blob: 79e258486eb8607599104dc652673bb62a3ecf82 [file] [log] [blame]
/*
* Copyright (c) 2011,2017-2019 The Linux Foundation. All rights reserved.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <osdep.h>
#include <qdf_types.h>
#include <qdf_module.h>
#include <wlan_tgt_def_config.h>
#include <hif.h>
#include <hif_hw_version.h>
#include <wmi_unified_api.h>
#include <target_if_spectral.h>
#include <wlan_lmac_if_def.h>
#include <wlan_osif_priv.h>
#include <reg_services_public_struct.h>
#ifdef DIRECT_BUF_RX_ENABLE
#include <target_if_direct_buf_rx_api.h>
#endif
extern int spectral_debug_level;
#ifdef WLAN_CONV_SPECTRAL_ENABLE
#define SPECTRAL_HEXDUMP_OCTET_PRINT_SIZE (3)
#define SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE (16)
#define SPECTRAL_HEXDUMP_EXTRA_BUFFER_PER_LINE (16)
/*
* Provision for the expected hexdump line size as follows:
*
* Size per octet multiplied by number of octets per line
* +
* ASCII representation which is equivalent in print size to number of octets
* per line
* +
* Some extra buffer
*/
#define SPECTRAL_HEXDUMP_LINESIZE \
((SPECTRAL_HEXDUMP_OCTET_PRINT_SIZE * \
SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE) + \
SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE + \
SPECTRAL_HEXDUMP_EXTRA_BUFFER_PER_LINE)
/**
* target_if_spectral_hexdump() - Print hexdump of the given buffer
* @_buf: Pointer to buffer
* @_len: Length of the buffer
*
* Print the hexdump of buffer upto given length. Print upto
* SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE per line, followed by the ASCII
* representation of these octets.
*/
static inline void target_if_spectral_hexdump(unsigned char *_buf, int _len)
{
int i, mod;
unsigned char ascii[SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE + 1];
unsigned char *pc = (_buf);
char hexdump_line[SPECTRAL_HEXDUMP_LINESIZE + 1];
int loc = 0;
qdf_mem_zero(hexdump_line, sizeof(hexdump_line));
for (i = 0; i < _len; i++) {
mod = i % SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE;
if (!mod) {
if (i) {
qdf_assert_always(loc < sizeof(hexdump_line));
loc += snprintf(&hexdump_line[loc],
sizeof(hexdump_line) - loc,
" %s", ascii);
spectral_debug("%s", hexdump_line);
qdf_mem_zero(hexdump_line,
sizeof(hexdump_line));
loc = 0;
}
}
qdf_assert_always(loc < sizeof(hexdump_line));
loc += snprintf(&hexdump_line[loc], sizeof(hexdump_line) - loc,
" %02x", pc[i]);
if ((pc[i] < 0x20) || (pc[i] > 0x7e))
ascii[mod] = '.';
else
ascii[mod] = pc[i];
ascii[(mod) + 1] = '\0';
}
while ((i % SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE) != 0) {
qdf_assert_always(loc < sizeof(hexdump_line));
loc += snprintf(&hexdump_line[loc], sizeof(hexdump_line) - loc,
" ");
i++;
}
qdf_assert_always(loc < sizeof(hexdump_line));
snprintf(&hexdump_line[loc], sizeof(hexdump_line) - loc, " %s", ascii);
spectral_debug("%s", hexdump_line);
}
/**
* target_if_print_buf() - Prints given buffer for given length
* @pbuf: Pointer to buffer
* @len: length
*
* Prints given buffer for given length
*
* Return: void
*/
static void
target_if_print_buf(uint8_t *pbuf, int len)
{
int i = 0;
for (i = 0; i < len; i++) {
spectral_debug("%02X ", pbuf[i]);
if (i % 32 == 31)
spectral_debug("\n");
}
}
int
target_if_spectral_dump_fft(uint8_t *pfft, int fftlen)
{
int i = 0;
/*
* TODO : Do not delete the following print
* The scripts used to validate Spectral depend on this Print
*/
spectral_debug("SPECTRAL : FFT Length is 0x%x (%d)", fftlen, fftlen);
spectral_debug("fft_data # ");
for (i = 0; i < fftlen; i++)
spectral_debug("%d ", pfft[i]);
spectral_debug("\n");
return 0;
}
void
target_if_dbg_print_samp_param(struct target_if_samp_msg_params *p)
{
spectral_debug("\nSAMP Packet : -------------------- START --------------------");
spectral_debug("Freq = %d", p->freq);
spectral_debug("RSSI = %d", p->rssi);
spectral_debug("Bin Count = %d", p->pwr_count);
spectral_debug("Timestamp = %d", p->tstamp);
spectral_debug("SAMP Packet : -------------------- END -----------------------");
}
void
target_if_dbg_print_samp_msg(struct spectral_samp_msg *ss_msg)
{
int i = 0;
struct spectral_samp_data *p = &ss_msg->samp_data;
struct spectral_classifier_params *pc = &p->classifier_params;
struct interf_src_rsp *pi = &p->interf_list;
spectral_dbg_line();
spectral_debug("Spectral Message");
spectral_dbg_line();
spectral_debug("Signature : 0x%x", ss_msg->signature);
spectral_debug("Freq : %d", ss_msg->freq);
spectral_debug("Freq load : %d", ss_msg->freq_loading);
spectral_debug("Intfnc type : %d", ss_msg->int_type);
spectral_dbg_line();
spectral_debug("Spectral Data info");
spectral_dbg_line();
spectral_debug("data length : %d", p->spectral_data_len);
spectral_debug("rssi : %d", p->spectral_rssi);
spectral_debug("combined rssi : %d", p->spectral_combined_rssi);
spectral_debug("upper rssi : %d", p->spectral_upper_rssi);
spectral_debug("lower rssi : %d", p->spectral_lower_rssi);
spectral_debug("bw info : %d", p->spectral_bwinfo);
spectral_debug("timestamp : %d", p->spectral_tstamp);
spectral_debug("max index : %d", p->spectral_max_index);
spectral_debug("max exp : %d", p->spectral_max_exp);
spectral_debug("max mag : %d", p->spectral_max_mag);
spectral_debug("last timstamp : %d", p->spectral_last_tstamp);
spectral_debug("upper max idx : %d", p->spectral_upper_max_index);
spectral_debug("lower max idx : %d", p->spectral_lower_max_index);
spectral_debug("bin power count : %d", p->bin_pwr_count);
spectral_dbg_line();
spectral_debug("Classifier info");
spectral_dbg_line();
spectral_debug("20/40 Mode : %d", pc->spectral_20_40_mode);
spectral_debug("dc index : %d", pc->spectral_dc_index);
spectral_debug("dc in MHz : %d", pc->spectral_dc_in_mhz);
spectral_debug("upper channel : %d", pc->upper_chan_in_mhz);
spectral_debug("lower channel : %d", pc->lower_chan_in_mhz);
spectral_dbg_line();
spectral_debug("Interference info");
spectral_dbg_line();
spectral_debug("inter count : %d", pi->count);
for (i = 0; i < pi->count; i++) {
spectral_debug("inter type : %d",
pi->interf[i].interf_type);
spectral_debug("min freq : %d",
pi->interf[i].interf_min_freq);
spectral_debug("max freq : %d",
pi->interf[i].interf_max_freq);
}
}
uint32_t
target_if_get_offset_swar_sec80(uint32_t channel_width)
{
uint32_t offset = 0;
switch (channel_width) {
case CH_WIDTH_20MHZ:
offset = OFFSET_CH_WIDTH_20;
break;
case CH_WIDTH_40MHZ:
offset = OFFSET_CH_WIDTH_40;
break;
case CH_WIDTH_80MHZ:
offset = OFFSET_CH_WIDTH_80;
break;
case CH_WIDTH_160MHZ:
offset = OFFSET_CH_WIDTH_160;
break;
default:
offset = OFFSET_CH_WIDTH_80;
break;
}
return offset;
}
/**
* target_if_dump_summary_report_gen2() - Dump Spectral Summary Report for gen2
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
* @is_160_format: Indicates whether information provided by HW is in altered
* format for 802.11ac 160/80+80 MHz support (QCA9984 onwards)
*
* Dump Spectral Summary Report for gen2
*
* Return: Success/Failure
*/
static int
target_if_dump_summary_report_gen2(struct spectral_phyerr_tlv_gen2 *ptlv,
int tlvlen, bool is_160_format)
{
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparision between MDK team and OS team, the MDK script
* variable names have been used
*/
uint32_t agc_mb_gain;
uint32_t sscan_gidx;
uint32_t agc_total_gain;
uint32_t recent_rfsat;
uint32_t ob_flag;
uint32_t nb_mask;
uint32_t peak_mag;
int16_t peak_inx;
uint32_t ss_summary_A = 0;
uint32_t ss_summary_B = 0;
uint32_t ss_summary_C = 0;
uint32_t ss_summary_D = 0;
uint32_t ss_summary_E = 0;
struct spectral_phyerr_hdr_gen2 *phdr =
(struct spectral_phyerr_hdr_gen2 *)(
(uint8_t *)ptlv +
sizeof(struct spectral_phyerr_tlv_gen2));
spectral_debug("SPECTRAL : SPECTRAL SUMMARY REPORT");
if (is_160_format) {
if (tlvlen != 20) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&ss_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&ss_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
qdf_mem_copy(&ss_summary_C,
(uint8_t *)((uint8_t *)phdr + 2 * sizeof(int)),
sizeof(int));
qdf_mem_copy(&ss_summary_D,
(uint8_t *)((uint8_t *)phdr + 3 * sizeof(int)),
sizeof(int));
qdf_mem_copy(&ss_summary_E,
(uint8_t *)((uint8_t *)phdr + 4 * sizeof(int)),
sizeof(int));
/*
* The following is adapted from MDK scripts for
* easier comparability
*/
recent_rfsat = ((ss_summary_A >> 8) & 0x1);
sscan_gidx = (ss_summary_A & 0xff);
spectral_debug("sscan_gidx=%d, is_recent_rfsat=%d",
sscan_gidx, recent_rfsat);
/* First segment */
agc_mb_gain = ((ss_summary_B >> 10) & 0x7f);
agc_total_gain = (ss_summary_B & 0x3ff);
nb_mask = ((ss_summary_C >> 22) & 0xff);
ob_flag = ((ss_summary_B >> 17) & 0x1);
peak_inx = (ss_summary_C & 0xfff);
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
peak_mag = ((ss_summary_C >> 12) & 0x3ff);
spectral_debug("agc_total_gain_segid0 = 0x%.2x, agc_mb_gain_segid0=%d",
agc_total_gain, agc_mb_gain);
spectral_debug("nb_mask_segid0 = 0x%.2x, ob_flag_segid0=%d, peak_index_segid0=%d, peak_mag_segid0=%d",
nb_mask, ob_flag, peak_inx, peak_mag);
/* Second segment */
agc_mb_gain = ((ss_summary_D >> 10) & 0x7f);
agc_total_gain = (ss_summary_D & 0x3ff);
nb_mask = ((ss_summary_E >> 22) & 0xff);
ob_flag = ((ss_summary_D >> 17) & 0x1);
peak_inx = (ss_summary_E & 0xfff);
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
peak_mag = ((ss_summary_E >> 12) & 0x3ff);
spectral_debug("agc_total_gain_segid1 = 0x%.2x, agc_mb_gain_segid1=%d",
agc_total_gain, agc_mb_gain);
spectral_debug("nb_mask_segid1 = 0x%.2x, ob_flag_segid1=%d, peak_index_segid1=%d, peak_mag_segid1=%d",
nb_mask, ob_flag, peak_inx, peak_mag);
} else {
if (tlvlen != 8) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&ss_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&ss_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
nb_mask = ((ss_summary_B >> 22) & 0xff);
ob_flag = ((ss_summary_B >> 30) & 0x1);
peak_inx = (ss_summary_B & 0xfff);
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
peak_mag = ((ss_summary_B >> 12) & 0x3ff);
agc_mb_gain = ((ss_summary_A >> 24) & 0x7f);
agc_total_gain = (ss_summary_A & 0x3ff);
sscan_gidx = ((ss_summary_A >> 16) & 0xff);
recent_rfsat = ((ss_summary_B >> 31) & 0x1);
spectral_debug("nb_mask = 0x%.2x, ob_flag=%d, peak_index=%d, peak_mag=%d, agc_mb_gain=%d, agc_total_gain=%d, sscan_gidx=%d, recent_rfsat=%d",
nb_mask, ob_flag, peak_inx, peak_mag,
agc_mb_gain, agc_total_gain, sscan_gidx,
recent_rfsat);
}
return 0;
}
/**
* target_if_process_sfft_report_gen2() - Process Search FFT Report
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
* @p_fft_info: Pointer to search fft info
*
* Dump Spectral Summary Report for gen2
*
* Return: Success/Failure
*/
static int
target_if_process_sfft_report_gen2(
struct spectral_phyerr_tlv_gen2 *ptlv,
int tlvlen,
struct spectral_search_fft_info_gen2 *p_fft_info)
{
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparision between MDK team and OS team, the MDK script
* variable names have been used
*/
uint32_t relpwr_db;
uint32_t num_str_bins_ib;
uint32_t base_pwr;
uint32_t total_gain_info;
uint32_t fft_chn_idx;
int16_t peak_inx;
uint32_t avgpwr_db;
uint32_t peak_mag;
uint32_t fft_summary_A = 0;
uint32_t fft_summary_B = 0;
uint8_t *tmp = (uint8_t *)ptlv;
struct spectral_phyerr_hdr_gen2 *phdr =
(struct spectral_phyerr_hdr_gen2 *)(
tmp +
sizeof(struct spectral_phyerr_tlv_gen2));
/* Relook this */
if (tlvlen < 8) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&fft_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&fft_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
relpwr_db = ((fft_summary_B >> 26) & 0x3f);
num_str_bins_ib = fft_summary_B & 0xff;
base_pwr = ((fft_summary_A >> 14) & 0x1ff);
total_gain_info = ((fft_summary_A >> 23) & 0x1ff);
fft_chn_idx = ((fft_summary_A >> 12) & 0x3);
peak_inx = fft_summary_A & 0xfff;
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
avgpwr_db = ((fft_summary_B >> 18) & 0xff);
peak_mag = ((fft_summary_B >> 8) & 0x3ff);
/* Populate the Search FFT Info */
if (p_fft_info) {
p_fft_info->relpwr_db = relpwr_db;
p_fft_info->num_str_bins_ib = num_str_bins_ib;
p_fft_info->base_pwr = base_pwr;
p_fft_info->total_gain_info = total_gain_info;
p_fft_info->fft_chn_idx = fft_chn_idx;
p_fft_info->peak_inx = peak_inx;
p_fft_info->avgpwr_db = avgpwr_db;
p_fft_info->peak_mag = peak_mag;
}
return 0;
}
/**
* target_if_dump_adc_report_gen2() - Dump ADC Reports for gen2
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
*
* Dump ADC Reports for gen2
*
* Return: Success/Failure
*/
static int
target_if_dump_adc_report_gen2(
struct spectral_phyerr_tlv_gen2 *ptlv, int tlvlen)
{
int i;
uint32_t *pdata;
uint32_t data;
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
uint32_t samp_fmt;
uint32_t chn_idx;
uint32_t recent_rfsat;
uint32_t agc_mb_gain;
uint32_t agc_total_gain;
uint32_t adc_summary = 0;
uint8_t *ptmp = (uint8_t *)ptlv;
spectral_debug("SPECTRAL : ADC REPORT");
/* Relook this */
if (tlvlen < 4) {
spectral_err("Unexpected TLV length %d for ADC Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
qdf_mem_copy(&adc_summary, (uint8_t *)(ptlv + 4), sizeof(int));
samp_fmt = ((adc_summary >> 28) & 0x1);
chn_idx = ((adc_summary >> 24) & 0x3);
recent_rfsat = ((adc_summary >> 23) & 0x1);
agc_mb_gain = ((adc_summary >> 16) & 0x7f);
agc_total_gain = adc_summary & 0x3ff;
spectral_debug("samp_fmt= %u, chn_idx= %u, recent_rfsat= %u, agc_mb_gain=%u agc_total_gain=%u",
samp_fmt, chn_idx, recent_rfsat, agc_mb_gain,
agc_total_gain);
for (i = 0; i < (tlvlen / 4); i++) {
pdata = (uint32_t *)(ptmp + 4 + i * 4);
data = *pdata;
/* Interpreting capture format 1 */
if (1) {
uint8_t i1;
uint8_t q1;
uint8_t i2;
uint8_t q2;
int8_t si1;
int8_t sq1;
int8_t si2;
int8_t sq2;
i1 = data & 0xff;
q1 = (data >> 8) & 0xff;
i2 = (data >> 16) & 0xff;
q2 = (data >> 24) & 0xff;
if (i1 > 127)
si1 = i1 - 256;
else
si1 = i1;
if (q1 > 127)
sq1 = q1 - 256;
else
sq1 = q1;
if (i2 > 127)
si2 = i2 - 256;
else
si2 = i2;
if (q2 > 127)
sq2 = q2 - 256;
else
sq2 = q2;
spectral_debug("SPECTRAL ADC : Interpreting capture format 1");
spectral_debug("adc_data_format_1 # %d %d %d",
2 * i, si1, sq1);
spectral_debug("adc_data_format_1 # %d %d %d",
2 * i + 1, si2, sq2);
}
/* Interpreting capture format 0 */
if (1) {
uint16_t i1;
uint16_t q1;
int16_t si1;
int16_t sq1;
i1 = data & 0xffff;
q1 = (data >> 16) & 0xffff;
if (i1 > 32767)
si1 = i1 - 65536;
else
si1 = i1;
if (q1 > 32767)
sq1 = q1 - 65536;
else
sq1 = q1;
spectral_debug("SPECTRAL ADC : Interpreting capture format 0");
spectral_debug("adc_data_format_2 # %d %d %d",
i, si1, sq1);
}
}
spectral_debug("\n");
return 0;
}
/**
* target_if_dump_sfft_report_gen2() - Process Search FFT Report for gen2
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
* @is_160_format: Indicates 160 format
*
* Process Search FFT Report for gen2
*
* Return: Success/Failure
*/
static int
target_if_dump_sfft_report_gen2(struct spectral_phyerr_tlv_gen2 *ptlv,
int tlvlen, bool is_160_format)
{
int i;
uint32_t fft_mag;
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparision between MDK team and OS team, the MDK script
* variable names have been used
*/
uint32_t relpwr_db;
uint32_t num_str_bins_ib;
uint32_t base_pwr;
uint32_t total_gain_info;
uint32_t fft_chn_idx;
int16_t peak_inx;
uint32_t avgpwr_db;
uint32_t peak_mag;
uint8_t segid;
uint32_t fft_summary_A = 0;
uint32_t fft_summary_B = 0;
uint32_t fft_summary_C = 0;
uint8_t *tmp = (uint8_t *)ptlv;
struct spectral_phyerr_hdr_gen2 *phdr =
(struct spectral_phyerr_hdr_gen2 *)(
tmp +
sizeof(struct spectral_phyerr_tlv_gen2));
uint32_t segid_skiplen = 0;
if (is_160_format)
segid_skiplen = sizeof(SPECTRAL_SEGID_INFO);
spectral_debug("SPECTRAL : SEARCH FFT REPORT");
/* Relook this */
if (tlvlen < (8 + segid_skiplen)) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&fft_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&fft_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
if (is_160_format)
qdf_mem_copy(&fft_summary_C,
(uint8_t *)((uint8_t *)phdr + 2 * sizeof(int)),
sizeof(int));
relpwr_db = ((fft_summary_B >> 26) & 0x3f);
num_str_bins_ib = fft_summary_B & 0xff;
base_pwr = ((fft_summary_A >> 14) & 0x1ff);
total_gain_info = ((fft_summary_A >> 23) & 0x1ff);
fft_chn_idx = ((fft_summary_A >> 12) & 0x3);
peak_inx = fft_summary_A & 0xfff;
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
avgpwr_db = ((fft_summary_B >> 18) & 0xff);
peak_mag = ((fft_summary_B >> 8) & 0x3ff);
spectral_debug("Header A = 0x%x Header B = 0x%x",
phdr->hdr_a, phdr->hdr_b);
spectral_debug("Base Power= 0x%x, Total Gain= %d, relpwr_db=%d, num_str_bins_ib=%d fft_chn_idx=%d peak_inx=%d avgpwr_db=%d peak_mag=%d",
base_pwr, total_gain_info, relpwr_db, num_str_bins_ib,
fft_chn_idx, peak_inx, avgpwr_db, peak_mag);
if (is_160_format) {
segid = fft_summary_C & 0x1;
spectral_debug("Segment ID: %hhu", segid);
}
spectral_debug("FFT bins:");
for (i = 0; i < (tlvlen - 8 - segid_skiplen); i++) {
fft_mag = ((uint8_t *)ptlv)[12 + segid_skiplen + i];
spectral_debug("%d %d, ", i, fft_mag);
}
spectral_debug("\n");
return 0;
}
#ifdef SPECTRAL_DEBUG_SAMP_MSG
/**
* target_if_spectral_log_SAMP_param() - Log SAMP parameters
* @params: Reference to target_if_samp_msg_params
*
* API to log spectral SAMP message parameters
*
* Return: None
*/
static void
target_if_spectral_log_SAMP_param(struct target_if_samp_msg_params *params)
{
target_if_dbg_print_samp_param(params);
}
#else
static void
target_if_spectral_log_SAMP_param(struct target_if_samp_msg_params *params)
{
}
#endif
int
target_if_process_phyerr_gen2(struct target_if_spectral *spectral,
uint8_t *data,
uint32_t datalen,
struct target_if_spectral_rfqual_info *p_rfqual,
struct target_if_spectral_chan_info *p_chaninfo,
uint64_t tsf64,
struct target_if_spectral_acs_stats *acs_stats)
{
/*
* XXX : The classifier do not use all the members of the SAMP
* message data format.
* The classifier only depends upon the following parameters
*
* 1. Frequency (freq, msg->freq)
* 2. Spectral RSSI (spectral_rssi,
* msg->samp_data.spectral_rssi)
* 3. Bin Power Count (bin_pwr_count,
* msg->samp_data.bin_pwr_count)
* 4. Bin Power values (bin_pwr, msg->samp_data.bin_pwr[0]
* 5. Spectral Timestamp (spectral_tstamp,
* msg->samp_data.spectral_tstamp)
* 6. MAC Address (macaddr, msg->macaddr)
*
* This function prepares the params structure and populates it
* with
* relevant values, this is in turn passed to
* spectral_create_samp_msg()
* to prepare fully formatted Spectral SAMP message
*
* XXX : Need to verify
* 1. Order of FFT bin values
*
*/
struct target_if_samp_msg_params params;
struct spectral_search_fft_info_gen2 search_fft_info;
struct spectral_search_fft_info_gen2 *p_sfft = &search_fft_info;
struct spectral_search_fft_info_gen2 search_fft_info_sec80;
struct spectral_search_fft_info_gen2 *p_sfft_sec80 =
&search_fft_info_sec80;
uint32_t segid_skiplen = 0;
int8_t rssi_up = 0;
int8_t rssi_low = 0;
int8_t chn_idx_highest_enabled = 0;
int8_t chn_idx_lowest_enabled = 0;
uint8_t control_rssi = 0;
uint8_t extension_rssi = 0;
uint8_t combined_rssi = 0;
uint32_t tstamp = 0;
struct target_if_spectral_ops *p_sops =
GET_TARGET_IF_SPECTRAL_OPS(spectral);
struct spectral_phyerr_tlv_gen2 *ptlv =
(struct spectral_phyerr_tlv_gen2 *)data;
struct spectral_phyerr_tlv_gen2 *ptlv_sec80 = NULL;
struct spectral_phyerr_fft_gen2 *pfft = NULL;
struct spectral_phyerr_fft_gen2 *pfft_sec80 = NULL;
uint8_t segid = 0;
uint8_t segid_sec80 = 0;
if (spectral->is_160_format)
segid_skiplen = sizeof(SPECTRAL_SEGID_INFO);
pfft = (struct spectral_phyerr_fft_gen2 *)(
data +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2) +
segid_skiplen);
/*
* XXX Extend SPECTRAL_DPRINTK() to use spectral_debug_level,
* and use this facility inside spectral_dump_phyerr_data()
* and supporting functions.
*/
if (spectral_debug_level & DEBUG_SPECTRAL2)
target_if_spectral_dump_phyerr_data_gen2(
data, datalen,
spectral->is_160_format);
if (spectral_debug_level & DEBUG_SPECTRAL4) {
target_if_spectral_dump_phyerr_data_gen2(
data, datalen,
spectral->is_160_format);
spectral_debug_level = DEBUG_SPECTRAL;
}
if (ptlv->signature != SPECTRAL_PHYERR_SIGNATURE_GEN2) {
/*
* EV# 118023: We tentatively disable the below print
* and provide stats instead.
*/
spectral->diag_stats.spectral_mismatch++;
return -EPERM;
}
OS_MEMZERO(&params, sizeof(params));
/* Gen 2 only supports normal Spectral scan currently */
params.smode = SPECTRAL_SCAN_MODE_NORMAL;
if (ptlv->tag == TLV_TAG_SEARCH_FFT_REPORT_GEN2) {
if (spectral->is_160_format) {
segid = *((SPECTRAL_SEGID_INFO *)(
(uint8_t *)ptlv +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2)));
if (segid != 0) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_vhtseg1id_mismatch++;
return -EPERM;
}
}
target_if_process_sfft_report_gen2(ptlv, ptlv->length,
&search_fft_info);
tstamp = p_sops->get_tsf64(spectral) & SPECTRAL_TSMASK;
combined_rssi = p_rfqual->rssi_comb;
if (spectral->upper_is_control)
rssi_up = control_rssi;
else
rssi_up = extension_rssi;
if (spectral->lower_is_control)
rssi_low = control_rssi;
else
rssi_low = extension_rssi;
params.rssi = p_rfqual->rssi_comb;
params.lower_rssi = rssi_low;
params.upper_rssi = rssi_up;
if (spectral->sc_spectral_noise_pwr_cal) {
params.chain_ctl_rssi[0] =
p_rfqual->pc_rssi_info[0].rssi_pri20;
params.chain_ctl_rssi[1] =
p_rfqual->pc_rssi_info[1].rssi_pri20;
params.chain_ctl_rssi[2] =
p_rfqual->pc_rssi_info[2].rssi_pri20;
params.chain_ext_rssi[0] =
p_rfqual->pc_rssi_info[0].rssi_sec20;
params.chain_ext_rssi[1] =
p_rfqual->pc_rssi_info[1].rssi_sec20;
params.chain_ext_rssi[2] =
p_rfqual->pc_rssi_info[2].rssi_sec20;
}
/*
* XXX : This actually depends on the programmed chain mask
* This value decides the per-chain enable mask to select
* the input ADC for search FTT.
* For modes upto VHT80, if more than one chain is
* enabled, the max valid chain
* is used. LSB corresponds to chain zero.
* For VHT80_80 and VHT160, the lowest enabled chain is
* used for primary
* detection and highest enabled chain is used for
* secondary detection.
*
* XXX : The current algorithm do not use these control and
* extension channel
* Instead, it just relies on the combined RSSI values
* only.
* For fool-proof detection algorithm, we should take
* these RSSI values in to account.
* This is marked for future enhancements.
*/
chn_idx_highest_enabled =
((spectral->params[params.smode].ss_chn_mask & 0x8) ? 3 :
(spectral->params[params.smode].ss_chn_mask & 0x4) ? 2 :
(spectral->params[params.smode].ss_chn_mask & 0x2) ? 1 : 0);
chn_idx_lowest_enabled =
((spectral->params[params.smode].ss_chn_mask & 0x1) ? 0 :
(spectral->params[params.smode].ss_chn_mask & 0x2) ? 1 :
(spectral->params[params.smode].ss_chn_mask & 0x4) ? 2 : 3);
control_rssi = (uint8_t)
p_rfqual->pc_rssi_info[chn_idx_highest_enabled].rssi_pri20;
extension_rssi = (uint8_t)
p_rfqual->pc_rssi_info[chn_idx_highest_enabled].rssi_sec20;
params.bwinfo = 0;
params.tstamp = 0;
params.max_mag = p_sfft->peak_mag;
params.max_index = p_sfft->peak_inx;
params.max_exp = 0;
params.peak = 0;
params.bin_pwr_data = (uint8_t *)pfft;
params.freq = p_sops->get_current_channel(spectral);
params.freq_loading = 0;
params.interf_list.count = 0;
params.max_lower_index = 0;
params.max_upper_index = 0;
params.nb_lower = 0;
params.nb_upper = 0;
/*
* For modes upto VHT80, the noise floor is populated with the
* one corresponding
* to the highest enabled antenna chain
*/
params.noise_floor =
p_rfqual->noise_floor[chn_idx_highest_enabled];
params.datalen = ptlv->length;
params.pwr_count = ptlv->length -
sizeof(struct spectral_phyerr_hdr_gen2) - segid_skiplen;
params.tstamp = (tsf64 & SPECTRAL_TSMASK);
acs_stats->ctrl_nf = params.noise_floor;
acs_stats->ext_nf = params.noise_floor;
acs_stats->nfc_ctl_rssi = control_rssi;
acs_stats->nfc_ext_rssi = extension_rssi;
if (spectral->is_160_format &&
spectral->ch_width == CH_WIDTH_160MHZ) {
/*
* We expect to see one more Search FFT report, and it
* should be equal in size to the current one.
*/
if (datalen < (
2 * (
sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length))) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_sec80_sfft_insufflen++;
return -EPERM;
}
ptlv_sec80 = (struct spectral_phyerr_tlv_gen2 *)(
data +
sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length);
if (ptlv_sec80->signature !=
SPECTRAL_PHYERR_SIGNATURE_GEN2) {
spectral->diag_stats.spectral_mismatch++;
return -EPERM;
}
if (ptlv_sec80->tag != TLV_TAG_SEARCH_FFT_REPORT_GEN2) {
spectral->diag_stats.spectral_no_sec80_sfft++;
return -EPERM;
}
segid_sec80 = *((SPECTRAL_SEGID_INFO *)(
(uint8_t *)ptlv_sec80 +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2)));
if (segid_sec80 != 1) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_vhtseg2id_mismatch++;
return -EPERM;
}
params.vhtop_ch_freq_seg1 = p_chaninfo->center_freq1;
params.vhtop_ch_freq_seg2 = p_chaninfo->center_freq2;
target_if_process_sfft_report_gen2(
ptlv_sec80,
ptlv_sec80->length,
&search_fft_info_sec80);
pfft_sec80 = (struct spectral_phyerr_fft_gen2 *)(
((uint8_t *)ptlv_sec80) +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2) +
segid_skiplen);
/* XXX: Confirm. TBD at SoD. */
params.rssi_sec80 = p_rfqual->rssi_comb;
if (spectral->is_sec80_rssi_war_required)
params.rssi_sec80 =
target_if_get_combrssi_sec80_seg_gen2
(spectral, &search_fft_info_sec80);
/* XXX: Determine dynamically. TBD at SoD. */
/*
* For VHT80_80/VHT160, the noise floor for primary
* 80MHz segment is populated with the
* lowest enabled antenna chain and the noise floor for
* secondary 80MHz segment is populated
* with the highest enabled antenna chain
*/
params.noise_floor_sec80 =
p_rfqual->noise_floor[chn_idx_highest_enabled];
params.noise_floor =
p_rfqual->noise_floor[chn_idx_lowest_enabled];
params.max_mag_sec80 = p_sfft_sec80->peak_mag;
params.max_index_sec80 = p_sfft_sec80->peak_inx;
/* XXX Does this definition of datalen *still hold? */
params.datalen_sec80 = ptlv_sec80->length;
params.pwr_count_sec80 =
ptlv_sec80->length -
sizeof(struct spectral_phyerr_hdr_gen2) -
segid_skiplen;
params.bin_pwr_data_sec80 = (uint8_t *)pfft_sec80;
}
qdf_mem_copy(&params.classifier_params,
&spectral->classifier_params,
sizeof(struct spectral_classifier_params));
target_if_spectral_log_SAMP_param(&params);
target_if_spectral_create_samp_msg(spectral, &params);
}
return 0;
}
int
target_if_spectral_dump_hdr_gen2(struct spectral_phyerr_hdr_gen2 *phdr)
{
uint32_t a = 0;
uint32_t b = 0;
qdf_mem_copy(&a, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&b,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
spectral_debug("SPECTRAL : HEADER A 0x%x (%d)", a, a);
spectral_debug("SPECTRAL : HEADER B 0x%x (%d)", b, b);
return 0;
}
int8_t
target_if_get_combrssi_sec80_seg_gen2(
struct target_if_spectral *spectral,
struct spectral_search_fft_info_gen2 *p_sfft_sec80)
{
uint32_t avgpwr_db = 0;
uint32_t total_gain_db = 0;
uint32_t offset = 0;
int8_t comb_rssi = 0;
/* Obtain required parameters for algorithm from search FFT report */
avgpwr_db = p_sfft_sec80->avgpwr_db;
total_gain_db = p_sfft_sec80->total_gain_info;
/* Calculate offset */
offset = target_if_get_offset_swar_sec80(spectral->ch_width);
/* Calculate RSSI */
comb_rssi = ((avgpwr_db - total_gain_db) + offset);
return comb_rssi;
}
int
target_if_spectral_dump_tlv_gen2(
struct spectral_phyerr_tlv_gen2 *ptlv, bool is_160_format)
{
int ret = 0;
/*
* TODO : Do not delete the following print
* The scripts used to validate Spectral depend on this Print
*/
spectral_debug("SPECTRAL : TLV Length is 0x%x (%d)",
ptlv->length, ptlv->length);
switch (ptlv->tag) {
case TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN2:
ret =
target_if_dump_summary_report_gen2(
ptlv, ptlv->length, is_160_format);
break;
case TLV_TAG_SEARCH_FFT_REPORT_GEN2:
ret =
target_if_dump_sfft_report_gen2(ptlv, ptlv->length,
is_160_format);
break;
case TLV_TAG_ADC_REPORT_GEN2:
ret = target_if_dump_adc_report_gen2(ptlv, ptlv->length);
break;
default:
spectral_warn("INVALID TLV");
ret = -1;
break;
}
return ret;
}
int
target_if_spectral_dump_phyerr_data_gen2(uint8_t *data, uint32_t datalen,
bool is_160_format)
{
struct spectral_phyerr_tlv_gen2 *ptlv = NULL;
uint32_t bytes_processed = 0;
uint32_t bytes_remaining = datalen;
uint32_t curr_tlv_complete_size = 0;
if (datalen < sizeof(struct spectral_phyerr_tlv_gen2)) {
spectral_err("Total PHY error data length %u too short to contain any TLVs",
datalen);
return -EPERM;
}
while (bytes_processed < datalen) {
if (bytes_remaining < sizeof(struct spectral_phyerr_tlv_gen2)) {
spectral_err("Remaining PHY error data length %u too short to contain a TLV",
bytes_remaining);
return -EPERM;
}
ptlv = (struct spectral_phyerr_tlv_gen2 *)(data +
bytes_processed);
if (ptlv->signature != SPECTRAL_PHYERR_SIGNATURE_GEN2) {
spectral_err("Invalid signature 0x%x!",
ptlv->signature);
return -EPERM;
}
curr_tlv_complete_size =
sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length;
if (curr_tlv_complete_size > bytes_remaining) {
spectral_err("TLV size %d greater than number of bytes remaining %d",
curr_tlv_complete_size, bytes_remaining);
return -EPERM;
}
if (target_if_spectral_dump_tlv_gen2(ptlv, is_160_format) == -1)
return -EPERM;
bytes_processed += curr_tlv_complete_size;
bytes_remaining = datalen - bytes_processed;
}
return 0;
}
int
target_if_process_sfft_report_gen3(
struct spectral_phyerr_fft_report_gen3 *p_fft_report,
struct spectral_search_fft_info_gen3 *p_sfft)
{
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparision between MDK team and OS team, the MDK script
* variable names have been used
*/
int32_t peak_sidx;
int32_t peak_mag;
/* Populate the Search FFT Info */
if (p_sfft) {
p_sfft->timestamp = p_fft_report->fft_timestamp;
p_sfft->fft_detector_id = get_bitfield(p_fft_report->hdr_a,
2, 0);
p_sfft->fft_num = get_bitfield(p_fft_report->hdr_a, 3, 2);
p_sfft->fft_radar_check = get_bitfield(p_fft_report->hdr_a,
12, 5);
peak_sidx = get_bitfield(p_fft_report->hdr_a, 11, 17);
p_sfft->fft_peak_sidx = unsigned_to_signed(peak_sidx, 11);
p_sfft->fft_chn_idx = get_bitfield(p_fft_report->hdr_a, 3, 28);
p_sfft->fft_base_pwr_db = get_bitfield(p_fft_report->hdr_b,
9, 0);
p_sfft->fft_total_gain_db = get_bitfield(p_fft_report->hdr_b,
8, 9);
p_sfft->fft_num_str_bins_ib = get_bitfield(p_fft_report->hdr_c,
8, 0);
peak_mag = get_bitfield(p_fft_report->hdr_c, 10, 8);
p_sfft->fft_peak_mag = unsigned_to_signed(peak_mag, 10);
p_sfft->fft_avgpwr_db = get_bitfield(p_fft_report->hdr_c,
7, 18);
p_sfft->fft_relpwr_db = get_bitfield(p_fft_report->hdr_c,
7, 25);
}
return 0;
}
int
target_if_dump_fft_report_gen3(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
struct spectral_phyerr_fft_report_gen3 *p_fft_report,
struct spectral_search_fft_info_gen3 *p_sfft)
{
int i = 0;
int fft_mag = 0;
int fft_hdr_length = (p_fft_report->fft_hdr_length * 4);
int report_len = (fft_hdr_length + 8);
int fft_bin_len = (fft_hdr_length - 16);
int fft_bin_len_to_dump = fft_bin_len;
int fft_bin_len_adj = 0;
int fft_bin_len_inband_tfer = 0;
if ((spectral->params[smode].ss_rpt_mode == 1) &&
spectral->null_fftbin_adj) {
/* fft_bin_len_adj is intentionally left at 0. */
fft_bin_len_to_dump = 0;
} else {
/*
* Divide fft bin length by appropriate factor depending
* on the value of fftbin_size_war.
*/
if (spectral->fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE)
fft_bin_len_adj = fft_bin_len >> 2;
else if (spectral->fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE) {
/* Ideally we should be dividing fft bin length by 2.
* Due to a HW bug, actual length is two times the
* expected length.
*/
fft_bin_len_adj = fft_bin_len >> 2;
} else
fft_bin_len_adj = fft_bin_len;
if ((spectral->params[smode].ss_rpt_mode == 2) &&
spectral->inband_fftbin_size_adj) {
fft_bin_len_adj >>= 1;
fft_bin_len_inband_tfer = fft_bin_len >> 1;
fft_bin_len_to_dump = fft_bin_len_inband_tfer;
}
}
spectral_debug("#############################################################");
spectral_debug("Spectral search fft_report");
spectral_debug("fft_timestamp = 0x%x\nfft_hdr_length = %d(32 bit words)\nfft_hdr_tag = 0x%x\nfft_hdr_sig = 0x%x",
p_fft_report->fft_timestamp,
p_fft_report->fft_hdr_length,
p_fft_report->fft_hdr_tag, p_fft_report->fft_hdr_sig);
spectral_debug("Length field in search fft report is %d(0x%x) bytes",
fft_hdr_length, fft_hdr_length);
spectral_debug("Total length of search fft report is %d(0x%x) bytes",
report_len, report_len);
spectral_debug("Target reported fftbins in report is %d(0x%x)",
fft_bin_len,
fft_bin_len);
if ((spectral->params[smode].ss_rpt_mode == 1) &&
spectral->null_fftbin_adj)
spectral_debug("WAR: Considering number of FFT bins as 0");
else if ((spectral->params[smode].ss_rpt_mode == 2) &&
spectral->inband_fftbin_size_adj) {
spectral_debug("FW fftbins actually transferred (in-band report mode) "
"%d(0x%x)",
fft_bin_len_inband_tfer, fft_bin_len_inband_tfer);
}
spectral_debug("Actual number of fftbins in report is %d(0x%x)\n",
fft_bin_len_adj, fft_bin_len_adj);
spectral_debug("fft_detector_id = %u\nfft_num = %u\nfft_radar_check = %u\nfft_peak_sidx = %d\nfft_chn_idx = %u\nfft_base_pwr_db = %u\nfft_total_gain_db = %u\nfft_num_str_bins_ib = %u\nfft_peak_mag = %d\nfft_avgpwr_db = %u\nfft_relpwr_db = %u",
p_sfft->fft_detector_id,
p_sfft->fft_num,
p_sfft->fft_radar_check,
p_sfft->fft_peak_sidx,
p_sfft->fft_chn_idx,
p_sfft->fft_base_pwr_db,
p_sfft->fft_total_gain_db,
p_sfft->fft_num_str_bins_ib,
p_sfft->fft_peak_mag,
p_sfft->fft_avgpwr_db, p_sfft->fft_relpwr_db);
if (fft_bin_len_to_dump > 0) {
spectral_debug("FFT bins:");
for (i = 0; i < fft_bin_len_to_dump; i++) {
if (i % 16 == 0)
spectral_debug("\n%d :", i);
fft_mag =
((uint8_t *)p_fft_report)[SPECTRAL_FFT_BINS_POS + i];
spectral_debug("%d ", fft_mag);
}
}
spectral_debug("\n");
spectral_debug("#############################################################");
return 0;
}
QDF_STATUS
target_if_160mhz_delivery_state_change(struct target_if_spectral *spectral,
uint8_t detector_id) {
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (spectral->ch_width != CH_WIDTH_160MHZ)
return QDF_STATUS_E_FAILURE;
/* agile reports should not be coupled with 160 MHz state machine
* for normal Spectral
*/
if (detector_id == SPECTRAL_DETECTOR_AGILE)
return QDF_STATUS_SUCCESS;
switch (spectral->state_160mhz_delivery) {
case SPECTRAL_REPORT_WAIT_PRIMARY80:
if (detector_id == SPECTRAL_DETECTOR_PRIMARY)
spectral->state_160mhz_delivery =
SPECTRAL_REPORT_RX_PRIMARY80;
else {
status = QDF_STATUS_E_FAILURE;
spectral->diag_stats.spectral_vhtseg1id_mismatch++;
}
break;
case SPECTRAL_REPORT_WAIT_SECONDARY80:
if (detector_id == SPECTRAL_DETECTOR_SECONDARY)
spectral->state_160mhz_delivery =
SPECTRAL_REPORT_RX_SECONDARY80;
else {
spectral->state_160mhz_delivery =
SPECTRAL_REPORT_WAIT_PRIMARY80;
status = QDF_STATUS_E_FAILURE;
spectral->diag_stats.spectral_vhtseg2id_mismatch++;
}
break;
case SPECTRAL_REPORT_RX_SECONDARY80:
/* We don't care about detector id in this state. */
reset_160mhz_delivery_state_machine(spectral,
SPECTRAL_SCAN_MODE_NORMAL);
break;
case SPECTRAL_REPORT_RX_PRIMARY80:
/* We don't care about detector id in this state */
spectral->state_160mhz_delivery =
SPECTRAL_REPORT_WAIT_SECONDARY80;
break;
default:
break;
}
return status;
}
#ifdef DIRECT_BUF_RX_ENABLE
/**
* target_if_get_detector_id_sscan_report_gen3() - Get Spectral detector id
* @data: Pointer to Spectral summary report / Spectral
* search FFT report
*
* Get Spectral detector id from Spectral summary report / Spectral
* search FFT report
*
* Return: detector id
*/
static uint8_t
target_if_get_detector_id_sscan_report_gen3(uint8_t *data) {
struct spectral_sscan_report_gen3 *psscan_report;
uint8_t detector_id;
psscan_report = (struct spectral_sscan_report_gen3 *)data;
detector_id = get_bitfield(psscan_report->hdr_a,
SSCAN_REPORT_DETECTOR_ID_SIZE_GEN3,
SSCAN_REPORT_DETECTOR_ID_POS_GEN3);
return detector_id;
}
/**
* target_if_consume_sscan_report_gen3() - Consume spectral summary report
* @spectral: Pointer to spectral object
* @data: Pointer to spectral summary
*
* Consume spectral summary report for gen3
*
* Return: void
*/
static void
target_if_consume_sscan_report_gen3(struct target_if_spectral *spectral,
uint8_t *data,
struct sscan_report_fields_gen3 *fields) {
struct spectral_sscan_report_gen3 *psscan_report;
psscan_report = (struct spectral_sscan_report_gen3 *)data;
fields->sscan_agc_total_gain = get_bitfield(psscan_report->hdr_a, 8, 0);
fields->inband_pwr_db = get_bitfield(psscan_report->hdr_a, 10, 18);
fields->sscan_gainchange = get_bitfield(psscan_report->hdr_b, 1, 30);
}
/**
* target_if_verify_sig_and_tag_gen3() - Verify tag and signature
* of spectral report
* @spectral: Pointer to spectral object
* @data: Pointer to spectral summary report
* @exp_tag: iexpected tag value
*
* Process fft report for gen3
*
* Return: SUCCESS/FAILURE
*/
static int
target_if_verify_sig_and_tag_gen3(struct target_if_spectral *spectral,
uint8_t *data, uint8_t exp_tag)
{
uint8_t tag = 0;
uint8_t signature = 0;
/* Peek into the data to figure out whether
* 1) Signature matches the expected value
* 2) What is inside the package (TAG ID is used for finding this)
*/
tag = *(data + PHYERR_HDR_TAG_POS);
signature = *(data + PHYERR_HDR_SIG_POS);
if (signature != SPECTRAL_PHYERR_SIGNATURE_GEN3) {
spectral->diag_stats.spectral_mismatch++;
return -EINVAL;
}
if (tag != exp_tag) {
spectral->diag_stats.spectral_mismatch++;
return -EINVAL;
}
return 0;
}
static uint8_t
target_if_spectral_get_lowest_chn_idx(uint8_t chainmask)
{
uint8_t idx;
for (idx = 0; idx < DBR_MAX_CHAINS; idx++) {
if (chainmask & 0x1)
break;
chainmask >>= 1;
}
return idx;
}
static QDF_STATUS
target_if_get_spectral_mode(enum spectral_detector_id detector_id,
enum spectral_scan_mode *smode) {
switch (detector_id) {
case SPECTRAL_DETECTOR_PRIMARY:
case SPECTRAL_DETECTOR_SECONDARY:
*smode = SPECTRAL_SCAN_MODE_NORMAL;
break;
case SPECTRAL_DETECTOR_AGILE:
*smode = SPECTRAL_SCAN_MODE_AGILE;
break;
default:
spectral_err("Invalid Spectral detector id");
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
int
target_if_consume_spectral_report_gen3(
struct target_if_spectral *spectral,
struct spectral_report *report)
{
/*
* XXX : The classifier do not use all the members of the SAMP
* message data format.
* The classifier only depends upon the following parameters
*
* 1. Frequency (freq, msg->freq)
* 2. Spectral RSSI (spectral_rssi,
* msg->samp_data.spectral_rssi)
* 3. Bin Power Count (bin_pwr_count,
* msg->samp_data.bin_pwr_count)
* 4. Bin Power values (bin_pwr, msg->samp_data.bin_pwr[0]
* 5. Spectral Timestamp (spectral_tstamp,
* msg->samp_data.spectral_tstamp)
* 6. MAC Address (macaddr, msg->macaddr)
*
* This function prepares the params structure and populates it
* with
* relevant values, this is in turn passed to
* spectral_create_samp_msg()
* to prepare fully formatted Spectral SAMP message
*
* XXX : Need to verify
* 1. Order of FFT bin values
*
*/
uint64_t tsf64 = 0;
struct target_if_samp_msg_params params = {0};
struct spectral_search_fft_info_gen3 search_fft_info;
struct spectral_search_fft_info_gen3 *p_sfft = &search_fft_info;
int8_t chn_idx_lowest_enabled = 0;
int fft_hdr_length = 0;
int report_len = 0;
int fft_bin_len = 0;
struct target_if_spectral_ops *p_sops =
GET_TARGET_IF_SPECTRAL_OPS(spectral);
struct spectral_phyerr_fft_report_gen3 *p_fft_report;
int8_t rssi;
uint8_t *data = report->data;
struct wlan_objmgr_vdev *vdev;
uint8_t vdev_rxchainmask;
struct sscan_report_fields_gen3 sscan_report_fields;
enum spectral_detector_id detector_id;
QDF_STATUS ret;
params.smode = SPECTRAL_SCAN_MODE_NORMAL;
/* Process Spectral scan summary report */
if (target_if_verify_sig_and_tag_gen3(
spectral, data,
TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN3) != 0) {
spectral_err_rl("Wrong tag/sig in sscan summary");
goto fail;
}
detector_id = target_if_get_detector_id_sscan_report_gen3(data);
if (detector_id > SPECTRAL_DETECTOR_AGILE) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err("Invalid detector id %u, expected is 0/1/2",
detector_id);
goto fail;
}
target_if_consume_sscan_report_gen3(spectral, data,
&sscan_report_fields);
/* Advance buf pointer to the search fft report */
data += sizeof(struct spectral_sscan_report_gen3);
if ((detector_id == SPECTRAL_DETECTOR_AGILE) ||
is_primaryseg_expected(spectral)) {
/* RSSI is in 1/2 dBm steps, Covert it to dBm scale */
rssi = (sscan_report_fields.inband_pwr_db) >> 1;
params.agc_total_gain =
sscan_report_fields.sscan_agc_total_gain;
params.gainchange = sscan_report_fields.sscan_gainchange;
/* Process Spectral search FFT report */
if (target_if_verify_sig_and_tag_gen3(
spectral, data,
TLV_TAG_SEARCH_FFT_REPORT_GEN3) != 0) {
spectral_err_rl("Unexpected tag/sig in sfft, detid= %u",
detector_id);
goto fail;
}
p_fft_report = (struct spectral_phyerr_fft_report_gen3 *)data;
fft_hdr_length = p_fft_report->fft_hdr_length * 4;
if (fft_hdr_length < 16) {
spectral_err("Wrong TLV length %u, detector id = %d",
fft_hdr_length, detector_id);
goto fail;
}
report_len = (fft_hdr_length + 8);
target_if_process_sfft_report_gen3(p_fft_report, p_sfft);
/* It is expected to have same detector id for
* summary and fft report
*/
if (detector_id != p_sfft->fft_detector_id) {
spectral_err_rl
("Different detid in ssummary(%u) and sfft(%u)",
detector_id, p_sfft->fft_detector_id);
goto fail;
}
if (detector_id > SPECTRAL_DETECTOR_AGILE) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err("Invalid detector id %u, expected is 0/2",
detector_id);
goto fail;
}
ret = target_if_get_spectral_mode(detector_id, &params.smode);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to get mode from detid= %u",
detector_id);
goto fail;
}
if ((spectral->params[params.smode].ss_rpt_mode == 1) &&
spectral->null_fftbin_adj) {
/*
* No FFT bins are expected. Explicitly set FFT bin
* length to 0.
*/
fft_bin_len = 0;
} else {
fft_bin_len = (fft_hdr_length - 16);
/*
* Divide fft bin length by appropriate factor depending
* on the value of fftbin_size_war.
*/
if (spectral->fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE)
fft_bin_len >>= 2;
else if (spectral->fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE) {
/* Ideally we should be dividing fft bin length
* by 2. Due to a HW bug, actual length is two
* times the expected length.
*/
fft_bin_len >>= 2;
}
if ((spectral->params[params.smode].ss_rpt_mode == 2) &&
spectral->inband_fftbin_size_adj) {
fft_bin_len >>= 1;
}
}
if (report->reset_delay) {
enum spectral_scan_mode mode =
SPECTRAL_SCAN_MODE_NORMAL;
/* Adjust the offset for all the Spectral modes.
* Target will be sending the non zero reset delay for
* the first Spectral report after reset. This delay is
* common for all the Spectral modes.
*/
for (; mode < SPECTRAL_SCAN_MODE_MAX; mode++)
spectral->timestamp_war_offset[mode] +=
(report->reset_delay +
spectral->last_fft_timestamp[mode]);
}
tsf64 = p_sfft->timestamp;
spectral->last_fft_timestamp[params.smode] = p_sfft->timestamp;
tsf64 += spectral->timestamp_war_offset[params.smode];
/* Take care of state transitions for 160 MHz and 80p80 */
if (spectral->ch_width == CH_WIDTH_160MHZ) {
ret = target_if_160mhz_delivery_state_change(
spectral,
detector_id);
if (ret != QDF_STATUS_SUCCESS)
goto fail;
}
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4))
target_if_dump_fft_report_gen3(spectral, params.smode,
p_fft_report, p_sfft);
params.rssi = rssi;
vdev = target_if_spectral_get_vdev(spectral);
if (!vdev) {
spectral_info("First vdev is NULL");
reset_160mhz_delivery_state_machine
(spectral,
SPECTRAL_SCAN_MODE_NORMAL);
return -EPERM;
}
vdev_rxchainmask = wlan_vdev_mlme_get_rxchainmask(vdev);
QDF_ASSERT(vdev_rxchainmask != 0);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
chn_idx_lowest_enabled =
target_if_spectral_get_lowest_chn_idx(vdev_rxchainmask);
if (chn_idx_lowest_enabled >= DBR_MAX_CHAINS) {
spectral_err("Invalid chain index, detector id = %u",
detector_id);
goto fail;
}
params.max_mag = p_sfft->fft_peak_mag;
params.bin_pwr_data = (uint8_t *)((uint8_t *)p_fft_report +
SPECTRAL_FFT_BINS_POS);
params.freq = p_sops->get_current_channel(spectral);
/*
* For modes upto VHT80, the noise floor is populated with
* the one corresponding
* to the highest enabled antenna chain
*/
/* TODO: Fill proper values once FW provides them*/
params.noise_floor =
report->noisefloor[chn_idx_lowest_enabled];
params.datalen = (fft_hdr_length * 4);
params.pwr_count = fft_bin_len;
params.tstamp = (tsf64 & SPECTRAL_TSMASK);
} else if (is_secondaryseg_expected(spectral)) {
/* RSSI is in 1/2 dBm steps, Covert it to dBm scale */
rssi = (sscan_report_fields.inband_pwr_db) >> 1;
params.agc_total_gain_sec80 =
sscan_report_fields.sscan_agc_total_gain;
params.gainchange_sec80 = sscan_report_fields.sscan_gainchange;
/* Process Spectral search FFT report */
if (target_if_verify_sig_and_tag_gen3(
spectral, data,
TLV_TAG_SEARCH_FFT_REPORT_GEN3) != 0) {
spectral_err_rl("Unexpected tag/sig in sfft, detid= %u",
detector_id);
goto fail;
}
p_fft_report = (struct spectral_phyerr_fft_report_gen3 *)data;
fft_hdr_length = p_fft_report->fft_hdr_length * 4;
if (fft_hdr_length < 16) {
spectral_err("Wrong TLV length %u, detector id = %u",
fft_hdr_length, detector_id);
goto fail;
}
report_len = (fft_hdr_length + 8);
target_if_process_sfft_report_gen3(p_fft_report, p_sfft);
/* It is expected to have same detector id for
* summary and fft report
*/
if (detector_id != p_sfft->fft_detector_id) {
spectral_err_rl
("Different detid in ssummary(%u) and sfft(%u)",
detector_id, p_sfft->fft_detector_id);
goto fail;
}
if (detector_id > SPECTRAL_DETECTOR_AGILE) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err("Invalid detector id %u, expected is 1",
detector_id);
goto fail;
}
ret = target_if_get_spectral_mode(detector_id, &params.smode);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err("Failed to get mode from detid= %u",
detector_id);
goto fail;
}
if ((spectral->params[params.smode].ss_rpt_mode == 1) &&
spectral->null_fftbin_adj) {
/*
* No FFT bins are expected. Explicitly set FFT bin
* length to 0.
*/
fft_bin_len = 0;
} else {
fft_bin_len = (fft_hdr_length - 16);
/*
* Divide fft bin length by appropriate factor depending
* on the value of fftbin_size_war.
*/
if (spectral->fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE)
fft_bin_len >>= 2;
else if (spectral->fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE) {
/* Ideally we should be dividing fft bin length
* by 2. Due to a HW bug, actual length is two
* times the expected length.
*/
fft_bin_len >>= 2;
}
if ((spectral->params[params.smode].ss_rpt_mode == 2) &&
spectral->inband_fftbin_size_adj) {
fft_bin_len >>= 1;
}
}
/* Take care of state transitions for 160 MHz and 80p80 */
if (spectral->ch_width == CH_WIDTH_160MHZ) {
ret = target_if_160mhz_delivery_state_change(
spectral,
detector_id);
if (ret != QDF_STATUS_SUCCESS)
goto fail;
}
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4))
target_if_dump_fft_report_gen3(spectral, params.smode,
p_fft_report, p_sfft);
params.vhtop_ch_freq_seg1 = 0;
params.vhtop_ch_freq_seg2 = 0;
params.rssi_sec80 = rssi;
vdev = target_if_spectral_get_vdev(spectral);
if (!vdev) {
spectral_info("First vdev is NULL");
reset_160mhz_delivery_state_machine
(spectral,
SPECTRAL_SCAN_MODE_NORMAL);
return -EPERM;
}
vdev_rxchainmask = wlan_vdev_mlme_get_rxchainmask(vdev);
QDF_ASSERT(vdev_rxchainmask != 0);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
chn_idx_lowest_enabled =
target_if_spectral_get_lowest_chn_idx(vdev_rxchainmask);
if (chn_idx_lowest_enabled >= DBR_MAX_CHAINS) {
spectral_err("Invalid chain index");
goto fail;
}
/* Need to change this as per FW team's inputs */
params.noise_floor_sec80 =
report->noisefloor[chn_idx_lowest_enabled];
params.max_mag_sec80 = p_sfft->fft_peak_mag;
/* params.max_index_sec80 = p_sfft->peak_inx; */
/* XXX Does this definition of datalen *still hold? */
params.datalen_sec80 = fft_hdr_length * 4;
params.pwr_count_sec80 = fft_bin_len;
params.bin_pwr_data_sec80 =
(uint8_t *)((uint8_t *)p_fft_report +
SPECTRAL_FFT_BINS_POS);
} else {
spectral_err("Spectral state machine in undefined state");
goto fail;
}
qdf_mem_copy(&params.classifier_params,
&spectral->classifier_params,
sizeof(struct spectral_classifier_params));
target_if_spectral_log_SAMP_param(&params);
target_if_spectral_create_samp_msg(spectral, &params);
return 0;
fail:
spectral_err_rl("Error while processing Spectral report");
reset_160mhz_delivery_state_machine(spectral,
SPECTRAL_SCAN_MODE_NORMAL);
return -EPERM;
}
int target_if_spectral_process_report_gen3(
struct wlan_objmgr_pdev *pdev,
void *buf)
{
int ret = 0;
struct direct_buf_rx_data *payload = buf;
struct target_if_spectral *spectral;
struct spectral_report report;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectral target object is null");
return -EINVAL;
}
report.data = payload->vaddr;
if (payload->meta_data_valid) {
qdf_mem_copy(report.noisefloor, payload->meta_data.noisefloor,
qdf_min(sizeof(report.noisefloor),
sizeof(payload->meta_data.noisefloor)));
report.reset_delay = payload->meta_data.reset_delay;
}
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4)) {
spectral_debug("Printing the spectral phyerr buffer for debug");
spectral_debug("Datalength of buffer = 0x%zx(%zd) bufptr = 0x%pK",
payload->dbr_len,
payload->dbr_len,
payload->vaddr);
target_if_spectral_hexdump((unsigned char *)payload->vaddr,
1024);
}
ret = target_if_consume_spectral_report_gen3(spectral, &report);
if (spectral_debug_level & DEBUG_SPECTRAL4)
spectral_debug_level = DEBUG_SPECTRAL;
return ret;
}
#else
int target_if_spectral_process_report_gen3(
struct wlan_objmgr_pdev *pdev,
void *buf)
{
spectral_err("Direct dma support is not enabled");
return -EINVAL;
}
#endif
qdf_export_symbol(target_if_spectral_process_report_gen3);
/* END of spectral GEN III HW specific functions */
#endif /* WLAN_CONV_SPECTRAL_ENABLE */