blob: f1d7fd2f9ac42baee47d4c62bef636cf38d4b451 [file] [log] [blame]
/*
* sfe_ipv6.c
* Shortcut forwarding engine - IPv6 support.
*
* Copyright (c) 2015 The Linux Foundation. All rights reserved.
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/sysfs.h>
#include <linux/skbuff.h>
#include <linux/icmp.h>
#include <net/tcp.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
#include "sfe.h"
#include "sfe_cm.h"
#define PKT_THRESHOLD 10
#define TIMEOUT 100
#define AGGR_ON 1
struct sfe_wlan_aggr_params aggr_params[MAX_WLAN_INDEX];
int var_timeout = TIMEOUT;
int var_thresh = PKT_THRESHOLD;
int aggr_on = AGGR_ON;
int threshold_count;
int timeout_count;
bool iface;
#define XDBG_ADD_PROC_ENTRY(it, name, xdata) \
{ \
.procname = (name), \
.data = (xdata), \
.maxlen = sizeof(int), \
.mode = 0666, \
.proc_handler = &proc_dointvec, \
}
enum {
XDBG_TIMER_STEP_DBG,
XDBG_THRESHOLD_STEP_DBG,
XDBG_THRESHOLD_NUM_DBG,
XDBG_TIMER_NUM_DBG,
XDBG_MAX
};
static struct ctl_table sfe_sysctl_debug[] =
{
XDBG_ADD_PROC_ENTRY(XDBG_TIMER_STEP_DBG, "v6_timeout_value", &var_timeout),
XDBG_ADD_PROC_ENTRY(XDBG_THRESHOLD_STEP_DBG, "v6_threshold", &var_thresh),
XDBG_ADD_PROC_ENTRY(XDBG_THRESHOLD_STEP_DBG, "v6_aggr_on", &aggr_on),
XDBG_ADD_PROC_ENTRY(XDBG_THRESHOLD_STEP_DBG, "v6_threshold_count", &threshold_count),
XDBG_ADD_PROC_ENTRY(XDBG_THRESHOLD_STEP_DBG, "v6_timeout_count", &timeout_count),
{0, },
};
typedef struct sfe_proc_sys_db
{
struct ctl_table debug_root[2];
struct ctl_table_header * debug_ctl_header;
struct ctl_path sfe_debug_ctl_path[2];
}sfe_proc_sys_db_t;
/*
* By default Linux IP header and transport layer header structures are
* unpacked, assuming that such headers should be 32-bit aligned.
* Unfortunately some wireless adaptors can't cope with this requirement and
* some CPUs can't handle misaligned accesses. For those platforms we
* define SFE_IPV6_UNALIGNED_IP_HEADER and mark the structures as packed.
* When we do this the compiler will generate slightly worse code than for the
* aligned case (on most platforms) but will be much quicker than fixing
* things up in an unaligned trap handler.
*/
#define SFE_IPV6_UNALIGNED_IP_HEADER 1
#if SFE_IPV6_UNALIGNED_IP_HEADER
#define SFE_IPV6_UNALIGNED_STRUCT __attribute__((packed))
#else
#define SFE_IPV6_UNALIGNED_STRUCT
#endif
#define CHAR_DEV_MSG_SIZE 768
/*
* An Ethernet header, but with an optional "packed" attribute to
* help with performance on some platforms (see the definition of
* SFE_IPV6_UNALIGNED_STRUCT)
*/
struct sfe_ipv6_eth_hdr {
__be16 h_dest[ETH_ALEN / 2];
__be16 h_source[ETH_ALEN / 2];
__be16 h_proto;
} SFE_IPV6_UNALIGNED_STRUCT;
/*
* An IPv6 header, but with an optional "packed" attribute to
* help with performance on some platforms (see the definition of
* SFE_IPV6_UNALIGNED_STRUCT)
*/
struct sfe_ipv6_ip_hdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 priority:4,
version:4;
#elif defined(__BIG_ENDIAN_BITFIELD)
__u8 version:4,
priority:4;
#else
#error "Please fix <asm/byteorder.h>"
#endif
__u8 flow_lbl[3];
__be16 payload_len;
__u8 nexthdr;
__u8 hop_limit;
struct sfe_ipv6_addr saddr;
struct sfe_ipv6_addr daddr;
/*
* The extension header start here.
*/
} SFE_IPV6_UNALIGNED_STRUCT;
#define SFE_IPV6_EXT_HDR_HOP 0
#define SFE_IPV6_EXT_HDR_ROUTING 43
#define SFE_IPV6_EXT_HDR_FRAG 44
#define SFE_IPV6_EXT_HDR_ESP 50
#define SFE_IPV6_EXT_HDR_AH 51
#define SFE_IPV6_EXT_HDR_NONE 59
#define SFE_IPV6_EXT_HDR_DST 60
#define SFE_IPV6_EXT_HDR_MH 135
/*
* fragmentation header
*/
struct sfe_ipv6_frag_hdr {
__u8 nexthdr;
__u8 reserved;
__be16 frag_off;
__be32 identification;
};
#define SFE_IPV6_FRAG_OFFSET 0xfff8
/*
* generic IPv6 extension header
*/
struct sfe_ipv6_ext_hdr {
__u8 next_hdr;
__u8 hdr_len;
__u8 padding[6];
} SFE_IPV6_UNALIGNED_STRUCT;
/*
* A UDP header, but with an optional "packed" attribute to
* help with performance on some platforms (see the definition of
* SFE_IPV6_UNALIGNED_STRUCT)
*/
struct sfe_ipv6_udp_hdr {
__be16 source;
__be16 dest;
__be16 len;
__sum16 check;
} SFE_IPV6_UNALIGNED_STRUCT;
/*
* A TCP header, but with an optional "packed" attribute to
* help with performance on some platforms (see the definition of
* SFE_IPV6_UNALIGNED_STRUCT)
*/
struct sfe_ipv6_tcp_hdr {
__be16 source;
__be16 dest;
__be32 seq;
__be32 ack_seq;
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u16 res1:4,
doff:4,
fin:1,
syn:1,
rst:1,
psh:1,
ack:1,
urg:1,
ece:1,
cwr:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
__u16 doff:4,
res1:4,
cwr:1,
ece:1,
urg:1,
ack:1,
psh:1,
rst:1,
syn:1,
fin:1;
#else
#error "Adjust your <asm/byteorder.h> defines"
#endif
__be16 window;
__sum16 check;
__be16 urg_ptr;
} SFE_IPV6_UNALIGNED_STRUCT;
/*
* Specifies the lower bound on ACK numbers carried in the TCP header
*/
#define SFE_IPV6_TCP_MAX_ACK_WINDOW 65520
/*
* IPv6 TCP connection match additional data.
*/
struct sfe_ipv6_tcp_connection_match {
uint8_t win_scale; /* Window scale */
uint32_t max_win; /* Maximum window size seen */
uint32_t end; /* Sequence number of the next byte to send (seq + segment length) */
uint32_t max_end; /* Sequence number of the last byte to ack */
};
/*
* Bit flags for IPv6 connection matching entry.
*/
#define SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC 0x1
/* Perform source translation */
#define SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST 0x2
/* Perform destination translation */
#define SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK 0x4
/* Ignore TCP sequence numbers */
#define SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR 0x8
/* Fast Ethernet header write */
#define SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR 0x10
/* Fast Ethernet header write */
/*
* IPv6 connection matching structure.
*/
struct sfe_ipv6_connection_match {
/*
* References to other objects.
*/
struct sfe_ipv6_connection_match *next;
/* Next connection match entry in a list */
struct sfe_ipv6_connection_match *prev;
/* Previous connection match entry in a list */
struct sfe_ipv6_connection *connection;
/* Pointer to our connection */
struct sfe_ipv6_connection_match *counter_match;
/* Pointer to the connection match in the "counter" direction to this one */
struct sfe_ipv6_connection_match *active_next;
/* Pointer to the next connection in the active list */
struct sfe_ipv6_connection_match *active_prev;
/* Pointer to the previous connection in the active list */
bool active; /* Flag to indicate if we're on the active list */
/*
* Characteristics that identify flows that match this rule.
*/
struct net_device *match_dev; /* Network device */
uint8_t match_protocol; /* Protocol */
struct sfe_ipv6_addr match_src_ip[1]; /* Source IP address */
struct sfe_ipv6_addr match_dest_ip[1]; /* Destination IP address */
__be16 match_src_port; /* Source port/connection ident */
__be16 match_dest_port; /* Destination port/connection ident */
/*
* Control the operations of the match.
*/
uint32_t flags; /* Bit flags */
#ifdef CONFIG_NF_FLOW_COOKIE
uint32_t flow_cookie; /* used flow cookie, for debug */
#endif
#ifdef CONFIG_XFRM
uint32_t flow_accel; /* The flow accelerated or not */
#endif
/*
* Connection state that we track once we match.
*/
union { /* Protocol-specific state */
struct sfe_ipv6_tcp_connection_match tcp;
} protocol_state;
uint32_t rx_packet_count; /* Number of packets RX'd */
uint32_t rx_byte_count; /* Number of bytes RX'd */
/*
* Packet translation information.
*/
struct sfe_ipv6_addr xlate_src_ip[1]; /* Address after source translation */
__be16 xlate_src_port; /* Port/connection ident after source translation */
uint16_t xlate_src_csum_adjustment;
/* Transport layer checksum adjustment after source translation */
struct sfe_ipv6_addr xlate_dest_ip[1]; /* Address after destination translation */
__be16 xlate_dest_port; /* Port/connection ident after destination translation */
uint16_t xlate_dest_csum_adjustment;
/* Transport layer checksum adjustment after destination translation */
/*
* Packet transmit information.
*/
struct net_device *xmit_dev; /* Network device on which to transmit */
unsigned short int xmit_dev_mtu;
/* Interface MTU */
uint16_t xmit_dest_mac[ETH_ALEN / 2];
/* Destination MAC address to use when forwarding */
uint16_t xmit_src_mac[ETH_ALEN / 2];
/* Source MAC address to use when forwarding */
/*
* Summary stats.
*/
uint64_t rx_packet_count64; /* Number of packets RX'd */
uint64_t rx_byte_count64; /* Number of bytes RX'd */
bool addEthMAC; /* Add ethernet header if set */
bool do_aggr; /* Aggregation is needed */
sfe_wlan_index_type index; /* WLAN Interface index. */
bool expand_head; /* Extra headroom needed */
};
/*
* Per-connection data structure.
*/
struct sfe_ipv6_connection {
struct sfe_ipv6_connection *next;
/* Pointer to the next entry in a hash chain */
struct sfe_ipv6_connection *prev;
/* Pointer to the previous entry in a hash chain */
int protocol; /* IP protocol number */
struct sfe_ipv6_addr src_ip[1]; /* Source IP address */
struct sfe_ipv6_addr src_ip_xlate[1]; /* NAT-translated source IP address */
struct sfe_ipv6_addr dest_ip[1]; /* Destination IP address */
struct sfe_ipv6_addr dest_ip_xlate[1]; /* NAT-translated destination IP address */
__be16 src_port; /* Source port */
__be16 src_port_xlate; /* NAT-translated source port */
__be16 dest_port; /* Destination port */
__be16 dest_port_xlate; /* NAT-translated destination port */
struct sfe_ipv6_connection_match *original_match;
/* Original direction matching structure */
struct net_device *original_dev;
/* Original direction source device */
struct sfe_ipv6_connection_match *reply_match;
/* Reply direction matching structure */
struct net_device *reply_dev; /* Reply direction source device */
uint64_t last_sync_jiffies; /* Jiffies count for the last sync */
struct sfe_ipv6_connection *all_connections_next;
/* Pointer to the next entry in the list of all connections */
struct sfe_ipv6_connection *all_connections_prev;
/* Pointer to the previous entry in the list of all connections */
uint32_t mark; /* mark for outgoing packet */
uint32_t debug_read_seq; /* sequence number for debug dump */
bool use_destMac; /*Add ethernet header if set*/
};
/*
* IPv6 connections and hash table size information.
*/
#define SFE_IPV6_CONNECTION_HASH_SHIFT 12
#define SFE_IPV6_CONNECTION_HASH_SIZE (1 << SFE_IPV6_CONNECTION_HASH_SHIFT)
#define SFE_IPV6_CONNECTION_HASH_MASK (SFE_IPV6_CONNECTION_HASH_SIZE - 1)
#ifdef CONFIG_NF_FLOW_COOKIE
#define SFE_FLOW_COOKIE_SIZE 2048
#define SFE_FLOW_COOKIE_MASK 0x7ff
struct sfe_ipv6_flow_cookie_entry {
struct sfe_ipv6_connection_match *match;
unsigned long last_clean_time;
};
#endif
enum sfe_ipv6_exception_events {
SFE_IPV6_EXCEPTION_EVENT_UDP_HEADER_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_UDP_NO_CONNECTION,
SFE_IPV6_EXCEPTION_EVENT_UDP_IP_OPTIONS_OR_INITIAL_FRAGMENT,
SFE_IPV6_EXCEPTION_EVENT_UDP_SMALL_TTL,
SFE_IPV6_EXCEPTION_EVENT_UDP_NEEDS_FRAGMENTATION,
SFE_IPV6_EXCEPTION_EVENT_TCP_HEADER_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_SLOW_FLAGS,
SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_FAST_FLAGS,
SFE_IPV6_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT,
SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_TTL,
SFE_IPV6_EXCEPTION_EVENT_TCP_NEEDS_FRAGMENTATION,
SFE_IPV6_EXCEPTION_EVENT_TCP_FLAGS,
SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_EXCEEDS_RIGHT_EDGE,
SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_DATA_OFFS,
SFE_IPV6_EXCEPTION_EVENT_TCP_BAD_SACK,
SFE_IPV6_EXCEPTION_EVENT_TCP_BIG_DATA_OFFS,
SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_BEFORE_LEFT_EDGE,
SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_EXCEEDS_RIGHT_EDGE,
SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_BEFORE_LEFT_EDGE,
SFE_IPV6_EXCEPTION_EVENT_ICMP_HEADER_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_ICMP_UNHANDLED_TYPE,
SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_HEADER_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_NON_V6,
SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_IP_OPTIONS_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_UDP_HEADER_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_TCP_HEADER_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_UNHANDLED_PROTOCOL,
SFE_IPV6_EXCEPTION_EVENT_ICMP_NO_CONNECTION,
SFE_IPV6_EXCEPTION_EVENT_ICMP_FLUSHED_CONNECTION,
SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_BAD_TOTAL_LENGTH,
SFE_IPV6_EXCEPTION_EVENT_NON_V6,
SFE_IPV6_EXCEPTION_EVENT_NON_INITIAL_FRAGMENT,
SFE_IPV6_EXCEPTION_EVENT_DATAGRAM_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_IP_OPTIONS_INCOMPLETE,
SFE_IPV6_EXCEPTION_EVENT_UNHANDLED_PROTOCOL,
SFE_IPV6_EXCEPTION_EVENT_FLOW_COOKIE_ADD_FAIL,
SFE_IPV6_EXCEPTION_EVENT_LAST
};
static char *sfe_ipv6_exception_events_string[SFE_IPV6_EXCEPTION_EVENT_LAST] = {
"UDP_HEADER_INCOMPLETE",
"UDP_NO_CONNECTION",
"UDP_IP_OPTIONS_OR_INITIAL_FRAGMENT",
"UDP_SMALL_TTL",
"UDP_NEEDS_FRAGMENTATION",
"TCP_HEADER_INCOMPLETE",
"TCP_NO_CONNECTION_SLOW_FLAGS",
"TCP_NO_CONNECTION_FAST_FLAGS",
"TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT",
"TCP_SMALL_TTL",
"TCP_NEEDS_FRAGMENTATION",
"TCP_FLAGS",
"TCP_SEQ_EXCEEDS_RIGHT_EDGE",
"TCP_SMALL_DATA_OFFS",
"TCP_BAD_SACK",
"TCP_BIG_DATA_OFFS",
"TCP_SEQ_BEFORE_LEFT_EDGE",
"TCP_ACK_EXCEEDS_RIGHT_EDGE",
"TCP_ACK_BEFORE_LEFT_EDGE",
"ICMP_HEADER_INCOMPLETE",
"ICMP_UNHANDLED_TYPE",
"ICMP_IPV6_HEADER_INCOMPLETE",
"ICMP_IPV6_NON_V6",
"ICMP_IPV6_IP_OPTIONS_INCOMPLETE",
"ICMP_IPV6_UDP_HEADER_INCOMPLETE",
"ICMP_IPV6_TCP_HEADER_INCOMPLETE",
"ICMP_IPV6_UNHANDLED_PROTOCOL",
"ICMP_NO_CONNECTION",
"ICMP_FLUSHED_CONNECTION",
"HEADER_INCOMPLETE",
"BAD_TOTAL_LENGTH",
"NON_V6",
"NON_INITIAL_FRAGMENT",
"DATAGRAM_INCOMPLETE",
"IP_OPTIONS_INCOMPLETE",
"UNHANDLED_PROTOCOL",
"FLOW_COOKIE_ADD_FAIL"
};
/*
* Per-module structure.
*/
struct sfe_ipv6 {
spinlock_t lock; /* Lock for SMP correctness */
struct sfe_ipv6_connection_match *active_head;
/* Head of the list of recently active connections */
struct sfe_ipv6_connection_match *active_tail;
/* Tail of the list of recently active connections */
struct sfe_ipv6_connection *all_connections_head;
/* Head of the list of all connections */
struct sfe_ipv6_connection *all_connections_tail;
/* Tail of the list of all connections */
unsigned int num_connections; /* Number of connections */
struct timer_list timer; /* Timer used for periodic sync ops */
sfe_sync_rule_callback_t __rcu sync_rule_callback;
/* Callback function registered by a connection manager for stats syncing */
struct sfe_ipv6_connection *conn_hash[SFE_IPV6_CONNECTION_HASH_SIZE];
/* Connection hash table */
struct sfe_ipv6_connection_match *conn_match_hash[SFE_IPV6_CONNECTION_HASH_SIZE];
/* Connection match hash table */
#ifdef CONFIG_NF_FLOW_COOKIE
struct sfe_ipv6_flow_cookie_entry sfe_flow_cookie_table[SFE_FLOW_COOKIE_SIZE];
/* flow cookie table*/
sfe_ipv6_flow_cookie_set_func_t flow_cookie_set_func;
/* function used to configure flow cookie in hardware*/
#endif
/*
* Statistics.
*/
uint32_t connection_create_requests;
/* Number of IPv6 connection create requests */
uint32_t connection_create_collisions;
/* Number of IPv6 connection create requests that collided with existing hash table entries */
uint32_t connection_destroy_requests;
/* Number of IPv6 connection destroy requests */
uint32_t connection_destroy_misses;
/* Number of IPv6 connection destroy requests that missed our hash table */
uint32_t connection_match_hash_hits;
/* Number of IPv6 connection match hash hits */
uint32_t connection_match_hash_reorders;
/* Number of IPv6 connection match hash reorders */
uint32_t connection_flushes; /* Number of IPv6 connection flushes */
uint32_t packets_forwarded; /* Number of IPv6 packets forwarded */
uint32_t packets_not_forwarded; /* Number of IPv6 packets not forwarded */
uint32_t exception_events[SFE_IPV6_EXCEPTION_EVENT_LAST];
/*
* Summary tatistics.
*/
uint64_t connection_create_requests64;
/* Number of IPv6 connection create requests */
uint64_t connection_create_collisions64;
/* Number of IPv6 connection create requests that collided with existing hash table entries */
uint64_t connection_destroy_requests64;
/* Number of IPv6 connection destroy requests */
uint64_t connection_destroy_misses64;
/* Number of IPv6 connection destroy requests that missed our hash table */
uint64_t connection_match_hash_hits64;
/* Number of IPv6 connection match hash hits */
uint64_t connection_match_hash_reorders64;
/* Number of IPv6 connection match hash reorders */
uint64_t connection_flushes64; /* Number of IPv6 connection flushes */
uint64_t packets_forwarded64; /* Number of IPv6 packets forwarded */
uint64_t packets_not_forwarded64;
/* Number of IPv6 packets not forwarded */
uint64_t exception_events64[SFE_IPV6_EXCEPTION_EVENT_LAST];
sfe_proc_sys_db_t proc1;
/*
* Control state here
*/
struct kobject *sys_sfe_ipv6; /* sysfs linkage */
int debug_dev; /* Major number of the debug char device */
uint32_t debug_read_seq; /* sequence number for debug dump */
/*
* Proc entry for Interface name
*/
char ipv6_iface[MAX_INTF_LEN];
int iface_length;
};
/*
* Enumeration of the XML output.
*/
enum sfe_ipv6_debug_xml_states {
SFE_IPV6_DEBUG_XML_STATE_START,
SFE_IPV6_DEBUG_XML_STATE_CONNECTIONS_START,
SFE_IPV6_DEBUG_XML_STATE_CONNECTIONS_CONNECTION,
SFE_IPV6_DEBUG_XML_STATE_CONNECTIONS_END,
SFE_IPV6_DEBUG_XML_STATE_EXCEPTIONS_START,
SFE_IPV6_DEBUG_XML_STATE_EXCEPTIONS_EXCEPTION,
SFE_IPV6_DEBUG_XML_STATE_EXCEPTIONS_END,
SFE_IPV6_DEBUG_XML_STATE_STATS,
SFE_IPV6_DEBUG_XML_STATE_END,
SFE_IPV6_DEBUG_XML_STATE_DONE
};
/*
* XML write state.
*/
struct sfe_ipv6_debug_xml_write_state {
enum sfe_ipv6_debug_xml_states state;
/* XML output file state machine state */
int iter_exception; /* Next exception iterator */
};
typedef bool (*sfe_ipv6_debug_xml_write_method_t)(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws);
struct sfe_ipv6 __si6;
/*
* sfe_ipv6_get_debug_dev()
*/
static ssize_t sfe_ipv6_get_debug_dev(struct device *dev, struct device_attribute *attr, char *buf);
/*
* sysfs attributes.
*/
static const struct device_attribute sfe_ipv6_debug_dev_attr =
__ATTR(debug_dev, 0664, sfe_ipv6_get_debug_dev, NULL);
/*
* sfe_ipv6_addr_equal()
* compare ipv6 address
*
* return: 1, equal; 0, no equal
*/
static inline int sfe_ipv6_addr_equal(struct sfe_ipv6_addr *a,
struct sfe_ipv6_addr *b)
{
return a->addr[0] == b->addr[0] &&
a->addr[1] == b->addr[1] &&
a->addr[2] == b->addr[2] &&
a->addr[3] == b->addr[3];
}
/*
* sfe_ipv6_is_ext_hdr()
* check if we recognize ipv6 extension header
*/
static inline bool sfe_ipv6_is_ext_hdr(uint8_t hdr)
{
return (hdr == SFE_IPV6_EXT_HDR_HOP) ||
(hdr == SFE_IPV6_EXT_HDR_ROUTING) ||
(hdr == SFE_IPV6_EXT_HDR_FRAG) ||
(hdr == SFE_IPV6_EXT_HDR_AH) ||
(hdr == SFE_IPV6_EXT_HDR_DST) ||
(hdr == SFE_IPV6_EXT_HDR_MH);
}
/* When the timer expires this callback function is called*/
void sfe_timer_callback(unsigned long data)
{
int k;
sfe_wlan_index_type index = (sfe_wlan_index_type)data;
/* Delete the timer. */
k= del_timer(&aggr_params[index].sfe_timer);
/* Update the timeout hit counter. */
timeout_count++;
/* Transmit the list. */
if(aggr_params[index].skb_head)
dev_queue_xmit_list(aggr_params[index].skb_head);
/* Reset the params. */
aggr_params[index].curr_dl_skb_num = 0;
aggr_params[index].skb_head = NULL;
aggr_params[index].skb_tail = NULL;
}
int init_timer_module(sfe_wlan_index_type index)
{
int k;
/* Initialize the timer. */
k= del_timer(&aggr_params[index].sfe_timer);
init_timer(&aggr_params[index].sfe_timer);
/* Start the timer. */
aggr_params[index].sfe_timer.expires = jiffies +msecs_to_jiffies(var_timeout);
aggr_params[index].sfe_timer.data = index;
aggr_params[index].sfe_timer.function = sfe_timer_callback;
add_timer(&aggr_params[index].sfe_timer);
return 0;
}
/*
* sfe_ipv6_get_connection_match_hash()
* Generate the hash used in connection match lookups.
*/
static inline unsigned int sfe_ipv6_get_connection_match_hash(struct net_device *dev, uint8_t protocol,
struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
uint32_t idx, hash = 0;
size_t dev_addr = (size_t)dev;
for (idx = 0; idx < 4; idx++) {
hash ^= src_ip->addr[idx] ^ dest_ip->addr[idx];
}
hash = ((uint32_t)dev_addr) ^ hash ^ protocol ^ ntohs(src_port ^ dest_port);
return ((hash >> SFE_IPV6_CONNECTION_HASH_SHIFT) ^ hash) & SFE_IPV6_CONNECTION_HASH_MASK;
}
/*
* sfe_ipv6_find_connection_match()
* Get the IPv6 flow match info that corresponds to a particular 5-tuple.
*
* On entry we must be holding the lock that protects the hash table.
*/
static struct sfe_ipv6_connection_match *
sfe_ipv6_find_connection_match(struct sfe_ipv6 *si, struct net_device *dev, uint8_t protocol,
struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
struct sfe_ipv6_connection_match *cm;
struct sfe_ipv6_connection_match *head;
unsigned int conn_match_idx;
conn_match_idx = sfe_ipv6_get_connection_match_hash(dev, protocol, src_ip, src_port, dest_ip, dest_port);
cm = si->conn_match_hash[conn_match_idx];
/*
* If we don't have anything in this chain then bale.
*/
if (unlikely(!cm)) {
return cm;
}
/*
* Hopefully the first entry is the one we want.
*/
if (likely(cm->match_src_port == src_port)
&& likely(cm->match_dest_port == dest_port)
&& likely(sfe_ipv6_addr_equal(cm->match_src_ip, src_ip))
&& likely(sfe_ipv6_addr_equal(cm->match_dest_ip, dest_ip))
&& likely(cm->match_protocol == protocol)
&& likely(cm->match_dev == dev)) {
si->connection_match_hash_hits++;
return cm;
}
/*
* We may or may not have a matching entry but if we do then we want to
* move that entry to the top of the hash chain when we get to it. We
* presume that this will be reused again very quickly.
*/
head = cm;
do {
cm = cm->next;
} while (cm && (cm->match_src_port != src_port
|| cm->match_dest_port != dest_port
|| !sfe_ipv6_addr_equal(cm->match_src_ip, src_ip)
|| !sfe_ipv6_addr_equal(cm->match_dest_ip, dest_ip)
|| cm->match_protocol != protocol
|| cm->match_dev != dev));
/*
* Not found then we're done.
*/
if (unlikely(!cm)) {
return cm;
}
/*
* We found a match so move it.
*/
if (cm->next) {
cm->next->prev = cm->prev;
}
cm->prev->next = cm->next;
cm->prev = NULL;
cm->next = head;
head->prev = cm;
si->conn_match_hash[conn_match_idx] = cm;
si->connection_match_hash_reorders++;
return cm;
}
/*
* sfe_ipv6_connection_match_update_summary_stats()
* Update the summary stats for a connection match entry.
*/
static inline void sfe_ipv6_connection_match_update_summary_stats(struct sfe_ipv6_connection_match *cm)
{
cm->rx_packet_count64 += cm->rx_packet_count;
cm->rx_packet_count = 0;
cm->rx_byte_count64 += cm->rx_byte_count;
cm->rx_byte_count = 0;
}
/*
* sfe_ipv6_connection_match_compute_translations()
* Compute port and address translations for a connection match entry.
*/
static void sfe_ipv6_connection_match_compute_translations(struct sfe_ipv6_connection_match *cm)
{
uint32_t diff[9];
uint32_t *idx_32;
uint16_t *idx_16;
/*
* Before we insert the entry look to see if this is tagged as doing address
* translations. If it is then work out the adjustment that we need to apply
* to the transport checksum.
*/
if (cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC) {
uint32_t adj = 0;
uint32_t carry = 0;
/*
* Precompute an incremental checksum adjustment so we can
* edit packets in this stream very quickly. The algorithm is from RFC1624.
*/
idx_32 = diff;
*(idx_32++) = cm->match_src_ip->addr[0];
*(idx_32++) = cm->match_src_ip->addr[1];
*(idx_32++) = cm->match_src_ip->addr[2];
*(idx_32++) = cm->match_src_ip->addr[3];
idx_16 = (uint16_t *)idx_32;
*(idx_16++) = cm->match_src_port;
*(idx_16++) = ~cm->xlate_src_port;
idx_32 = (uint32_t *)idx_16;
*(idx_32++) = ~cm->xlate_src_ip->addr[0];
*(idx_32++) = ~cm->xlate_src_ip->addr[1];
*(idx_32++) = ~cm->xlate_src_ip->addr[2];
*(idx_32++) = ~cm->xlate_src_ip->addr[3];
/*
* When we compute this fold it down to a 16-bit offset
* as that way we can avoid having to do a double
* folding of the twos-complement result because the
* addition of 2 16-bit values cannot cause a double
* wrap-around!
*/
for (idx_32 = diff; idx_32 < diff + 9; idx_32++) {
uint32_t w = *idx_32;
adj += carry;
adj += w;
carry = (w > adj);
}
adj += carry;
adj = (adj & 0xffff) + (adj >> 16);
adj = (adj & 0xffff) + (adj >> 16);
cm->xlate_src_csum_adjustment = (uint16_t)adj;
}
if (cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST) {
uint32_t adj = 0;
uint32_t carry = 0;
/*
* Precompute an incremental checksum adjustment so we can
* edit packets in this stream very quickly. The algorithm is from RFC1624.
*/
idx_32 = diff;
*(idx_32++) = cm->match_dest_ip->addr[0];
*(idx_32++) = cm->match_dest_ip->addr[1];
*(idx_32++) = cm->match_dest_ip->addr[2];
*(idx_32++) = cm->match_dest_ip->addr[3];
idx_16 = (uint16_t *)idx_32;
*(idx_16++) = cm->match_dest_port;
*(idx_16++) = ~cm->xlate_dest_port;
idx_32 = (uint32_t *)idx_16;
*(idx_32++) = ~cm->xlate_dest_ip->addr[0];
*(idx_32++) = ~cm->xlate_dest_ip->addr[1];
*(idx_32++) = ~cm->xlate_dest_ip->addr[2];
*(idx_32++) = ~cm->xlate_dest_ip->addr[3];
/*
* When we compute this fold it down to a 16-bit offset
* as that way we can avoid having to do a double
* folding of the twos-complement result because the
* addition of 2 16-bit values cannot cause a double
* wrap-around!
*/
for (idx_32 = diff; idx_32 < diff + 9; idx_32++) {
uint32_t w = *idx_32;
adj += carry;
adj += w;
carry = (w > adj);
}
adj += carry;
adj = (adj & 0xffff) + (adj >> 16);
adj = (adj & 0xffff) + (adj >> 16);
cm->xlate_dest_csum_adjustment = (uint16_t)adj;
}
}
/*
* sfe_ipv6_update_summary_stats()
* Update the summary stats.
*/
static void sfe_ipv6_update_summary_stats(struct sfe_ipv6 *si)
{
int i;
si->connection_create_requests64 += si->connection_create_requests;
si->connection_create_requests = 0;
si->connection_create_collisions64 += si->connection_create_collisions;
si->connection_create_collisions = 0;
si->connection_destroy_requests64 += si->connection_destroy_requests;
si->connection_destroy_requests = 0;
si->connection_destroy_misses64 += si->connection_destroy_misses;
si->connection_destroy_misses = 0;
si->connection_match_hash_hits64 += si->connection_match_hash_hits;
si->connection_match_hash_hits = 0;
si->connection_match_hash_reorders64 += si->connection_match_hash_reorders;
si->connection_match_hash_reorders = 0;
si->connection_flushes64 += si->connection_flushes;
si->connection_flushes = 0;
si->packets_forwarded64 += si->packets_forwarded;
si->packets_forwarded = 0;
si->packets_not_forwarded64 += si->packets_not_forwarded;
si->packets_not_forwarded = 0;
for (i = 0; i < SFE_IPV6_EXCEPTION_EVENT_LAST; i++) {
si->exception_events64[i] += si->exception_events[i];
si->exception_events[i] = 0;
}
}
/*
* sfe_ipv6_insert_connection_match()
* Insert a connection match into the hash.
*
* On entry we must be holding the lock that protects the hash table.
*/
static inline void sfe_ipv6_insert_connection_match(struct sfe_ipv6 *si, struct sfe_ipv6_connection_match *cm)
{
struct sfe_ipv6_connection_match **hash_head;
struct sfe_ipv6_connection_match *prev_head;
unsigned int conn_match_idx
= sfe_ipv6_get_connection_match_hash(cm->match_dev, cm->match_protocol,
cm->match_src_ip, cm->match_src_port,
cm->match_dest_ip, cm->match_dest_port);
hash_head = &si->conn_match_hash[conn_match_idx];
prev_head = *hash_head;
cm->prev = NULL;
if (prev_head) {
prev_head->prev = cm;
}
cm->next = prev_head;
*hash_head = cm;
#ifdef CONFIG_NF_FLOW_COOKIE
if (!(cm->flags & (SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC | SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST)))
return;
/*
* Configure hardware to put a flow cookie in packet of this flow,
* then we can accelerate the lookup process when we received this packet.
*/
for (conn_match_idx = 1; conn_match_idx < SFE_FLOW_COOKIE_SIZE; conn_match_idx++) {
struct sfe_ipv6_flow_cookie_entry *entry = &si->sfe_flow_cookie_table[conn_match_idx];
if ((NULL == entry->match) && time_is_before_jiffies(entry->last_clean_time + HZ)) {
sfe_ipv6_flow_cookie_set_func_t func;
rcu_read_lock();
func = rcu_dereference(si->flow_cookie_set_func);
if (func) {
if (!func(cm->match_protocol, cm->match_src_ip->addr, cm->match_src_port,
cm->match_dest_ip->addr, cm->match_dest_port, conn_match_idx)) {
entry->match = cm;
cm->flow_cookie = conn_match_idx;
} else {
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_FLOW_COOKIE_ADD_FAIL]++;
}
}
rcu_read_unlock();
break;
}
}
#endif
}
/*
* sfe_ipv6_remove_connection_match()
* Remove a connection match object from the hash.
*
* On entry we must be holding the lock that protects the hash table.
*/
static inline void sfe_ipv6_remove_connection_match(struct sfe_ipv6 *si, struct sfe_ipv6_connection_match *cm)
{
#ifdef CONFIG_NF_FLOW_COOKIE
/*
* Tell hardware that we no longer need a flow cookie in packet of this flow
*/
unsigned int conn_match_idx;
for (conn_match_idx = 1; conn_match_idx < SFE_FLOW_COOKIE_SIZE; conn_match_idx++) {
struct sfe_ipv6_flow_cookie_entry *entry = &si->sfe_flow_cookie_table[conn_match_idx];
if (cm == entry->match) {
sfe_ipv6_flow_cookie_set_func_t func;
rcu_read_lock();
func = rcu_dereference(si->flow_cookie_set_func);
if (func) {
func(cm->match_protocol, cm->match_src_ip->addr, cm->match_src_port,
cm->match_dest_ip->addr, cm->match_dest_port, 0);
}
rcu_read_unlock();
cm->flow_cookie = 0;
entry->match = NULL;
entry->last_clean_time = jiffies;
break;
}
}
#endif
/*
* Unlink the connection match entry from the hash.
*/
if (cm->prev) {
cm->prev->next = cm->next;
} else {
unsigned int conn_match_idx
= sfe_ipv6_get_connection_match_hash(cm->match_dev, cm->match_protocol,
cm->match_src_ip, cm->match_src_port,
cm->match_dest_ip, cm->match_dest_port);
si->conn_match_hash[conn_match_idx] = cm->next;
}
if (cm->next) {
cm->next->prev = cm->prev;
}
/*
* If the connection match entry is in the active list remove it.
*/
if (cm->active) {
if (likely(cm->active_prev)) {
cm->active_prev->active_next = cm->active_next;
} else {
si->active_head = cm->active_next;
}
if (likely(cm->active_next)) {
cm->active_next->active_prev = cm->active_prev;
} else {
si->active_tail = cm->active_prev;
}
}
}
/*
* sfe_ipv6_get_connection_hash()
* Generate the hash used in connection lookups.
*/
static inline unsigned int sfe_ipv6_get_connection_hash(uint8_t protocol, struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
uint32_t idx, hash = 0;
for (idx = 0; idx < 4; idx++) {
hash ^= src_ip->addr[idx] ^ dest_ip->addr[idx];
}
hash = hash ^ protocol ^ ntohs(src_port ^ dest_port);
return ((hash >> SFE_IPV6_CONNECTION_HASH_SHIFT) ^ hash) & SFE_IPV6_CONNECTION_HASH_MASK;
}
/*
* sfe_ipv6_find_connection()
* Get the IPv6 connection info that corresponds to a particular 5-tuple.
*
* On entry we must be holding the lock that protects the hash table.
*/
static inline struct sfe_ipv6_connection *sfe_ipv6_find_connection(struct sfe_ipv6 *si, uint32_t protocol,
struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
struct sfe_ipv6_connection *c;
unsigned int conn_idx = sfe_ipv6_get_connection_hash(protocol, src_ip, src_port, dest_ip, dest_port);
c = si->conn_hash[conn_idx];
/*
* If we don't have anything in this chain then bale.
*/
if (unlikely(!c)) {
return c;
}
/*
* Hopefully the first entry is the one we want.
*/
if (likely(c->src_port == src_port)
&& likely(c->dest_port == dest_port)
&& likely(sfe_ipv6_addr_equal(c->src_ip, src_ip))
&& likely(sfe_ipv6_addr_equal(c->dest_ip, dest_ip))
&& likely(c->protocol == protocol)) {
return c;
}
/*
* We may or may not have a matching entry but if we do then we want to
* move that entry to the top of the hash chain when we get to it. We
* presume that this will be reused again very quickly.
*/
do {
c = c->next;
} while (c && (c->src_port != src_port
|| c->dest_port != dest_port
|| !sfe_ipv6_addr_equal(c->src_ip, src_ip)
|| !sfe_ipv6_addr_equal(c->dest_ip, dest_ip)
|| c->protocol != protocol));
/*
* Will need connection entry for next create/destroy metadata,
* So no need to re-order entry for these requests
*/
return c;
}
/*
* sfe_ipv6_mark_rule()
* Updates the mark for a current offloaded connection
*
* Will take hash lock upon entry
*/
void sfe_ipv6_mark_rule(struct sfe_connection_mark *mark)
{
struct sfe_ipv6 *si = &__si6;
struct sfe_ipv6_connection *c;
spin_lock_bh(&si->lock);
c = sfe_ipv6_find_connection(si, mark->protocol,
mark->src_ip.ip6, mark->src_port,
mark->dest_ip.ip6, mark->dest_port);
if (c) {
DEBUG_TRACE("Matching connection found for mark, "
"setting from %08x to %08x\n",
c->mark, mark->mark);
WARN_ON((0 != c->mark) && (0 == mark->mark));
c->mark = mark->mark;
}
spin_unlock_bh(&si->lock);
}
/*
* sfe_ipv6_insert_connection()
* Insert a connection into the hash.
*
* On entry we must be holding the lock that protects the hash table.
*/
static void sfe_ipv6_insert_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c)
{
struct sfe_ipv6_connection **hash_head;
struct sfe_ipv6_connection *prev_head;
unsigned int conn_idx;
/*
* Insert entry into the connection hash.
*/
conn_idx = sfe_ipv6_get_connection_hash(c->protocol, c->src_ip, c->src_port,
c->dest_ip, c->dest_port);
hash_head = &si->conn_hash[conn_idx];
prev_head = *hash_head;
c->prev = NULL;
if (prev_head) {
prev_head->prev = c;
}
c->next = prev_head;
*hash_head = c;
/*
* Insert entry into the "all connections" list.
*/
if (si->all_connections_tail) {
c->all_connections_prev = si->all_connections_tail;
si->all_connections_tail->all_connections_next = c;
} else {
c->all_connections_prev = NULL;
si->all_connections_head = c;
}
si->all_connections_tail = c;
c->all_connections_next = NULL;
si->num_connections++;
/*
* Insert the connection match objects too.
*/
sfe_ipv6_insert_connection_match(si, c->original_match);
sfe_ipv6_insert_connection_match(si, c->reply_match);
}
/*
* sfe_ipv6_remove_connection()
* Remove a sfe_ipv6_connection object from the hash.
*
* On entry we must be holding the lock that protects the hash table.
*/
static void sfe_ipv6_remove_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c)
{
/*
* Remove the connection match objects.
*/
sfe_ipv6_remove_connection_match(si, c->reply_match);
sfe_ipv6_remove_connection_match(si, c->original_match);
/*
* Unlink the connection.
*/
if (c->prev) {
c->prev->next = c->next;
} else {
unsigned int conn_idx = sfe_ipv6_get_connection_hash(c->protocol, c->src_ip, c->src_port,
c->dest_ip, c->dest_port);
si->conn_hash[conn_idx] = c->next;
}
if (c->next) {
c->next->prev = c->prev;
}
/*
* Unlink connection from all_connections list
*/
if (c->all_connections_prev) {
c->all_connections_prev->all_connections_next = c->all_connections_next;
} else {
si->all_connections_head = c->all_connections_next;
}
if (c->all_connections_next) {
c->all_connections_next->all_connections_prev = c->all_connections_prev;
} else {
si->all_connections_tail = c->all_connections_prev;
}
si->num_connections--;
}
/*
* sfe_ipv6_gen_sync_connection()
* Sync a connection.
*
* On entry to this function we expect that the lock for the connection is either
* already held or isn't required.
*/
static void sfe_ipv6_gen_sync_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c,
struct sfe_connection_sync *sis, sfe_sync_reason_t reason,
uint64_t now_jiffies)
{
struct sfe_ipv6_connection_match *original_cm;
struct sfe_ipv6_connection_match *reply_cm;
/*
* Fill in the update message.
*/
sis->protocol = c->protocol;
sis->src_ip.ip6[0] = c->src_ip[0];
sis->src_ip_xlate.ip6[0] = c->src_ip_xlate[0];
sis->dest_ip.ip6[0] = c->dest_ip[0];
sis->dest_ip_xlate.ip6[0] = c->dest_ip_xlate[0];
sis->src_port = c->src_port;
sis->src_port_xlate = c->src_port_xlate;
sis->dest_port = c->dest_port;
sis->dest_port_xlate = c->dest_port_xlate;
original_cm = c->original_match;
reply_cm = c->reply_match;
sis->src_td_max_window = original_cm->protocol_state.tcp.max_win;
sis->src_td_end = original_cm->protocol_state.tcp.end;
sis->src_td_max_end = original_cm->protocol_state.tcp.max_end;
sis->dest_td_max_window = reply_cm->protocol_state.tcp.max_win;
sis->dest_td_end = reply_cm->protocol_state.tcp.end;
sis->dest_td_max_end = reply_cm->protocol_state.tcp.max_end;
sis->src_new_packet_count = original_cm->rx_packet_count;
sis->src_new_byte_count = original_cm->rx_byte_count;
sis->dest_new_packet_count = reply_cm->rx_packet_count;
sis->dest_new_byte_count = reply_cm->rx_byte_count;
sfe_ipv6_connection_match_update_summary_stats(original_cm);
sfe_ipv6_connection_match_update_summary_stats(reply_cm);
sis->src_dev = original_cm->match_dev;
sis->src_packet_count = original_cm->rx_packet_count64;
sis->src_byte_count = original_cm->rx_byte_count64;
sis->dest_dev = reply_cm->match_dev;
sis->dest_packet_count = reply_cm->rx_packet_count64;
sis->dest_byte_count = reply_cm->rx_byte_count64;
sis->reason = reason;
/*
* Get the time increment since our last sync.
*/
sis->delta_jiffies = now_jiffies - c->last_sync_jiffies;
c->last_sync_jiffies = now_jiffies;
}
/*
* sfe_ipv6_flush_connection()
* Flush a connection and free all associated resources.
*
* We need to be called with bottom halves disabled locally as we need to acquire
* the connection hash lock and release it again. In general we're actually called
* from within a BH and so we're fine, but we're also called when connections are
* torn down.
*/
static void sfe_ipv6_flush_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c, sfe_sync_reason_t reason)
{
struct sfe_connection_sync sis;
uint64_t now_jiffies;
sfe_sync_rule_callback_t sync_rule_callback;
rcu_read_lock();
spin_lock_bh(&si->lock);
si->connection_flushes++;
sync_rule_callback = rcu_dereference(si->sync_rule_callback);
spin_unlock_bh(&si->lock);
if (sync_rule_callback) {
/*
* Generate a sync message and then sync.
*/
now_jiffies = get_jiffies_64();
sfe_ipv6_gen_sync_connection(si, c, &sis, reason, now_jiffies);
sync_rule_callback(&sis);
}
rcu_read_unlock();
/*
* Release our hold of the source and dest devices and free the memory
* for our connection objects.
*/
dev_put(c->original_dev);
dev_put(c->reply_dev);
kfree(c->original_match);
kfree(c->reply_match);
kfree(c);
}
/*
* sfe_ipv6_recv_udp()
* Handle UDP packet receives and forwarding.
*/
static int sfe_ipv6_recv_udp(struct sfe_ipv6 *si, struct sk_buff *skb, struct net_device *dev,
unsigned int len, struct sfe_ipv6_ip_hdr *iph, unsigned int ihl, bool flush_on_find)
{
struct sfe_ipv6_udp_hdr *udph;
struct sfe_ipv6_addr *src_ip;
struct sfe_ipv6_addr *dest_ip;
__be16 src_port;
__be16 dest_port;
struct sfe_ipv6_connection_match *cm;
struct net_device *xmit_dev;
struct sk_buff *new_skb,*temp ;
const struct net_device_ops *ops;
int queue_index = 0;
struct sfe_ipv6_connection *c;
/*
* Is our packet too short to contain a valid UDP header?
*/
if (!pskb_may_pull(skb, (sizeof(struct sfe_ipv6_udp_hdr) + ihl))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_HEADER_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("packet too short for UDP header\n");
return 0;
}
/*
* Read the IP address and port information. Read the IP header data first
* because we've almost certainly got that in the cache. We may not yet have
* the UDP header cached though so allow more time for any prefetching.
*/
src_ip = &iph->saddr;
dest_ip = &iph->daddr;
udph = (struct sfe_ipv6_udp_hdr *)(skb->data + ihl);
src_port = udph->source;
dest_port = udph->dest;
spin_lock_bh(&si->lock);
/*
* Look for a connection match.
*/
#ifdef CONFIG_NF_FLOW_COOKIE
cm = si->sfe_flow_cookie_table[skb->flow_cookie & SFE_FLOW_COOKIE_MASK].match;
if (unlikely(!cm)) {
cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_UDP, src_ip, src_port, dest_ip, dest_port);
}
#else
cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_UDP, src_ip, src_port, dest_ip, dest_port);
#endif
if (unlikely(!cm)) {
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_NO_CONNECTION]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("no connection found\n");
return 0;
}
/*
* If our packet has beern marked as "flush on find" we can't actually
* forward it in the fast path, but now that we've found an associated
* connection we can flush that out before we process the packet.
*/
if (unlikely(flush_on_find)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_IP_OPTIONS_OR_INITIAL_FRAGMENT]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("flush on find\n");
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
#ifdef CONFIG_XFRM
/*
* We can't accelerate the flow on this direction, just let it go
* through the slow path.
*/
if (unlikely(!cm->flow_accel)) {
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
return 0;
}
#endif
/*
* Does our hop_limit allow forwarding?
*/
if (unlikely(iph->hop_limit < 2)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_SMALL_TTL]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("hop_limit too low\n");
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* If our packet is larger than the MTU of the transmit interface then
* we can't forward it easily.
*/
if (unlikely(len > cm->xmit_dev_mtu)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_NEEDS_FRAGMENTATION]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("larger than mtu\n");
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* From this point on we're good to modify the packet.
*/
/*
* Decrement our hop_limit.
*/
iph->hop_limit -= 1;
/*
* Do we have to perform translations of the source address/port?
*/
if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC)) {
uint16_t udp_csum;
iph->saddr = cm->xlate_src_ip[0];
udph->source = cm->xlate_src_port;
/*
* Do we have a non-zero UDP checksum? If we do then we need
* to update it.
*/
udp_csum = udph->check;
if (likely(udp_csum)) {
uint32_t sum = udp_csum + cm->xlate_src_csum_adjustment;
sum = (sum & 0xffff) + (sum >> 16);
udph->check = (uint16_t)sum;
}
}
/*
* Do we have to perform translations of the destination address/port?
*/
if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST)) {
uint16_t udp_csum;
iph->daddr = cm->xlate_dest_ip[0];
udph->dest = cm->xlate_dest_port;
/*
* Do we have a non-zero UDP checksum? If we do then we need
* to update it.
*/
udp_csum = udph->check;
if (likely(udp_csum)) {
uint32_t sum = udp_csum + cm->xlate_dest_csum_adjustment;
sum = (sum & 0xffff) + (sum >> 16);
udph->check = (uint16_t)sum;
}
}
/*
* Update traffic stats.
*/
cm->rx_packet_count++;
cm->rx_byte_count += len;
/*
* If we're not already on the active list then insert ourselves at the tail
* of the current list.
*/
if (unlikely(!cm->active)) {
cm->active = true;
cm->active_prev = si->active_tail;
if (likely(si->active_tail)) {
si->active_tail->active_next = cm;
} else {
si->active_head = cm;
}
si->active_tail = cm;
}
xmit_dev = cm->xmit_dev;
skb->dev = xmit_dev;
c = cm->connection;
/*
* Check to see if we need to write a header.
*/
if (likely(c->use_destMac || cm->addEthMAC)) {
if (likely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR)) {
if (unlikely(!(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR))) {
dev_hard_header(skb, xmit_dev, ETH_P_IPV6,
cm->xmit_dest_mac, cm->xmit_src_mac, len);
} else {
/*
* For the simple case we write this really fast.
*/
if (cm->expand_head)
pskb_expand_head(skb, ETH_HLEN, 0,
GFP_ATOMIC);
struct sfe_ipv6_eth_hdr *eth = (struct sfe_ipv6_eth_hdr *)__skb_push(skb, ETH_HLEN);
eth->h_proto = htons(ETH_P_IPV6);
eth->h_dest[0] = cm->xmit_dest_mac[0];
eth->h_dest[1] = cm->xmit_dest_mac[1];
eth->h_dest[2] = cm->xmit_dest_mac[2];
eth->h_source[0] = cm->xmit_src_mac[0];
eth->h_source[1] = cm->xmit_src_mac[1];
eth->h_source[2] = cm->xmit_src_mac[2];
}
}
}
#ifdef SFE_CONFIG_MARK
/*
* Mark outgoing packet.
*/
skb->mark = cm->connection->mark;
if (skb->mark) {
DEBUG_TRACE("SKB MARK is NON ZERO %x\n", skb->mark);
}
#endif
si->packets_forwarded++;
spin_unlock_bh(&si->lock);
/*
* We're going to check for GSO flags when we transmit the packet so
* start fetching the necessary cache line now.
*/
prefetch(skb_shinfo(skb));
/*
* Send the packet on its way.
*/
/*
* do _aggr is set to true in case we need aggregation to happen
*/
if (cm->do_aggr)
{
pr_debug("\nUDP_v6-Downlink");
/*
* Mark that this packet has been fast forwarded.
*/
skb->fast_forwarded = 1;
/* DownLink: skb pkt aggregation. */
new_skb=skb;
new_skb->next =NULL;
/* Update WLAN Queue index and priority. */
ops = xmit_dev->netdev_ops;
if (ops->ndo_select_queue)
queue_index = ops->ndo_select_queue(xmit_dev, skb, NULL,
NULL);
skb_set_queue_mapping(skb, queue_index);
/* Check if the Threshold is reached*/
if (aggr_params[cm->index].curr_dl_skb_num == (var_thresh - 1))
{
if (aggr_params[cm->index].skb_tail)
{
aggr_params[cm->index].skb_tail->next = new_skb;
aggr_params[cm->index].skb_tail = aggr_params[cm->index].skb_tail->next;
}
threshold_count++;
if(aggr_params[cm->index].skb_head)
dev_queue_xmit_list(aggr_params[cm->index].skb_head);
else
dev_queue_xmit(new_skb);
pr_debug("\nPacket in List: %d ",aggr_params[cm->index].curr_dl_skb_num);
/* Reset the params. */
aggr_params[cm->index].curr_dl_skb_num = 0;
aggr_params[cm->index].skb_head = NULL;
aggr_params[cm->index].skb_tail = NULL;
return 1;
}
else
{
/* skb head is null for the first packet*/
if(aggr_params[cm->index].skb_head == NULL)
{
aggr_params[cm->index].skb_head = new_skb;
aggr_params[cm->index].skb_tail = new_skb;
init_timer_module(cm->index);
}
else
{
aggr_params[cm->index].skb_tail->next = new_skb;
aggr_params[cm->index].skb_tail = aggr_params[cm->index].skb_tail->next;
}
aggr_params[cm->index].curr_dl_skb_num ++;
return 1;
}
}
else
{
pr_debug("\nUDP_v6-Uplink. No Aggregation. ");
dev_queue_xmit(skb);
return 1;
}
}
/*
* sfe_ipv6_process_tcp_option_sack()
* Parse TCP SACK option and update ack according
*/
static bool sfe_ipv6_process_tcp_option_sack(const struct sfe_ipv6_tcp_hdr *th, const uint32_t data_offs,
uint32_t *ack)
{
uint32_t length = sizeof(struct sfe_ipv6_tcp_hdr);
uint8_t *ptr = (uint8_t *)th + length;
/*
* If option is TIMESTAMP discard it.
*/
if (likely(data_offs == length + TCPOLEN_TIMESTAMP + 1 + 1)
&& likely(ptr[0] == TCPOPT_NOP)
&& likely(ptr[1] == TCPOPT_NOP)
&& likely(ptr[2] == TCPOPT_TIMESTAMP)
&& likely(ptr[3] == TCPOLEN_TIMESTAMP)) {
return true;
}
/*
* TCP options. Parse SACK option.
*/
while (length < data_offs) {
uint8_t size;
uint8_t kind;
ptr = (uint8_t *)th + length;
kind = *ptr;
/*
* NOP, for padding
* Not in the switch because to fast escape and to not calculate size
*/
if (kind == TCPOPT_NOP) {
length++;
continue;
}
if (kind == TCPOPT_SACK) {
uint32_t sack = 0;
uint8_t re = 1 + 1;
size = *(ptr + 1);
if ((size < (1 + 1 + TCPOLEN_SACK_PERBLOCK))
|| ((size - (1 + 1)) % (TCPOLEN_SACK_PERBLOCK))
|| (size > (data_offs - length))) {
return false;
}
re += 4;
while (re < size) {
uint32_t sack_re;
uint8_t *sptr = ptr + re;
sack_re = (sptr[0] << 24) | (sptr[1] << 16) | (sptr[2] << 8) | sptr[3];
if (sack_re > sack) {
sack = sack_re;
}
re += TCPOLEN_SACK_PERBLOCK;
}
if (sack > *ack) {
*ack = sack;
}
length += size;
continue;
}
if (kind == TCPOPT_EOL) {
return true;
}
size = *(ptr + 1);
if (size < 2) {
return false;
}
length += size;
}
return true;
}
/*
* sfe_ipv6_recv_tcp()
* Handle TCP packet receives and forwarding.
*/
static int sfe_ipv6_recv_tcp(struct sfe_ipv6 *si, struct sk_buff *skb, struct net_device *dev,
unsigned int len, struct sfe_ipv6_ip_hdr *iph, unsigned int ihl, bool flush_on_find)
{
struct sfe_ipv6_tcp_hdr *tcph;
struct sfe_ipv6_addr *src_ip;
struct sfe_ipv6_addr *dest_ip;
__be16 src_port;
__be16 dest_port;
struct sfe_ipv6_connection_match *cm;
struct sfe_ipv6_connection_match *counter_cm;
uint32_t flags;
struct net_device *xmit_dev;
struct sk_buff *new_skb ;
const struct net_device_ops *ops;
int queue_index = 0;
struct sfe_ipv6_connection *c;
/*
* Is our packet too short to contain a valid UDP header?
*/
if (!pskb_may_pull(skb, (sizeof(struct sfe_ipv6_tcp_hdr) + ihl))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_HEADER_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("packet too short for TCP header\n");
return 0;
}
/*
* Read the IP address and port information. Read the IP header data first
* because we've almost certainly got that in the cache. We may not yet have
* the TCP header cached though so allow more time for any prefetching.
*/
src_ip = &iph->saddr;
dest_ip = &iph->daddr;
tcph = (struct sfe_ipv6_tcp_hdr *)(skb->data + ihl);
src_port = tcph->source;
dest_port = tcph->dest;
flags = tcp_flag_word(tcph);
spin_lock_bh(&si->lock);
/*
* Look for a connection match.
*/
#ifdef CONFIG_NF_FLOW_COOKIE
cm = si->sfe_flow_cookie_table[skb->flow_cookie & SFE_FLOW_COOKIE_MASK].match;
if (unlikely(!cm)) {
cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port);
}
#else
cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port);
#endif
if (unlikely(!cm)) {
/*
* We didn't get a connection but as TCP is connection-oriented that
* may be because this is a non-fast connection (not running established).
* For diagnostic purposes we differentiate this here.
*/
if (likely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) == TCP_FLAG_ACK)) {
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_FAST_FLAGS]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("no connection found - fast flags\n");
return 0;
}
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_SLOW_FLAGS]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("no connection found - slow flags: 0x%x\n",
flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK));
return 0;
}
/*
* If our packet has beern marked as "flush on find" we can't actually
* forward it in the fast path, but now that we've found an associated
* connection we can flush that out before we process the packet.
*/
if (unlikely(flush_on_find)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("flush on find\n");
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
#ifdef CONFIG_XFRM
/*
* We can't accelerate the flow on this direction, just let it go
* through the slow path.
*/
if (unlikely(!cm->flow_accel)) {
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
return 0;
}
#endif
/*
* Does our hop_limit allow forwarding?
*/
if (unlikely(iph->hop_limit < 2)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_TTL]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("hop_limit too low\n");
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* If our packet is larger than the MTU of the transmit interface then
* we can't forward it easily.
*/
if (unlikely((len > cm->xmit_dev_mtu) && !skb_is_gso(skb))) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_NEEDS_FRAGMENTATION]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("larger than mtu\n");
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* Look at our TCP flags. Anything missing an ACK or that has RST, SYN or FIN
* set is not a fast path packet.
*/
if (unlikely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) != TCP_FLAG_ACK)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_FLAGS]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("TCP flags: 0x%x are not fast\n",
flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK));
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
counter_cm = cm->counter_match;
/*
* Are we doing sequence number checking?
*/
if (unlikely(!(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK))) {
uint32_t seq;
uint32_t ack;
uint32_t sack;
uint32_t data_offs;
uint32_t end;
uint32_t left_edge;
uint32_t scaled_win;
uint32_t max_end;
/*
* Is our sequence fully past the right hand edge of the window?
*/
seq = ntohl(tcph->seq);
if (unlikely((int32_t)(seq - (cm->protocol_state.tcp.max_end + 1)) > 0)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_EXCEEDS_RIGHT_EDGE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("seq: %u exceeds right edge: %u\n",
seq, cm->protocol_state.tcp.max_end + 1);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* Check that our TCP data offset isn't too short.
*/
data_offs = tcph->doff << 2;
if (unlikely(data_offs < sizeof(struct sfe_ipv6_tcp_hdr))) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_DATA_OFFS]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("TCP data offset: %u, too small\n", data_offs);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* Update ACK according to any SACK option.
*/
ack = ntohl(tcph->ack_seq);
sack = ack;
if (unlikely(!sfe_ipv6_process_tcp_option_sack(tcph, data_offs, &sack))) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_BAD_SACK]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("TCP option SACK size is wrong\n");
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* Check that our TCP data offset isn't past the end of the packet.
*/
data_offs += sizeof(struct sfe_ipv6_ip_hdr);
if (unlikely(len < data_offs)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_BIG_DATA_OFFS]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("TCP data offset: %u, past end of packet: %u\n",
data_offs, len);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
end = seq + len - data_offs;
/*
* Is our sequence fully before the left hand edge of the window?
*/
if (unlikely((int32_t)(end - (cm->protocol_state.tcp.end
- counter_cm->protocol_state.tcp.max_win - 1)) < 0)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_BEFORE_LEFT_EDGE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("seq: %u before left edge: %u\n",
end, cm->protocol_state.tcp.end - counter_cm->protocol_state.tcp.max_win - 1);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* Are we acking data that is to the right of what has been sent?
*/
if (unlikely((int32_t)(sack - (counter_cm->protocol_state.tcp.end + 1)) > 0)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_EXCEEDS_RIGHT_EDGE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("ack: %u exceeds right edge: %u\n",
sack, counter_cm->protocol_state.tcp.end + 1);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* Is our ack too far before the left hand edge of the window?
*/
left_edge = counter_cm->protocol_state.tcp.end
- cm->protocol_state.tcp.max_win
- SFE_IPV6_TCP_MAX_ACK_WINDOW
- 1;
if (unlikely((int32_t)(sack - left_edge) < 0)) {
struct sfe_ipv6_connection *c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_BEFORE_LEFT_EDGE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("ack: %u before left edge: %u\n", sack, left_edge);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* Have we just seen the largest window size yet for this connection? If yes
* then we need to record the new value.
*/
scaled_win = ntohs(tcph->window) << cm->protocol_state.tcp.win_scale;
scaled_win += (sack - ack);
if (unlikely(cm->protocol_state.tcp.max_win < scaled_win)) {
cm->protocol_state.tcp.max_win = scaled_win;
}
/*
* If our sequence and/or ack numbers have advanced then record the new state.
*/
if (likely((int32_t)(end - cm->protocol_state.tcp.end) >= 0)) {
cm->protocol_state.tcp.end = end;
}
max_end = sack + scaled_win;
if (likely((int32_t)(max_end - counter_cm->protocol_state.tcp.max_end) >= 0)) {
counter_cm->protocol_state.tcp.max_end = max_end;
}
}
/*
* From this point on we're good to modify the packet.
*/
/*
* Decrement our hop_limit.
*/
iph->hop_limit -= 1;
/*
* Do we have to perform translations of the source address/port?
*/
if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC)) {
uint16_t tcp_csum;
uint32_t sum;
iph->saddr = cm->xlate_src_ip[0];
tcph->source = cm->xlate_src_port;
/*
* Do we have a non-zero UDP checksum? If we do then we need
* to update it.
*/
tcp_csum = tcph->check;
sum = tcp_csum + cm->xlate_src_csum_adjustment;
sum = (sum & 0xffff) + (sum >> 16);
tcph->check = (uint16_t)sum;
}
/*
* Do we have to perform translations of the destination address/port?
*/
if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST)) {
uint16_t tcp_csum;
uint32_t sum;
iph->daddr = cm->xlate_dest_ip[0];
tcph->dest = cm->xlate_dest_port;
/*
* Do we have a non-zero UDP checksum? If we do then we need
* to update it.
*/
tcp_csum = tcph->check;
sum = tcp_csum + cm->xlate_dest_csum_adjustment;
sum = (sum & 0xffff) + (sum >> 16);
tcph->check = (uint16_t)sum;
}
/*
* Update traffic stats.
*/
cm->rx_packet_count++;
cm->rx_byte_count += len;
/*
* If we're not already on the active list then insert ourselves at the tail
* of the current list.
*/
if (unlikely(!cm->active)) {
cm->active = true;
cm->active_prev = si->active_tail;
if (likely(si->active_tail)) {
si->active_tail->active_next = cm;
} else {
si->active_head = cm;
}
si->active_tail = cm;
}
xmit_dev = cm->xmit_dev;
skb->dev = xmit_dev;
c = cm->connection;
/*
* Check to see if we need to write a header.
*/
if (likely(c->use_destMac || cm->addEthMAC)) {
if (likely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR)) {
if (unlikely(!(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR))) {
dev_hard_header(skb, xmit_dev, ETH_P_IPV6,
cm->xmit_dest_mac, cm->xmit_src_mac, len);
} else {
/*
* For the simple case we write this really fast.
*/
if (cm->expand_head)
pskb_expand_head(skb, ETH_HLEN, 0,
GFP_ATOMIC);
struct sfe_ipv6_eth_hdr *eth = (struct sfe_ipv6_eth_hdr *)__skb_push(skb, ETH_HLEN);
eth->h_proto = htons(ETH_P_IPV6);
eth->h_dest[0] = cm->xmit_dest_mac[0];
eth->h_dest[1] = cm->xmit_dest_mac[1];
eth->h_dest[2] = cm->xmit_dest_mac[2];
eth->h_source[0] = cm->xmit_src_mac[0];
eth->h_source[1] = cm->xmit_src_mac[1];
eth->h_source[2] = cm->xmit_src_mac[2];
}
}
}
#ifdef SFE_CONFIG_MARK
/*
* Mark outgoing packet
*/
skb->mark = cm->connection->mark;
if (skb->mark) {
DEBUG_TRACE("SKB MARK is NON ZERO %x\n", skb->mark);
}
#endif
si->packets_forwarded++;
spin_unlock_bh(&si->lock);
/*
* We're going to check for GSO flags when we transmit the packet so
* start fetching the necessary cache line now.
*/
prefetch(skb_shinfo(skb));
/*
* Send the packet on its way.
*/
/*
* do _aggr is set to true in case we need aggregation to happen
*/
if ( cm->do_aggr)
{
pr_debug("\nTCP_v6-Downlink");
/*
* Mark that this packet has been fast forwarded.
*/
skb->fast_forwarded = 1;
/*DownLink: skb pkt aggregation*/
new_skb=skb;
new_skb->next =NULL;
/* Update WLAN Queue index and priority. */
ops = xmit_dev->netdev_ops;
if (ops->ndo_select_queue)
queue_index = ops->ndo_select_queue(xmit_dev, skb, NULL,
NULL);
skb_set_queue_mapping(skb, queue_index);
/* Check if the Threshold is reached*/
if (aggr_params[cm->index].curr_dl_skb_num == var_thresh- 1)
{
if (aggr_params[cm->index].skb_tail)
{
aggr_params[cm->index].skb_tail->next = new_skb;
aggr_params[cm->index].skb_tail = aggr_params[cm->index].skb_tail->next;
}
threshold_count++;
pr_debug("\nPacket in List: %d ",aggr_params[cm->index].curr_dl_skb_num);
if(aggr_params[cm->index].skb_head)
dev_queue_xmit_list(aggr_params[cm->index].skb_head);
else
dev_queue_xmit(new_skb);
/* Reset the params. */
aggr_params[cm->index].curr_dl_skb_num = 0;
aggr_params[cm->index].skb_head = NULL;
aggr_params[cm->index].skb_tail = NULL;
return 1;
}
else
{
/* skb head is null for the first packet*/
if(aggr_params[cm->index].skb_head == NULL)
{
aggr_params[cm->index].skb_head = new_skb;
aggr_params[cm->index].skb_tail = new_skb;
init_timer_module(cm->index);
}
else
{
aggr_params[cm->index].skb_tail->next = new_skb;
aggr_params[cm->index].skb_tail = aggr_params[cm->index].skb_tail->next;
}
aggr_params[cm->index].curr_dl_skb_num ++;
return 1;
}
}
else
{
pr_debug("\nTCP_v6-UpLink. No Aggregation. ");
dev_queue_xmit(skb);
return 1;
}
}
/*
* sfe_ipv6_recv_icmp()
* Handle ICMP packet receives.
*
* ICMP packets aren't handled as a "fast path" and always have us process them
* through the default Linux stack. What we do need to do is look for any errors
* about connections we are handling in the fast path. If we find any such
* connections then we want to flush their state so that the ICMP error path
* within Linux has all of the correct state should it need it.
*/
static int sfe_ipv6_recv_icmp(struct sfe_ipv6 *si, struct sk_buff *skb, struct net_device *dev,
unsigned int len, struct sfe_ipv6_ip_hdr *iph, unsigned int ihl)
{
struct icmp6hdr *icmph;
struct sfe_ipv6_ip_hdr *icmp_iph;
struct sfe_ipv6_udp_hdr *icmp_udph;
struct sfe_ipv6_tcp_hdr *icmp_tcph;
struct sfe_ipv6_addr *src_ip;
struct sfe_ipv6_addr *dest_ip;
__be16 src_port;
__be16 dest_port;
struct sfe_ipv6_connection_match *cm;
struct sfe_ipv6_connection *c;
uint8_t next_hdr;
/*
* Is our packet too short to contain a valid UDP header?
*/
len -= ihl;
if (!pskb_may_pull(skb, ihl + sizeof(struct icmp6hdr))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_HEADER_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("packet too short for ICMP header\n");
return 0;
}
/*
* We only handle "destination unreachable" and "time exceeded" messages.
*/
icmph = (struct icmp6hdr *)(skb->data + ihl);
if ((icmph->icmp6_type != ICMPV6_DEST_UNREACH)
&& (icmph->icmp6_type != ICMPV6_TIME_EXCEED)) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_UNHANDLED_TYPE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("unhandled ICMP type: 0x%x\n", icmph->icmp6_type);
return 0;
}
/*
* Do we have the full embedded IP header?
* We should have 8 bytes of next L4 header - that's enough to identify
* the connection.
*/
len -= sizeof(struct icmp6hdr);
ihl += sizeof(struct icmp6hdr);
if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ip_hdr) + sizeof(struct sfe_ipv6_ext_hdr))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_HEADER_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("Embedded IP header not complete\n");
return 0;
}
/*
* Is our embedded IP version wrong?
*/
icmp_iph = (struct sfe_ipv6_ip_hdr *)(icmph + 1);
if (unlikely(icmp_iph->version != 6)) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_NON_V6]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("IP version: %u\n", icmp_iph->version);
return 0;
}
len -= sizeof(struct sfe_ipv6_ip_hdr);
ihl += sizeof(struct sfe_ipv6_ip_hdr);
next_hdr = icmp_iph->nexthdr;
while (unlikely(sfe_ipv6_is_ext_hdr(next_hdr))) {
struct sfe_ipv6_ext_hdr *ext_hdr;
unsigned int ext_hdr_len;
ext_hdr = (struct sfe_ipv6_ext_hdr *)(skb->data + ihl);
if (next_hdr == SFE_IPV6_EXT_HDR_FRAG) {
struct sfe_ipv6_frag_hdr *frag_hdr = (struct sfe_ipv6_frag_hdr *)ext_hdr;
unsigned int frag_off = ntohs(frag_hdr->frag_off);
if (frag_off & SFE_IPV6_FRAG_OFFSET) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_NON_INITIAL_FRAGMENT]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("non-initial fragment\n");
return 0;
}
}
ext_hdr_len = ext_hdr->hdr_len;
ext_hdr_len <<= 3;
ext_hdr_len += sizeof(struct sfe_ipv6_ext_hdr);
len -= ext_hdr_len;
ihl += ext_hdr_len;
/*
* We should have 8 bytes of next header - that's enough to identify
* the connection.
*/
if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("extension header %d not completed\n", next_hdr);
return 0;
}
next_hdr = ext_hdr->next_hdr;
}
/*
* Handle the embedded transport layer header.
*/
switch (next_hdr) {
case IPPROTO_UDP:
icmp_udph = (struct sfe_ipv6_udp_hdr *)(skb->data + ihl);
src_port = icmp_udph->source;
dest_port = icmp_udph->dest;
break;
case IPPROTO_TCP:
icmp_tcph = (struct sfe_ipv6_tcp_hdr *)(skb->data + ihl);
src_port = icmp_tcph->source;
dest_port = icmp_tcph->dest;
break;
default:
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_UNHANDLED_PROTOCOL]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("Unhandled embedded IP protocol: %u\n", next_hdr);
return 0;
}
src_ip = &icmp_iph->saddr;
dest_ip = &icmp_iph->daddr;
spin_lock_bh(&si->lock);
/*
* Look for a connection match. Note that we reverse the source and destination
* here because our embedded message contains a packet that was sent in the
* opposite direction to the one in which we just received it. It will have
* been sent on the interface from which we received it though so that's still
* ok to use.
*/
cm = sfe_ipv6_find_connection_match(si, dev, icmp_iph->nexthdr, dest_ip, dest_port, src_ip, src_port);
if (unlikely(!cm)) {
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_NO_CONNECTION]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("no connection found\n");
return 0;
}
/*
* We found a connection so now remove it from the connection list and flush
* its state.
*/
c = cm->connection;
sfe_ipv6_remove_connection(si, c);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_FLUSHED_CONNECTION]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_FLUSH);
return 0;
}
/*
* sfe_ipv6_recv()
* Handle packet receives and forwaring.
*
* Returns 1 if the packet is forwarded or 0 if it isn't.
*/
int sfe_ipv6_recv(struct net_device *dev, struct sk_buff *skb)
{
struct sfe_ipv6 *si = &__si6;
unsigned int len;
unsigned int payload_len;
unsigned int ihl = sizeof(struct sfe_ipv6_ip_hdr);
bool flush_on_find = false;
struct sfe_ipv6_ip_hdr *iph;
uint8_t next_hdr;
/*
* Check that we have space for an IP header and an uplayer header here.
*/
len = skb->len;
if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("len: %u is too short\n", len);
return 0;
}
/*
* Is our IP version wrong?
*/
iph = (struct sfe_ipv6_ip_hdr *)skb->data;
if (unlikely(iph->version != 6)) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_NON_V6]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("IP version: %u\n", iph->version);
return 0;
}
/*
* Does our datagram fit inside the skb?
*/
payload_len = ntohs(iph->payload_len);
if (unlikely(payload_len > (len - ihl))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_DATAGRAM_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("payload_len: %u, exceeds len: %u\n", payload_len, (len - sizeof(struct sfe_ipv6_ip_hdr)));
return 0;
}
next_hdr = iph->nexthdr;
while (unlikely(sfe_ipv6_is_ext_hdr(next_hdr))) {
struct sfe_ipv6_ext_hdr *ext_hdr;
unsigned int ext_hdr_len;
ext_hdr = (struct sfe_ipv6_ext_hdr *)(skb->data + ihl);
if (next_hdr == SFE_IPV6_EXT_HDR_FRAG) {
struct sfe_ipv6_frag_hdr *frag_hdr = (struct sfe_ipv6_frag_hdr *)ext_hdr;
unsigned int frag_off = ntohs(frag_hdr->frag_off);
if (frag_off & SFE_IPV6_FRAG_OFFSET) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_NON_INITIAL_FRAGMENT]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("non-initial fragment\n");
return 0;
}
}
ext_hdr_len = ext_hdr->hdr_len;
ext_hdr_len <<= 3;
ext_hdr_len += sizeof(struct sfe_ipv6_ext_hdr);
ihl += ext_hdr_len;
if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) {
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("extension header %d not completed\n", next_hdr);
return 0;
}
flush_on_find = true;
next_hdr = ext_hdr->next_hdr;
}
if (IPPROTO_TCP == next_hdr) {
return sfe_ipv6_recv_tcp(si, skb, dev, len, iph, ihl, flush_on_find);
}
if (IPPROTO_UDP == next_hdr) {
return sfe_ipv6_recv_udp(si, skb, dev, len, iph, ihl, flush_on_find);
}
if (IPPROTO_ICMPV6 == next_hdr) {
return sfe_ipv6_recv_icmp(si, skb, dev, len, iph, ihl);
}
spin_lock_bh(&si->lock);
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UNHANDLED_PROTOCOL]++;
si->packets_not_forwarded++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("not UDP, TCP or ICMP: %u\n", next_hdr);
return 0;
}
/*
* sfe_ipv6_update_tcp_state()
* update TCP window variables.
*/
static void
sfe_ipv6_update_tcp_state(struct sfe_ipv6_connection *c,
struct sfe_connection_create *sic)
{
struct sfe_ipv6_connection_match *orig_cm;
struct sfe_ipv6_connection_match *repl_cm;
struct sfe_ipv6_tcp_connection_match *orig_tcp;
struct sfe_ipv6_tcp_connection_match *repl_tcp;
orig_cm = c->original_match;
repl_cm = c->reply_match;
orig_tcp = &orig_cm->protocol_state.tcp;
repl_tcp = &repl_cm->protocol_state.tcp;
/* update orig */
if (orig_tcp->max_win < sic->src_td_max_window) {
orig_tcp->max_win = sic->src_td_max_window;
}
if ((int32_t)(orig_tcp->end - sic->src_td_end) < 0) {
orig_tcp->end = sic->src_td_end;
}
if ((int32_t)(orig_tcp->max_end - sic->src_td_max_end) < 0) {
orig_tcp->max_end = sic->src_td_max_end;
}
/* update reply */
if (repl_tcp->max_win < sic->dest_td_max_window) {
repl_tcp->max_win = sic->dest_td_max_window;
}
if ((int32_t)(repl_tcp->end - sic->dest_td_end) < 0) {
repl_tcp->end = sic->dest_td_end;
}
if ((int32_t)(repl_tcp->max_end - sic->dest_td_max_end) < 0) {
repl_tcp->max_end = sic->dest_td_max_end;
}
/* update match flags */
orig_cm->flags &= ~SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
repl_cm->flags &= ~SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
if (sic->flags & SFE_CREATE_FLAG_NO_SEQ_CHECK) {
orig_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
repl_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
}
}
/*
* sfe_ipv6_update_protocol_state()
* update protocol specified state machine.
*/
static void
sfe_ipv6_update_protocol_state(struct sfe_ipv6_connection *c,
struct sfe_connection_create *sic)
{
switch (sic->protocol) {
case IPPROTO_TCP:
sfe_ipv6_update_tcp_state(c, sic);
break;
}
}
/*
* sfe_ipv6_update_rule()
* update forwarding rule after rule is created.
*/
void sfe_ipv6_update_rule(struct sfe_connection_create *sic)
{
struct sfe_ipv6_connection *c;
struct sfe_ipv6 *si = &__si6;
spin_lock_bh(&si->lock);
c = sfe_ipv6_find_connection(si,
sic->protocol,
sic->src_ip.ip6,
sic->src_port,
sic->dest_ip.ip6,
sic->dest_port);
if (c != NULL) {
sfe_ipv6_update_protocol_state(c, sic);
}
spin_unlock_bh(&si->lock);
}
/*
* sfe_ipv6_create_rule()
* Create a forwarding rule.
*/
int sfe_ipv6_create_rule(struct sfe_connection_create *sic)
{
struct sfe_ipv6 *si = &__si6;
struct sfe_ipv6_connection *c;
struct sfe_ipv6_connection_match *original_cm;
struct sfe_ipv6_connection_match *reply_cm;
struct net_device *dest_dev;
struct net_device *src_dev;
dest_dev = sic->dest_dev;
src_dev = sic->src_dev;
if (unlikely((dest_dev->reg_state != NETREG_REGISTERED) ||
(src_dev->reg_state != NETREG_REGISTERED))) {
return -EINVAL;
}
spin_lock_bh(&si->lock);
si->connection_create_requests++;
/*
* Check to see if there is already a flow that matches the rule we're
* trying to create. If there is then we can't create a new one.
*/
c = sfe_ipv6_find_connection(si,
sic->protocol,
sic->src_ip.ip6,
sic->src_port,
sic->dest_ip.ip6,
sic->dest_port);
if (c != NULL) {
si->connection_create_collisions++;
/*
* If we already have the flow then it's likely that this
* request to create the connection rule contains more
* up-to-date information. Check and update accordingly.
*/
sfe_ipv6_update_protocol_state(c, sic);
spin_unlock_bh(&si->lock);
DEBUG_TRACE("connection already exists - mark: %08x, p: %d\n"
" s: %s:%pM:%pI6:%u, d: %s:%pM:%pI6:%u\n",
sic->mark, sic->protocol,
sic->src_dev->name, sic->src_mac, sic->src_ip.ip6, ntohs(sic->src_port),
sic->dest_dev->name, sic->dest_mac, sic->dest_ip.ip6, ntohs(sic->dest_port));
return -EADDRINUSE;
}
/*
* Allocate the various connection tracking objects.
*/
c = (struct sfe_ipv6_connection *)kmalloc(sizeof(struct sfe_ipv6_connection), GFP_ATOMIC);
if (unlikely(!c)) {
spin_unlock_bh(&si->lock);
return -ENOMEM;
}
original_cm = (struct sfe_ipv6_connection_match *)kmalloc(sizeof(struct sfe_ipv6_connection_match), GFP_ATOMIC);
if (unlikely(!original_cm)) {
spin_unlock_bh(&si->lock);
kfree(c);
return -ENOMEM;
}
reply_cm = (struct sfe_ipv6_connection_match *)kmalloc(sizeof(struct sfe_ipv6_connection_match), GFP_ATOMIC);
if (unlikely(!reply_cm)) {
spin_unlock_bh(&si->lock);
kfree(original_cm);
kfree(c);
return -ENOMEM;
}
/*
* Fill in the "original" direction connection matching object.
* Note that the transmit MAC address is "dest_mac_xlate" because
* we always know both ends of a connection by their translated
* addresses and not their public addresses.
*/
original_cm->match_dev = src_dev;
original_cm->match_protocol = sic->protocol;
original_cm->match_src_ip[0] = sic->src_ip.ip6[0];
original_cm->match_src_port = sic->src_port;
original_cm->match_dest_ip[0] = sic->dest_ip.ip6[0];
original_cm->match_dest_port = sic->dest_port;
original_cm->xlate_src_ip[0] = sic->src_ip_xlate.ip6[0];
original_cm->xlate_src_port = sic->src_port_xlate;
original_cm->xlate_dest_ip[0] = sic->dest_ip_xlate.ip6[0];
original_cm->xlate_dest_port = sic->dest_port_xlate;
original_cm->rx_packet_count = 0;
original_cm->rx_packet_count64 = 0;
original_cm->rx_byte_count = 0;
original_cm->rx_byte_count64 = 0;
original_cm->xmit_dev = dest_dev;
original_cm->xmit_dev_mtu = sic->dest_mtu;
memcpy(original_cm->xmit_src_mac, dest_dev->dev_addr, ETH_ALEN);
memcpy(original_cm->xmit_dest_mac, sic->dest_mac_xlate, ETH_ALEN);
original_cm->connection = c;
original_cm->counter_match = reply_cm;
original_cm->flags = 0;
#ifdef CONFIG_NF_FLOW_COOKIE
original_cm->flow_cookie = 0;
#endif
#ifdef CONFIG_XFRM
original_cm->flow_accel = sic->original_accel;
#endif
original_cm->active_next = NULL;
original_cm->active_prev = NULL;
original_cm->active = false;
original_cm->expand_head = true;
/*
* For PPP links we don't write an L2 header. For everything else we do.
*/
if (!(dest_dev->flags & IFF_POINTOPOINT)) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR;
/*
* If our dev writes Ethernet headers then we can write a really fast
* version.
*/
if (dest_dev->header_ops) {
if (dest_dev->header_ops->create == eth_header) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR;
}
}
}
/*
* Fill in the "reply" direction connection matching object.
*/
reply_cm->match_dev = dest_dev;
reply_cm->match_protocol = sic->protocol;
reply_cm->match_src_ip[0] = sic->dest_ip_xlate.ip6[0];
reply_cm->match_src_port = sic->dest_port_xlate;
reply_cm->match_dest_ip[0] = sic->src_ip_xlate.ip6[0];
reply_cm->match_dest_port = sic->src_port_xlate;
reply_cm->xlate_src_ip[0] = sic->dest_ip.ip6[0];
reply_cm->xlate_src_port = sic->dest_port;
reply_cm->xlate_dest_ip[0] = sic->src_ip.ip6[0];
reply_cm->xlate_dest_port = sic->src_port;
reply_cm->rx_packet_count = 0;
reply_cm->rx_packet_count64 = 0;
reply_cm->rx_byte_count = 0;
reply_cm->rx_byte_count64 = 0;
reply_cm->xmit_dev = src_dev;
reply_cm->xmit_dev_mtu = sic->src_mtu;
memcpy(reply_cm->xmit_src_mac, src_dev->dev_addr, ETH_ALEN);
memcpy(reply_cm->xmit_dest_mac, sic->src_mac, ETH_ALEN);
reply_cm->connection = c;
reply_cm->counter_match = original_cm;
reply_cm->flags = 0;
#ifdef CONFIG_NF_FLOW_COOKIE
reply_cm->flow_cookie = 0;
#endif
#ifdef CONFIG_XFRM
reply_cm->flow_accel = sic->reply_accel;
#endif
reply_cm->active_next = NULL;
reply_cm->active_prev = NULL;
reply_cm->active = false;
reply_cm->expand_head = true;
/*
* For PPP links we don't write an L2 header. For everything else we do.
*/
if (!(src_dev->flags & IFF_POINTOPOINT)) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR;
/*
* If our dev writes Ethernet headers then we can write a really fast
* version.
*/
if (src_dev->header_ops) {
if (src_dev->header_ops->create == eth_header) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR;
}
}
}
if (!sfe_ipv6_addr_equal(sic->dest_ip.ip6, sic->dest_ip_xlate.ip6) || sic->dest_port != sic->dest_port_xlate) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC;
original_cm->expand_head = false;
reply_cm->expand_head = false;
}
if (!sfe_ipv6_addr_equal(sic->src_ip.ip6, sic->src_ip_xlate.ip6) || sic->src_port != sic->src_port_xlate) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST;
original_cm->expand_head = false;
reply_cm->expand_head = false;
}
c->protocol = sic->protocol;
c->src_ip[0] = sic->src_ip.ip6[0];
c->src_ip_xlate[0] = sic->src_ip_xlate.ip6[0];
c->src_port = sic->src_port;
c->src_port_xlate = sic->src_port_xlate;
c->original_dev = src_dev;
c->original_match = original_cm;
c->dest_ip[0] = sic->dest_ip.ip6[0];
c->dest_ip_xlate[0] = sic->dest_ip_xlate.ip6[0];
c->dest_port = sic->dest_port;
c->dest_port_xlate = sic->dest_port_xlate;
c->reply_dev = dest_dev;
c->reply_match = reply_cm;
c->mark = sic->mark;
c->debug_read_seq = 0;
c->last_sync_jiffies = get_jiffies_64();
if (strncmp(dest_dev->name, si->ipv6_iface, strlen(si->ipv6_iface) - 1)== 0) {
c->use_destMac = false;
original_cm->addEthMAC = false;
reply_cm->addEthMAC = true;
}
else if (strncmp(src_dev->name, si->ipv6_iface, strlen(si->ipv6_iface) - 1)== 0) {
c->use_destMac = false;
reply_cm->addEthMAC = false;
original_cm->addEthMAC = true;
}
else {
c->use_destMac = true;
reply_cm->addEthMAC = false;
original_cm->addEthMAC = false;
}
if ((strncmp(dest_dev->name, WLAN_INTF1, WLAN_INTF_LEN) == 0))
{
original_cm->do_aggr = aggr_on;
original_cm->index = SFE_WLAN_LINK_INDEX0;
reply_cm->do_aggr = false;
reply_cm->index = SFE_WLAN_LINK_INDEX_NONE;
/* For LAN-LAN communication make sure enough headroom is available. */
original_cm->expand_head = false;
reply_cm->expand_head = false;
}
else if ((strncmp(dest_dev->name, WLAN_INTF2, WLAN_INTF_LEN) == 0 ))
{
original_cm->do_aggr = aggr_on;
original_cm->index = SFE_WLAN_LINK_INDEX1;
reply_cm->do_aggr = false;
reply_cm->index = SFE_WLAN_LINK_INDEX_NONE;
/* For LAN-LAN communication make sure enough headroom is available. */
original_cm->expand_head = false;
reply_cm->expand_head = false;
}
else if ((strncmp(dest_dev->name, ECM_INTF, ECM_INTF_LEN) == 0 ))
{
/* Align the packets before giving to USB driver. */
original_cm->expand_head = true;
reply_cm->expand_head = true;
}
else
{
original_cm->do_aggr = false;
original_cm->index = SFE_WLAN_LINK_INDEX_NONE;
reply_cm->do_aggr = false;
reply_cm->index = SFE_WLAN_LINK_INDEX_NONE;
}
/*
* Take hold of our source and dest devices for the duration of the connection.
*/
dev_hold(c->original_dev);
dev_hold(c->reply_dev);
/*
* Initialize the protocol-specific information that we track.
*/
switch (sic->protocol) {
case IPPROTO_TCP:
original_cm->protocol_state.tcp.win_scale = sic->src_td_window_scale;
original_cm->protocol_state.tcp.max_win = sic->src_td_max_window ? sic->src_td_max_window : 1;
original_cm->protocol_state.tcp.end = sic->src_td_end;
original_cm->protocol_state.tcp.max_end = sic->src_td_max_end;
reply_cm->protocol_state.tcp.win_scale = sic->dest_td_window_scale;
reply_cm->protocol_state.tcp.max_win = sic->dest_td_max_window ? sic->dest_td_max_window : 1;
reply_cm->protocol_state.tcp.end = sic->dest_td_end;
reply_cm->protocol_state.tcp.max_end = sic->dest_td_max_end;
if (sic->flags & SFE_CREATE_FLAG_NO_SEQ_CHECK) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
}
break;
}
sfe_ipv6_connection_match_compute_translations(original_cm);
sfe_ipv6_connection_match_compute_translations(reply_cm);
sfe_ipv6_insert_connection(si, c);
spin_unlock_bh(&si->lock);
/*
* We have everything we need!
*/
DEBUG_INFO("new connection - mark: %08x, p: %d\n"
" s: %s:%pM(%pM):%pI6(%pI6):%u(%u)\n"
" d: %s:%pM(%pM):%pI6(%pI6):%u(%u)\n",
sic->mark, sic->protocol,
sic->src_dev->name, sic->src_mac, sic->src_mac_xlate,
sic->src_ip.ip6, sic->src_ip_xlate.ip6, ntohs(sic->src_port), ntohs(sic->src_port_xlate),
dest_dev->name, sic->dest_mac, sic->dest_mac_xlate,
sic->dest_ip.ip6, sic->dest_ip_xlate.ip6, ntohs(sic->dest_port), ntohs(sic->dest_port_xlate));
return 0;
}
/*
* sfe_ipv6_destroy_rule()
* Destroy a forwarding rule.
*/
void sfe_ipv6_destroy_rule(struct sfe_connection_destroy *sid)
{
struct sfe_ipv6 *si = &__si6;
struct sfe_ipv6_connection *c;
spin_lock_bh(&si->lock);
si->connection_destroy_requests++;
/*
* Check to see if we have a flow that matches the rule we're trying
* to destroy. If there isn't then we can't destroy it.
*/
c = sfe_ipv6_find_connection(si, sid->protocol, sid->src_ip.ip6, sid->src_port,
sid->dest_ip.ip6, sid->dest_port);
if (!c) {
si->connection_destroy_misses++;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("connection does not exist - p: %d, s: %pI6:%u, d: %pI6:%u\n",
sid->protocol, sid->src_ip.ip6, ntohs(sid->src_port),
sid->dest_ip.ip6, ntohs(sid->dest_port));
return;
}
/*
* Remove our connection details from the hash tables.
*/
sfe_ipv6_remove_connection(si, c);
spin_unlock_bh(&si->lock);
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_DESTROY);
DEBUG_INFO("connection destroyed - p: %d, s: %pI6:%u, d: %pI6:%u\n",
sid->protocol, sid->src_ip.ip6, ntohs(sid->src_port),
sid->dest_ip.ip6, ntohs(sid->dest_port));
}
/*
* sfe_ipv6_register_sync_rule_callback()
* Register a callback for rule synchronization.
*/
void sfe_ipv6_register_sync_rule_callback(sfe_sync_rule_callback_t sync_rule_callback)
{
struct sfe_ipv6 *si = &__si6;
spin_lock_bh(&si->lock);
rcu_assign_pointer(si->sync_rule_callback, sync_rule_callback);
spin_unlock_bh(&si->lock);
}
/*
* sfe_ipv6_get_debug_dev()
*/
static ssize_t sfe_ipv6_get_debug_dev(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct sfe_ipv6 *si = &__si6;
ssize_t count;
int num;
spin_lock_bh(&si->lock);
num = si->debug_dev;
spin_unlock_bh(&si->lock);
count = snprintf(buf, (ssize_t)PAGE_SIZE, "%d\n", num);
return count;
}
/*
* sfe_ipv6_destroy_all_rules_for_dev()
* Destroy all connections that match a particular device.
*
* If we pass dev as NULL then this destroys all connections.
*/
void sfe_ipv6_destroy_all_rules_for_dev(struct net_device *dev)
{
struct sfe_ipv6 *si = &__si6;
struct sfe_ipv6_connection *c;
another_round:
spin_lock_bh(&si->lock);
for (c = si->all_connections_head; c; c = c->all_connections_next) {
/*
* Does this connection relate to the device we are destroying?
*/
if (!dev
|| (dev == c->original_dev)
|| (dev == c->reply_dev)) {
break;
}
}
if (c) {
sfe_ipv6_remove_connection(si, c);
}
spin_unlock_bh(&si->lock);
if (c) {
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_DESTROY);
goto another_round;
}
}
/*
* sfe_ipv6_periodic_sync()
*/
static void sfe_ipv6_periodic_sync(unsigned long arg)
{
struct sfe_ipv6 *si = (struct sfe_ipv6 *)arg;
uint64_t now_jiffies;
int quota;
sfe_sync_rule_callback_t sync_rule_callback;
now_jiffies = get_jiffies_64();
rcu_read_lock();
sync_rule_callback = rcu_dereference(si->sync_rule_callback);
if (!sync_rule_callback) {
rcu_read_unlock();
goto done;
}
spin_lock_bh(&si->lock);
sfe_ipv6_update_summary_stats(si);
/*
* Get an estimate of the number of connections to parse in this sync.
*/
quota = (si->num_connections + 63) / 64;
/*
* Walk the "active" list and sync the connection state.
*/
while (quota--) {
struct sfe_ipv6_connection_match *cm;
struct sfe_ipv6_connection_match *counter_cm;
struct sfe_ipv6_connection *c;
struct sfe_connection_sync sis;
cm = si->active_head;
if (!cm) {
break;
}
/*
* There's a possibility that our counter match is in the active list too.
* If it is then remove it.
*/
counter_cm = cm->counter_match;
if (counter_cm->active) {
counter_cm->active = false;
/*
* We must have a connection preceding this counter match
* because that's the one that got us to this point, so we don't have
* to worry about removing the head of the list.
*/
counter_cm->active_prev->active_next = counter_cm->active_next;
if (likely(counter_cm->active_next)) {
counter_cm->active_next->active_prev = counter_cm->active_prev;
} else {
si->active_tail = counter_cm->active_prev;
}
counter_cm->active_next = NULL;
counter_cm->active_prev = NULL;
}
/*
* Now remove the head of the active scan list.
*/
cm->active = false;
si->active_head = cm->active_next;
if (likely(cm->active_next)) {
cm->active_next->active_prev = NULL;
} else {
si->active_tail = NULL;
}
cm->active_next = NULL;
/*
* Sync the connection state.
*/
c = cm->connection;
sfe_ipv6_gen_sync_connection(si, c, &sis, SFE_SYNC_REASON_STATS, now_jiffies);
/*
* We don't want to be holding the lock when we sync!
*/
spin_unlock_bh(&si->lock);
sync_rule_callback(&sis);
spin_lock_bh(&si->lock);
}
spin_unlock_bh(&si->lock);
rcu_read_unlock();
done:
mod_timer(&si->timer, jiffies + ((HZ + 99) / 100));
}
/*
* sfe_ipv6_debug_dev_read_start()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
si->debug_read_seq++;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "<sfe_ipv6>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_connections_start()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_connections_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<connections>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_connections_connection()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_connections_connection(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
struct sfe_ipv6_connection *c;
struct sfe_ipv6_connection_match *original_cm;
struct sfe_ipv6_connection_match *reply_cm;
int bytes_read;
int protocol;
struct net_device *src_dev;
struct sfe_ipv6_addr src_ip;
struct sfe_ipv6_addr src_ip_xlate;
__be16 src_port;
__be16 src_port_xlate;
uint64_t src_rx_packets;
uint64_t src_rx_bytes;
struct net_device *dest_dev;
struct sfe_ipv6_addr dest_ip;
struct sfe_ipv6_addr dest_ip_xlate;
__be16 dest_port;
__be16 dest_port_xlate;
uint64_t dest_rx_packets;
uint64_t dest_rx_bytes;
uint64_t last_sync_jiffies;
uint32_t mark;
#ifdef CONFIG_NF_FLOW_COOKIE
int src_flow_cookie, dst_flow_cookie;
#endif
spin_lock_bh(&si->lock);
for (c = si->all_connections_head; c; c = c->all_connections_next) {
if (c->debug_read_seq < si->debug_read_seq) {
c->debug_read_seq = si->debug_read_seq;
break;
}
}
/*
* If there were no connections then move to the next state.
*/
if (!c) {
spin_unlock_bh(&si->lock);
ws->state++;
return true;
}
original_cm = c->original_match;
reply_cm = c->reply_match;
protocol = c->protocol;
src_dev = c->original_dev;
src_ip = c->src_ip[0];
src_ip_xlate = c->src_ip_xlate[0];
src_port = c->src_port;
src_port_xlate = c->src_port_xlate;
sfe_ipv6_connection_match_update_summary_stats(original_cm);
sfe_ipv6_connection_match_update_summary_stats(reply_cm);
src_rx_packets = original_cm->rx_packet_count64;
src_rx_bytes = original_cm->rx_byte_count64;
dest_dev = c->reply_dev;
dest_ip = c->dest_ip[0];
dest_ip_xlate = c->dest_ip_xlate[0];
dest_port = c->dest_port;
dest_port_xlate = c->dest_port_xlate;
dest_rx_packets = reply_cm->rx_packet_count64;
dest_rx_bytes = reply_cm->rx_byte_count64;
last_sync_jiffies = get_jiffies_64() - c->last_sync_jiffies;
mark = c->mark;
#ifdef CONFIG_NF_FLOW_COOKIE
src_flow_cookie = original_cm->flow_cookie;
dst_flow_cookie = reply_cm->flow_cookie;
#endif
spin_unlock_bh(&si->lock);
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t\t<connection "
"protocol=\"%u\" "
"src_dev=\"%s\" "
"src_ip=\"%pI6\" src_ip_xlate=\"%pI6\" "
"src_port=\"%u\" src_port_xlate=\"%u\" "
"src_rx_pkts=\"%llu\" src_rx_bytes=\"%llu\" "
"dest_dev=\"%s\" "
"dest_ip=\"%pI6\" dest_ip_xlate=\"%pI6\" "
"dest_port=\"%u\" dest_port_xlate=\"%u\" "
"dest_rx_pkts=\"%llu\" dest_rx_bytes=\"%llu\" "
#ifdef CONFIG_NF_FLOW_COOKIE
"src_flow_cookie=\"%d\" dst_flow_cookie=\"%d\" "
#endif
"last_sync=\"%llu\" "
"mark=\"%08x\" />\n",
protocol,
src_dev->name,
&src_ip, &src_ip_xlate,
ntohs(src_port), ntohs(src_port_xlate),
src_rx_packets, src_rx_bytes,
dest_dev->name,
&dest_ip, &dest_ip_xlate,
ntohs(dest_port), ntohs(dest_port_xlate),
dest_rx_packets, dest_rx_bytes,
#ifdef CONFIG_NF_FLOW_COOKIE
src_flow_cookie, dst_flow_cookie,
#endif
last_sync_jiffies, mark);
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
return true;
}
/*
* sfe_ipv6_debug_dev_read_connections_end()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_connections_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t</connections>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_exceptions_start()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_exceptions_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<exceptions>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_exceptions_exception()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_exceptions_exception(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
uint64_t ct;
spin_lock_bh(&si->lock);
ct = si->exception_events64[ws->iter_exception];
spin_unlock_bh(&si->lock);
if (ct) {
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE,
"\t\t<exception name=\"%s\" count=\"%llu\" />\n",
sfe_ipv6_exception_events_string[ws->iter_exception],
ct);
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
}
ws->iter_exception++;
if (ws->iter_exception >= SFE_IPV6_EXCEPTION_EVENT_LAST) {
ws->iter_exception = 0;
ws->state++;
}
return true;
}
/*
* sfe_ipv6_debug_dev_read_exceptions_end()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_exceptions_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t</exceptions>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_stats()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_stats(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
unsigned int num_connections;
uint64_t packets_forwarded;
uint64_t packets_not_forwarded;
uint64_t connection_create_requests;
uint64_t connection_create_collisions;
uint64_t connection_destroy_requests;
uint64_t connection_destroy_misses;
uint64_t connection_flushes;
uint64_t connection_match_hash_hits;
uint64_t connection_match_hash_reorders;
spin_lock_bh(&si->lock);
sfe_ipv6_update_summary_stats(si);
num_connections = si->num_connections;
packets_forwarded = si->packets_forwarded64;
packets_not_forwarded = si->packets_not_forwarded64;
connection_create_requests = si->connection_create_requests64;
connection_create_collisions = si->connection_create_collisions64;
connection_destroy_requests = si->connection_destroy_requests64;
connection_destroy_misses = si->connection_destroy_misses64;
connection_flushes = si->connection_flushes64;
connection_match_hash_hits = si->connection_match_hash_hits64;
connection_match_hash_reorders = si->connection_match_hash_reorders64;
spin_unlock_bh(&si->lock);
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<stats "
"num_connections=\"%u\" "
"pkts_forwarded=\"%llu\" pkts_not_forwarded=\"%llu\" "
"create_requests=\"%llu\" create_collisions=\"%llu\" "
"destroy_requests=\"%llu\" destroy_misses=\"%llu\" "
"flushes=\"%llu\" "
"hash_hits=\"%llu\" hash_reorders=\"%llu\" />\n",
num_connections,
packets_forwarded,
packets_not_forwarded,
connection_create_requests,
connection_create_collisions,
connection_destroy_requests,
connection_destroy_misses,
connection_flushes,
connection_match_hash_hits,
connection_match_hash_reorders);
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_end()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "</sfe_ipv6>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* Array of write functions that write various XML elements that correspond to
* our XML output state machine.
*/
static sfe_ipv6_debug_xml_write_method_t sfe_ipv6_debug_xml_write_methods[SFE_IPV6_DEBUG_XML_STATE_DONE] = {
sfe_ipv6_debug_dev_read_start,
sfe_ipv6_debug_dev_read_connections_start,
sfe_ipv6_debug_dev_read_connections_connection,
sfe_ipv6_debug_dev_read_connections_end,
sfe_ipv6_debug_dev_read_exceptions_start,
sfe_ipv6_debug_dev_read_exceptions_exception,
sfe_ipv6_debug_dev_read_exceptions_end,
sfe_ipv6_debug_dev_read_stats,
sfe_ipv6_debug_dev_read_end,
};
/*
* sfe_ipv6_debug_dev_read()
* Send info to userspace upon read request from user
*/
static ssize_t sfe_ipv6_debug_dev_read(struct file *filp, char *buffer, size_t length, loff_t *offset)
{
char msg[CHAR_DEV_MSG_SIZE];
int total_read = 0;
struct sfe_ipv6_debug_xml_write_state *ws;
struct sfe_ipv6 *si = &__si6;
ws = (struct sfe_ipv6_debug_xml_write_state *)filp->private_data;
while ((ws->state != SFE_IPV6_DEBUG_XML_STATE_DONE) && (length > CHAR_DEV_MSG_SIZE)) {
if ((sfe_ipv6_debug_xml_write_methods[ws->state])(si, buffer, msg, &length, &total_read, ws)) {
continue;
}
}
return total_read;
}
/*
* sfe_ipv6_debug_dev_write()
* Write to char device resets some stats
*/
static ssize_t sfe_ipv6_debug_dev_write(struct file *filp, const char *buffer, size_t length, loff_t *offset)
{
struct sfe_ipv6 *si = &__si6;
spin_lock_bh(&si->lock);
sfe_ipv6_update_summary_stats(si);
si->packets_forwarded64 = 0;
si->packets_not_forwarded64 = 0;
si->connection_create_requests64 = 0;
si->connection_create_collisions64 = 0;
si->connection_destroy_requests64 = 0;
si->connection_destroy_misses64 = 0;
si->connection_flushes64 = 0;
si->connection_match_hash_hits64 = 0;
si->connection_match_hash_reorders64 = 0;
spin_unlock_bh(&si->lock);
return length;
}
/*
* sfe_ipv6_debug_dev_open()
*/
static int sfe_ipv6_debug_dev_open(struct inode *inode, struct file *file)
{
struct sfe_ipv6_debug_xml_write_state *ws;
ws = (struct sfe_ipv6_debug_xml_write_state *)file->private_data;
if (ws) {
return 0;
}
ws = kzalloc(sizeof(struct sfe_ipv6_debug_xml_write_state), GFP_KERNEL);
if (!ws) {
return -ENOMEM;
}
ws->state = SFE_IPV6_DEBUG_XML_STATE_START;
file->private_data = ws;
return 0;
}
/*
* sfe_ipv6_debug_dev_release()
*/
static int sfe_ipv6_debug_dev_release(struct inode *inode, struct file *file)
{
struct sfe_ipv6_debug_xml_write_state *ws;
ws = (struct sfe_ipv6_debug_xml_write_state *)file->private_data;
if (ws) {
/*
* We've finished with our output so free the write state.
*/
kfree(ws);
}
return 0;
}
/*
* File operations used in the debug char device
*/
static struct file_operations sfe_ipv6_debug_dev_fops = {
.read = sfe_ipv6_debug_dev_read,
.write = sfe_ipv6_debug_dev_write,
.open = sfe_ipv6_debug_dev_open,
.release = sfe_ipv6_debug_dev_release
};
static int read_from_v6_iface_proc_entry(struct file *filp,char *buf,size_t count,loff_t *offp )
{
struct sfe_ipv6 *si = &__si6;
if ( count < si->iface_length )
return -EINVAL;
if (*offp != 0)
return 0;
if (copy_to_user(buf, si->ipv6_iface, si->iface_length))
return -EINVAL;
*offp = si->iface_length;
return si->iface_length;
}
static ssize_t write_to_v6_iface_proc_entry(struct file *file,const char *buf,size_t count,loff_t *data )
{
struct sfe_ipv6 *si = &__si6;
if (count == 0) {
DEBUG_ERROR("Iface_length zero \n");
return 0;
}
else if(count > MAX_INTF_LEN)
{
DEBUG_ERROR("Iface_length too big \n");
return 0;
}
memset(si->ipv6_iface, 0, MAX_INTF_LEN);
if(copy_from_user(si->ipv6_iface, buf, count-1))
return -EFAULT;
si->iface_length = strlen(si->ipv6_iface);
DEBUG_INFO( "Iface length = %d , iface_name = %s \n", si->iface_length, si->ipv6_iface);
return count;
}
static struct file_operations ipv6_iface_proc_fops = {
.owner = THIS_MODULE,
.read = read_from_v6_iface_proc_entry,
.write = write_to_v6_iface_proc_entry,
};
#ifdef CONFIG_NF_FLOW_COOKIE
/*
* sfe_ipv6_register_flow_cookie_cb
* register a function in SFE to let SFE use this function to configure flow cookie for a flow
*
* Hardware driver which support flow cookie should register a callback function in SFE. Then SFE
* can use this function to configure flow cookie for a flow.
* return: 0, success; !=0, fail
*/
int sfe_ipv6_register_flow_cookie_cb(sfe_ipv6_flow_cookie_set_func_t cb)
{
struct sfe_ipv6 *si = &__si6;
BUG_ON(!cb);
if (si->flow_cookie_set_func) {
return -1;
}
rcu_assign_pointer(si->flow_cookie_set_func, cb);
return 0;
}
/*
* sfe_ipv6_unregister_flow_cookie_cb
* unregister function which is used to configure flow cookie for a flow
*
* return: 0, success; !=0, fail
*/
int sfe_ipv6_unregister_flow_cookie_cb(sfe_ipv6_flow_cookie_set_func_t cb)
{
struct sfe_ipv6 *si = &__si6;
RCU_INIT_POINTER(si->flow_cookie_set_func, NULL);
return 0;
}
#endif /*CONFIG_NF_FLOW_COOKIE*/
/*
* sfe_ipv6_init()
*/
static int __init sfe_ipv6_init(void)
{
struct sfe_ipv6 *si = &__si6;
int result = -1;
DEBUG_INFO("SFE IPv6 init\n");
/*register proc sys*/
si->proc1.sfe_debug_ctl_path[0].procname = "debug_v6";
si->proc1.debug_root[0].procname = "sfe_v6";
si->proc1.debug_root[0].mode = 0555;
si->proc1.debug_root[0].child = sfe_sysctl_debug;
si->proc1.debug_ctl_header = register_sysctl_paths(si->proc1.sfe_debug_ctl_path, si->proc1.debug_root);
DEBUG_INFO("SFE IPv6 init\n");
/*
* Create sys/sfe_ipv6
*/
si->sys_sfe_ipv6 = kobject_create_and_add("sfe_ipv6", NULL);
if (!si->sys_sfe_ipv6) {
DEBUG_ERROR("failed to register sfe_ipv6\n");
goto exit1;
}
/*
* Create files, one for each parameter supported by this module.
*/
result = sysfs_create_file(si->sys_sfe_ipv6, &sfe_ipv6_debug_dev_attr.attr);
if (result) {
DEBUG_ERROR("failed to register debug dev file: %d\n", result);
goto exit2;
}
/*
* Register our debug char device.
*/
result = register_chrdev(0, "sfe_ipv6", &sfe_ipv6_debug_dev_fops);
if (result < 0) {
DEBUG_ERROR("Failed to register chrdev: %d\n", result);
goto exit3;
}
si->debug_dev = result;
proc_create("ipv6_iface_name",0,NULL,&ipv6_iface_proc_fops);
memset(si->ipv6_iface,0,MAX_INTF_LEN);
si->iface_length=strlen(si->ipv6_iface);
memset(aggr_params, 0, sizeof(aggr_params));
/*
* Create a timer to handle periodic statistics.
*/
setup_timer(&si->timer, sfe_ipv6_periodic_sync, (unsigned long)si);
mod_timer(&si->timer, jiffies + ((HZ + 99) / 100));
spin_lock_init(&si->lock);
return 0;
exit3:
sysfs_remove_file(si->sys_sfe_ipv6, &sfe_ipv6_debug_dev_attr.attr);
exit2:
kobject_put(si->sys_sfe_ipv6);
exit1:
return result;
}
/*
* sfe_ipv6_exit()
*/
static void __exit sfe_ipv6_exit(void)
{
struct sfe_ipv6 *si = &__si6;
unregister_sysctl_table(si->proc1.debug_ctl_header);
DEBUG_INFO("SFE IPv6 exit\n");
/*
* Destroy all connections.
*/
sfe_ipv6_destroy_all_rules_for_dev(NULL);
del_timer_sync(&si->timer);
unregister_chrdev(si->debug_dev, "sfe_ipv6");
remove_proc_entry("ipv6_iface_name",NULL);
sysfs_remove_file(si->sys_sfe_ipv6, &sfe_ipv6_debug_dev_attr.attr);
kobject_put(si->sys_sfe_ipv6);
}
module_init(sfe_ipv6_init)
module_exit(sfe_ipv6_exit)
EXPORT_SYMBOL(sfe_ipv6_recv);
EXPORT_SYMBOL(sfe_ipv6_create_rule);
EXPORT_SYMBOL(sfe_ipv6_destroy_rule);
EXPORT_SYMBOL(sfe_ipv6_destroy_all_rules_for_dev);
EXPORT_SYMBOL(sfe_ipv6_register_sync_rule_callback);
EXPORT_SYMBOL(sfe_ipv6_mark_rule);
EXPORT_SYMBOL(sfe_ipv6_update_rule);
#ifdef CONFIG_NF_FLOW_COOKIE
EXPORT_SYMBOL(sfe_ipv6_register_flow_cookie_cb);
EXPORT_SYMBOL(sfe_ipv6_unregister_flow_cookie_cb);
#endif
MODULE_AUTHOR("Qualcomm Atheros Inc.");
MODULE_DESCRIPTION("Shortcut Forwarding Engine - IPv6 support");
MODULE_LICENSE("Dual BSD/GPL");