
}
/*
* After retime buffer synchronization we need to turn of clk_en_sel
* bit on each phy. Avoid this for Cphy.
*/
if (display->panel->host_config.phy_type == DSI_PHY_TYPE_CPHY)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
dsi_phy_reset_clk_en_sel(ctrl->phy);
}
}
static int dsi_display_ctrl_update(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_host_timing_update(ctrl->ctrl);
if (rc) {
DSI_ERR("[%s] failed to update host_%d, rc=%d\n",
display->name, i, rc);
goto error_host_deinit;
}
}
return 0;
error_host_deinit:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
(void)dsi_ctrl_host_deinit(ctrl->ctrl);
}
return rc;
}
static int dsi_display_ctrl_init(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/* when ULPS suspend feature is enabled, we will keep the lanes in
* ULPS during suspend state and clamp DSI phy. Hence while resuming
* we will programe DSI controller as part of core clock enable.
* After that we should not re-configure DSI controller again here for
* usecases where we are resuming from ulps suspend as it might put
* the HW in bad state.
*/
if (!display->panel->ulps_suspend_enabled || !display->ulps_enabled) {
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_host_init(ctrl->ctrl,
display->is_cont_splash_enabled);
if (rc) {
DSI_ERR("[%s] failed to init host_%d, rc=%d\n",
display->name, i, rc);
goto error_host_deinit;
}
}
} else {
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_update_host_state(ctrl->ctrl,
DSI_CTRL_OP_HOST_INIT,
true);
if (rc)
DSI_DEBUG("host init update failed rc=%d\n",
rc);
}
}
return rc;
error_host_deinit:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
(void)dsi_ctrl_host_deinit(ctrl->ctrl);
}
return rc;
}
static int dsi_display_ctrl_deinit(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_host_deinit(ctrl->ctrl);
if (rc) {
DSI_ERR("[%s] failed to deinit host_%d, rc=%d\n",
display->name, i, rc);
}
}
return rc;
}
static int dsi_display_ctrl_host_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
/* Host engine states are already taken care for
* continuous splash case
*/
if (display->is_cont_splash_enabled) {
DSI_DEBUG("cont splash enabled, host enable not required\n");
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_ERR("[%s] failed to enable host engine, rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_host_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_ERR("[%s] failed to enable sl host engine, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
return rc;
error_disable_master:
(void)dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
error:
return rc;
}
static int dsi_display_ctrl_host_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->cmd_master_idx];
/*
* For platforms where ULPS is controlled by DSI controller block,
* do not disable dsi controller block if lanes are to be
* kept in ULPS during suspend. So just update the SW state
* and return early.
*/
if (display->panel->ulps_suspend_enabled &&
!m_ctrl->phy->hw.ops.ulps_ops.ulps_request) {
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_update_host_state(ctrl->ctrl,
DSI_CTRL_OP_HOST_ENGINE,
false);
if (rc)
DSI_DEBUG("host state update failed %d\n", rc);
}
return rc;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_host_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_OFF);
if (rc)
DSI_ERR("[%s] failed to disable host engine, rc=%d\n",
display->name, rc);
}
rc = dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
if (rc) {
DSI_ERR("[%s] failed to disable host engine, rc=%d\n",
display->name, rc);
goto error;
}
error:
return rc;
}
static int dsi_display_vid_engine_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->video_master_idx];
rc = dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_ERR("[%s] failed to enable vid engine, rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_vid_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_ON);
if (rc) {
DSI_ERR("[%s] failed to enable vid engine, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
return rc;
error_disable_master:
(void)dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
error:
return rc;
}
static int dsi_display_vid_engine_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->video_master_idx];
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_set_vid_engine_state(ctrl->ctrl,
DSI_CTRL_ENGINE_OFF);
if (rc)
DSI_ERR("[%s] failed to disable vid engine, rc=%d\n",
display->name, rc);
}
rc = dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF);
if (rc)
DSI_ERR("[%s] failed to disable mvid engine, rc=%d\n",
display->name, rc);
return rc;
}
static int dsi_display_phy_enable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
enum dsi_phy_pll_source m_src = DSI_PLL_SOURCE_STANDALONE;
m_ctrl = &display->ctrl[display->clk_master_idx];
if (display->ctrl_count > 1)
m_src = DSI_PLL_SOURCE_NATIVE;
rc = dsi_phy_enable(m_ctrl->phy,
&display->config,
m_src,
true,
display->is_cont_splash_enabled);
if (rc) {
DSI_ERR("[%s] failed to enable DSI PHY, rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_enable(ctrl->phy,
&display->config,
DSI_PLL_SOURCE_NON_NATIVE,
true,
display->is_cont_splash_enabled);
if (rc) {
DSI_ERR("[%s] failed to enable DSI PHY, rc=%d\n",
display->name, rc);
goto error_disable_master;
}
}
return rc;
error_disable_master:
(void)dsi_phy_disable(m_ctrl->phy);
error:
return rc;
}
static int dsi_display_phy_disable(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
m_ctrl = &display->ctrl[display->clk_master_idx];
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_phy_disable(ctrl->phy);
if (rc)
DSI_ERR("[%s] failed to disable DSI PHY, rc=%d\n",
display->name, rc);
}
rc = dsi_phy_disable(m_ctrl->phy);
if (rc)
DSI_ERR("[%s] failed to disable DSI PHY, rc=%d\n",
display->name, rc);
return rc;
}
static int dsi_display_wake_up(struct dsi_display *display)
{
return 0;
}
static void dsi_display_mask_overflow(struct dsi_display *display, u32 flags,
bool enable)
{
struct dsi_display_ctrl *ctrl;
int i;
if (!(flags & DSI_CTRL_CMD_LAST_COMMAND))
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
dsi_ctrl_mask_overflow(ctrl->ctrl, enable);
}
}
static int dsi_display_broadcast_cmd(struct dsi_display *display,
const struct mipi_dsi_msg *msg)
{
int rc = 0;
u32 flags, m_flags;
struct dsi_display_ctrl *ctrl, *m_ctrl;
int i;
m_flags = (DSI_CTRL_CMD_BROADCAST | DSI_CTRL_CMD_BROADCAST_MASTER |
DSI_CTRL_CMD_DEFER_TRIGGER | DSI_CTRL_CMD_FETCH_MEMORY);
flags = (DSI_CTRL_CMD_BROADCAST | DSI_CTRL_CMD_DEFER_TRIGGER |
DSI_CTRL_CMD_FETCH_MEMORY);
if ((msg->flags & MIPI_DSI_MSG_LASTCOMMAND)) {
flags |= DSI_CTRL_CMD_LAST_COMMAND;
m_flags |= DSI_CTRL_CMD_LAST_COMMAND;
}
if (display->queue_cmd_waits ||
msg->flags & MIPI_DSI_MSG_ASYNC_OVERRIDE) {
flags |= DSI_CTRL_CMD_ASYNC_WAIT;
m_flags |= DSI_CTRL_CMD_ASYNC_WAIT;
}
/*
* 1. Setup commands in FIFO
* 2. Trigger commands
*/
m_ctrl = &display->ctrl[display->cmd_master_idx];
dsi_display_mask_overflow(display, m_flags, true);
rc = dsi_ctrl_cmd_transfer(m_ctrl->ctrl, msg, &m_flags);
if (rc) {
DSI_ERR("[%s] cmd transfer failed on master,rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (ctrl == m_ctrl)
continue;
rc = dsi_ctrl_cmd_transfer(ctrl->ctrl, msg, &flags);
if (rc) {
DSI_ERR("[%s] cmd transfer failed, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_ctrl_cmd_tx_trigger(ctrl->ctrl, flags);
if (rc) {
DSI_ERR("[%s] cmd trigger failed, rc=%d\n",
display->name, rc);
goto error;
}
}
rc = dsi_ctrl_cmd_tx_trigger(m_ctrl->ctrl, m_flags);
if (rc) {
DSI_ERR("[%s] cmd trigger failed for master, rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (ctrl == m_ctrl)
continue;
rc = dsi_ctrl_clear_slave_dma_status(ctrl->ctrl, flags);
if (rc) {
DSI_ERR("[%s] clear interrupt status failed, rc=%d\n",
display->name, rc);
goto error;
}
}
error:
dsi_display_mask_overflow(display, m_flags, false);
return rc;
}
static int dsi_display_phy_sw_reset(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
/* For continuous splash use case ctrl states are updated
* separately and hence we do an early return
*/
if (display->is_cont_splash_enabled) {
DSI_DEBUG("cont splash enabled, phy sw reset not required\n");
return 0;
}
m_ctrl = &display->ctrl[display->cmd_master_idx];
rc = dsi_ctrl_phy_sw_reset(m_ctrl->ctrl);
if (rc) {
DSI_ERR("[%s] failed to reset phy, rc=%d\n", display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_phy_sw_reset(ctrl->ctrl);
if (rc) {
DSI_ERR("[%s] failed to reset phy, rc=%d\n",
display->name, rc);
goto error;
}
}
error:
return rc;
}
static int dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
return 0;
}
static int dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
return 0;
}
static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct dsi_display *display;
int rc = 0, ret = 0;
if (!host || !msg) {
DSI_ERR("Invalid params\n");
return 0;
}
display = to_dsi_display(host);
/* Avoid sending DCS commands when ESD recovery is pending */
if (atomic_read(&display->panel->esd_recovery_pending)) {
DSI_DEBUG("ESD recovery pending\n");
return 0;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable all DSI clocks, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_display_wake_up(display);
if (rc) {
DSI_ERR("[%s] failed to wake up display, rc=%d\n",
display->name, rc);
goto error_disable_clks;
}
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
DSI_ERR("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
goto error_disable_clks;
}
if (display->tx_cmd_buf == NULL) {
rc = dsi_host_alloc_cmd_tx_buffer(display);
if (rc) {
DSI_ERR("failed to allocate cmd tx buffer memory\n");
goto error_disable_cmd_engine;
}
}
if (display->ctrl_count > 1 && !(msg->flags & MIPI_DSI_MSG_UNICAST)) {
rc = dsi_display_broadcast_cmd(display, msg);
if (rc) {
DSI_ERR("[%s] cmd broadcast failed, rc=%d\n",
display->name, rc);
goto error_disable_cmd_engine;
}
} else {
int ctrl_idx = (msg->flags & MIPI_DSI_MSG_UNICAST) ?
msg->ctrl : 0;
u32 cmd_flags = DSI_CTRL_CMD_FETCH_MEMORY;
if (display->queue_cmd_waits ||
msg->flags & MIPI_DSI_MSG_ASYNC_OVERRIDE)
cmd_flags |= DSI_CTRL_CMD_ASYNC_WAIT;
#if defined(CONFIG_PXLW_IRIS)
if (msg->rx_buf && msg->rx_len)
cmd_flags |= DSI_CTRL_CMD_READ;
#endif
rc = dsi_ctrl_cmd_transfer(display->ctrl[ctrl_idx].ctrl, msg,
&cmd_flags);
#if defined(CONFIG_PXLW_IRIS)
if (rc < 0) {
#else
if (rc) {
#endif
DSI_ERR("[%s] cmd transfer failed, rc=%d\n",
display->name, rc);
goto error_disable_cmd_engine;
}
}
error_disable_cmd_engine:
ret = dsi_display_cmd_engine_disable(display);
if (ret) {
DSI_ERR("[%s]failed to disable DSI cmd engine, rc=%d\n",
display->name, ret);
}
error_disable_clks:
ret = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
if (ret) {
DSI_ERR("[%s] failed to disable all DSI clocks, rc=%d\n",
display->name, ret);
}
error:
return rc;
}
static struct mipi_dsi_host_ops dsi_host_ops = {
.attach = dsi_host_attach,
.detach = dsi_host_detach,
.transfer = dsi_host_transfer,
};
static int dsi_display_mipi_host_init(struct dsi_display *display)
{
int rc = 0;
struct mipi_dsi_host *host = &display->host;
host->dev = &display->pdev->dev;
host->ops = &dsi_host_ops;
rc = mipi_dsi_host_register(host);
if (rc) {
DSI_ERR("[%s] failed to register mipi dsi host, rc=%d\n",
display->name, rc);
goto error;
}
error:
return rc;
}
static int dsi_display_mipi_host_deinit(struct dsi_display *display)
{
int rc = 0;
struct mipi_dsi_host *host = &display->host;
mipi_dsi_host_unregister(host);
host->dev = NULL;
host->ops = NULL;
return rc;
}
static int dsi_display_clocks_deinit(struct dsi_display *display)
{
int rc = 0;
struct dsi_clk_link_set *src = &display->clock_info.src_clks;
struct dsi_clk_link_set *mux = &display->clock_info.mux_clks;
struct dsi_clk_link_set *shadow = &display->clock_info.shadow_clks;
if (src->byte_clk) {
devm_clk_put(&display->pdev->dev, src->byte_clk);
src->byte_clk = NULL;
}
if (src->pixel_clk) {
devm_clk_put(&display->pdev->dev, src->pixel_clk);
src->pixel_clk = NULL;
}
if (mux->byte_clk) {
devm_clk_put(&display->pdev->dev, mux->byte_clk);
mux->byte_clk = NULL;
}
if (mux->pixel_clk) {
devm_clk_put(&display->pdev->dev, mux->pixel_clk);
mux->pixel_clk = NULL;
}
if (shadow->byte_clk) {
devm_clk_put(&display->pdev->dev, shadow->byte_clk);
shadow->byte_clk = NULL;
}
if (shadow->pixel_clk) {
devm_clk_put(&display->pdev->dev, shadow->pixel_clk);
shadow->pixel_clk = NULL;
}
return rc;
}
static bool dsi_display_check_prefix(const char *clk_prefix,
const char *clk_name)
{
return !!strnstr(clk_name, clk_prefix, strlen(clk_name));
}
static int dsi_display_get_clocks_count(struct dsi_display *display,
char *dsi_clk_name)
{
if (display->fw)
return dsi_parser_count_strings(display->parser_node,
dsi_clk_name);
else
return of_property_count_strings(display->panel_node,
dsi_clk_name);
}
static void dsi_display_get_clock_name(struct dsi_display *display,
char *dsi_clk_name, int index,
const char **clk_name)
{
if (display->fw)
dsi_parser_read_string_index(display->parser_node,
dsi_clk_name, index, clk_name);
else
of_property_read_string_index(display->panel_node,
dsi_clk_name, index, clk_name);
}
static int dsi_display_clocks_init(struct dsi_display *display)
{
int i, rc = 0, num_clk = 0;
const char *clk_name;
const char *src_byte = "src_byte", *src_pixel = "src_pixel";
const char *mux_byte = "mux_byte", *mux_pixel = "mux_pixel";
const char *cphy_byte = "cphy_byte", *cphy_pixel = "cphy_pixel";
const char *shadow_byte = "shadow_byte", *shadow_pixel = "shadow_pixel";
const char *shadow_cphybyte = "shadow_cphybyte",
*shadow_cphypixel = "shadow_cphypixel";
struct clk *dsi_clk;
struct dsi_clk_link_set *src = &display->clock_info.src_clks;
struct dsi_clk_link_set *mux = &display->clock_info.mux_clks;
struct dsi_clk_link_set *cphy = &display->clock_info.cphy_clks;
struct dsi_clk_link_set *shadow = &display->clock_info.shadow_clks;
struct dsi_clk_link_set *shadow_cphy =
&display->clock_info.shadow_cphy_clks;
struct dsi_dyn_clk_caps *dyn_clk_caps = &(display->panel->dyn_clk_caps);
char *dsi_clock_name;
if (!strcmp(display->display_type, "primary"))
dsi_clock_name = "qcom,dsi-select-clocks";
else
dsi_clock_name = "qcom,dsi-select-sec-clocks";
num_clk = dsi_display_get_clocks_count(display, dsi_clock_name);
DSI_DEBUG("clk count=%d\n", num_clk);
for (i = 0; i < num_clk; i++) {
dsi_display_get_clock_name(display, dsi_clock_name, i,
&clk_name);
DSI_DEBUG("clock name:%s\n", clk_name);
dsi_clk = devm_clk_get(&display->pdev->dev, clk_name);
if (IS_ERR_OR_NULL(dsi_clk)) {
rc = PTR_ERR(dsi_clk);
DSI_ERR("failed to get %s, rc=%d\n", clk_name, rc);
if (dsi_display_check_prefix(mux_byte, clk_name)) {
mux->byte_clk = NULL;
goto error;
}
if (dsi_display_check_prefix(mux_pixel, clk_name)) {
mux->pixel_clk = NULL;
goto error;
}
if (dsi_display_check_prefix(cphy_byte, clk_name)) {
cphy->byte_clk = NULL;
goto error;
}
if (dsi_display_check_prefix(cphy_pixel, clk_name)) {
cphy->pixel_clk = NULL;
goto error;
}
if (dyn_clk_caps->dyn_clk_support &&
(display->panel->panel_mode ==
DSI_OP_VIDEO_MODE)) {
if (dsi_display_check_prefix(src_byte,
clk_name))
src->byte_clk = NULL;
if (dsi_display_check_prefix(src_pixel,
clk_name))
src->pixel_clk = NULL;
if (dsi_display_check_prefix(shadow_byte,
clk_name))
shadow->byte_clk = NULL;
if (dsi_display_check_prefix(shadow_pixel,
clk_name))
shadow->pixel_clk = NULL;
if (dsi_display_check_prefix(shadow_cphybyte,
clk_name))
shadow_cphy->byte_clk = NULL;
if (dsi_display_check_prefix(shadow_cphypixel,
clk_name))
shadow_cphy->pixel_clk = NULL;
dyn_clk_caps->dyn_clk_support = false;
}
}
if (dsi_display_check_prefix(src_byte, clk_name)) {
src->byte_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(src_pixel, clk_name)) {
src->pixel_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(cphy_byte, clk_name)) {
cphy->byte_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(cphy_pixel, clk_name)) {
cphy->pixel_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(mux_byte, clk_name)) {
mux->byte_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(mux_pixel, clk_name)) {
mux->pixel_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(shadow_byte, clk_name)) {
shadow->byte_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(shadow_pixel, clk_name)) {
shadow->pixel_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(shadow_cphybyte, clk_name)) {
shadow_cphy->byte_clk = dsi_clk;
continue;
}
if (dsi_display_check_prefix(shadow_cphypixel, clk_name)) {
shadow_cphy->pixel_clk = dsi_clk;
continue;
}
}
return 0;
error:
(void)dsi_display_clocks_deinit(display);
return rc;
}
static int dsi_display_clk_ctrl_cb(void *priv,
struct dsi_clk_ctrl_info clk_state_info)
{
int rc = 0;
struct dsi_display *display = NULL;
void *clk_handle = NULL;
if (!priv) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
display = priv;
if (clk_state_info.client == DSI_CLK_REQ_MDP_CLIENT) {
clk_handle = display->mdp_clk_handle;
} else if (clk_state_info.client == DSI_CLK_REQ_DSI_CLIENT) {
clk_handle = display->dsi_clk_handle;
} else {
DSI_ERR("invalid clk handle, return error\n");
return -EINVAL;
}
/*
* TODO: Wait for CMD_MDP_DONE interrupt if MDP client tries
* to turn off DSI clocks.
*/
rc = dsi_display_clk_ctrl(clk_handle,
clk_state_info.clk_type, clk_state_info.clk_state);
if (rc) {
DSI_ERR("[%s] failed to %d DSI %d clocks, rc=%d\n",
display->name, clk_state_info.clk_state,
clk_state_info.clk_type, rc);
return rc;
}
return 0;
}
static void dsi_display_ctrl_isr_configure(struct dsi_display *display, bool en)
{
int i;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl)
continue;
dsi_ctrl_isr_configure(ctrl->ctrl, en);
}
}
int dsi_pre_clkoff_cb(void *priv,
enum dsi_clk_type clk,
enum dsi_lclk_type l_type,
enum dsi_clk_state new_state)
{
int rc = 0, i;
struct dsi_display *display = priv;
struct dsi_display_ctrl *ctrl;
/*
* If Idle Power Collapse occurs immediately after a CMD
* transfer with an asynchronous wait for DMA done, ensure
* that the work queued is scheduled and completed before turning
* off the clocks and disabling interrupts to validate the command
* transfer.
*/
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || !ctrl->ctrl->dma_wait_queued)
continue;
flush_workqueue(display->dma_cmd_workq);
cancel_work_sync(&ctrl->ctrl->dma_cmd_wait);
ctrl->ctrl->dma_wait_queued = false;
}
if ((clk & DSI_LINK_CLK) && (new_state == DSI_CLK_OFF) &&
(l_type & DSI_LINK_LP_CLK)) {
/*
* If continuous clock is enabled then disable it
* before entering into ULPS Mode.
*/
if (display->panel->host_config.force_hs_clk_lane)
_dsi_display_continuous_clk_ctrl(display, false);
/*
* If ULPS feature is enabled, enter ULPS first.
* However, when blanking the panel, we should enter ULPS
* only if ULPS during suspend feature is enabled.
*/
if (!dsi_panel_initialized(display->panel)) {
if (display->panel->ulps_suspend_enabled)
rc = dsi_display_set_ulps(display, true);
} else if (dsi_panel_ulps_feature_enabled(display->panel)) {
rc = dsi_display_set_ulps(display, true);
}
if (rc)
DSI_ERR("%s: failed enable ulps, rc = %d\n",
__func__, rc);
}
if ((clk & DSI_LINK_CLK) && (new_state == DSI_CLK_OFF) &&
(l_type & DSI_LINK_HS_CLK)) {
/*
* PHY clock gating should be disabled before the PLL and the
* branch clocks are turned off. Otherwise, it is possible that
* the clock RCGs may not be turned off correctly resulting
* in clock warnings.
*/
rc = dsi_display_config_clk_gating(display, false);
if (rc)
DSI_ERR("[%s] failed to disable clk gating, rc=%d\n",
display->name, rc);
}
if ((clk & DSI_CORE_CLK) && (new_state == DSI_CLK_OFF)) {
/*
* Enable DSI clamps only if entering idle power collapse or
* when ULPS during suspend is enabled..
*/
if (dsi_panel_initialized(display->panel) ||
display->panel->ulps_suspend_enabled) {
dsi_display_phy_idle_off(display);
rc = dsi_display_set_clamp(display, true);
if (rc)
DSI_ERR("%s: Failed to enable dsi clamps. rc=%d\n",
__func__, rc);
rc = dsi_display_phy_reset_config(display, false);
if (rc)
DSI_ERR("%s: Failed to reset phy, rc=%d\n",
__func__, rc);
} else {
/* Make sure that controller is not in ULPS state when
* the DSI link is not active.
*/
rc = dsi_display_set_ulps(display, false);
if (rc)
DSI_ERR("%s: failed to disable ulps. rc=%d\n",
__func__, rc);
}
/* dsi will not be able to serve irqs from here on */
dsi_display_ctrl_irq_update(display, false);
/* cache the MISR values */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
dsi_ctrl_cache_misr(ctrl->ctrl);
}
}
return rc;
}
int dsi_post_clkon_cb(void *priv,
enum dsi_clk_type clk,
enum dsi_lclk_type l_type,
enum dsi_clk_state curr_state)
{
int rc = 0;
struct dsi_display *display = priv;
bool mmss_clamp = false;
if ((clk & DSI_LINK_CLK) && (l_type & DSI_LINK_LP_CLK)) {
mmss_clamp = display->clamp_enabled;
/*
* controller setup is needed if coming out of idle
* power collapse with clamps enabled.
*/
if (mmss_clamp)
dsi_display_ctrl_setup(display);
/*
* Phy setup is needed if coming out of idle
* power collapse with clamps enabled.
*/
if (display->phy_idle_power_off || mmss_clamp)
dsi_display_phy_idle_on(display, mmss_clamp);
if (display->ulps_enabled && mmss_clamp) {
/*
* ULPS Entry Request. This is needed if the lanes were
* in ULPS prior to power collapse, since after
* power collapse and reset, the DSI controller resets
* back to idle state and not ULPS. This ulps entry
* request will transition the state of the DSI
* controller to ULPS which will match the state of the
* DSI phy. This needs to be done prior to disabling
* the DSI clamps.
*
* Also, reset the ulps flag so that ulps_config
* function would reconfigure the controller state to
* ULPS.
*/
display->ulps_enabled = false;
rc = dsi_display_set_ulps(display, true);
if (rc) {
DSI_ERR("%s: Failed to enter ULPS. rc=%d\n",
__func__, rc);
goto error;
}
}
rc = dsi_display_phy_reset_config(display, true);
if (rc) {
DSI_ERR("%s: Failed to reset phy, rc=%d\n",
__func__, rc);
goto error;
}
rc = dsi_display_set_clamp(display, false);
if (rc) {
DSI_ERR("%s: Failed to disable dsi clamps. rc=%d\n",
__func__, rc);
goto error;
}
}
if ((clk & DSI_LINK_CLK) && (l_type & DSI_LINK_HS_CLK)) {
/*
* Toggle the resync FIFO everytime clock changes, except
* when cont-splash screen transition is going on.
* Toggling resync FIFO during cont splash transition
* can lead to blinks on the display.
*/
if (!display->is_cont_splash_enabled)
dsi_display_toggle_resync_fifo(display);
if (display->ulps_enabled) {
rc = dsi_display_set_ulps(display, false);
if (rc) {
DSI_ERR("%s: failed to disable ulps, rc= %d\n",
__func__, rc);
goto error;
}
}
if (display->panel->host_config.force_hs_clk_lane)
_dsi_display_continuous_clk_ctrl(display, true);
rc = dsi_display_config_clk_gating(display, true);
if (rc) {
DSI_ERR("[%s] failed to enable clk gating %d\n",
display->name, rc);
goto error;
}
}
/* enable dsi to serve irqs */
if (clk & DSI_CORE_CLK)
dsi_display_ctrl_irq_update(display, true);
error:
return rc;
}
int dsi_post_clkoff_cb(void *priv,
enum dsi_clk_type clk_type,
enum dsi_lclk_type l_type,
enum dsi_clk_state curr_state)
{
int rc = 0;
struct dsi_display *display = priv;
if (!display) {
DSI_ERR("%s: Invalid arg\n", __func__);
return -EINVAL;
}
if ((clk_type & DSI_CORE_CLK) &&
(curr_state == DSI_CLK_OFF)) {
rc = dsi_display_phy_power_off(display);
if (rc)
DSI_ERR("[%s] failed to power off PHY, rc=%d\n",
display->name, rc);
rc = dsi_display_ctrl_power_off(display);
if (rc)
DSI_ERR("[%s] failed to power DSI vregs, rc=%d\n",
display->name, rc);
}
return rc;
}
int dsi_pre_clkon_cb(void *priv,
enum dsi_clk_type clk_type,
enum dsi_lclk_type l_type,
enum dsi_clk_state new_state)
{
int rc = 0;
struct dsi_display *display = priv;
if (!display) {
DSI_ERR("%s: invalid input\n", __func__);
return -EINVAL;
}
if ((clk_type & DSI_CORE_CLK) && (new_state == DSI_CLK_ON)) {
/*
* Enable DSI core power
* 1.> PANEL_PM are controlled as part of
* panel_power_ctrl. Needed not be handled here.
* 2.> CTRL_PM need to be enabled/disabled
* only during unblank/blank. Their state should
* not be changed during static screen.
*/
DSI_DEBUG("updating power states for ctrl and phy\n");
rc = dsi_display_ctrl_power_on(display);
if (rc) {
DSI_ERR("[%s] failed to power on dsi controllers, rc=%d\n",
display->name, rc);
return rc;
}
rc = dsi_display_phy_power_on(display);
if (rc) {
DSI_ERR("[%s] failed to power on dsi phy, rc = %d\n",
display->name, rc);
return rc;
}
DSI_DEBUG("%s: Enable DSI core power\n", __func__);
}
return rc;
}
static void __set_lane_map_v2(u8 *lane_map_v2,
enum dsi_phy_data_lanes lane0,
enum dsi_phy_data_lanes lane1,
enum dsi_phy_data_lanes lane2,
enum dsi_phy_data_lanes lane3)
{
lane_map_v2[DSI_LOGICAL_LANE_0] = lane0;
lane_map_v2[DSI_LOGICAL_LANE_1] = lane1;
lane_map_v2[DSI_LOGICAL_LANE_2] = lane2;
lane_map_v2[DSI_LOGICAL_LANE_3] = lane3;
}
static int dsi_display_parse_lane_map(struct dsi_display *display)
{
int rc = 0, i = 0;
const char *data;
u8 temp[DSI_LANE_MAX - 1];
if (!display) {
DSI_ERR("invalid params\n");
return -EINVAL;
}
/* lane-map-v2 supersedes lane-map-v1 setting */
rc = of_property_read_u8_array(display->pdev->dev.of_node,
"qcom,lane-map-v2", temp, (DSI_LANE_MAX - 1));
if (!rc) {
for (i = DSI_LOGICAL_LANE_0; i < (DSI_LANE_MAX - 1); i++)
display->lane_map.lane_map_v2[i] = BIT(temp[i]);
return 0;
} else if (rc != EINVAL) {
DSI_DEBUG("Incorrect mapping, configure default\n");
goto set_default;
}
/* lane-map older version, for DSI controller version < 2.0 */
data = of_get_property(display->pdev->dev.of_node,
"qcom,lane-map", NULL);
if (!data)
goto set_default;
if (!strcmp(data, "lane_map_3012")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_3012;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_0);
} else if (!strcmp(data, "lane_map_2301")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_2301;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_1);
} else if (!strcmp(data, "lane_map_1230")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_1230;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_2);
} else if (!strcmp(data, "lane_map_0321")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_0321;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_1);
} else if (!strcmp(data, "lane_map_1032")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_1032;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_2);
} else if (!strcmp(data, "lane_map_2103")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_2103;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_3);
} else if (!strcmp(data, "lane_map_3210")) {
display->lane_map.lane_map_v1 = DSI_LANE_MAP_3210;
__set_lane_map_v2(display->lane_map.lane_map_v2,
DSI_PHYSICAL_LANE_3,
DSI_PHYSICAL_LANE_2,
DSI_PHYSICAL_LANE_1,
DSI_PHYSICAL_LANE_0);
} else {
DSI_WARN("%s: invalid lane map %s specified. defaulting to lane_map0123\n",
__func__, data);
goto set_default;
}
return 0;
set_default:
/* default lane mapping */
__set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_0,
DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_3);
display->lane_map.lane_map_v1 = DSI_LANE_MAP_0123;
return 0;
}
static int dsi_display_get_phandle_index(
struct dsi_display *display,
const char *propname, int count, int index)
{
struct device_node *disp_node = display->panel_node;
u32 *val = NULL;
int rc = 0;
val = kcalloc(count, sizeof(*val), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(val)) {
rc = -ENOMEM;
goto end;
}
if (index >= count)
goto end;
if (display->fw)
rc = dsi_parser_read_u32_array(display->parser_node,
propname, val, count);
else
rc = of_property_read_u32_array(disp_node, propname,
val, count);
if (rc)
goto end;
rc = val[index];
DSI_DEBUG("%s index=%d\n", propname, rc);
end:
kfree(val);
return rc;
}
static int dsi_display_get_phandle_count(struct dsi_display *display,
const char *propname)
{
if (display->fw)
return dsi_parser_count_u32_elems(display->parser_node,
propname);
else
return of_property_count_u32_elems(display->panel_node,
propname);
}
static int dsi_display_parse_dt(struct dsi_display *display)
{
int i, rc = 0;
u32 phy_count = 0;
struct device_node *of_node = display->pdev->dev.of_node;
char *dsi_ctrl_name, *dsi_phy_name;
if (!strcmp(display->display_type, "primary")) {
dsi_ctrl_name = "qcom,dsi-ctrl-num";
dsi_phy_name = "qcom,dsi-phy-num";
} else {
dsi_ctrl_name = "qcom,dsi-sec-ctrl-num";
dsi_phy_name = "qcom,dsi-sec-phy-num";
}
display->ctrl_count = dsi_display_get_phandle_count(display,
dsi_ctrl_name);
phy_count = dsi_display_get_phandle_count(display, dsi_phy_name);
DSI_DEBUG("ctrl count=%d, phy count=%d\n",
display->ctrl_count, phy_count);
if (!phy_count || !display->ctrl_count) {
DSI_ERR("no ctrl/phys found\n");
rc = -ENODEV;
goto error;
}
if (phy_count != display->ctrl_count) {
DSI_ERR("different ctrl and phy counts\n");
rc = -ENODEV;
goto error;
}
display_for_each_ctrl(i, display) {
struct dsi_display_ctrl *ctrl = &display->ctrl[i];
int index;
index = dsi_display_get_phandle_index(display, dsi_ctrl_name,
display->ctrl_count, i);
ctrl->ctrl_of_node = of_parse_phandle(of_node,
"qcom,dsi-ctrl", index);
of_node_put(ctrl->ctrl_of_node);
index = dsi_display_get_phandle_index(display, dsi_phy_name,
display->ctrl_count, i);
ctrl->phy_of_node = of_parse_phandle(of_node,
"qcom,dsi-phy", index);
of_node_put(ctrl->phy_of_node);
}
/* Parse TE data */
dsi_display_parse_te_data(display);
/* Parse all external bridges from port 0 */
display_for_each_ctrl(i, display) {
display->ext_bridge[i].node_of =
of_graph_get_remote_node(of_node, 0, i);
if (display->ext_bridge[i].node_of)
display->ext_bridge_cnt++;
else
break;
}
DSI_DEBUG("success\n");
error:
return rc;
}
static int dsi_display_res_init(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
ctrl->ctrl = dsi_ctrl_get(ctrl->ctrl_of_node);
if (IS_ERR_OR_NULL(ctrl->ctrl)) {
rc = PTR_ERR(ctrl->ctrl);
DSI_ERR("failed to get dsi controller, rc=%d\n", rc);
ctrl->ctrl = NULL;
goto error_ctrl_put;
}
ctrl->phy = dsi_phy_get(ctrl->phy_of_node);
if (IS_ERR_OR_NULL(ctrl->phy)) {
rc = PTR_ERR(ctrl->phy);
DSI_ERR("failed to get phy controller, rc=%d\n", rc);
dsi_ctrl_put(ctrl->ctrl);
ctrl->phy = NULL;
goto error_ctrl_put;
}
}
display->panel = dsi_panel_get(&display->pdev->dev,
display->panel_node,
display->parser_node,
display->display_type,
display->cmdline_topology);
if (IS_ERR_OR_NULL(display->panel)) {
rc = PTR_ERR(display->panel);
DSI_ERR("failed to get panel, rc=%d\n", rc);
display->panel = NULL;
goto error_ctrl_put;
}
display_for_each_ctrl(i, display) {
struct msm_dsi_phy *phy = display->ctrl[i].phy;
phy->cfg.force_clk_lane_hs =
display->panel->host_config.force_hs_clk_lane;
phy->cfg.phy_type =
display->panel->host_config.phy_type;
}
#if defined(CONFIG_PXLW_IRIS)
iris_parse_param(display->panel_node, display->panel);
iris_init(display, display->panel);
#endif
rc = dsi_display_parse_lane_map(display);
if (rc) {
DSI_ERR("Lane map not found, rc=%d\n", rc);
goto error_ctrl_put;
}
rc = dsi_display_clocks_init(display);
if (rc) {
DSI_ERR("Failed to parse clock data, rc=%d\n", rc);
goto error_ctrl_put;
}
return 0;
error_ctrl_put:
for (i = i - 1; i >= 0; i--) {
ctrl = &display->ctrl[i];
dsi_ctrl_put(ctrl->ctrl);
dsi_phy_put(ctrl->phy);
}
return rc;
}
static int dsi_display_res_deinit(struct dsi_display *display)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
rc = dsi_display_clocks_deinit(display);
if (rc)
DSI_ERR("clocks deinit failed, rc=%d\n", rc);
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
dsi_phy_put(ctrl->phy);
dsi_ctrl_put(ctrl->ctrl);
}
if (display->panel)
dsi_panel_put(display->panel);
return rc;
}
static int dsi_display_validate_mode_set(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
/*
* To set a mode:
* 1. Controllers should be turned off.
* 2. Link clocks should be off.
* 3. Phy should be disabled.
*/
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if ((ctrl->power_state > DSI_CTRL_POWER_VREG_ON) ||
(ctrl->phy_enabled)) {
rc = -EINVAL;
goto error;
}
}
error:
return rc;
}
static bool dsi_display_is_seamless_dfps_possible(
const struct dsi_display *display,
const struct dsi_display_mode *tgt,
const enum dsi_dfps_type dfps_type)
{
struct dsi_display_mode *cur;
if (!display || !tgt || !display->panel) {
DSI_ERR("Invalid params\n");
return false;
}
cur = display->panel->cur_mode;
if (cur->timing.h_active != tgt->timing.h_active) {
DSI_DEBUG("timing.h_active differs %d %d\n",
cur->timing.h_active, tgt->timing.h_active);
return false;
}
if (cur->timing.h_back_porch != tgt->timing.h_back_porch) {
DSI_DEBUG("timing.h_back_porch differs %d %d\n",
cur->timing.h_back_porch,
tgt->timing.h_back_porch);
return false;
}
if (cur->timing.h_sync_width != tgt->timing.h_sync_width) {
DSI_DEBUG("timing.h_sync_width differs %d %d\n",
cur->timing.h_sync_width,
tgt->timing.h_sync_width);
return false;
}
if (cur->timing.h_front_porch != tgt->timing.h_front_porch) {
DSI_DEBUG("timing.h_front_porch differs %d %d\n",
cur->timing.h_front_porch,
tgt->timing.h_front_porch);
if (dfps_type != DSI_DFPS_IMMEDIATE_HFP)
return false;
}
if (cur->timing.h_skew != tgt->timing.h_skew) {
DSI_DEBUG("timing.h_skew differs %d %d\n",
cur->timing.h_skew,
tgt->timing.h_skew);
return false;
}
/* skip polarity comparison */
if (cur->timing.v_active != tgt->timing.v_active) {
DSI_DEBUG("timing.v_active differs %d %d\n",
cur->timing.v_active,
tgt->timing.v_active);
return false;
}
if (cur->timing.v_back_porch != tgt->timing.v_back_porch) {
DSI_DEBUG("timing.v_back_porch differs %d %d\n",
cur->timing.v_back_porch,
tgt->timing.v_back_porch);
return false;
}
if (cur->timing.v_sync_width != tgt->timing.v_sync_width) {
DSI_DEBUG("timing.v_sync_width differs %d %d\n",
cur->timing.v_sync_width,
tgt->timing.v_sync_width);
return false;
}
if (cur->timing.v_front_porch != tgt->timing.v_front_porch) {
DSI_DEBUG("timing.v_front_porch differs %d %d\n",
cur->timing.v_front_porch,
tgt->timing.v_front_porch);
if (dfps_type != DSI_DFPS_IMMEDIATE_VFP)
return false;
}
/* skip polarity comparison */
if (cur->timing.refresh_rate == tgt->timing.refresh_rate)
DSI_DEBUG("timing.refresh_rate identical %d %d\n",
cur->timing.refresh_rate,
tgt->timing.refresh_rate);
if (cur->pixel_clk_khz != tgt->pixel_clk_khz)
DSI_DEBUG("pixel_clk_khz differs %d %d\n",
cur->pixel_clk_khz, tgt->pixel_clk_khz);
if (cur->dsi_mode_flags != tgt->dsi_mode_flags)
DSI_DEBUG("flags differs %d %d\n",
cur->dsi_mode_flags, tgt->dsi_mode_flags);
return true;
}
void dsi_display_update_byte_intf_div(struct dsi_display *display)
{
struct dsi_host_common_cfg *config;
struct dsi_display_ctrl *m_ctrl;
int phy_ver;
m_ctrl = &display->ctrl[display->cmd_master_idx];
config = &display->panel->host_config;
phy_ver = dsi_phy_get_version(m_ctrl->phy);
if (phy_ver <= DSI_PHY_VERSION_2_0)
config->byte_intf_clk_div = 1;
else
config->byte_intf_clk_div = 2;
}
static int dsi_display_update_dsi_bitrate(struct dsi_display *display,
u32 bit_clk_rate)
{
int rc = 0;
int i;
DSI_DEBUG("%s:bit rate:%d\n", __func__, bit_clk_rate);
if (!display->panel) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (bit_clk_rate == 0) {
DSI_ERR("Invalid bit clock rate\n");
return -EINVAL;
}
display->config.bit_clk_rate_hz = bit_clk_rate;
display_for_each_ctrl(i, display) {
struct dsi_display_ctrl *dsi_disp_ctrl = &display->ctrl[i];
struct dsi_ctrl *ctrl = dsi_disp_ctrl->ctrl;
u32 num_of_lanes = 0, bpp, byte_intf_clk_div;
u64 bit_rate, pclk_rate, bit_rate_per_lane, byte_clk_rate,
byte_intf_clk_rate;
u32 bits_per_symbol = 16, num_of_symbols = 7; /* For Cphy */
struct dsi_host_common_cfg *host_cfg;
mutex_lock(&ctrl->ctrl_lock);
host_cfg = &display->panel->host_config;
if (host_cfg->data_lanes & DSI_DATA_LANE_0)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_1)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_2)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_3)
num_of_lanes++;
if (num_of_lanes == 0) {
DSI_ERR("Invalid lane count\n");
rc = -EINVAL;
goto error;
}
bpp = dsi_pixel_format_to_bpp(host_cfg->dst_format);
bit_rate = display->config.bit_clk_rate_hz * num_of_lanes;
bit_rate_per_lane = bit_rate;
do_div(bit_rate_per_lane, num_of_lanes);
pclk_rate = bit_rate;
do_div(pclk_rate, bpp);
if (host_cfg->phy_type == DSI_PHY_TYPE_DPHY) {
bit_rate_per_lane = bit_rate;
do_div(bit_rate_per_lane, num_of_lanes);
byte_clk_rate = bit_rate_per_lane;
do_div(byte_clk_rate, 8);
byte_intf_clk_rate = byte_clk_rate;
byte_intf_clk_div = host_cfg->byte_intf_clk_div;
do_div(byte_intf_clk_rate, byte_intf_clk_div);
} else {
bit_rate_per_lane = bit_clk_rate;
pclk_rate *= bits_per_symbol;
do_div(pclk_rate, num_of_symbols);
byte_clk_rate = bit_clk_rate;
do_div(byte_clk_rate, num_of_symbols);
/* For CPHY, byte_intf_clk is same as byte_clk */
byte_intf_clk_rate = byte_clk_rate;
}
DSI_DEBUG("bit_clk_rate = %llu, bit_clk_rate_per_lane = %llu\n",
bit_rate, bit_rate_per_lane);
DSI_DEBUG("byte_clk_rate = %llu, byte_intf_clk_rate = %llu\n",
byte_clk_rate, byte_intf_clk_rate);
DSI_DEBUG("pclk_rate = %llu\n", pclk_rate);
SDE_EVT32(i, bit_rate, byte_clk_rate, pclk_rate);
ctrl->clk_freq.byte_clk_rate = byte_clk_rate;
ctrl->clk_freq.byte_intf_clk_rate = byte_intf_clk_rate;
ctrl->clk_freq.pix_clk_rate = pclk_rate;
rc = dsi_clk_set_link_frequencies(display->dsi_clk_handle,
ctrl->clk_freq, ctrl->cell_index);
if (rc) {
DSI_ERR("Failed to update link frequencies\n");
goto error;
}
ctrl->host_config.bit_clk_rate_hz = bit_clk_rate;
error:
mutex_unlock(&ctrl->ctrl_lock);
/* TODO: recover ctrl->clk_freq in case of failure */
if (rc)
return rc;
}
return 0;
}
static void _dsi_display_calc_pipe_delay(struct dsi_display *display,
struct dsi_dyn_clk_delay *delay,
struct dsi_display_mode *mode)
{
u32 esc_clk_rate_hz;
u32 pclk_to_esc_ratio, byte_to_esc_ratio, hr_bit_to_esc_ratio;
u32 hsync_period = 0;
struct dsi_display_ctrl *m_ctrl;
struct dsi_ctrl *dsi_ctrl;
struct dsi_phy_cfg *cfg;
int phy_ver;
m_ctrl = &display->ctrl[display->clk_master_idx];
dsi_ctrl = m_ctrl->ctrl;
cfg = &(m_ctrl->phy->cfg);
esc_clk_rate_hz = dsi_ctrl->clk_freq.esc_clk_rate;
pclk_to_esc_ratio = (dsi_ctrl->clk_freq.pix_clk_rate /
esc_clk_rate_hz);
byte_to_esc_ratio = (dsi_ctrl->clk_freq.byte_clk_rate /
esc_clk_rate_hz);
hr_bit_to_esc_ratio = ((dsi_ctrl->clk_freq.byte_clk_rate * 4) /
esc_clk_rate_hz);
hsync_period = DSI_H_TOTAL_DSC(&mode->timing);
delay->pipe_delay = (hsync_period + 1) / pclk_to_esc_ratio;
if (!display->panel->video_config.eof_bllp_lp11_en)
delay->pipe_delay += (17 / pclk_to_esc_ratio) +
((21 + (display->config.common_config.t_clk_pre + 1) +
(display->config.common_config.t_clk_post + 1)) /
byte_to_esc_ratio) +
((((cfg->timing.lane_v3[8] >> 1) + 1) +
((cfg->timing.lane_v3[6] >> 1) + 1) +
((cfg->timing.lane_v3[3] * 4) +
(cfg->timing.lane_v3[5] >> 1) + 1) +
((cfg->timing.lane_v3[7] >> 1) + 1) +
((cfg->timing.lane_v3[1] >> 1) + 1) +
((cfg->timing.lane_v3[4] >> 1) + 1)) /
hr_bit_to_esc_ratio);
delay->pipe_delay2 = 0;
if (display->panel->host_config.force_hs_clk_lane)
delay->pipe_delay2 = (6 / byte_to_esc_ratio) +
((((cfg->timing.lane_v3[1] >> 1) + 1) +
((cfg->timing.lane_v3[4] >> 1) + 1)) /
hr_bit_to_esc_ratio);
/*
* 100us pll delay recommended for phy ver 2.0 and 3.0
* 25us pll delay recommended for phy ver 4.0
*/
phy_ver = dsi_phy_get_version(m_ctrl->phy);
if (phy_ver <= DSI_PHY_VERSION_3_0)
delay->pll_delay = 100;
else
delay->pll_delay = 25;
delay->pll_delay = ((delay->pll_delay * esc_clk_rate_hz) / 1000000);
}
/*
* dsi_display_is_type_cphy - check if panel type is cphy
* @display: Pointer to private display structure
* Returns: True if panel type is cphy
*/
static inline bool dsi_display_is_type_cphy(struct dsi_display *display)
{
return (display->panel->host_config.phy_type ==
DSI_PHY_TYPE_CPHY) ? true : false;
}
static int _dsi_display_dyn_update_clks(struct dsi_display *display,
struct link_clk_freq *bkp_freq)
{
int rc = 0, i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
struct dsi_clk_link_set *parent_clk, *enable_clk;
m_ctrl = &display->ctrl[display->clk_master_idx];
if (dsi_display_is_type_cphy(display)) {
enable_clk = &display->clock_info.cphy_clks;
parent_clk = &display->clock_info.shadow_cphy_clks;
} else {
enable_clk = &display->clock_info.src_clks;
parent_clk = &display->clock_info.shadow_clks;
}
dsi_clk_prepare_enable(enable_clk);
rc = dsi_clk_update_parent(parent_clk,
&display->clock_info.mux_clks);
if (rc) {
DSI_ERR("failed to update mux parent\n");
goto exit;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
rc = dsi_clk_set_byte_clk_rate(display->dsi_clk_handle,
ctrl->ctrl->clk_freq.byte_clk_rate,
ctrl->ctrl->clk_freq.byte_intf_clk_rate, i);
if (rc) {
DSI_ERR("failed to set byte rate for index:%d\n", i);
goto recover_byte_clk;
}
rc = dsi_clk_set_pixel_clk_rate(display->dsi_clk_handle,
ctrl->ctrl->clk_freq.pix_clk_rate, i);
if (rc) {
DSI_ERR("failed to set pix rate for index:%d\n", i);
goto recover_pix_clk;
}
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (ctrl == m_ctrl)
continue;
dsi_phy_dynamic_refresh_trigger(ctrl->phy, false);
}
dsi_phy_dynamic_refresh_trigger(m_ctrl->phy, true);
/* wait for dynamic refresh done */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_wait4dynamic_refresh_done(ctrl->ctrl);
if (rc) {
DSI_ERR("wait4dynamic refresh failed for dsi:%d\n", i);
goto recover_pix_clk;
} else {
DSI_INFO("dynamic refresh done on dsi: %s\n",
i ? "slave" : "master");
}
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
dsi_phy_dynamic_refresh_clear(ctrl->phy);
}
rc = dsi_clk_update_parent(enable_clk,
&display->clock_info.mux_clks);
if (rc)
DSI_ERR("could not switch back to src clks %d\n", rc);
dsi_clk_disable_unprepare(enable_clk);
return rc;
recover_pix_clk:
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
dsi_clk_set_pixel_clk_rate(display->dsi_clk_handle,
bkp_freq->pix_clk_rate, i);
}
recover_byte_clk:
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
dsi_clk_set_byte_clk_rate(display->dsi_clk_handle,
bkp_freq->byte_clk_rate,
bkp_freq->byte_intf_clk_rate, i);
}
exit:
dsi_clk_disable_unprepare(&display->clock_info.src_clks);
return rc;
}
static int dsi_display_dynamic_clk_switch_vid(struct dsi_display *display,
struct dsi_display_mode *mode)
{
int rc = 0, mask, i;
struct dsi_display_ctrl *m_ctrl, *ctrl;
struct dsi_dyn_clk_delay delay;
struct link_clk_freq bkp_freq;
dsi_panel_acquire_panel_lock(display->panel);
m_ctrl = &display->ctrl[display->clk_master_idx];
dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON);
/* mask PLL unlock, FIFO overflow and underflow errors */
mask = BIT(DSI_PLL_UNLOCK_ERR) | BIT(DSI_FIFO_UNDERFLOW) |
BIT(DSI_FIFO_OVERFLOW);
dsi_display_mask_ctrl_error_interrupts(display, mask, true);
/* update the phy timings based on new mode */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
dsi_phy_update_phy_timings(ctrl->phy, &display->config);
}
/* back up existing rates to handle failure case */
bkp_freq.byte_clk_rate = m_ctrl->ctrl->clk_freq.byte_clk_rate;
bkp_freq.byte_intf_clk_rate = m_ctrl->ctrl->clk_freq.byte_intf_clk_rate;
bkp_freq.pix_clk_rate = m_ctrl->ctrl->clk_freq.pix_clk_rate;
bkp_freq.esc_clk_rate = m_ctrl->ctrl->clk_freq.esc_clk_rate;
rc = dsi_display_update_dsi_bitrate(display, mode->timing.clk_rate_hz);
if (rc) {
DSI_ERR("failed set link frequencies %d\n", rc);
goto exit;
}
/* calculate pipe delays */
_dsi_display_calc_pipe_delay(display, &delay, mode);
/* configure dynamic refresh ctrl registers */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->phy)
continue;
if (ctrl == m_ctrl)
dsi_phy_config_dynamic_refresh(ctrl->phy, &delay, true);
else
dsi_phy_config_dynamic_refresh(ctrl->phy, &delay,
false);
}
rc = _dsi_display_dyn_update_clks(display, &bkp_freq);
exit:
dsi_display_mask_ctrl_error_interrupts(display, mask, false);
dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS,
DSI_CLK_OFF);
/* store newly calculated phy timings in mode private info */
dsi_phy_dyn_refresh_cache_phy_timings(m_ctrl->phy,
mode->priv_info->phy_timing_val,
mode->priv_info->phy_timing_len);
dsi_panel_release_panel_lock(display->panel);
return rc;
}
static int dsi_display_dynamic_clk_configure_cmd(struct dsi_display *display,
int clk_rate)
{
int rc = 0;
if (clk_rate <= 0) {
DSI_ERR("%s: bitrate should be greater than 0\n", __func__);
return -EINVAL;
}
if (clk_rate == display->cached_clk_rate) {
DSI_INFO("%s: ignore duplicated DSI clk setting\n", __func__);
return rc;
}
display->cached_clk_rate = clk_rate;
rc = dsi_display_update_dsi_bitrate(display, clk_rate);
if (!rc) {
DSI_INFO("%s: bit clk is ready to be configured to '%d'\n",
__func__, clk_rate);
atomic_set(&display->clkrate_change_pending, 1);
} else {
DSI_ERR("%s: Failed to prepare to configure '%d'. rc = %d\n",
__func__, clk_rate, rc);
/* Caching clock failed, so don't go on doing so. */
atomic_set(&display->clkrate_change_pending, 0);
display->cached_clk_rate = 0;
}
return rc;
}
static int dsi_display_dfps_update(struct dsi_display *display,
struct dsi_display_mode *dsi_mode)
{
struct dsi_mode_info *timing;
struct dsi_display_ctrl *m_ctrl, *ctrl;
struct dsi_display_mode *panel_mode;
struct dsi_dfps_capabilities dfps_caps;
int rc = 0;
int i = 0;
struct dsi_dyn_clk_caps *dyn_clk_caps;
if (!display || !dsi_mode || !display->panel) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
timing = &dsi_mode->timing;
dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
dyn_clk_caps = &(display->panel->dyn_clk_caps);
if (!dfps_caps.dfps_support && !dyn_clk_caps->maintain_const_fps) {
DSI_ERR("dfps or constant fps not supported\n");
return -ENOTSUPP;
}
if (dfps_caps.type == DSI_DFPS_IMMEDIATE_CLK) {
DSI_ERR("dfps clock method not supported\n");
return -ENOTSUPP;
}
/* For split DSI, update the clock master first */
DSI_DEBUG("configuring seamless dynamic fps\n\n");
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
m_ctrl = &display->ctrl[display->clk_master_idx];
rc = dsi_ctrl_async_timing_update(m_ctrl->ctrl, timing);
if (rc) {
DSI_ERR("[%s] failed to dfps update host_%d, rc=%d\n",
display->name, i, rc);
goto error;
}
/* Update the rest of the controllers */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || (ctrl == m_ctrl))
continue;
rc = dsi_ctrl_async_timing_update(ctrl->ctrl, timing);
if (rc) {
DSI_ERR("[%s] failed to dfps update host_%d, rc=%d\n",
display->name, i, rc);
goto error;
}
}
panel_mode = display->panel->cur_mode;
memcpy(panel_mode, dsi_mode, sizeof(*panel_mode));
/*
* dsi_mode_flags flags are used to communicate with other drm driver
* components, and are transient. They aren't inherently part of the
* display panel's mode and shouldn't be saved into the cached currently
* active mode.
*/
panel_mode->dsi_mode_flags = 0;
error:
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
static int dsi_display_dfps_calc_front_porch(
u32 old_fps,
u32 new_fps,
u32 a_total,
u32 b_total,
u32 b_fp,
u32 *b_fp_out)
{
s32 b_fp_new;
int add_porches, diff;
if (!b_fp_out) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (!a_total || !new_fps) {
DSI_ERR("Invalid pixel total or new fps in mode request\n");
return -EINVAL;
}
/*
* Keep clock, other porches constant, use new fps, calc front porch
* new_vtotal = old_vtotal * (old_fps / new_fps )
* new_vfp - old_vfp = new_vtotal - old_vtotal
* new_vfp = old_vfp + old_vtotal * ((old_fps - new_fps)/ new_fps)
*/
diff = abs(old_fps - new_fps);
add_porches = mult_frac(b_total, diff, new_fps);
if (old_fps > new_fps)
b_fp_new = b_fp + add_porches;
else
b_fp_new = b_fp - add_porches;
DSI_DEBUG("fps %u a %u b %u b_fp %u new_fp %d\n",
new_fps, a_total, b_total, b_fp, b_fp_new);
if (b_fp_new < 0) {
DSI_ERR("Invalid new_hfp calcluated%d\n", b_fp_new);
return -EINVAL;
}
/**
* TODO: To differentiate from clock method when communicating to the
* other components, perhaps we should set clk here to original value
*/
*b_fp_out = b_fp_new;
return 0;
}
/**
* dsi_display_get_dfps_timing() - Get the new dfps values.
* @display: DSI display handle.
* @adj_mode: Mode value structure to be changed.
* It contains old timing values and latest fps value.
* New timing values are updated based on new fps.
* @curr_refresh_rate: Current fps rate.
* If zero , current fps rate is taken from
* display->panel->cur_mode.
* Return: error code.
*/
static int dsi_display_get_dfps_timing(struct dsi_display *display,
struct dsi_display_mode *adj_mode,
u32 curr_refresh_rate)
{
struct dsi_dfps_capabilities dfps_caps;
struct dsi_display_mode per_ctrl_mode;
struct dsi_mode_info *timing;
struct dsi_ctrl *m_ctrl;
int rc = 0;
if (!display || !adj_mode) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
m_ctrl = display->ctrl[display->clk_master_idx].ctrl;
dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (!dfps_caps.dfps_support) {
DSI_ERR("dfps not supported by panel\n");
return -EINVAL;
}
per_ctrl_mode = *adj_mode;
adjust_timing_by_ctrl_count(display, &per_ctrl_mode);
if (!curr_refresh_rate) {
if (!dsi_display_is_seamless_dfps_possible(display,
&per_ctrl_mode, dfps_caps.type)) {
DSI_ERR("seamless dynamic fps not supported for mode\n");
return -EINVAL;
}
if (display->panel->cur_mode) {
curr_refresh_rate =
display->panel->cur_mode->timing.refresh_rate;
} else {
DSI_ERR("cur_mode is not initialized\n");
return -EINVAL;
}
}
/* TODO: Remove this direct reference to the dsi_ctrl */
timing = &per_ctrl_mode.timing;
switch (dfps_caps.type) {
case DSI_DFPS_IMMEDIATE_VFP:
rc = dsi_display_dfps_calc_front_porch(
curr_refresh_rate,
timing->refresh_rate,
DSI_H_TOTAL_DSC(timing),
DSI_V_TOTAL(timing),
timing->v_front_porch,
&adj_mode->timing.v_front_porch);
SDE_EVT32(SDE_EVTLOG_FUNC_CASE1, DSI_DFPS_IMMEDIATE_VFP,
curr_refresh_rate, timing->refresh_rate,
timing->v_front_porch, adj_mode->timing.v_front_porch);
break;
case DSI_DFPS_IMMEDIATE_HFP:
rc = dsi_display_dfps_calc_front_porch(
curr_refresh_rate,
timing->refresh_rate,
DSI_V_TOTAL(timing),
DSI_H_TOTAL_DSC(timing),
timing->h_front_porch,
&adj_mode->timing.h_front_porch);
SDE_EVT32(SDE_EVTLOG_FUNC_CASE2, DSI_DFPS_IMMEDIATE_HFP,
curr_refresh_rate, timing->refresh_rate,
timing->h_front_porch, adj_mode->timing.h_front_porch);
if (!rc)
adj_mode->timing.h_front_porch *= display->ctrl_count;
break;
default:
DSI_ERR("Unsupported DFPS mode %d\n", dfps_caps.type);
rc = -ENOTSUPP;
}
return rc;
}
static bool dsi_display_validate_mode_seamless(struct dsi_display *display,
struct dsi_display_mode *adj_mode)
{
int rc = 0;
if (!display || !adj_mode) {
DSI_ERR("Invalid params\n");
return false;
}
/* Currently the only seamless transition is dynamic fps */
rc = dsi_display_get_dfps_timing(display, adj_mode, 0);
if (rc) {
DSI_DEBUG("Dynamic FPS not supported for seamless\n");
} else {
DSI_DEBUG("Mode switch is seamless Dynamic FPS\n");
adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_DFPS |
DSI_MODE_FLAG_VBLANK_PRE_MODESET;
}
return rc;
}
static void dsi_display_validate_dms_fps(struct dsi_display_mode *cur_mode,
struct dsi_display_mode *to_mode)
{
u32 cur_fps, to_fps;
u32 cur_h_active, to_h_active;
u32 cur_v_active, to_v_active;
cur_fps = cur_mode->timing.refresh_rate;
to_fps = to_mode->timing.refresh_rate;
cur_h_active = cur_mode->timing.h_active;
cur_v_active = cur_mode->timing.v_active;
to_h_active = to_mode->timing.h_active;
to_v_active = to_mode->timing.v_active;
if ((cur_h_active == to_h_active) && (cur_v_active == to_v_active) &&
(cur_fps != to_fps)) {
to_mode->dsi_mode_flags |= DSI_MODE_FLAG_DMS_FPS;
DSI_DEBUG("DMS Modeset with FPS change\n");
} else {
to_mode->dsi_mode_flags &= ~DSI_MODE_FLAG_DMS_FPS;
}
}
static int dsi_display_set_mode_sub(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0, clk_rate = 0;
int i;
struct dsi_display_ctrl *ctrl;
struct dsi_display_mode_priv_info *priv_info;
bool commit_phy_timing = false;
priv_info = mode->priv_info;
if (!priv_info) {
DSI_ERR("[%s] failed to get private info of the display mode\n",
display->name);
return -EINVAL;
}
SDE_EVT32(mode->dsi_mode_flags, mode->panel_mode);
if (mode->dsi_mode_flags & DSI_MODE_FLAG_POMS) {
display->config.panel_mode = mode->panel_mode;
display->panel->panel_mode = mode->panel_mode;
}
rc = dsi_panel_get_host_cfg_for_mode(display->panel,
mode,
&display->config);
if (rc) {
DSI_ERR("[%s] failed to get host config for mode, rc=%d\n",
display->name, rc);
goto error;
}
memcpy(&display->config.lane_map, &display->lane_map,
sizeof(display->lane_map));
if (mode->dsi_mode_flags &
(DSI_MODE_FLAG_DFPS | DSI_MODE_FLAG_VRR)) {
rc = dsi_display_dfps_update(display, mode);
if (rc) {
DSI_ERR("[%s]DSI dfps update failed, rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_update_host_config(ctrl->ctrl,
&display->config, mode, mode->dsi_mode_flags,
display->dsi_clk_handle);
if (rc) {
DSI_ERR("failed to update ctrl config\n");
goto error;
}
}
if (priv_info->phy_timing_len) {
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_phy_set_timing_params(ctrl->phy,
priv_info->phy_timing_val,
priv_info->phy_timing_len,
commit_phy_timing);
if (rc)
DSI_ERR("Fail to add timing params\n");
}
}
if (!(mode->dsi_mode_flags & DSI_MODE_FLAG_DYN_CLK))
return rc;
}
if (mode->dsi_mode_flags & DSI_MODE_FLAG_DYN_CLK) {
if (display->panel->panel_mode == DSI_OP_VIDEO_MODE) {
rc = dsi_display_dynamic_clk_switch_vid(display, mode);
if (rc)
DSI_ERR("dynamic clk change failed %d\n", rc);
/*
* skip rest of the opearations since
* dsi_display_dynamic_clk_switch_vid() already takes
* care of them.
*/
return rc;
} else if (display->panel->panel_mode == DSI_OP_CMD_MODE) {
clk_rate = mode->timing.clk_rate_hz;
rc = dsi_display_dynamic_clk_configure_cmd(display,
clk_rate);
if (rc) {
DSI_ERR("Failed to configure dynamic clk\n");
return rc;
}
}
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_update_host_config(ctrl->ctrl, &display->config,
mode, mode->dsi_mode_flags,
display->dsi_clk_handle);
if (rc) {
DSI_ERR("[%s] failed to update ctrl config, rc=%d\n",
display->name, rc);
goto error;
}
}
if ((mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) &&
(display->panel->panel_mode == DSI_OP_CMD_MODE)) {
u64 cur_bitclk = display->panel->cur_mode->timing.clk_rate_hz;
u64 to_bitclk = mode->timing.clk_rate_hz;
commit_phy_timing = true;
/* No need to set clkrate pending flag if clocks are same */
if ((!cur_bitclk && !to_bitclk) || (cur_bitclk != to_bitclk))
atomic_set(&display->clkrate_change_pending, 1);
dsi_display_validate_dms_fps(display->panel->cur_mode, mode);
}
if (priv_info->phy_timing_len) {
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_phy_set_timing_params(ctrl->phy,
priv_info->phy_timing_val,
priv_info->phy_timing_len,
commit_phy_timing);
if (rc)
DSI_ERR("failed to add DSI PHY timing params\n");
}
}
error:
return rc;
}
/**
* _dsi_display_dev_init - initializes the display device
* Initialization will acquire references to the resources required for the
* display hardware to function.
* @display: Handle to the display
* Returns: Zero on success
*/
static int _dsi_display_dev_init(struct dsi_display *display)
{
int rc = 0;
if (!display) {
DSI_ERR("invalid display\n");
return -EINVAL;
}
if (!display->panel_node && !display->fw)
return 0;
mutex_lock(&display->display_lock);
display->parser = dsi_parser_get(&display->pdev->dev);
if (display->fw && display->parser)
display->parser_node = dsi_parser_get_head_node(
display->parser, display->fw->data,
display->fw->size);
rc = dsi_display_parse_dt(display);
if (rc) {
DSI_ERR("[%s] failed to parse dt, rc=%d\n", display->name, rc);
goto error;
}
rc = dsi_display_res_init(display);
if (rc) {
DSI_ERR("[%s] failed to initialize resources, rc=%d\n",
display->name, rc);
goto error;
}
error:
mutex_unlock(&display->display_lock);
return rc;
}
/**
* _dsi_display_dev_deinit - deinitializes the display device
* All the resources acquired during device init will be released.
* @display: Handle to the display
* Returns: Zero on success
*/
static int _dsi_display_dev_deinit(struct dsi_display *display)
{
int rc = 0;
if (!display) {
DSI_ERR("invalid display\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
rc = dsi_display_res_deinit(display);
if (rc)
DSI_ERR("[%s] failed to deinitialize resource, rc=%d\n",
display->name, rc);
mutex_unlock(&display->display_lock);
return rc;
}
/**
* dsi_display_cont_splash_config() - Initialize resources for continuous splash
* @dsi_display: Pointer to dsi display
* Returns: Zero on success
*/
int dsi_display_cont_splash_config(void *dsi_display)
{
struct dsi_display *display = dsi_display;
int rc = 0;
/* Vote for gdsc required to read register address space */
if (!display) {
DSI_ERR("invalid input display param\n");
return -EINVAL;
}
rc = pm_runtime_get_sync(display->drm_dev->dev);
if (rc < 0) {
DSI_ERR("failed to vote gdsc for continuous splash, rc=%d\n",
rc);
return rc;
}
mutex_lock(&display->display_lock);
display->is_cont_splash_enabled = true;
/* Update splash status for clock manager */
dsi_display_clk_mngr_update_splash_status(display->clk_mngr,
display->is_cont_splash_enabled);
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, display->is_cont_splash_enabled);
/* Set up ctrl isr before enabling core clk */
dsi_display_ctrl_isr_configure(display, true);
/* Vote for Core clk and link clk. Votes on ctrl and phy
* regulator are inplicit from pre clk on callback
*/
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI link clocks, rc=%d\n",
display->name, rc);
goto clk_manager_update;
}
/* Vote on panel regulator will be removed during suspend path */
rc = dsi_pwr_enable_regulator(&display->panel->power_info, true);
if (rc) {
DSI_ERR("[%s] failed to enable vregs, rc=%d\n",
display->panel->name, rc);
goto clks_disabled;
}
dsi_config_host_engine_state_for_cont_splash(display);
mutex_unlock(&display->display_lock);
/* Set the current brightness level */
dsi_panel_bl_handoff(display->panel);
return rc;
clks_disabled:
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
clk_manager_update:
dsi_display_ctrl_isr_configure(display, false);
/* Update splash status for clock manager */
dsi_display_clk_mngr_update_splash_status(display->clk_mngr,
false);
pm_runtime_put_sync(display->drm_dev->dev);
display->is_cont_splash_enabled = false;
mutex_unlock(&display->display_lock);
return rc;
}
/**
* dsi_display_splash_res_cleanup() - cleanup for continuous splash
* @display: Pointer to dsi display
* Returns: Zero on success
*/
int dsi_display_splash_res_cleanup(struct dsi_display *display)
{
int rc = 0;
if (!display->is_cont_splash_enabled)
return 0;
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
if (rc)
DSI_ERR("[%s] failed to disable DSI link clocks, rc=%d\n",
display->name, rc);
pm_runtime_put_sync(display->drm_dev->dev);
display->is_cont_splash_enabled = false;
/* Update splash status for clock manager */
dsi_display_clk_mngr_update_splash_status(display->clk_mngr,
display->is_cont_splash_enabled);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, display->is_cont_splash_enabled);
return rc;
}
static int dsi_display_force_update_dsi_clk(struct dsi_display *display)
{
int rc = 0;
rc = dsi_display_link_clk_force_update_ctrl(display->dsi_clk_handle);
if (!rc) {
DSI_INFO("dsi bit clk has been configured to %d\n",
display->cached_clk_rate);
atomic_set(&display->clkrate_change_pending, 0);
} else {
DSI_ERR("Failed to configure dsi bit clock '%d'. rc = %d\n",
display->cached_clk_rate, rc);
}
return rc;
}
static ssize_t sysfs_dsi_lcd_otp_read(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, rc = 0, count = 0, start = 0, *lenp,len = 0;
struct drm_panel_otp_config *config;
struct dsi_cmd_desc *cmds;
u32 flags = 0;
struct dsi_display *display;
struct dsi_display_ctrl *ctrl;
struct dsi_panel *panel;
u8 * temp_p;
pr_info("Start transfer read otp cmd\n");
display = dev_get_drvdata(dev);
if (!display) {
pr_err("Invalid display\n");
return 0;
}
ctrl = &display->ctrl[display->cmd_master_idx];
panel = display->panel;
if (!panel || !ctrl || !ctrl->ctrl)
return 0;
if (!dsi_ctrl_validate_host_state(ctrl->ctrl))
return 0;
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
pr_err("[%s] failed to enable cmd engine, rc=%d\n",
display->name, rc);
return 0;
}
config = &(panel->otp_config);
lenp = config->status_cmds_rlen;
count = config->otp_cmd.count;
cmds = config->otp_cmd.cmds;
flags |= (DSI_CTRL_CMD_FETCH_MEMORY | DSI_CTRL_CMD_READ |
DSI_CTRL_CMD_CUSTOM_DMA_SCHED);
pr_info("read otp cmd count = %d , \n",count); // MODIFIED by hongwei.tian, 2019-06-06,BUG-7808648
for (i = 0; i < count; ++i) {
memset(config->status_buf, 0x0, SZ_1K);
if (cmds[i].last_command) {
cmds[i].msg.flags |= MIPI_DSI_MSG_LASTCOMMAND;
flags |= DSI_CTRL_CMD_LAST_COMMAND;
}
if (config->otp_cmd.state == DSI_CMD_SET_STATE_LP)
cmds[i].msg.flags |= MIPI_DSI_MSG_USE_LPM;
cmds[i].msg.rx_buf = config->status_buf;
cmds[i].msg.rx_len = config->status_cmds_rlen[i];
rc = dsi_ctrl_cmd_transfer(ctrl->ctrl, &cmds[i].msg, &flags);
if (rc <= 0) {
pr_err("rx cmd transfer failed rc=%d\n", rc);
return 0;
}
temp_p = config->status_buf;
for (start = 0; start < lenp[i]; start++)
{
len += snprintf((buf+len), PAGE_SIZE, "%2x ", *temp_p);
temp_p ++;
}
len += snprintf((buf+len), PAGE_SIZE, "\n");
}
dsi_display_cmd_engine_disable(display);
return len;
}
static DEVICE_ATTR(lcd_otp_data, S_IRUGO,
sysfs_dsi_lcd_otp_read,
NULL);
static struct attribute *lcd_otp_data_fs_attrs[] = {
&dev_attr_lcd_otp_data.attr,
NULL,
};
static struct attribute_group lcd_otp_data_fs_attrs_group = {
.attrs = lcd_otp_data_fs_attrs,
};
static ssize_t sysfs_fp4_dsi_lcd_otp_read(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, len = 0;
for (i = 0; i <= 256; i++)
len += snprintf((buf+len), PAGE_SIZE, "%x ", panel_mcf_data[i]);
len += snprintf((buf+len), PAGE_SIZE, "\n");
return len;
}
static DEVICE_ATTR(fp4_lcd_otp_data, S_IRUGO, sysfs_fp4_dsi_lcd_otp_read, NULL);
static struct attribute *fp4_display_fs_attrs[] = {
&dev_attr_fp4_lcd_otp_data.attr,
NULL,
};
static struct attribute_group fp4_display_fs_attrs_group = {
.attrs = fp4_display_fs_attrs,
};
static int dsi_display_validate_split_link(struct dsi_display *display)
{
int i, rc = 0;
struct dsi_display_ctrl *ctrl;
struct dsi_host_common_cfg *host = &display->panel->host_config;
if (!host->split_link.split_link_enabled)
return 0;
if (display->panel->panel_mode == DSI_OP_CMD_MODE) {
DSI_ERR("[%s] split link is not supported in command mode\n",
display->name);
rc = -ENOTSUPP;
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl->split_link_supported) {
DSI_ERR("[%s] split link is not supported by hw\n",
display->name);
rc = -ENOTSUPP;
goto error;
}
set_bit(DSI_PHY_SPLIT_LINK, ctrl->phy->hw.feature_map);
}
DSI_DEBUG("Split link is enabled\n");
return 0;
error:
host->split_link.split_link_enabled = false;
return rc;
}
static int dsi_display_sysfs_init(struct dsi_display *display)
{
int rc = 0;
struct device *dev = &display->pdev->dev;
if (display->panel->otp_config.otp_enabled)
rc = sysfs_create_group(&dev->kobj,
&lcd_otp_data_fs_attrs_group);
rc = sysfs_create_group(&dev->kobj, &fp4_display_fs_attrs_group);
return rc;
}
static int dsi_display_sysfs_deinit(struct dsi_display *display)
{
struct device *dev = &display->pdev->dev;
if (display->panel->otp_config.otp_enabled)
sysfs_remove_group(&dev->kobj,
&lcd_otp_data_fs_attrs_group);
sysfs_remove_group(&dev->kobj, &fp4_display_fs_attrs_group);
return 0;
}
/**
* dsi_display_bind - bind dsi device with controlling device
* @dev: Pointer to base of platform device
* @master: Pointer to container of drm device
* @data: Pointer to private data
* Returns: Zero on success
*/
static int dsi_display_bind(struct device *dev,
struct device *master,
void *data)
{
struct dsi_display_ctrl *display_ctrl;
struct drm_device *drm;
struct dsi_display *display;
struct dsi_clk_info info;
struct clk_ctrl_cb clk_cb;
void *handle = NULL;
struct platform_device *pdev = to_platform_device(dev);
char *client1 = "dsi_clk_client";
char *client2 = "mdp_event_client";
int i, rc = 0;
if (!dev || !pdev || !master) {
DSI_ERR("invalid param(s), dev %pK, pdev %pK, master %pK\n",
dev, pdev, master);
return -EINVAL;
}
drm = dev_get_drvdata(master);
display = platform_get_drvdata(pdev);
if (!drm || !display) {
DSI_ERR("invalid param(s), drm %pK, display %pK\n",
drm, display);
return -EINVAL;
}
if (!display->panel_node && !display->fw)
return 0;
if (!display->fw)
display->name = display->panel_node->name;
/* defer bind if ext bridge driver is not loaded */
if (display->panel && display->panel->host_config.ext_bridge_mode) {
for (i = 0; i < display->ext_bridge_cnt; i++) {
if (!of_drm_find_bridge(
display->ext_bridge[i].node_of)) {
DSI_DEBUG("defer for bridge[%d] %s\n", i,
display->ext_bridge[i].node_of->full_name);
return -EPROBE_DEFER;
}
}
}
mutex_lock(&display->display_lock);
rc = dsi_display_validate_split_link(display);
if (rc) {
DSI_ERR("[%s] split link validation failed, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_display_debugfs_init(display);
if (rc) {
DSI_ERR("[%s] debugfs init failed, rc=%d\n", display->name, rc);
goto error;
}
atomic_set(&display->clkrate_change_pending, 0);
display->cached_clk_rate = 0;
rc = dsi_display_sysfs_init(display);
if (rc) {
pr_err("[%s] sysfs init failed, rc=%d\n", display->name, rc);
goto error;
}
memset(&info, 0x0, sizeof(info));
display_for_each_ctrl(i, display) {
display_ctrl = &display->ctrl[i];
rc = dsi_ctrl_drv_init(display_ctrl->ctrl, display->root);
if (rc) {
DSI_ERR("[%s] failed to initialize ctrl[%d], rc=%d\n",
display->name, i, rc);
goto error_ctrl_deinit;
}
display_ctrl->ctrl->horiz_index = i;
rc = dsi_phy_drv_init(display_ctrl->phy);
if (rc) {
DSI_ERR("[%s] Failed to initialize phy[%d], rc=%d\n",
display->name, i, rc);
(void)dsi_ctrl_drv_deinit(display_ctrl->ctrl);
goto error_ctrl_deinit;
}
display_ctrl->ctrl->dma_cmd_workq = display->dma_cmd_workq;
memcpy(&info.c_clks[i],
(&display_ctrl->ctrl->clk_info.core_clks),
sizeof(struct dsi_core_clk_info));
memcpy(&info.l_hs_clks[i],
(&display_ctrl->ctrl->clk_info.hs_link_clks),
sizeof(struct dsi_link_hs_clk_info));
memcpy(&info.l_lp_clks[i],
(&display_ctrl->ctrl->clk_info.lp_link_clks),
sizeof(struct dsi_link_lp_clk_info));
info.c_clks[i].drm = drm;
info.bus_handle[i] =
display_ctrl->ctrl->axi_bus_info.bus_handle;
info.ctrl_index[i] = display_ctrl->ctrl->cell_index;
}
info.pre_clkoff_cb = dsi_pre_clkoff_cb;
info.pre_clkon_cb = dsi_pre_clkon_cb;
info.post_clkoff_cb = dsi_post_clkoff_cb;
info.post_clkon_cb = dsi_post_clkon_cb;
info.priv_data = display;
info.master_ndx = display->clk_master_idx;
info.dsi_ctrl_count = display->ctrl_count;
snprintf(info.name, MAX_STRING_LEN,
"DSI_MNGR-%s", display->name);
display->clk_mngr = dsi_display_clk_mngr_register(&info);
if (IS_ERR_OR_NULL(display->clk_mngr)) {
rc = PTR_ERR(display->clk_mngr);
display->clk_mngr = NULL;
DSI_ERR("dsi clock registration failed, rc = %d\n", rc);
goto error_ctrl_deinit;
}
handle = dsi_register_clk_handle(display->clk_mngr, client1);
if (IS_ERR_OR_NULL(handle)) {
rc = PTR_ERR(handle);
DSI_ERR("failed to register %s client, rc = %d\n",
client1, rc);
goto error_clk_deinit;
} else {
display->dsi_clk_handle = handle;
}
handle = dsi_register_clk_handle(display->clk_mngr, client2);
if (IS_ERR_OR_NULL(handle)) {
rc = PTR_ERR(handle);
DSI_ERR("failed to register %s client, rc = %d\n",
client2, rc);
goto error_clk_client_deinit;
} else {
display->mdp_clk_handle = handle;
}
clk_cb.priv = display;
clk_cb.dsi_clk_cb = dsi_display_clk_ctrl_cb;
display_for_each_ctrl(i, display) {
display_ctrl = &display->ctrl[i];
rc = dsi_ctrl_clk_cb_register(display_ctrl->ctrl, &clk_cb);
if (rc) {
DSI_ERR("[%s] failed to register ctrl clk_cb[%d], rc=%d\n",
display->name, i, rc);
goto error_ctrl_deinit;
}
rc = dsi_phy_clk_cb_register(display_ctrl->phy, &clk_cb);
if (rc) {
DSI_ERR("[%s] failed to register phy clk_cb[%d], rc=%d\n",
display->name, i, rc);
goto error_ctrl_deinit;
}
}
dsi_display_update_byte_intf_div(display);
rc = dsi_display_mipi_host_init(display);
if (rc) {
DSI_ERR("[%s] failed to initialize mipi host, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
rc = dsi_panel_drv_init(display->panel, &display->host);
if (rc) {
if (rc != -EPROBE_DEFER)
DSI_ERR("[%s] failed to initialize panel driver, rc=%d\n",
display->name, rc);
goto error_host_deinit;
}
DSI_INFO("Successfully bind display panel '%s'\n", display->name);
display->drm_dev = drm;
display_for_each_ctrl(i, display) {
display_ctrl = &display->ctrl[i];
if (!display_ctrl->phy || !display_ctrl->ctrl)
continue;
display_ctrl->ctrl->drm_dev = drm;
rc = dsi_phy_set_clk_freq(display_ctrl->phy,
&display_ctrl->ctrl->clk_freq);
if (rc) {
DSI_ERR("[%s] failed to set phy clk freq, rc=%d\n",
display->name, rc);
goto error;
}
}
/* register te irq handler */
dsi_display_register_te_irq(display);
goto error;
error_host_deinit:
(void)dsi_display_mipi_host_deinit(display);
error_clk_client_deinit:
(void)dsi_deregister_clk_handle(display->dsi_clk_handle);
error_clk_deinit:
(void)dsi_display_clk_mngr_deregister(display->clk_mngr);
error_ctrl_deinit:
for (i = i - 1; i >= 0; i--) {
display_ctrl = &display->ctrl[i];
(void)dsi_phy_drv_deinit(display_ctrl->phy);
(void)dsi_ctrl_drv_deinit(display_ctrl->ctrl);
}
(void)dsi_display_sysfs_deinit(display);
(void)dsi_display_debugfs_deinit(display);
error:
mutex_unlock(&display->display_lock);
return rc;
}
/**
* dsi_display_unbind - unbind dsi from controlling device
* @dev: Pointer to base of platform device
* @master: Pointer to container of drm device
* @data: Pointer to private data
*/
static void dsi_display_unbind(struct device *dev,
struct device *master, void *data)
{
struct dsi_display_ctrl *display_ctrl;
struct dsi_display *display;
struct platform_device *pdev = to_platform_device(dev);
int i, rc = 0;
if (!dev || !pdev) {
DSI_ERR("invalid param(s)\n");
return;
}
display = platform_get_drvdata(pdev);
if (!display) {
DSI_ERR("invalid display\n");
return;
}
mutex_lock(&display->display_lock);
rc = dsi_panel_drv_deinit(display->panel);
if (rc)
DSI_ERR("[%s] failed to deinit panel driver, rc=%d\n",
display->name, rc);
rc = dsi_display_mipi_host_deinit(display);
if (rc)
DSI_ERR("[%s] failed to deinit mipi hosts, rc=%d\n",
display->name,
rc);
display_for_each_ctrl(i, display) {
display_ctrl = &display->ctrl[i];
rc = dsi_phy_drv_deinit(display_ctrl->phy);
if (rc)
DSI_ERR("[%s] failed to deinit phy%d driver, rc=%d\n",
display->name, i, rc);
display->ctrl->ctrl->dma_cmd_workq = NULL;
rc = dsi_ctrl_drv_deinit(display_ctrl->ctrl);
if (rc)
DSI_ERR("[%s] failed to deinit ctrl%d driver, rc=%d\n",
display->name, i, rc);
}
atomic_set(&display->clkrate_change_pending, 0);
(void)dsi_display_sysfs_deinit(display);
(void)dsi_display_debugfs_deinit(display);
mutex_unlock(&display->display_lock);
}
static const struct component_ops dsi_display_comp_ops = {
.bind = dsi_display_bind,
.unbind = dsi_display_unbind,
};
static struct platform_driver dsi_display_driver = {
.probe = dsi_display_dev_probe,
.remove = dsi_display_dev_remove,
.driver = {
.name = "msm-dsi-display",
.of_match_table = dsi_display_dt_match,
.suppress_bind_attrs = true,
},
};
static int dsi_display_init(struct dsi_display *display)
{
int rc = 0;
struct platform_device *pdev = display->pdev;
mutex_init(&display->display_lock);
rc = _dsi_display_dev_init(display);
if (rc) {
DSI_ERR("device init failed, rc=%d\n", rc);
goto end;
}
rc = component_add(&pdev->dev, &dsi_display_comp_ops);
if (rc)
DSI_ERR("component add failed, rc=%d\n", rc);
DSI_DEBUG("component add success: %s\n", display->name);
end:
return rc;
}
static void dsi_display_firmware_display(const struct firmware *fw,
void *context)
{
struct dsi_display *display = context;
if (fw) {
DSI_INFO("reading data from firmware, size=%zd\n",
fw->size);
display->fw = fw;
if (!strcmp(display->display_type, "primary"))
display->name = "dsi_firmware_display";
else if (!strcmp(display->display_type, "secondary"))
display->name = "dsi_firmware_display_secondary";
} else {
DSI_INFO("no firmware available, fallback to device node\n");
}
if (dsi_display_init(display))
return;
DSI_DEBUG("success\n");
}
int dsi_display_dev_probe(struct platform_device *pdev)
{
struct dsi_display *display = NULL;
struct device_node *node = NULL, *panel_node = NULL, *mdp_node = NULL;
int rc = 0, index = DSI_PRIMARY;
bool firm_req = false;
struct dsi_display_boot_param *boot_disp;
if (!pdev || !pdev->dev.of_node) {
DSI_ERR("pdev not found\n");
rc = -ENODEV;
goto end;
}
display = devm_kzalloc(&pdev->dev, sizeof(*display), GFP_KERNEL);
if (!display) {
rc = -ENOMEM;
goto end;
}
display->dma_cmd_workq = create_singlethread_workqueue(
"dsi_dma_cmd_workq");
if (!display->dma_cmd_workq) {
DSI_ERR("failed to create work queue\n");
rc = -EINVAL;
goto end;
}
display->display_type = of_get_property(pdev->dev.of_node,
"label", NULL);
if (!display->display_type)
display->display_type = "primary";
if (!strcmp(display->display_type, "secondary"))
index = DSI_SECONDARY;
boot_disp = &boot_displays[index];
node = pdev->dev.of_node;
if (boot_disp->boot_disp_en) {
mdp_node = of_parse_phandle(node, "qcom,mdp", 0);
if (!mdp_node) {
DSI_ERR("mdp_node not found\n");
rc = -ENODEV;
goto end;
}
/* The panel name should be same as UEFI name index */
panel_node = of_find_node_by_name(mdp_node, boot_disp->name);
if (!panel_node)
DSI_WARN("panel_node %s not found\n", boot_disp->name);
} else {
panel_node = of_parse_phandle(node,
"qcom,dsi-default-panel", 0);
if (!panel_node)
DSI_WARN("default panel not found\n");
}
boot_disp->node = pdev->dev.of_node;
boot_disp->disp = display;
display->panel_node = panel_node;
display->pdev = pdev;
display->boot_disp = boot_disp;
dsi_display_parse_cmdline_topology(display, index);
platform_set_drvdata(pdev, display);
/* initialize display in firmware callback */
if (!boot_disp->boot_disp_en && IS_ENABLED(CONFIG_DSI_PARSER)) {
if (!strcmp(display->display_type, "primary"))
firm_req = !request_firmware_nowait(
THIS_MODULE, 1, "dsi_prop",
&pdev->dev, GFP_KERNEL, display,
dsi_display_firmware_display);
else if (!strcmp(display->display_type, "secondary"))
firm_req = !request_firmware_nowait(
THIS_MODULE, 1, "dsi_prop_sec",
&pdev->dev, GFP_KERNEL, display,
dsi_display_firmware_display);
}
if (!firm_req) {
rc = dsi_display_init(display);
if (rc)
goto end;
}
return 0;
end:
if (display)
devm_kfree(&pdev->dev, display);
return rc;
}
int dsi_display_dev_remove(struct platform_device *pdev)
{
int rc = 0i, i = 0;
struct dsi_display *display;
struct dsi_display_ctrl *ctrl;
if (!pdev) {
DSI_ERR("Invalid device\n");
return -EINVAL;
}
display = platform_get_drvdata(pdev);
#if defined(CONFIG_PXLW_IRIS)
iris_deinit();
#endif
/* decrement ref count */
of_node_put(display->panel_node);
if (display->dma_cmd_workq) {
flush_workqueue(display->dma_cmd_workq);
destroy_workqueue(display->dma_cmd_workq);
display->dma_cmd_workq = NULL;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
ctrl->ctrl->dma_cmd_workq = NULL;
}
}
(void)_dsi_display_dev_deinit(display);
platform_set_drvdata(pdev, NULL);
devm_kfree(&pdev->dev, display);
return rc;
}
int dsi_display_get_num_of_displays(void)
{
int i, count = 0;
for (i = 0; i < MAX_DSI_ACTIVE_DISPLAY; i++) {
struct dsi_display *display = boot_displays[i].disp;
if ((display && display->panel_node) ||
(display && display->fw))
count++;
}
return count;
}
int dsi_display_get_active_displays(void **display_array, u32 max_display_count)
{
int index = 0, count = 0;
if (!display_array || !max_display_count) {
DSI_ERR("invalid params\n");
return 0;
}
for (index = 0; index < MAX_DSI_ACTIVE_DISPLAY; index++) {
struct dsi_display *display = boot_displays[index].disp;
if ((display && display->panel_node) ||
(display && display->fw))
display_array[count++] = display;
}
return count;
}
int dsi_display_drm_bridge_init(struct dsi_display *display,
struct drm_encoder *enc)
{
int rc = 0;
struct dsi_bridge *bridge;
struct msm_drm_private *priv = NULL;
if (!display || !display->drm_dev || !enc) {
DSI_ERR("invalid param(s)\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
priv = display->drm_dev->dev_private;
if (!priv) {
DSI_ERR("Private data is not present\n");
rc = -EINVAL;
goto error;
}
if (display->bridge) {
DSI_ERR("display is already initialize\n");
goto error;
}
bridge = dsi_drm_bridge_init(display, display->drm_dev, enc);
if (IS_ERR_OR_NULL(bridge)) {
rc = PTR_ERR(bridge);
DSI_ERR("[%s] brige init failed, %d\n", display->name, rc);
goto error;
}
display->bridge = bridge;
priv->bridges[priv->num_bridges++] = &bridge->base;
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_drm_bridge_deinit(struct dsi_display *display)
{
int rc = 0;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
dsi_drm_bridge_cleanup(display->bridge);
display->bridge = NULL;
mutex_unlock(&display->display_lock);
return rc;
}
/* Hook functions to call external connector, pointer validation is
* done in dsi_display_drm_ext_bridge_init.
*/
static enum drm_connector_status dsi_display_drm_ext_detect(
struct drm_connector *connector,
bool force,
void *disp)
{
struct dsi_display *display = disp;
return display->ext_conn->funcs->detect(display->ext_conn, force);
}
static int dsi_display_drm_ext_get_modes(
struct drm_connector *connector, void *disp,
const struct msm_resource_caps_info *avail_res)
{
struct dsi_display *display = disp;
struct drm_display_mode *pmode, *pt;
int count;
/* if there are modes defined in panel, ignore external modes */
if (display->panel->num_timing_nodes)
return dsi_connector_get_modes(connector, disp, avail_res);
count = display->ext_conn->helper_private->get_modes(
display->ext_conn);
list_for_each_entry_safe(pmode, pt,
&display->ext_conn->probed_modes, head) {
list_move_tail(&pmode->head, &connector->probed_modes);
}
connector->display_info = display->ext_conn->display_info;
return count;
}
static enum drm_mode_status dsi_display_drm_ext_mode_valid(
struct drm_connector *connector,
struct drm_display_mode *mode,
void *disp, const struct msm_resource_caps_info *avail_res)
{
struct dsi_display *display = disp;
enum drm_mode_status status;
/* always do internal mode_valid check */
status = dsi_conn_mode_valid(connector, mode, disp, avail_res);
if (status != MODE_OK)
return status;
return display->ext_conn->helper_private->mode_valid(
display->ext_conn, mode);
}
static int dsi_display_drm_ext_atomic_check(struct drm_connector *connector,
void *disp,
struct drm_connector_state *c_state)
{
struct dsi_display *display = disp;
return display->ext_conn->helper_private->atomic_check(
display->ext_conn, c_state);
}
static int dsi_display_ext_get_info(struct drm_connector *connector,
struct msm_display_info *info, void *disp)
{
struct dsi_display *display;
int i;
if (!info || !disp) {
DSI_ERR("invalid params\n");
return -EINVAL;
}
display = disp;
if (!display->panel) {
DSI_ERR("invalid display panel\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
memset(info, 0, sizeof(struct msm_display_info));
info->intf_type = DRM_MODE_CONNECTOR_DSI;
info->num_of_h_tiles = display->ctrl_count;
for (i = 0; i < info->num_of_h_tiles; i++)
info->h_tile_instance[i] = display->ctrl[i].ctrl->cell_index;
info->is_connected = connector->status != connector_status_disconnected;
if (!strcmp(display->display_type, "primary"))
info->display_type = SDE_CONNECTOR_PRIMARY;
else if (!strcmp(display->display_type, "secondary"))
info->display_type = SDE_CONNECTOR_SECONDARY;
info->capabilities |= (MSM_DISPLAY_CAP_VID_MODE |
MSM_DISPLAY_CAP_EDID | MSM_DISPLAY_CAP_HOT_PLUG);
info->curr_panel_mode = MSM_DISPLAY_VIDEO_MODE;
mutex_unlock(&display->display_lock);
return 0;
}
static int dsi_display_ext_get_mode_info(struct drm_connector *connector,
const struct drm_display_mode *drm_mode,
struct msm_mode_info *mode_info,
void *display, const struct msm_resource_caps_info *avail_res)
{
struct msm_display_topology *topology;
if (!drm_mode || !mode_info ||
!avail_res || !avail_res->max_mixer_width)
return -EINVAL;
memset(mode_info, 0, sizeof(*mode_info));
mode_info->frame_rate = drm_mode->vrefresh;
mode_info->vtotal = drm_mode->vtotal;
topology = &mode_info->topology;
topology->num_lm = (avail_res->max_mixer_width
<= drm_mode->hdisplay) ? 2 : 1;
topology->num_enc = 0;
topology->num_intf = topology->num_lm;
mode_info->comp_info.comp_type = MSM_DISPLAY_COMPRESSION_NONE;
return 0;
}
static struct dsi_display_ext_bridge *dsi_display_ext_get_bridge(
struct drm_bridge *bridge)
{
struct msm_drm_private *priv;
struct sde_kms *sde_kms;
struct list_head *connector_list;
struct drm_connector *conn_iter;
struct sde_connector *sde_conn;
struct dsi_display *display;
int i;
if (!bridge || !bridge->encoder) {
SDE_ERROR("invalid argument\n");
return NULL;
}
priv = bridge->dev->dev_private;
sde_kms = to_sde_kms(priv->kms);
connector_list = &sde_kms->dev->mode_config.connector_list;
list_for_each_entry(conn_iter, connector_list, head) {
sde_conn = to_sde_connector(conn_iter);
if (sde_conn->encoder == bridge->encoder) {
display = sde_conn->display;
display_for_each_ctrl(i, display) {
if (display->ext_bridge[i].bridge == bridge)
return &display->ext_bridge[i];
}
}
}
return NULL;
}
static void dsi_display_drm_ext_adjust_timing(
const struct dsi_display *display,
struct drm_display_mode *mode)
{
mode->hdisplay /= display->ctrl_count;
mode->hsync_start /= display->ctrl_count;
mode->hsync_end /= display->ctrl_count;
mode->htotal /= display->ctrl_count;
mode->hskew /= display->ctrl_count;
mode->clock /= display->ctrl_count;
}
static enum drm_mode_status dsi_display_drm_ext_bridge_mode_valid(
struct drm_bridge *bridge,
const struct drm_display_mode *mode)
{
struct dsi_display_ext_bridge *ext_bridge;
struct drm_display_mode tmp;
ext_bridge = dsi_display_ext_get_bridge(bridge);
if (!ext_bridge)
return MODE_ERROR;
tmp = *mode;
dsi_display_drm_ext_adjust_timing(ext_bridge->display, &tmp);
return ext_bridge->orig_funcs->mode_valid(bridge, &tmp);
}
static bool dsi_display_drm_ext_bridge_mode_fixup(
struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct dsi_display_ext_bridge *ext_bridge;
struct drm_display_mode tmp;
ext_bridge = dsi_display_ext_get_bridge(bridge);
if (!ext_bridge)
return false;
tmp = *mode;
dsi_display_drm_ext_adjust_timing(ext_bridge->display, &tmp);
return ext_bridge->orig_funcs->mode_fixup(bridge, &tmp, &tmp);
}
static void dsi_display_drm_ext_bridge_mode_set(
struct drm_bridge *bridge,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct dsi_display_ext_bridge *ext_bridge;
struct drm_display_mode tmp;
ext_bridge = dsi_display_ext_get_bridge(bridge);
if (!ext_bridge)
return;
tmp = *mode;
dsi_display_drm_ext_adjust_timing(ext_bridge->display, &tmp);
ext_bridge->orig_funcs->mode_set(bridge, &tmp, &tmp);
}
static int dsi_host_ext_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
struct dsi_display *display = to_dsi_display(host);
struct dsi_panel *panel;
if (!host || !dsi || !display->panel) {
DSI_ERR("Invalid param\n");
return -EINVAL;
}
DSI_DEBUG("DSI[%s]: channel=%d, lanes=%d, format=%d, mode_flags=%lx\n",
dsi->name, dsi->channel, dsi->lanes,
dsi->format, dsi->mode_flags);
panel = display->panel;
panel->host_config.data_lanes = 0;
if (dsi->lanes > 0)
panel->host_config.data_lanes |= DSI_DATA_LANE_0;
if (dsi->lanes > 1)
panel->host_config.data_lanes |= DSI_DATA_LANE_1;
if (dsi->lanes > 2)
panel->host_config.data_lanes |= DSI_DATA_LANE_2;
if (dsi->lanes > 3)
panel->host_config.data_lanes |= DSI_DATA_LANE_3;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB888;
break;
case MIPI_DSI_FMT_RGB666:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB666_LOOSE;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB666;
break;
case MIPI_DSI_FMT_RGB565:
default:
panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB565;
break;
}
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
panel->panel_mode = DSI_OP_VIDEO_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
panel->video_config.traffic_mode =
DSI_VIDEO_TRAFFIC_BURST_MODE;
else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
panel->video_config.traffic_mode =
DSI_VIDEO_TRAFFIC_SYNC_PULSES;
else
panel->video_config.traffic_mode =
DSI_VIDEO_TRAFFIC_SYNC_START_EVENTS;
panel->video_config.hsa_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA;
panel->video_config.hbp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP;
panel->video_config.hfp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP;
panel->video_config.pulse_mode_hsa_he =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE;
panel->video_config.bllp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BLLP;
panel->video_config.eof_bllp_lp11_en =
dsi->mode_flags & MIPI_DSI_MODE_VIDEO_EOF_BLLP;
} else {
panel->panel_mode = DSI_OP_CMD_MODE;
DSI_ERR("command mode not supported by ext bridge\n");
return -ENOTSUPP;
}
panel->bl_config.type = DSI_BACKLIGHT_UNKNOWN;
return 0;
}
static struct mipi_dsi_host_ops dsi_host_ext_ops = {
.attach = dsi_host_ext_attach,
.detach = dsi_host_detach,
.transfer = dsi_host_transfer,
};
struct drm_panel *dsi_display_get_drm_panel(struct dsi_display * display)
{
if (!display || !display->panel) {
pr_err("invalid param(s)\n");
return NULL;
}
return &display->panel->drm_panel;
}
int dsi_display_drm_ext_bridge_init(struct dsi_display *display,
struct drm_encoder *encoder, struct drm_connector *connector)
{
struct drm_device *drm;
struct drm_bridge *bridge;
struct drm_bridge *ext_bridge;
struct drm_connector *ext_conn;
struct sde_connector *sde_conn;
struct drm_bridge *prev_bridge;
int rc = 0, i;
if (!display || !encoder || !connector)
return -EINVAL;
drm = encoder->dev;
bridge = encoder->bridge;
sde_conn = to_sde_connector(connector);
prev_bridge = bridge;
if (display->panel && !display->panel->host_config.ext_bridge_mode)
return 0;
for (i = 0; i < display->ext_bridge_cnt; i++) {
struct dsi_display_ext_bridge *ext_bridge_info =
&display->ext_bridge[i];
/* return if ext bridge is already initialized */
if (ext_bridge_info->bridge)
return 0;
ext_bridge = of_drm_find_bridge(ext_bridge_info->node_of);
if (IS_ERR_OR_NULL(ext_bridge)) {
rc = PTR_ERR(ext_bridge);
DSI_ERR("failed to find ext bridge\n");
goto error;
}
/* override functions for mode adjustment */
if (display->ext_bridge_cnt > 1) {
ext_bridge_info->bridge_funcs = *ext_bridge->funcs;
if (ext_bridge->funcs->mode_fixup)
ext_bridge_info->bridge_funcs.mode_fixup =
dsi_display_drm_ext_bridge_mode_fixup;
if (ext_bridge->funcs->mode_valid)
ext_bridge_info->bridge_funcs.mode_valid =
dsi_display_drm_ext_bridge_mode_valid;
if (ext_bridge->funcs->mode_set)
ext_bridge_info->bridge_funcs.mode_set =
dsi_display_drm_ext_bridge_mode_set;
ext_bridge_info->orig_funcs = ext_bridge->funcs;
ext_bridge->funcs = &ext_bridge_info->bridge_funcs;
}
rc = drm_bridge_attach(encoder, ext_bridge, prev_bridge);
if (rc) {
DSI_ERR("[%s] ext brige attach failed, %d\n",
display->name, rc);
goto error;
}
ext_bridge_info->display = display;
ext_bridge_info->bridge = ext_bridge;
prev_bridge = ext_bridge;
/* ext bridge will init its own connector during attach,
* we need to extract it out of the connector list
*/
spin_lock_irq(&drm->mode_config.connector_list_lock);
ext_conn = list_last_entry(&drm->mode_config.connector_list,
struct drm_connector, head);
if (ext_conn && ext_conn != connector &&
ext_conn->encoder_ids[0] == bridge->encoder->base.id) {
list_del_init(&ext_conn->head);
display->ext_conn = ext_conn;
}
spin_unlock_irq(&drm->mode_config.connector_list_lock);
/* if there is no valid external connector created, or in split
* mode, default setting is used from panel defined in DT file.
*/
if (!display->ext_conn ||
!display->ext_conn->funcs ||
!display->ext_conn->helper_private ||
display->ext_bridge_cnt > 1) {
display->ext_conn = NULL;
continue;
}
/* otherwise, hook up the functions to use external connector */
if (display->ext_conn->funcs->detect)
sde_conn->ops.detect = dsi_display_drm_ext_detect;
if (display->ext_conn->helper_private->get_modes)
sde_conn->ops.get_modes =
dsi_display_drm_ext_get_modes;
if (display->ext_conn->helper_private->mode_valid)
sde_conn->ops.mode_valid =
dsi_display_drm_ext_mode_valid;
if (display->ext_conn->helper_private->atomic_check)
sde_conn->ops.atomic_check =
dsi_display_drm_ext_atomic_check;
sde_conn->ops.get_info =
dsi_display_ext_get_info;
sde_conn->ops.get_mode_info =
dsi_display_ext_get_mode_info;
/* add support to attach/detach */
display->host.ops = &dsi_host_ext_ops;
}
return 0;
error:
return rc;
}
int dsi_display_get_info(struct drm_connector *connector,
struct msm_display_info *info, void *disp)
{
struct dsi_display *display;
struct dsi_panel_phy_props phy_props;
struct dsi_host_common_cfg *host;
int i, rc;
if (!info || !disp) {
DSI_ERR("invalid params\n");
return -EINVAL;
}
display = disp;
if (!display->panel) {
DSI_ERR("invalid display panel\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
rc = dsi_panel_get_phy_props(display->panel, &phy_props);
if (rc) {
DSI_ERR("[%s] failed to get panel phy props, rc=%d\n",
display->name, rc);
goto error;
}
memset(info, 0, sizeof(struct msm_display_info));
info->intf_type = DRM_MODE_CONNECTOR_DSI;
info->num_of_h_tiles = display->ctrl_count;
for (i = 0; i < info->num_of_h_tiles; i++)
info->h_tile_instance[i] = display->ctrl[i].ctrl->cell_index;
info->is_connected = true;
if (!strcmp(display->display_type, "primary"))
info->display_type = SDE_CONNECTOR_PRIMARY;
else if (!strcmp(display->display_type, "secondary"))
info->display_type = SDE_CONNECTOR_SECONDARY;
info->width_mm = phy_props.panel_width_mm;
info->height_mm = phy_props.panel_height_mm;
info->max_width = 1920;
info->max_height = 1080;
info->qsync_min_fps =
display->panel->qsync_caps.qsync_min_fps;
info->has_qsync_min_fps_list =
(display->panel->qsync_caps.qsync_min_fps_list_len > 0) ?
true : false;
switch (display->panel->panel_mode) {
case DSI_OP_VIDEO_MODE:
info->curr_panel_mode = MSM_DISPLAY_VIDEO_MODE;
info->capabilities |= MSM_DISPLAY_CAP_VID_MODE;
if (display->panel->panel_mode_switch_enabled)
info->capabilities |= MSM_DISPLAY_CAP_CMD_MODE;
break;
case DSI_OP_CMD_MODE:
info->curr_panel_mode = MSM_DISPLAY_CMD_MODE;
info->capabilities |= MSM_DISPLAY_CAP_CMD_MODE;
if (display->panel->panel_mode_switch_enabled)
info->capabilities |= MSM_DISPLAY_CAP_VID_MODE;
info->is_te_using_watchdog_timer =
display->panel->te_using_watchdog_timer |
display->sw_te_using_wd;
break;
default:
DSI_ERR("unknwown dsi panel mode %d\n",
display->panel->panel_mode);
break;
}
if (display->panel->esd_config.esd_enabled)
info->capabilities |= MSM_DISPLAY_ESD_ENABLED;
info->te_source = display->te_source;
host = &display->panel->host_config;
if (host->split_link.split_link_enabled)
info->capabilities |= MSM_DISPLAY_SPLIT_LINK;
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_get_mode_count(struct dsi_display *display,
u32 *count)
{
if (!display || !display->panel) {
DSI_ERR("invalid display:%d panel:%d\n", display != NULL,
display ? display->panel != NULL : 0);
return -EINVAL;
}
mutex_lock(&display->display_lock);
*count = display->panel->num_display_modes;
mutex_unlock(&display->display_lock);
return 0;
}
void dsi_display_adjust_mode_timing(struct dsi_display *display,
struct dsi_display_mode *dsi_mode,
int lanes, int bpp)
{
u64 new_htotal, new_vtotal, htotal, vtotal, old_htotal, div;
struct dsi_dyn_clk_caps *dyn_clk_caps;
u32 bits_per_symbol = 16, num_of_symbols = 7; /* For Cphy */
dyn_clk_caps = &(display->panel->dyn_clk_caps);
/* Constant FPS is not supported on command mode */
if (dsi_mode->panel_mode == DSI_OP_CMD_MODE)
return;
if (!dyn_clk_caps->maintain_const_fps)
return;
/*
* When there is a dynamic clock switch, there is small change
* in FPS. To compensate for this difference in FPS, hfp or vfp
* is adjusted. It has been assumed that the refined porch values
* are supported by the panel. This logic can be enhanced further
* in future by taking min/max porches supported by the panel.
*/
switch (dyn_clk_caps->type) {
case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_HFP:
vtotal = DSI_V_TOTAL(&dsi_mode->timing);
old_htotal = DSI_H_TOTAL_DSC(&dsi_mode->timing);
do_div(old_htotal, display->ctrl_count);
new_htotal = dsi_mode->timing.clk_rate_hz * lanes;
div = bpp * vtotal * dsi_mode->timing.refresh_rate;
if (dsi_display_is_type_cphy(display)) {
new_htotal = new_htotal * bits_per_symbol;
div = div * num_of_symbols;
}
do_div(new_htotal, div);
if (old_htotal > new_htotal)
dsi_mode->timing.h_front_porch -=
((old_htotal - new_htotal) * display->ctrl_count);
else
dsi_mode->timing.h_front_porch +=
((new_htotal - old_htotal) * display->ctrl_count);
break;
case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_VFP:
htotal = DSI_H_TOTAL_DSC(&dsi_mode->timing);
do_div(htotal, display->ctrl_count);
new_vtotal = dsi_mode->timing.clk_rate_hz * lanes;
div = bpp * htotal * dsi_mode->timing.refresh_rate;
if (dsi_display_is_type_cphy(display)) {
new_vtotal = new_vtotal * bits_per_symbol;
div = div * num_of_symbols;
}
do_div(new_vtotal, div);
dsi_mode->timing.v_front_porch = new_vtotal -
dsi_mode->timing.v_back_porch -
dsi_mode->timing.v_sync_width -
dsi_mode->timing.v_active;
break;
default:
break;
}
}
static void _dsi_display_populate_bit_clks(struct dsi_display *display,
int start, int end, u32 *mode_idx)
{
struct dsi_dyn_clk_caps *dyn_clk_caps;
struct dsi_display_mode *src, *dst;
struct dsi_host_common_cfg *cfg;
int i, j, total_modes, bpp, lanes = 0;
if (!display || !mode_idx)
return;
dyn_clk_caps = &(display->panel->dyn_clk_caps);
if (!dyn_clk_caps->dyn_clk_support)
return;
cfg = &(display->panel->host_config);
bpp = dsi_pixel_format_to_bpp(cfg->dst_format);
if (cfg->data_lanes & DSI_DATA_LANE_0)
lanes++;
if (cfg->data_lanes & DSI_DATA_LANE_1)
lanes++;
if (cfg->data_lanes & DSI_DATA_LANE_2)
lanes++;
if (cfg->data_lanes & DSI_DATA_LANE_3)
lanes++;
total_modes = display->panel->num_display_modes;
for (i = start; i < end; i++) {
src = &display->modes[i];
if (!src)
return;
/*
* TODO: currently setting the first bit rate in
* the list as preferred rate. But ideally should
* be based on user or device tree preferrence.
*/
src->timing.clk_rate_hz = dyn_clk_caps->bit_clk_list[0];
dsi_display_adjust_mode_timing(display, src, lanes, bpp);
src->pixel_clk_khz =
div_u64(src->timing.clk_rate_hz * lanes, bpp);
src->pixel_clk_khz /= 1000;
src->pixel_clk_khz *= display->ctrl_count;
}
for (i = 1; i < dyn_clk_caps->bit_clk_list_len; i++) {
if (*mode_idx >= total_modes)
return;
for (j = start; j < end; j++) {
src = &display->modes[j];
dst = &display->modes[*mode_idx];
if (!src || !dst) {
DSI_ERR("invalid mode index\n");
return;
}
memcpy(dst, src, sizeof(struct dsi_display_mode));
dst->timing.clk_rate_hz = dyn_clk_caps->bit_clk_list[i];
dsi_display_adjust_mode_timing(display, dst, lanes,
bpp);
dst->pixel_clk_khz =
div_u64(dst->timing.clk_rate_hz * lanes, bpp);
dst->pixel_clk_khz /= 1000;
dst->pixel_clk_khz *= display->ctrl_count;
(*mode_idx)++;
}
}
}
void dsi_display_put_mode(struct dsi_display *display,
struct dsi_display_mode *mode)
{
dsi_panel_put_mode(mode);
}
int dsi_display_get_modes(struct dsi_display *display,
struct dsi_display_mode **out_modes)
{
struct dsi_dfps_capabilities dfps_caps;
struct dsi_display_ctrl *ctrl;
struct dsi_host_common_cfg *host = &display->panel->host_config;
bool is_split_link, is_cmd_mode;
u32 num_dfps_rates, timing_mode_count, display_mode_count;
u32 sublinks_count, mode_idx, array_idx = 0;
struct dsi_dyn_clk_caps *dyn_clk_caps;
int i, start, end, rc = -EINVAL;
if (!display || !out_modes) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
*out_modes = NULL;
ctrl = &display->ctrl[0];
mutex_lock(&display->display_lock);
if (display->modes)
goto exit;
display_mode_count = display->panel->num_display_modes;
display->modes = kcalloc(display_mode_count, sizeof(*display->modes),
GFP_KERNEL);
if (!display->modes) {
rc = -ENOMEM;
goto error;
}
rc = dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (rc) {
DSI_ERR("[%s] failed to get dfps caps from panel\n",
display->name);
goto error;
}
dyn_clk_caps = &(display->panel->dyn_clk_caps);
timing_mode_count = display->panel->num_timing_nodes;
/* Validate command line timing */
if ((display->cmdline_timing != NO_OVERRIDE) &&
(display->cmdline_timing >= timing_mode_count))
display->cmdline_timing = NO_OVERRIDE;
for (mode_idx = 0; mode_idx < timing_mode_count; mode_idx++) {
struct dsi_display_mode display_mode;
int topology_override = NO_OVERRIDE;
bool is_preferred = false;
u32 frame_threshold_us = ctrl->ctrl->frame_threshold_time_us;
if (display->cmdline_timing == mode_idx) {
topology_override = display->cmdline_topology;
is_preferred = true;
}
memset(&display_mode, 0, sizeof(display_mode));
rc = dsi_panel_get_mode(display->panel, mode_idx,
&display_mode,
topology_override);
if (rc) {
DSI_ERR("[%s] failed to get mode idx %d from panel\n",
display->name, mode_idx);
goto error;
}
is_cmd_mode = (display_mode.panel_mode == DSI_OP_CMD_MODE);
num_dfps_rates = ((!dfps_caps.dfps_support ||
is_cmd_mode) ? 1 : dfps_caps.dfps_list_len);
/* Calculate dsi frame transfer time */
if (is_cmd_mode) {
dsi_panel_calc_dsi_transfer_time(
&display->panel->host_config,
&display_mode, frame_threshold_us);
display_mode.priv_info->dsi_transfer_time_us =
display_mode.timing.dsi_transfer_time_us;
display_mode.priv_info->min_dsi_clk_hz =
display_mode.timing.min_dsi_clk_hz;
display_mode.priv_info->mdp_transfer_time_us =
display_mode.timing.mdp_transfer_time_us;
}
is_split_link = host->split_link.split_link_enabled;
sublinks_count = host->split_link.num_sublinks;
if (is_split_link && sublinks_count > 1) {
display_mode.timing.h_active *= sublinks_count;
display_mode.timing.h_front_porch *= sublinks_count;
display_mode.timing.h_sync_width *= sublinks_count;
display_mode.timing.h_back_porch *= sublinks_count;
display_mode.timing.h_skew *= sublinks_count;
display_mode.pixel_clk_khz *= sublinks_count;
} else {
display_mode.timing.h_active *= display->ctrl_count;
display_mode.timing.h_front_porch *=
display->ctrl_count;
display_mode.timing.h_sync_width *=
display->ctrl_count;
display_mode.timing.h_back_porch *=
display->ctrl_count;
display_mode.timing.h_skew *= display->ctrl_count;
display_mode.pixel_clk_khz *= display->ctrl_count;
}
start = array_idx;
for (i = 0; i < num_dfps_rates; i++) {
struct dsi_display_mode *sub_mode =
&display->modes[array_idx];
u32 curr_refresh_rate;
if (!sub_mode) {
DSI_ERR("invalid mode data\n");
rc = -EFAULT;
goto error;
}
memcpy(sub_mode, &display_mode, sizeof(display_mode));
array_idx++;
if (!dfps_caps.dfps_support || is_cmd_mode)
continue;
curr_refresh_rate = sub_mode->timing.refresh_rate;
sub_mode->timing.refresh_rate = dfps_caps.dfps_list[i];
dsi_display_get_dfps_timing(display, sub_mode,
curr_refresh_rate);
}
end = array_idx;
/*
* if POMS is enabled and boot up mode is video mode,
* skip bit clk rates update for command mode,
* else if dynamic clk switch is supported then update all
* the bit clk rates.
*/
if (is_cmd_mode &&
(display->panel->panel_mode == DSI_OP_VIDEO_MODE))
continue;
_dsi_display_populate_bit_clks(display, start, end, &array_idx);
if (is_preferred) {
/* Set first timing sub mode as preferred mode */
display->modes[start].is_preferred = true;
}
}
exit:
*out_modes = display->modes;
rc = 0;
error:
if (rc)
kfree(display->modes);
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_get_panel_vfp(void *dsi_display,
int h_active, int v_active)
{
int i, rc = 0;
u32 count, refresh_rate = 0;
struct dsi_dfps_capabilities dfps_caps;
struct dsi_display *display = (struct dsi_display *)dsi_display;
struct dsi_host_common_cfg *host;
if (!display || !display->panel)
return -EINVAL;
mutex_lock(&display->display_lock);
count = display->panel->num_display_modes;
if (display->panel->cur_mode)
refresh_rate = display->panel->cur_mode->timing.refresh_rate;
dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (dfps_caps.dfps_support)
refresh_rate = dfps_caps.max_refresh_rate;
if (!refresh_rate) {
mutex_unlock(&display->display_lock);
DSI_ERR("Null Refresh Rate\n");
return -EINVAL;
}
host = &display->panel->host_config;
if (host->split_link.split_link_enabled)
h_active *= host->split_link.num_sublinks;
else
h_active *= display->ctrl_count;
for (i = 0; i < count; i++) {
struct dsi_display_mode *m = &display->modes[i];
if (m && v_active == m->timing.v_active &&
h_active == m->timing.h_active &&
refresh_rate == m->timing.refresh_rate) {
rc = m->timing.v_front_porch;
break;
}
}
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_get_default_lms(void *dsi_display, u32 *num_lm)
{
struct dsi_display *display = (struct dsi_display *)dsi_display;
u32 count, i;
int rc = 0;
*num_lm = 0;
mutex_lock(&display->display_lock);
count = display->panel->num_display_modes;
mutex_unlock(&display->display_lock);
if (!display->modes) {
struct dsi_display_mode *m;
rc = dsi_display_get_modes(display, &m);
if (rc)
return rc;
}
mutex_lock(&display->display_lock);
for (i = 0; i < count; i++) {
struct dsi_display_mode *m = &display->modes[i];
*num_lm = max(m->priv_info->topology.num_lm, *num_lm);
}
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_get_qsync_min_fps(void *display_dsi, u32 mode_fps)
{
struct dsi_display *display = (struct dsi_display *)display_dsi;
struct dsi_panel *panel;
u32 i;
if (display == NULL || display->panel == NULL)
return -EINVAL;
panel = display->panel;
for (i = 0; i < panel->dfps_caps.dfps_list_len; i++) {
if (panel->dfps_caps.dfps_list[i] == mode_fps)
return panel->qsync_caps.qsync_min_fps_list[i];
}
SDE_EVT32(mode_fps);
DSI_DEBUG("Invalid mode_fps %d\n", mode_fps);
return -EINVAL;
}
int dsi_display_find_mode(struct dsi_display *display,
const struct dsi_display_mode *cmp,
struct dsi_display_mode **out_mode)
{
u32 count, i;
int rc;
if (!display || !out_mode)
return -EINVAL;
*out_mode = NULL;
mutex_lock(&display->display_lock);
count = display->panel->num_display_modes;
mutex_unlock(&display->display_lock);
if (!display->modes) {
struct dsi_display_mode *m;
rc = dsi_display_get_modes(display, &m);
if (rc)
return rc;
}
mutex_lock(&display->display_lock);
for (i = 0; i < count; i++) {
struct dsi_display_mode *m = &display->modes[i];
if (cmp->timing.v_active == m->timing.v_active &&
cmp->timing.h_active == m->timing.h_active &&
cmp->timing.refresh_rate == m->timing.refresh_rate &&
cmp->panel_mode == m->panel_mode &&
cmp->pixel_clk_khz == m->pixel_clk_khz) {
*out_mode = m;
rc = 0;
break;
}
}
mutex_unlock(&display->display_lock);
if (!*out_mode) {
DSI_ERR("[%s] failed to find mode for v_active %u h_active %u fps %u pclk %u\n",
display->name, cmp->timing.v_active,
cmp->timing.h_active, cmp->timing.refresh_rate,
cmp->pixel_clk_khz);
rc = -ENOENT;
}
return rc;
}
static inline bool dsi_display_mode_switch_dfps(struct dsi_display_mode *cur,
struct dsi_display_mode *adj)
{
/*
* If there is a change in the hfp or vfp of the current and adjoining
* mode,then either it is a dfps mode switch or dynamic clk change with
* constant fps.
*/
if ((cur->timing.h_front_porch != adj->timing.h_front_porch) ||
(cur->timing.v_front_porch != adj->timing.v_front_porch))
return true;
else
return false;
}
/**
* dsi_display_validate_mode_change() - Validate mode change case.
* @display: DSI display handle.
* @cur_mode: Current mode.
* @adj_mode: Mode to be set.
* MSM_MODE_FLAG_SEAMLESS_VRR flag is set if there
* is change in hfp or vfp but vactive and hactive are same.
* DSI_MODE_FLAG_DYN_CLK flag is set if there
* is change in clk but vactive and hactive are same.
* Return: error code.
*/
int dsi_display_validate_mode_change(struct dsi_display *display,
struct dsi_display_mode *cur_mode,
struct dsi_display_mode *adj_mode)
{
int rc = 0;
struct dsi_dfps_capabilities dfps_caps;
struct dsi_dyn_clk_caps *dyn_clk_caps;
if (!display || !adj_mode) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (!display->panel || !display->panel->cur_mode) {
DSI_DEBUG("Current panel mode not set\n");
return rc;
}
mutex_lock(&display->display_lock);
dyn_clk_caps = &(display->panel->dyn_clk_caps);
if ((cur_mode->timing.v_active == adj_mode->timing.v_active) &&
(cur_mode->timing.h_active == adj_mode->timing.h_active) &&
(cur_mode->panel_mode == adj_mode->panel_mode)) {
/* dfps and dynamic clock with const fps use case */
if (dsi_display_mode_switch_dfps(cur_mode, adj_mode)) {
dsi_panel_get_dfps_caps(display->panel, &dfps_caps);
if (dfps_caps.dfps_support ||
dyn_clk_caps->maintain_const_fps) {
DSI_DEBUG("Mode switch is seamless variable refresh\n");
adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_VRR;
SDE_EVT32(SDE_EVTLOG_FUNC_CASE1,
cur_mode->timing.refresh_rate,
adj_mode->timing.refresh_rate,
cur_mode->timing.h_front_porch,
adj_mode->timing.h_front_porch,
cur_mode->timing.v_front_porch,
adj_mode->timing.v_front_porch);
}
}
/* dynamic clk change use case */
if (cur_mode->pixel_clk_khz != adj_mode->pixel_clk_khz) {
if (dyn_clk_caps->dyn_clk_support) {
DSI_DEBUG("dynamic clk change detected\n");
if ((adj_mode->dsi_mode_flags &
DSI_MODE_FLAG_VRR) &&
(!dyn_clk_caps->maintain_const_fps)) {
DSI_ERR("dfps and dyn clk not supported in same commit\n");
rc = -ENOTSUPP;
goto error;
}
adj_mode->dsi_mode_flags |=
DSI_MODE_FLAG_DYN_CLK;
SDE_EVT32(SDE_EVTLOG_FUNC_CASE2,
cur_mode->pixel_clk_khz,
adj_mode->pixel_clk_khz);
}
}
}
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_validate_mode(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
struct dsi_display_mode adj_mode;
if (!display || !mode) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
adj_mode = *mode;
adjust_timing_by_ctrl_count(display, &adj_mode);
rc = dsi_panel_validate_mode(display->panel, &adj_mode);
if (rc) {
DSI_ERR("[%s] panel mode validation failed, rc=%d\n",
display->name, rc);
goto error;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_validate_timing(ctrl->ctrl, &adj_mode.timing);
if (rc) {
DSI_ERR("[%s] ctrl mode validation failed, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_phy_validate_mode(ctrl->phy, &adj_mode.timing);
if (rc) {
DSI_ERR("[%s] phy mode validation failed, rc=%d\n",
display->name, rc);
goto error;
}
}
if ((flags & DSI_VALIDATE_FLAG_ALLOW_ADJUST) &&
(mode->dsi_mode_flags & DSI_MODE_FLAG_SEAMLESS)) {
rc = dsi_display_validate_mode_seamless(display, mode);
if (rc) {
DSI_ERR("[%s] seamless not possible rc=%d\n",
display->name, rc);
goto error;
}
}
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_set_mode(struct dsi_display *display,
struct dsi_display_mode *mode,
u32 flags)
{
int rc = 0;
struct dsi_display_mode adj_mode;
struct dsi_mode_info timing;
if (!display || !mode || !display->panel) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
adj_mode = *mode;
timing = adj_mode.timing;
adjust_timing_by_ctrl_count(display, &adj_mode);
if (!display->panel->cur_mode) {
display->panel->cur_mode =
kzalloc(sizeof(struct dsi_display_mode), GFP_KERNEL);
if (!display->panel->cur_mode) {
rc = -ENOMEM;
goto error;
}
}
/*For dynamic DSI setting, use specified clock rate */
if (display->cached_clk_rate > 0)
adj_mode.priv_info->clk_rate_hz = display->cached_clk_rate;
rc = dsi_display_validate_mode_set(display, &adj_mode, flags);
if (rc) {
DSI_ERR("[%s] mode cannot be set\n", display->name);
goto error;
}
rc = dsi_display_set_mode_sub(display, &adj_mode, flags);
if (rc) {
DSI_ERR("[%s] failed to set mode\n", display->name);
goto error;
}
DSI_INFO("mdp_transfer_time_us=%d us\n",
adj_mode.priv_info->mdp_transfer_time_us);
DSI_INFO("hactive= %d,vactive= %d,fps=%d\n",
timing.h_active, timing.v_active,
timing.refresh_rate);
memcpy(display->panel->cur_mode, &adj_mode, sizeof(adj_mode));
error:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_set_tpg_state(struct dsi_display *display, bool enable)
{
int rc = 0;
int i;
struct dsi_display_ctrl *ctrl;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_set_tpg_state(ctrl->ctrl, enable);
if (rc) {
DSI_ERR("[%s] failed to set tpg state for host_%d\n",
display->name, i);
goto error;
}
}
display->is_tpg_enabled = enable;
error:
return rc;
}
static int dsi_display_pre_switch(struct dsi_display *display)
{
int rc = 0;
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto error;
}
rc = dsi_display_ctrl_update(display);
if (rc) {
DSI_ERR("[%s] failed to update DSI controller, rc=%d\n",
display->name, rc);
goto error_ctrl_clk_off;
}
rc = dsi_display_set_clk_src(display);
if (rc) {
DSI_ERR("[%s] failed to set DSI link clock source, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI link clocks, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
goto error;
error_ctrl_deinit:
(void)dsi_display_ctrl_deinit(display);
error_ctrl_clk_off:
(void)dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
error:
return rc;
}
static bool _dsi_display_validate_host_state(struct dsi_display *display)
{
int i;
struct dsi_display_ctrl *ctrl;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl)
continue;
if (!dsi_ctrl_validate_host_state(ctrl->ctrl))
return false;
}
return true;
}
static void dsi_display_handle_fifo_underflow(struct work_struct *work)
{
struct dsi_display *display = NULL;
display = container_of(work, struct dsi_display, fifo_underflow_work);
if (!display || !display->panel ||
atomic_read(&display->panel->esd_recovery_pending)) {
DSI_DEBUG("Invalid recovery use case\n");
return;
}
mutex_lock(&display->display_lock);
if (!_dsi_display_validate_host_state(display)) {
mutex_unlock(&display->display_lock);
return;
}
DSI_DEBUG("handle DSI FIFO underflow error\n");
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
dsi_display_soft_reset(display);
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
mutex_unlock(&display->display_lock);
}
static void dsi_display_handle_fifo_overflow(struct work_struct *work)
{
struct dsi_display *display = NULL;
struct dsi_display_ctrl *ctrl;
int i, rc;
int mask = BIT(20); /* clock lane */
int (*cb_func)(void *event_usr_ptr,
uint32_t event_idx, uint32_t instance_idx,
uint32_t data0, uint32_t data1,
uint32_t data2, uint32_t data3);
void *data;
u32 version = 0;
display = container_of(work, struct dsi_display, fifo_overflow_work);
if (!display || !display->panel ||
(display->panel->panel_mode != DSI_OP_VIDEO_MODE) ||
atomic_read(&display->panel->esd_recovery_pending)) {
DSI_DEBUG("Invalid recovery use case\n");
return;
}
mutex_lock(&display->display_lock);
if (!_dsi_display_validate_host_state(display)) {
mutex_unlock(&display->display_lock);
return;
}
DSI_DEBUG("handle DSI FIFO overflow error\n");
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
/*
* below recovery sequence is not applicable to
* hw version 2.0.0, 2.1.0 and 2.2.0, so return early.
*/
ctrl = &display->ctrl[display->clk_master_idx];
version = dsi_ctrl_get_hw_version(ctrl->ctrl);
if (!version || (version < 0x20020001))
goto end;
/* reset ctrl and lanes */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_reset(ctrl->ctrl, mask);
rc = dsi_phy_lane_reset(ctrl->phy);
}
/* wait for display line count to be in active area */
ctrl = &display->ctrl[display->clk_master_idx];
if (ctrl->ctrl->recovery_cb.event_cb) {
cb_func = ctrl->ctrl->recovery_cb.event_cb;
data = ctrl->ctrl->recovery_cb.event_usr_ptr;
rc = cb_func(data, SDE_CONN_EVENT_VID_FIFO_OVERFLOW,
display->clk_master_idx, 0, 0, 0, 0);
if (rc < 0) {
DSI_DEBUG("sde callback failed\n");
goto end;
}
}
/* Enable Video mode for DSI controller */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
dsi_ctrl_vid_engine_en(ctrl->ctrl, true);
}
/*
* Add sufficient delay to make sure
* pixel transmission has started
*/
udelay(200);
end:
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
mutex_unlock(&display->display_lock);
}
static void dsi_display_handle_lp_rx_timeout(struct work_struct *work)
{
struct dsi_display *display = NULL;
struct dsi_display_ctrl *ctrl;
int i, rc;
int mask = (BIT(20) | (0xF << 16)); /* clock lane and 4 data lane */
int (*cb_func)(void *event_usr_ptr,
uint32_t event_idx, uint32_t instance_idx,
uint32_t data0, uint32_t data1,
uint32_t data2, uint32_t data3);
void *data;
u32 version = 0;
display = container_of(work, struct dsi_display, lp_rx_timeout_work);
if (!display || !display->panel ||
(display->panel->panel_mode != DSI_OP_VIDEO_MODE) ||
atomic_read(&display->panel->esd_recovery_pending)) {
DSI_DEBUG("Invalid recovery use case\n");
return;
}
mutex_lock(&display->display_lock);
if (!_dsi_display_validate_host_state(display)) {
mutex_unlock(&display->display_lock);
return;
}
DSI_DEBUG("handle DSI LP RX Timeout error\n");
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
/*
* below recovery sequence is not applicable to
* hw version 2.0.0, 2.1.0 and 2.2.0, so return early.
*/
ctrl = &display->ctrl[display->clk_master_idx];
version = dsi_ctrl_get_hw_version(ctrl->ctrl);
if (!version || (version < 0x20020001))
goto end;
/* reset ctrl and lanes */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
rc = dsi_ctrl_reset(ctrl->ctrl, mask);
rc = dsi_phy_lane_reset(ctrl->phy);
}
ctrl = &display->ctrl[display->clk_master_idx];
if (ctrl->ctrl->recovery_cb.event_cb) {
cb_func = ctrl->ctrl->recovery_cb.event_cb;
data = ctrl->ctrl->recovery_cb.event_usr_ptr;
rc = cb_func(data, SDE_CONN_EVENT_VID_FIFO_OVERFLOW,
display->clk_master_idx, 0, 0, 0, 0);
if (rc < 0) {
DSI_DEBUG("Target is in suspend/shutdown\n");
goto end;
}
}
/* Enable Video mode for DSI controller */
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
dsi_ctrl_vid_engine_en(ctrl->ctrl, true);
}
/*
* Add sufficient delay to make sure
* pixel transmission as started
*/
udelay(200);
end:
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
mutex_unlock(&display->display_lock);
}
static int dsi_display_cb_error_handler(void *data,
uint32_t event_idx, uint32_t instance_idx,
uint32_t data0, uint32_t data1,
uint32_t data2, uint32_t data3)
{
struct dsi_display *display = data;
if (!display || !(display->err_workq))
return -EINVAL;
switch (event_idx) {
case DSI_FIFO_UNDERFLOW:
queue_work(display->err_workq, &display->fifo_underflow_work);
break;
case DSI_FIFO_OVERFLOW:
queue_work(display->err_workq, &display->fifo_overflow_work);
break;
case DSI_LP_Rx_TIMEOUT:
queue_work(display->err_workq, &display->lp_rx_timeout_work);
break;
default:
DSI_WARN("unhandled error interrupt: %d\n", event_idx);
break;
}
return 0;
}
static void dsi_display_register_error_handler(struct dsi_display *display)
{
int i = 0;
struct dsi_display_ctrl *ctrl;
struct dsi_event_cb_info event_info;
if (!display)
return;
display->err_workq = create_singlethread_workqueue("dsi_err_workq");
if (!display->err_workq) {
DSI_ERR("failed to create dsi workq!\n");
return;
}
INIT_WORK(&display->fifo_underflow_work,
dsi_display_handle_fifo_underflow);
INIT_WORK(&display->fifo_overflow_work,
dsi_display_handle_fifo_overflow);
INIT_WORK(&display->lp_rx_timeout_work,
dsi_display_handle_lp_rx_timeout);
memset(&event_info, 0, sizeof(event_info));
event_info.event_cb = dsi_display_cb_error_handler;
event_info.event_usr_ptr = display;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
ctrl->ctrl->irq_info.irq_err_cb = event_info;
}
}
static void dsi_display_unregister_error_handler(struct dsi_display *display)
{
int i = 0;
struct dsi_display_ctrl *ctrl;
if (!display)
return;
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
memset(&ctrl->ctrl->irq_info.irq_err_cb,
0, sizeof(struct dsi_event_cb_info));
}
if (display->err_workq) {
destroy_workqueue(display->err_workq);
display->err_workq = NULL;
}
}
int dsi_display_prepare(struct dsi_display *display)
{
int rc = 0;
struct dsi_display_mode *mode;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (!display->panel->cur_mode) {
DSI_ERR("no valid mode set for the display\n");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
mutex_lock(&display->display_lock);
mode = display->panel->cur_mode;
dsi_display_set_ctrl_esd_check_flag(display, false);
/* Set up ctrl isr before enabling core clk */
dsi_display_ctrl_isr_configure(display, true);
if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) {
if (display->is_cont_splash_enabled &&
display->config.panel_mode == DSI_OP_VIDEO_MODE) {
DSI_ERR("DMS not supported on first frame\n");
rc = -EINVAL;
goto error;
}
if (!display->is_cont_splash_enabled) {
/* update dsi ctrl for new mode */
rc = dsi_display_pre_switch(display);
if (rc)
DSI_ERR("[%s] panel pre-switch failed, rc=%d\n",
display->name, rc);
goto error;
}
}
if (!(mode->dsi_mode_flags & DSI_MODE_FLAG_POMS) &&
(!display->is_cont_splash_enabled)) {
/*
* For continuous splash usecase we skip panel
* pre prepare since the regulator vote is already
* taken care in splash resource init
*/
rc = dsi_panel_pre_prepare(display->panel);
if (rc) {
DSI_ERR("[%s] panel pre-prepare failed, rc=%d\n",
display->name, rc);
goto error;
}
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n",
display->name, rc);
goto error_panel_post_unprep;
}
/*
* If ULPS during suspend feature is enabled, then DSI PHY was
* left on during suspend. In this case, we do not need to reset/init
* PHY. This would have already been done when the CORE clocks are
* turned on. However, if cont splash is disabled, the first time DSI
* is powered on, phy init needs to be done unconditionally.
*/
if (!display->panel->ulps_suspend_enabled || !display->ulps_enabled) {
rc = dsi_display_phy_sw_reset(display);
if (rc) {
DSI_ERR("[%s] failed to reset phy, rc=%d\n",
display->name, rc);
goto error_ctrl_clk_off;
}
rc = dsi_display_phy_enable(display);
if (rc) {
DSI_ERR("[%s] failed to enable DSI PHY, rc=%d\n",
display->name, rc);
goto error_ctrl_clk_off;
}
}
rc = dsi_display_set_clk_src(display);
if (rc) {
DSI_ERR("[%s] failed to set DSI link clock source, rc=%d\n",
display->name, rc);
goto error_phy_disable;
}
rc = dsi_display_ctrl_init(display);
if (rc) {
DSI_ERR("[%s] failed to setup DSI controller, rc=%d\n",
display->name, rc);
goto error_phy_disable;
}
/* Set up DSI ERROR event callback */
dsi_display_register_error_handler(display);
rc = dsi_display_ctrl_host_enable(display);
if (rc) {
DSI_ERR("[%s] failed to enable DSI host, rc=%d\n",
display->name, rc);
goto error_ctrl_deinit;
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s] failed to enable DSI link clocks, rc=%d\n",
display->name, rc);
goto error_host_engine_off;
}
if (!display->is_cont_splash_enabled) {
/*
* For continuous splash usecase, skip panel prepare and
* ctl reset since the pnael and ctrl is already in active
* state and panel on commands are not needed
*/
rc = dsi_display_soft_reset(display);
if (rc) {
DSI_ERR("[%s] failed soft reset, rc=%d\n",
display->name, rc);
goto error_ctrl_link_off;
}
if (!(mode->dsi_mode_flags & DSI_MODE_FLAG_POMS)) {
rc = dsi_panel_prepare(display->panel);
if (rc) {
DSI_ERR("[%s] panel prepare failed, rc=%d\n",
display->name, rc);
goto error_ctrl_link_off;
}
}
}
goto error;
error_ctrl_link_off:
(void)dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_OFF);
error_host_engine_off:
(void)dsi_display_ctrl_host_disable(display);
error_ctrl_deinit:
(void)dsi_display_ctrl_deinit(display);
error_phy_disable:
(void)dsi_display_phy_disable(display);
error_ctrl_clk_off:
(void)dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
error_panel_post_unprep:
(void)dsi_panel_post_unprepare(display->panel);
error:
mutex_unlock(&display->display_lock);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
#if defined(CONFIG_PXLW_IRIS)
iris_prepare();
#endif
return rc;
}
static int dsi_display_calc_ctrl_roi(const struct dsi_display *display,
const struct dsi_display_ctrl *ctrl,
const struct msm_roi_list *req_rois,
struct dsi_rect *out_roi)
{
const struct dsi_rect *bounds = &ctrl->ctrl->mode_bounds;
struct dsi_display_mode *cur_mode;
struct msm_roi_caps *roi_caps;
struct dsi_rect req_roi = { 0 };
int rc = 0;
cur_mode = display->panel->cur_mode;
if (!cur_mode)
return 0;
roi_caps = &cur_mode->priv_info->roi_caps;
if (req_rois->num_rects > roi_caps->num_roi) {
DSI_ERR("request for %d rois greater than max %d\n",
req_rois->num_rects,
roi_caps->num_roi);
rc = -EINVAL;
goto exit;
}
/**
* if no rois, user wants to reset back to full resolution
* note: h_active is already divided by ctrl_count
*/
if (!req_rois->num_rects) {
*out_roi = *bounds;
goto exit;
}
/* intersect with the bounds */
req_roi.x = req_rois->roi[0].x1;
req_roi.y = req_rois->roi[0].y1;
req_roi.w = req_rois->roi[0].x2 - req_rois->roi[0].x1;
req_roi.h = req_rois->roi[0].y2 - req_rois->roi[0].y1;
dsi_rect_intersect(&req_roi, bounds, out_roi);
exit:
/* adjust the ctrl origin to be top left within the ctrl */
out_roi->x = out_roi->x - bounds->x;
DSI_DEBUG("ctrl%d:%d: req (%d,%d,%d,%d) bnd (%d,%d,%d,%d) out (%d,%d,%d,%d)\n",
ctrl->dsi_ctrl_idx, ctrl->ctrl->cell_index,
req_roi.x, req_roi.y, req_roi.w, req_roi.h,
bounds->x, bounds->y, bounds->w, bounds->h,
out_roi->x, out_roi->y, out_roi->w, out_roi->h);
return rc;
}
static int dsi_display_qsync(struct dsi_display *display, bool enable)
{
int i;
int rc = 0;
if (!display->panel->qsync_caps.qsync_min_fps) {
DSI_ERR("%s:ERROR: qsync set, but no fps\n", __func__);
return 0;
}
mutex_lock(&display->display_lock);
display_for_each_ctrl(i, display) {
if (enable) {
/* send the commands to enable qsync */
rc = dsi_panel_send_qsync_on_dcs(display->panel, i);
if (rc) {
DSI_ERR("fail qsync ON cmds rc:%d\n", rc);
goto exit;
}
} else {
/* send the commands to enable qsync */
rc = dsi_panel_send_qsync_off_dcs(display->panel, i);
if (rc) {
DSI_ERR("fail qsync OFF cmds rc:%d\n", rc);
goto exit;
}
}
dsi_ctrl_setup_avr(display->ctrl[i].ctrl, enable);
}
exit:
SDE_EVT32(enable, display->panel->qsync_caps.qsync_min_fps, rc);
mutex_unlock(&display->display_lock);
return rc;
}
static int dsi_display_set_roi(struct dsi_display *display,
struct msm_roi_list *rois)
{
struct dsi_display_mode *cur_mode;
struct msm_roi_caps *roi_caps;
int rc = 0;
int i;
if (!display || !rois || !display->panel)
return -EINVAL;
cur_mode = display->panel->cur_mode;
if (!cur_mode)
return 0;
roi_caps = &cur_mode->priv_info->roi_caps;
if (!roi_caps->enabled)
return 0;
display_for_each_ctrl(i, display) {
struct dsi_display_ctrl *ctrl = &display->ctrl[i];
struct dsi_rect ctrl_roi;
bool changed = false;
rc = dsi_display_calc_ctrl_roi(display, ctrl, rois, &ctrl_roi);
if (rc) {
DSI_ERR("dsi_display_calc_ctrl_roi failed rc %d\n", rc);
return rc;
}
rc = dsi_ctrl_set_roi(ctrl->ctrl, &ctrl_roi, &changed);
if (rc) {
DSI_ERR("dsi_ctrl_set_roi failed rc %d\n", rc);
return rc;
}
if (!changed)
continue;
/* send the new roi to the panel via dcs commands */
rc = dsi_panel_send_roi_dcs(display->panel, i, &ctrl_roi);
if (rc) {
DSI_ERR("dsi_panel_set_roi failed rc %d\n", rc);
return rc;
}
/* re-program the ctrl with the timing based on the new roi */
rc = dsi_ctrl_timing_setup(ctrl->ctrl);
if (rc) {
DSI_ERR("dsi_ctrl_setup failed rc %d\n", rc);
return rc;
}
}
return rc;
}
int dsi_display_pre_kickoff(struct drm_connector *connector,
struct dsi_display *display,
struct msm_display_kickoff_params *params)
{
int rc = 0;
int i;
/* check and setup MISR */
if (display->misr_enable)
_dsi_display_setup_misr(display);
rc = dsi_display_set_roi(display, params->rois);
/* dynamic DSI clock setting */
if (atomic_read(&display->clkrate_change_pending)) {
mutex_lock(&display->display_lock);
/*
* acquire panel_lock to make sure no commands are in progress
*/
dsi_panel_acquire_panel_lock(display->panel);
/*
* Wait for DSI command engine not to be busy sending data
* from display engine.
* If waiting fails, return "rc" instead of below "ret" so as
* not to impact DRM commit. The clock updating would be
* deferred to the next DRM commit.
*/
display_for_each_ctrl(i, display) {
struct dsi_ctrl *ctrl = display->ctrl[i].ctrl;
int ret = 0;
ret = dsi_ctrl_wait_for_cmd_mode_mdp_idle(ctrl);
if (ret)
goto wait_failure;
}
/*
* Don't check the return value so as not to impact DRM commit
* when error occurs.
*/
(void)dsi_display_force_update_dsi_clk(display);
wait_failure:
/* release panel_lock */
dsi_panel_release_panel_lock(display->panel);
mutex_unlock(&display->display_lock);
}
return rc;
}
int dsi_display_config_ctrl_for_cont_splash(struct dsi_display *display)
{
int rc = 0;
if (!display || !display->panel) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (!display->panel->cur_mode) {
DSI_ERR("no valid mode set for the display\n");
return -EINVAL;
}
if (!display->is_cont_splash_enabled)
return 0;
if (display->config.panel_mode == DSI_OP_VIDEO_MODE) {
rc = dsi_display_vid_engine_enable(display);
if (rc) {
DSI_ERR("[%s]failed to enable DSI video engine, rc=%d\n",
display->name, rc);
goto error_out;
}
} else if (display->config.panel_mode == DSI_OP_CMD_MODE) {
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
DSI_ERR("[%s]failed to enable DSI cmd engine, rc=%d\n",
display->name, rc);
goto error_out;
}
} else {
DSI_ERR("[%s] Invalid configuration\n", display->name);
rc = -EINVAL;
}
error_out:
return rc;
}
int dsi_display_pre_commit(void *display,
struct msm_display_conn_params *params)
{
bool enable = false;
int rc = 0;
if (!display || !params) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (params->qsync_update) {
enable = (params->qsync_mode > 0) ? true : false;
rc = dsi_display_qsync(display, enable);
if (rc)
pr_err("%s failed to send qsync commands\n",
__func__);
SDE_EVT32(params->qsync_mode, rc);
}
return rc;
}
int dsi_display_enable(struct dsi_display *display)
{
int rc = 0;
struct dsi_display_mode *mode;
if (!display || !display->panel) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
if (!display->panel->cur_mode) {
DSI_ERR("no valid mode set for the display\n");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
/* Engine states and panel states are populated during splash
* resource init and hence we return early
*/
if (display->is_cont_splash_enabled) {
dsi_display_config_ctrl_for_cont_splash(display);
rc = dsi_display_splash_res_cleanup(display);
if (rc) {
DSI_ERR("Continuous splash res cleanup failed, rc=%d\n",
rc);
return -EINVAL;
}
display->panel->panel_initialized = true;
#if defined(CONFIG_PXLW_IRIS)
iris_send_cont_splash(IRIS_CONT_SPLASH_VIDEO_BYPASS);
#endif
DSI_DEBUG("cont splash enabled, display enable not required\n");
return 0;
}
mutex_lock(&display->display_lock);
mode = display->panel->cur_mode;
if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) {
rc = dsi_panel_post_switch(display->panel);
if (rc) {
DSI_ERR("[%s] failed to switch DSI panel mode, rc=%d\n",
display->name, rc);
goto error;
}
} else if (!(display->panel->cur_mode->dsi_mode_flags &
DSI_MODE_FLAG_POMS)){
rc = dsi_panel_enable(display->panel);
if (rc) {
DSI_ERR("[%s] failed to enable DSI panel, rc=%d\n",
display->name, rc);
goto error;
}
}
/* Block sending pps command if modeset is due to fps difference */
if ((mode->priv_info->dsc_enabled) &&
!(mode->dsi_mode_flags & DSI_MODE_FLAG_DMS_FPS)) {
mode->priv_info->dsc.pic_width *= display->ctrl_count;
rc = dsi_panel_update_pps(display->panel);
if (rc) {
DSI_ERR("[%s] panel pps cmd update failed, rc=%d\n",
display->name, rc);
goto error;
}
}
if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) {
rc = dsi_panel_switch(display->panel);
if (rc)
DSI_ERR("[%s] failed to switch DSI panel mode, rc=%d\n",
display->name, rc);
goto error;
}
if (display->config.panel_mode == DSI_OP_VIDEO_MODE) {
DSI_DEBUG("%s:enable video timing eng\n", __func__);
rc = dsi_display_vid_engine_enable(display);
if (rc) {
DSI_ERR("[%s]failed to enable DSI video engine, rc=%d\n",
display->name, rc);
goto error_disable_panel;
}
} else if (display->config.panel_mode == DSI_OP_CMD_MODE) {
DSI_DEBUG("%s:enable command timing eng\n", __func__);
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
DSI_ERR("[%s]failed to enable DSI cmd engine, rc=%d\n",
display->name, rc);
goto error_disable_panel;
}
} else {
DSI_ERR("[%s] Invalid configuration\n", display->name);
rc = -EINVAL;
goto error_disable_panel;
}
goto error;
error_disable_panel:
(void)dsi_panel_disable(display->panel);
error:
mutex_unlock(&display->display_lock);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
int dsi_display_post_enable(struct dsi_display *display)
{
int rc = 0;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
if (display->panel->cur_mode->dsi_mode_flags & DSI_MODE_FLAG_POMS) {
if (display->config.panel_mode == DSI_OP_CMD_MODE)
dsi_panel_mode_switch_to_cmd(display->panel);
if (display->config.panel_mode == DSI_OP_VIDEO_MODE)
dsi_panel_mode_switch_to_vid(display->panel);
} else {
rc = dsi_panel_post_enable(display->panel);
if (rc)
DSI_ERR("[%s] panel post-enable failed, rc=%d\n",
display->name, rc);
}
/* remove the clk vote for CMD mode panels */
if (display->config.panel_mode == DSI_OP_CMD_MODE)
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_pre_disable(struct dsi_display *display)
{
int rc = 0;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
mutex_lock(&display->display_lock);
/* enable the clk vote for CMD mode panels */
if (display->config.panel_mode == DSI_OP_CMD_MODE)
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
if (display->poms_pending) {
if (display->config.panel_mode == DSI_OP_CMD_MODE)
dsi_panel_pre_mode_switch_to_video(display->panel);
if (display->config.panel_mode == DSI_OP_VIDEO_MODE) {
/*
* Add unbalanced vote for clock & cmd engine to enable
* async trigger of pre video to cmd mode switch.
*/
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_ON);
if (rc) {
DSI_ERR("[%s]failed to enable all clocks,rc=%d",
display->name, rc);
goto exit;
}
rc = dsi_display_cmd_engine_enable(display);
if (rc) {
DSI_ERR("[%s]failed to enable cmd engine,rc=%d",
display->name, rc);
goto error_disable_clks;
}
dsi_panel_pre_mode_switch_to_cmd(display->panel);
}
} else {
rc = dsi_panel_pre_disable(display->panel);
if (rc)
DSI_ERR("[%s] panel pre-disable failed, rc=%d\n",
display->name, rc);
}
goto exit;
error_disable_clks:
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
if (rc)
DSI_ERR("[%s] failed to disable all DSI clocks, rc=%d\n",
display->name, rc);
exit:
mutex_unlock(&display->display_lock);
return rc;
}
int dsi_display_disable(struct dsi_display *display)
{
int rc = 0;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
mutex_lock(&display->display_lock);
rc = dsi_display_wake_up(display);
if (rc)
DSI_ERR("[%s] display wake up failed, rc=%d\n",
display->name, rc);
if (display->config.panel_mode == DSI_OP_VIDEO_MODE) {
rc = dsi_display_vid_engine_disable(display);
if (rc)
DSI_ERR("[%s]failed to disable DSI vid engine, rc=%d\n",
display->name, rc);
} else if (display->config.panel_mode == DSI_OP_CMD_MODE) {
rc = dsi_display_cmd_engine_disable(display);
if (rc)
DSI_ERR("[%s]failed to disable DSI cmd engine, rc=%d\n",
display->name, rc);
} else {
DSI_ERR("[%s] Invalid configuration\n", display->name);
rc = -EINVAL;
}
if (!display->poms_pending) {
rc = dsi_panel_disable(display->panel);
if (rc)
DSI_ERR("[%s] failed to disable DSI panel, rc=%d\n",
display->name, rc);
}
mutex_unlock(&display->display_lock);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
int dsi_display_update_pps(char *pps_cmd, void *disp)
{
struct dsi_display *display;
if (pps_cmd == NULL || disp == NULL) {
DSI_ERR("Invalid parameter\n");
return -EINVAL;
}
display = disp;
mutex_lock(&display->display_lock);
memcpy(display->panel->dsc_pps_cmd, pps_cmd, DSI_CMD_PPS_SIZE);
mutex_unlock(&display->display_lock);
return 0;
}
int dsi_display_unprepare(struct dsi_display *display)
{
int rc = 0, i;
struct dsi_display_ctrl *ctrl;
if (!display) {
DSI_ERR("Invalid params\n");
return -EINVAL;
}
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);
mutex_lock(&display->display_lock);
rc = dsi_display_wake_up(display);
if (rc)
DSI_ERR("[%s] display wake up failed, rc=%d\n",
display->name, rc);
if (!display->poms_pending) {
rc = dsi_panel_unprepare(display->panel);
if (rc)
DSI_ERR("[%s] panel unprepare failed, rc=%d\n",
display->name, rc);
}
/* Remove additional vote added for pre_mode_switch_to_cmd */
if (display->poms_pending &&
display->config.panel_mode == DSI_OP_VIDEO_MODE) {
display_for_each_ctrl(i, display) {
ctrl = &display->ctrl[i];
if (!ctrl->ctrl || !ctrl->ctrl->dma_wait_queued)
continue;
flush_workqueue(display->dma_cmd_workq);
cancel_work_sync(&ctrl->ctrl->dma_cmd_wait);
ctrl->ctrl->dma_wait_queued = false;
}
dsi_display_cmd_engine_disable(display);
dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_ALL_CLKS, DSI_CLK_OFF);
}
rc = dsi_display_ctrl_host_disable(display);
if (rc)
DSI_ERR("[%s] failed to disable DSI host, rc=%d\n",
display->name, rc);
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_LINK_CLK, DSI_CLK_OFF);
if (rc)
DSI_ERR("[%s] failed to disable Link clocks, rc=%d\n",
display->name, rc);
rc = dsi_display_ctrl_deinit(display);
if (rc)
DSI_ERR("[%s] failed to deinit controller, rc=%d\n",
display->name, rc);
if (!display->panel->ulps_suspend_enabled) {
rc = dsi_display_phy_disable(display);
if (rc)
DSI_ERR("[%s] failed to disable DSI PHY, rc=%d\n",
display->name, rc);
}
rc = dsi_display_clk_ctrl(display->dsi_clk_handle,
DSI_CORE_CLK, DSI_CLK_OFF);
if (rc)
DSI_ERR("[%s] failed to disable DSI clocks, rc=%d\n",
display->name, rc);
/* destrory dsi isr set up */
dsi_display_ctrl_isr_configure(display, false);
if (!display->poms_pending) {
rc = dsi_panel_post_unprepare(display->panel);
if (rc)
DSI_ERR("[%s] panel post-unprepare failed, rc=%d\n",
display->name, rc);
}
mutex_unlock(&display->display_lock);
/* Free up DSI ERROR event callback */
dsi_display_unregister_error_handler(display);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT);
return rc;
}
static int __init dsi_display_register(void)
{
dsi_phy_drv_register();
dsi_ctrl_drv_register();
dsi_display_parse_boot_display_selection();
return platform_driver_register(&dsi_display_driver);
}
static void __exit dsi_display_unregister(void)
{
platform_driver_unregister(&dsi_display_driver);
dsi_ctrl_drv_unregister();
dsi_phy_drv_unregister();
}
module_param_string(dsi_display0, dsi_display_primary, MAX_CMDLINE_PARAM_LEN,
0600);
MODULE_PARM_DESC(dsi_display0,
"msm_drm.dsi_display0=<display node>:<configX> where <display node> is 'primary dsi display node name' and <configX> where x represents index in the topology list");
module_param_string(dsi_display1, dsi_display_secondary, MAX_CMDLINE_PARAM_LEN,
0600);
MODULE_PARM_DESC(dsi_display1,
"msm_drm.dsi_display1=<display node>:<configX> where <display node> is 'secondary dsi display node name' and <configX> where x represents index in the topology list");
module_init(dsi_display_register);
module_exit(dsi_display_unregister);