blob: cc4249a198bc989d1b6b7d1ce727cfa60f9f3dce [file] [log] [blame]
/*
* Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "dp_types.h"
#include "dp_rx.h"
#include "dp_peer.h"
#include "hal_rx.h"
#include "hal_api.h"
#include "qdf_nbuf.h"
#ifdef MESH_MODE_SUPPORT
#include "if_meta_hdr.h"
#endif
#include "dp_internal.h"
#include "dp_rx_mon.h"
#ifdef RX_DESC_DEBUG_CHECK
static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
{
rx_desc->magic = DP_RX_DESC_MAGIC;
rx_desc->nbuf = nbuf;
}
#else
static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
{
rx_desc->nbuf = nbuf;
}
#endif
#ifdef CONFIG_WIN
static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
{
return vdev->ap_bridge_enabled;
}
#else
static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
{
if (vdev->opmode != wlan_op_mode_sta)
return true;
else
return false;
}
#endif
/*
* dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
* called during dp rx initialization
* and at the end of dp_rx_process.
*
* @soc: core txrx main context
* @mac_id: mac_id which is one of 3 mac_ids
* @dp_rxdma_srng: dp rxdma circular ring
* @rx_desc_pool: Pointer to free Rx descriptor pool
* @num_req_buffers: number of buffer to be replenished
* @desc_list: list of descs if called from dp_rx_process
* or NULL during dp rx initialization or out of buffer
* interrupt.
* @tail: tail of descs list
* Return: return success or failure
*/
QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers,
union dp_rx_desc_list_elem_t **desc_list,
union dp_rx_desc_list_elem_t **tail)
{
uint32_t num_alloc_desc;
uint16_t num_desc_to_free = 0;
struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
uint32_t num_entries_avail;
uint32_t count;
int sync_hw_ptr = 1;
qdf_dma_addr_t paddr;
qdf_nbuf_t rx_netbuf;
void *rxdma_ring_entry;
union dp_rx_desc_list_elem_t *next;
QDF_STATUS ret;
void *rxdma_srng;
rxdma_srng = dp_rxdma_srng->hal_srng;
if (!rxdma_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"rxdma srng not initialized");
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"requested %d buffers for replenish", num_req_buffers);
hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
rxdma_srng,
sync_hw_ptr);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"no of available entries in rxdma ring: %d",
num_entries_avail);
if (!(*desc_list) && (num_entries_avail >
((dp_rxdma_srng->num_entries * 3) / 4))) {
num_req_buffers = num_entries_avail;
} else if (num_entries_avail < num_req_buffers) {
num_desc_to_free = num_req_buffers - num_entries_avail;
num_req_buffers = num_entries_avail;
}
if (qdf_unlikely(!num_req_buffers)) {
num_desc_to_free = num_req_buffers;
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
goto free_descs;
}
/*
* if desc_list is NULL, allocate the descs from freelist
*/
if (!(*desc_list)) {
num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
rx_desc_pool,
num_req_buffers,
desc_list,
tail);
if (!num_alloc_desc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"no free rx_descs in freelist");
DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
num_req_buffers);
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
return QDF_STATUS_E_NOMEM;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%d rx desc allocated", num_alloc_desc);
num_req_buffers = num_alloc_desc;
}
count = 0;
while (count < num_req_buffers) {
rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
RX_BUFFER_SIZE,
RX_BUFFER_RESERVATION,
RX_BUFFER_ALIGNMENT,
FALSE);
if (rx_netbuf == NULL) {
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
continue;
}
ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
QDF_DMA_BIDIRECTIONAL);
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
qdf_nbuf_free(rx_netbuf);
DP_STATS_INC(dp_pdev, replenish.map_err, 1);
continue;
}
paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
/*
* check if the physical address of nbuf->data is
* less then 0x50000000 then free the nbuf and try
* allocating new nbuf. We can try for 100 times.
* this is a temp WAR till we fix it properly.
*/
ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
if (ret == QDF_STATUS_E_FAILURE) {
DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
break;
}
count++;
rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
rxdma_srng);
qdf_assert_always(rxdma_ring_entry);
next = (*desc_list)->next;
dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
(*desc_list)->rx_desc.in_use = 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
rx_netbuf, qdf_nbuf_data(rx_netbuf),
(unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
(*desc_list)->rx_desc.cookie,
rx_desc_pool->owner);
*desc_list = next;
}
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"successfully replenished %d buffers", num_req_buffers);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%d rx desc added back to free list", num_desc_to_free);
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
(RX_BUFFER_SIZE * num_req_buffers));
free_descs:
DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
/*
* add any available free desc back to the free list
*/
if (*desc_list)
dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
mac_id, rx_desc_pool);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_deliver_raw() - process RAW mode pkts and hand over the
* pkts to RAW mode simulation to
* decapsulate the pkt.
*
* @vdev: vdev on which RAW mode is enabled
* @nbuf_list: list of RAW pkts to process
* @peer: peer object from which the pkt is rx
*
* Return: void
*/
void
dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
struct dp_peer *peer)
{
qdf_nbuf_t deliver_list_head = NULL;
qdf_nbuf_t deliver_list_tail = NULL;
qdf_nbuf_t nbuf;
nbuf = nbuf_list;
while (nbuf) {
qdf_nbuf_t next = qdf_nbuf_next(nbuf);
DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
/*
* reset the chfrag_start and chfrag_end bits in nbuf cb
* as this is a non-amsdu pkt and RAW mode simulation expects
* these bit s to be 0 for non-amsdu pkt.
*/
if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
qdf_nbuf_is_rx_chfrag_end(nbuf)) {
qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
}
nbuf = next;
}
vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
&deliver_list_tail, (struct cdp_peer*) peer);
vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
}
#ifdef DP_LFR
/*
* In case of LFR, data of a new peer might be sent up
* even before peer is added.
*/
static inline struct dp_vdev *
dp_get_vdev_from_peer(struct dp_soc *soc,
uint16_t peer_id,
struct dp_peer *peer,
struct hal_rx_mpdu_desc_info mpdu_desc_info)
{
struct dp_vdev *vdev;
uint8_t vdev_id;
if (unlikely(!peer)) {
if (peer_id != HTT_INVALID_PEER) {
vdev_id = DP_PEER_METADATA_ID_GET(
mpdu_desc_info.peer_meta_data);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("PeerID %d not found use vdevID %d"),
peer_id, vdev_id);
vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
vdev_id);
} else {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("Invalid PeerID %d"),
peer_id);
return NULL;
}
} else {
vdev = peer->vdev;
}
return vdev;
}
#else
static inline struct dp_vdev *
dp_get_vdev_from_peer(struct dp_soc *soc,
uint16_t peer_id,
struct dp_peer *peer,
struct hal_rx_mpdu_desc_info mpdu_desc_info)
{
if (unlikely(!peer)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("Peer not found for peerID %d"),
peer_id);
return NULL;
} else {
return peer->vdev;
}
}
#endif
/**
* dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
*
* @soc: core txrx main context
* @sa_peer : source peer entry
* @rx_tlv_hdr : start address of rx tlvs
* @nbuf : nbuf that has to be intrabss forwarded
*
* Return: bool: true if it is forwarded else false
*/
static bool
dp_rx_intrabss_fwd(struct dp_soc *soc,
struct dp_peer *sa_peer,
uint8_t *rx_tlv_hdr,
qdf_nbuf_t nbuf)
{
uint16_t da_idx;
uint16_t len;
struct dp_peer *da_peer;
struct dp_ast_entry *ast_entry;
qdf_nbuf_t nbuf_copy;
struct dp_vdev *vdev = sa_peer->vdev;
/*
* intrabss forwarding is not applicable if
* vap is nawds enabled or ap_bridge is false.
*/
if (vdev->nawds_enabled)
return false;
/* check if the destination peer is available in peer table
* and also check if the source peer and destination peer
* belong to the same vap and destination peer is not bss peer.
*/
if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
!hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
ast_entry = soc->ast_table[da_idx];
if (!ast_entry)
return false;
da_peer = ast_entry->peer;
if (!da_peer)
return false;
if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
len = qdf_nbuf_len(nbuf);
/* linearize the nbuf just before we send to
* dp_tx_send()
*/
if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
return false;
nbuf = qdf_nbuf_unshare(nbuf);
if (!nbuf) {
DP_STATS_INC_PKT(sa_peer,
rx.intra_bss.fail,
1,
len);
/* return true even though the pkt is
* not forwarded. Basically skb_unshare
* failed and we want to continue with
* next nbuf.
*/
return true;
}
}
if (!dp_tx_send(sa_peer->vdev, nbuf)) {
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
1, len);
return true;
} else {
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
len);
return false;
}
}
}
/* if it is a broadcast pkt (eg: ARP) and it is not its own
* source, then clone the pkt and send the cloned pkt for
* intra BSS forwarding and original pkt up the network stack
* Note: how do we handle multicast pkts. do we forward
* all multicast pkts as is or let a higher layer module
* like igmpsnoop decide whether to forward or not with
* Mcast enhancement.
*/
else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
!sa_peer->bss_peer))) {
nbuf_copy = qdf_nbuf_copy(nbuf);
if (!nbuf_copy)
return false;
memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
len = qdf_nbuf_len(nbuf_copy);
if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
qdf_nbuf_free(nbuf_copy);
} else
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
}
/* return false as we have to still send the original pkt
* up the stack
*/
return false;
}
#ifdef MESH_MODE_SUPPORT
/**
* dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
* @peer: pointer to peer
*
* This function allocated memory for mesh receive stats and fill the
* required stats. Stores the memory address in skb cb.
*
* Return: void
*/
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_peer *peer)
{
struct mesh_recv_hdr_s *rx_info = NULL;
uint32_t pkt_type;
uint32_t nss;
uint32_t rate_mcs;
uint32_t bw;
/* fill recv mesh stats */
rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
/* upper layers are resposible to free this memory */
if (rx_info == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Memory allocation failed for mesh rx stats");
DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
return;
}
rx_info->rs_flags = MESH_RXHDR_VER1;
if (qdf_nbuf_is_rx_chfrag_start(nbuf))
rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
if (qdf_nbuf_is_rx_chfrag_end(nbuf))
rx_info->rs_flags |= MESH_RX_LAST_MSDU;
if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
rx_info->rs_flags |= MESH_RX_DECRYPTED;
rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
if (vdev->osif_get_key)
vdev->osif_get_key(vdev->osif_vdev,
&rx_info->rs_decryptkey[0],
&peer->mac_addr.raw[0],
rx_info->rs_keyix);
}
rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
(bw << 24);
qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
rx_info->rs_flags,
rx_info->rs_rssi,
rx_info->rs_channel,
rx_info->rs_ratephy1,
rx_info->rs_keyix);
}
/**
* dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
*
* This checks if the received packet is matching any filter out
* catogery and and drop the packet if it matches.
*
* Return: status(0 indicates drop, 1 indicate to no drop)
*/
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
union dp_align_mac_addr mac_addr;
if (qdf_unlikely(vdev->mesh_rx_filter)) {
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
DP_MAC_ADDR_LEN))
return QDF_STATUS_SUCCESS;
}
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
DP_MAC_ADDR_LEN))
return QDF_STATUS_SUCCESS;
}
}
return QDF_STATUS_E_FAILURE;
}
#else
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr, struct dp_peer *peer)
{
}
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
return QDF_STATUS_E_FAILURE;
}
#endif
#ifdef CONFIG_WIN
/**
* dp_rx_nac_filter(): Function to perform filtering of non-associated
* clients
* @pdev: DP pdev handle
* @rx_pkt_hdr: Rx packet Header
*
* return: dp_vdev*
*/
static
struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
uint8_t *rx_pkt_hdr)
{
struct ieee80211_frame *wh;
struct dp_neighbour_peer *peer = NULL;
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
return NULL;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
QDF_TRACE(
QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
peer->neighbour_peers_macaddr.raw[0],
peer->neighbour_peers_macaddr.raw[1],
peer->neighbour_peers_macaddr.raw[2],
peer->neighbour_peers_macaddr.raw[3],
peer->neighbour_peers_macaddr.raw[4],
peer->neighbour_peers_macaddr.raw[5]);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return pdev->monitor_vdev;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return NULL;
}
/**
* dp_rx_process_nac_rssi_frames(): Store RSSI for configured NAC
* @pdev: DP pdev handle
* @rx_tlv_hdr: tlv hdr buf
*
* return: None
*/
#ifdef ATH_SUPPORT_NAC_RSSI
static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
{
struct dp_vdev *vdev = NULL;
struct dp_soc *soc = pdev->soc;
uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
struct ieee80211_frame *wh = (struct ieee80211_frame *)rx_pkt_hdr;
if (pdev->nac_rssi_filtering) {
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->cdp_nac_rssi_enabled &&
(qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
wh->i_addr1, DP_MAC_ADDR_LEN) == 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG, "RSSI updated");
vdev->cdp_nac_rssi.vdev_id = vdev->vdev_id;
vdev->cdp_nac_rssi.client_rssi =
hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
dp_wdi_event_handler(WDI_EVENT_NAC_RSSI, soc,
(void *)&vdev->cdp_nac_rssi,
HTT_INVALID_PEER, WDI_NO_VAL,
pdev->pdev_id);
}
}
}
}
#else
static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
{
}
#endif
/**
* dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
* @soc: DP SOC handle
* @mpdu: mpdu for which peer is invalid
*
* return: integer type
*/
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
{
struct dp_invalid_peer_msg msg;
struct dp_vdev *vdev = NULL;
struct dp_pdev *pdev = NULL;
struct ieee80211_frame *wh;
uint8_t i;
qdf_nbuf_t curr_nbuf, next_nbuf;
uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if (!DP_FRAME_IS_DATA(wh)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"NAWDS valid only for data frames");
goto free;
}
if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid nbuf length");
goto free;
}
for (i = 0; i < MAX_PDEV_CNT; i++) {
pdev = soc->pdev_list[i];
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"PDEV not found");
continue;
}
if (pdev->filter_neighbour_peers) {
/* Next Hop scenario not yet handle */
vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
if (vdev) {
dp_rx_mon_deliver(soc, i,
pdev->invalid_peer_head_msdu,
pdev->invalid_peer_tail_msdu);
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
return 0;
}
}
dp_rx_process_nac_rssi_frames(pdev, rx_tlv_hdr);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
DP_MAC_ADDR_LEN) == 0) {
goto out;
}
}
}
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"VDEV not found");
goto free;
}
out:
msg.wh = wh;
qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
msg.nbuf = mpdu;
msg.vdev_id = vdev->vdev_id;
if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
&msg);
free:
/* Drop and free packet */
curr_nbuf = mpdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
return 0;
}
/**
* dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
* @soc: DP SOC handle
* @mpdu: mpdu for which peer is invalid
* @mpdu_done: if an mpdu is completed
*
* return: integer type
*/
void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
qdf_nbuf_t mpdu, bool mpdu_done)
{
/* Only trigger the process when mpdu is completed */
if (mpdu_done)
dp_rx_process_invalid_peer(soc, mpdu);
}
#else
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
{
qdf_nbuf_t curr_nbuf, next_nbuf;
struct dp_pdev *pdev;
uint8_t i;
curr_nbuf = mpdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
/* Drop and free packet */
DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
qdf_nbuf_len(curr_nbuf));
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
/* reset the head and tail pointers */
for (i = 0; i < MAX_PDEV_CNT; i++) {
pdev = soc->pdev_list[i];
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
"PDEV not found");
continue;
}
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
}
return 0;
}
void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
qdf_nbuf_t mpdu, bool mpdu_done)
{
/* To avoid compiler warning */
mpdu_done = mpdu_done;
/* Process the nbuf */
dp_rx_process_invalid_peer(soc, mpdu);
}
#endif
#if defined(FEATURE_LRO)
static void dp_rx_print_lro_info(uint8_t *rx_tlv)
{
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("----------------------RX DESC LRO----------------------\n"));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("---------------------------------------------------------\n"));
}
/**
* dp_rx_lro() - LRO related processing
* @rx_tlv: TLV data extracted from the rx packet
* @peer: destination peer of the msdu
* @msdu: network buffer
* @ctx: LRO context
*
* This function performs the LRO related processing of the msdu
*
* Return: true: LRO enabled false: LRO is not enabled
*/
static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
{
if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
FL("no peer, no vdev or LRO disabled"));
QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
return;
}
qdf_assert(rx_tlv);
dp_rx_print_lro_info(rx_tlv);
QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
QDF_NBUF_CB_RX_TCP_WIN(msdu) =
HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
HAL_RX_TLV_GET_IPV6(rx_tlv);
QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
QDF_NBUF_CB_RX_FLOW_ID(msdu) =
HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
}
#else
static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
{
}
#endif
/**
* dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
*
* @nbuf: pointer to msdu.
* @mpdu_len: mpdu length
*
* Return: returns true if nbuf is last msdu of mpdu else retuns false.
*/
static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
{
bool last_nbuf;
if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
last_nbuf = false;
} else {
qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
last_nbuf = true;
}
*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
return last_nbuf;
}
/**
* dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
* multiple nbufs.
* @nbuf: pointer to the first msdu of an amsdu.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
*
*
* This function implements the creation of RX frag_list for cases
* where an MSDU is spread across multiple nbufs.
*
* Return: returns the head nbuf which contains complete frag_list.
*/
qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
{
qdf_nbuf_t parent, next, frag_list;
uint16_t frag_list_len = 0;
uint16_t mpdu_len;
bool last_nbuf;
mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
/*
* this is a case where the complete msdu fits in one single nbuf.
* in this case HW sets both start and end bit and we only need to
* reset these bits for RAW mode simulator to decap the pkt
*/
if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
qdf_nbuf_is_rx_chfrag_end(nbuf)) {
qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
return nbuf;
}
/*
* This is a case where we have multiple msdus (A-MSDU) spread across
* multiple nbufs. here we create a fraglist out of these nbufs.
*
* the moment we encounter a nbuf with continuation bit set we
* know for sure we have an MSDU which is spread across multiple
* nbufs. We loop through and reap nbufs till we reach last nbuf.
*/
parent = nbuf;
frag_list = nbuf->next;
nbuf = nbuf->next;
/*
* set the start bit in the first nbuf we encounter with continuation
* bit set. This has the proper mpdu length set as it is the first
* msdu of the mpdu. this becomes the parent nbuf and the subsequent
* nbufs will form the frag_list of the parent nbuf.
*/
qdf_nbuf_set_rx_chfrag_start(parent, 1);
last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
/*
* this is where we set the length of the fragments which are
* associated to the parent nbuf. We iterate through the frag_list
* till we hit the last_nbuf of the list.
*/
do {
last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
frag_list_len += qdf_nbuf_len(nbuf);
if (last_nbuf) {
next = nbuf->next;
nbuf->next = NULL;
break;
}
nbuf = nbuf->next;
} while (!last_nbuf);
qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
parent->next = next;
qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
return parent;
}
static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
struct dp_peer *peer,
qdf_nbuf_t nbuf_head,
qdf_nbuf_t nbuf_tail)
{
/*
* highly unlikely to have a vdev without a registered rx
* callback function. if so let us free the nbuf_list.
*/
if (qdf_unlikely(!vdev->osif_rx)) {
qdf_nbuf_t nbuf;
do {
nbuf = nbuf_head;
nbuf_head = nbuf_head->next;
qdf_nbuf_free(nbuf);
} while (nbuf_head);
return;
}
if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
&nbuf_tail, (struct cdp_peer *) peer);
}
vdev->osif_rx(vdev->osif_vdev, nbuf_head);
}
/**
* dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
* @nbuf: pointer to the first msdu of an amsdu.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
*
* The ipsumed field of the skb is set based on whether HW validated the
* IP/TCP/UDP checksum.
*
* Return: void
*/
static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
qdf_nbuf_rx_cksum_t cksum = {0};
bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
qdf_nbuf_set_rx_cksum(nbuf, &cksum);
} else {
DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
}
}
/**
* dp_rx_msdu_stats_update() - update per msdu stats.
* @soc: core txrx main context
* @nbuf: pointer to the first msdu of an amsdu.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
* @peer: pointer to the peer object.
* @ring_id: reo dest ring number on which pkt is reaped.
*
* update all the per msdu stats for that nbuf.
* Return: void
*/
static void dp_rx_msdu_stats_update(struct dp_soc *soc,
qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr,
struct dp_peer *peer,
uint8_t ring_id)
{
bool is_ampdu, is_not_amsdu;
uint16_t peer_id;
uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
struct dp_vdev *vdev = peer->vdev;
struct ether_header *eh;
uint16_t msdu_len = qdf_nbuf_len(nbuf);
peer_id = DP_PEER_METADATA_PEER_ID_GET(
hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
qdf_nbuf_is_rx_chfrag_end(nbuf);
DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
eh = (struct ether_header *)qdf_nbuf_data(nbuf);
if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
} else {
DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
}
}
/*
* currently we can return from here as we have similar stats
* updated at per ppdu level instead of msdu level
*/
if (!soc->process_rx_status)
return;
is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
reception_type = hal_rx_msdu_start_reception_type_get(rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
/* Save tid to skb->priority */
DP_RX_TID_SAVE(nbuf, tid);
DP_STATS_INC(peer, rx.nss[nss], 1);
DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
DP_STATS_INCC(peer, rx.err.mic_err, 1,
hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
DP_STATS_INC(peer, rx.bw[bw], 1);
DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
if ((soc->process_rx_status) &&
hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
if (soc->cdp_soc.ol_ops->update_dp_stats) {
soc->cdp_soc.ol_ops->update_dp_stats(
vdev->pdev->ctrl_pdev,
&peer->stats,
peer_id,
UPDATE_PEER_STATS);
}
}
}
#ifdef WDS_VENDOR_EXTENSION
int dp_wds_rx_policy_check(
uint8_t *rx_tlv_hdr,
struct dp_vdev *vdev,
struct dp_peer *peer,
int rx_mcast
)
{
struct dp_peer *bss_peer;
int fr_ds, to_ds, rx_3addr, rx_4addr;
int rx_policy_ucast, rx_policy_mcast;
if (vdev->opmode == wlan_op_mode_ap) {
TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
if (bss_peer->bss_peer) {
/* if wds policy check is not enabled on this vdev, accept all frames */
if (!bss_peer->wds_ecm.wds_rx_filter) {
return 1;
}
break;
}
}
rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
} else { /* sta mode */
if (!peer->wds_ecm.wds_rx_filter) {
return 1;
}
rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
}
/* ------------------------------------------------
* self
* peer- rx rx-
* wds ucast mcast dir policy accept note
* ------------------------------------------------
* 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
* 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
* 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
* 1 1 0 00 x1 0 bad frame, won't see it
* 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
* 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
* 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
* 1 0 1 00 1x 0 bad frame, won't see it
* 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
* 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
* 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
* 1 1 0 00 x0 0 bad frame, won't see it
* 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
* 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
* 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
* 1 0 1 00 0x 0 bad frame, won't see it
*
* 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
* 0 x x 01 xx 1
* 0 x x 10 xx 0
* 0 x x 00 xx 0 bad frame, won't see it
* ------------------------------------------------
*/
fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
rx_3addr = fr_ds ^ to_ds;
rx_4addr = fr_ds & to_ds;
if (vdev->opmode == wlan_op_mode_ap) {
if ((!peer->wds_enabled && rx_3addr && to_ds) ||
(peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
(peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
return 1;
}
} else { /* sta mode */
if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
(rx_mcast && (rx_4addr == rx_policy_mcast))) {
return 1;
}
}
return 0;
}
#else
int dp_wds_rx_policy_check(
uint8_t *rx_tlv_hdr,
struct dp_vdev *vdev,
struct dp_peer *peer,
int rx_mcast
)
{
return 1;
}
#endif
/**
* dp_rx_process() - Brain of the Rx processing functionality
* Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
* @soc: core txrx main context
* @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
* @quota: No. of units (packets) that can be serviced in one shot.
*
* This function implements the core of Rx functionality. This is
* expected to handle only non-error frames.
*
* Return: uint32_t: No. of elements processed
*/
uint32_t
dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
{
void *hal_soc;
void *ring_desc;
struct dp_rx_desc *rx_desc = NULL;
qdf_nbuf_t nbuf, next;
union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
uint32_t rx_bufs_used = 0, rx_buf_cookie;
uint32_t l2_hdr_offset = 0;
uint16_t msdu_len = 0;
uint16_t peer_id;
struct dp_peer *peer = NULL;
struct dp_vdev *vdev = NULL;
uint32_t pkt_len = 0;
struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
enum hal_reo_error_status error;
uint32_t peer_mdata;
uint8_t *rx_tlv_hdr;
uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
uint8_t mac_id = 0;
struct dp_pdev *pdev;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
struct dp_soc *soc = int_ctx->soc;
uint8_t ring_id = 0;
uint8_t core_id = 0;
qdf_nbuf_t nbuf_head = NULL;
qdf_nbuf_t nbuf_tail = NULL;
qdf_nbuf_t deliver_list_head = NULL;
qdf_nbuf_t deliver_list_tail = NULL;
DP_HIST_INIT();
/* Debug -- Remove later */
qdf_assert(soc && hal_ring);
hal_soc = soc->hal_soc;
/* Debug -- Remove later */
qdf_assert(hal_soc);
hif_pm_runtime_mark_last_busy(soc->osdev->dev);
if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
/*
* Need API to convert from hal_ring pointer to
* Ring Type / Ring Id combo
*/
DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("HAL RING Access Failed -- %pK"), hal_ring);
hal_srng_access_end(hal_soc, hal_ring);
goto done;
}
/*
* start reaping the buffers from reo ring and queue
* them in per vdev queue.
* Process the received pkts in a different per vdev loop.
*/
while (qdf_likely(quota)) {
ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
/*
* in case HW has updated hp after we cached the hp
* ring_desc can be NULL even there are entries
* available in the ring. Update the cached_hp
* and reap the buffers available to read complete
* mpdu in one reap
*
* This is needed for RAW mode we have to read all
* msdus corresponding to amsdu in one reap to create
* SG list properly but due to mismatch in cached_hp
* and actual hp sometimes we are unable to read
* complete mpdu in one reap.
*/
if (qdf_unlikely(!ring_desc)) {
hal_srng_access_start_unlocked(hal_soc, hal_ring);
ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
if (!ring_desc)
break;
}
error = HAL_RX_ERROR_STATUS_GET(ring_desc);
ring_id = hal_srng_ring_id_get(hal_ring);
if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("HAL RING 0x%pK:error %d"), hal_ring, error);
DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
/* Don't know how to deal with this -- assert */
qdf_assert(0);
}
rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
qdf_assert(rx_desc);
rx_bufs_reaped[rx_desc->pool_id]++;
/* TODO */
/*
* Need a separate API for unmapping based on
* phyiscal address
*/
qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
QDF_DMA_BIDIRECTIONAL);
core_id = smp_processor_id();
DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
/* Get MPDU DESC info */
hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
mpdu_desc_info.peer_meta_data);
/* Get MSDU DESC info */
hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
/*
* save msdu flags first, last and continuation msdu in
* nbuf->cb
*/
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
/*
* if continuation bit is set then we have MSDU spread
* across multiple buffers, let us not decrement quota
* till we reap all buffers of that MSDU.
*/
if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
quota -= 1;
dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
&tail[rx_desc->pool_id],
rx_desc);
}
done:
hal_srng_access_end(hal_soc, hal_ring);
/* Update histogram statistics by looping through pdev's */
DP_RX_HIST_STATS_PER_PDEV();
for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
/*
* continue with next mac_id if no pkts were reaped
* from that pool
*/
if (!rx_bufs_reaped[mac_id])
continue;
pdev = soc->pdev_list[mac_id];
dp_rxdma_srng = &pdev->rx_refill_buf_ring;
rx_desc_pool = &soc->rx_desc_buf[mac_id];
dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
rx_desc_pool, rx_bufs_reaped[mac_id],
&head[mac_id], &tail[mac_id]);
}
/* Peer can be NULL is case of LFR */
if (qdf_likely(peer != NULL))
vdev = NULL;
/*
* BIG loop where each nbuf is dequeued from global queue,
* processed and queued back on a per vdev basis. These nbufs
* are sent to stack as and when we run out of nbufs
* or a new nbuf dequeued from global queue has a different
* vdev when compared to previous nbuf.
*/
nbuf = nbuf_head;
while (nbuf) {
next = nbuf->next;
rx_tlv_hdr = qdf_nbuf_data(nbuf);
/*
* Check if DMA completed -- msdu_done is the last bit
* to be written
*/
if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("MSDU DONE failure"));
hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO);
qdf_assert(0);
}
peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
peer = dp_peer_find_by_id(soc, peer_id);
if (peer) {
QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
qdf_dp_trace_set_track(nbuf, QDF_RX);
QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
QDF_NBUF_RX_PKT_DATA_TRACK;
}
rx_bufs_used++;
if (deliver_list_head && peer && (vdev != peer->vdev)) {
dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
deliver_list_tail);
deliver_list_head = NULL;
deliver_list_tail = NULL;
}
if (qdf_likely(peer != NULL)) {
vdev = peer->vdev;
} else {
qdf_nbuf_free(nbuf);
nbuf = next;
continue;
}
if (qdf_unlikely(vdev == NULL)) {
qdf_nbuf_free(nbuf);
nbuf = next;
DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
continue;
}
DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
/*
* First IF condition:
* 802.11 Fragmented pkts are reinjected to REO
* HW block as SG pkts and for these pkts we only
* need to pull the RX TLVS header length.
* Second IF condition:
* The below condition happens when an MSDU is spread
* across multiple buffers. This can happen in two cases
* 1. The nbuf size is smaller then the received msdu.
* ex: we have set the nbuf size to 2048 during
* nbuf_alloc. but we received an msdu which is
* 2304 bytes in size then this msdu is spread
* across 2 nbufs.
*
* 2. AMSDUs when RAW mode is enabled.
* ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
* across 1st nbuf and 2nd nbuf and last MSDU is
* spread across 2nd nbuf and 3rd nbuf.
*
* for these scenarios let us create a skb frag_list and
* append these buffers till the last MSDU of the AMSDU
* Third condition:
* This is the most likely case, we receive 802.3 pkts
* decapsulated by HW, here we need to set the pkt length.
*/
if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
else if (qdf_unlikely(vdev->rx_decap_type ==
htt_cmn_pkt_type_raw)) {
msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
DP_STATS_INC_PKT(peer, rx.raw, 1,
msdu_len);
next = nbuf->next;
} else {
l2_hdr_offset =
hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
qdf_nbuf_set_pktlen(nbuf, pkt_len);
qdf_nbuf_pull_head(nbuf,
RX_PKT_TLVS_LEN +
l2_hdr_offset);
}
if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Policy Check Drop pkt"));
/* Drop & free packet */
qdf_nbuf_free(nbuf);
/* Statistics */
nbuf = next;
continue;
}
if (qdf_unlikely(peer && peer->bss_peer)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("received pkt with same src MAC"));
DP_STATS_INC(vdev->pdev, dropped.mec, 1);
/* Drop & free packet */
qdf_nbuf_free(nbuf);
/* Statistics */
nbuf = next;
continue;
}
if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
(hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
qdf_nbuf_free(nbuf);
nbuf = next;
continue;
}
dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
dp_set_rx_queue(nbuf, ring_id);
/*
* HW structures call this L3 header padding --
* even though this is actually the offset from
* the buffer beginning where the L2 header
* begins.
*/
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("rxhash: flow id toeplitz: 0x%x\n"),
hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
if (qdf_unlikely(vdev->mesh_vdev)) {
if (dp_rx_filter_mesh_packets(vdev, nbuf,
rx_tlv_hdr)
== QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO_MED,
FL("mesh pkt filtered"));
DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1);
qdf_nbuf_free(nbuf);
nbuf = next;
continue;
}
dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
}
#ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"p_id %d msdu_len %d hdr_off %d",
peer_id, msdu_len, l2_hdr_offset);
print_hex_dump(KERN_ERR,
"\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
qdf_nbuf_data(nbuf), 128, false);
#endif /* NAPIER_EMULATION */
if (qdf_likely(vdev->rx_decap_type ==
htt_cmn_pkt_type_ethernet) &&
(qdf_likely(!vdev->mesh_vdev))) {
/* WDS Source Port Learning */
dp_rx_wds_srcport_learn(soc,
rx_tlv_hdr,
peer,
nbuf);
/* Intrabss-fwd */
if (dp_rx_check_ap_bridge(vdev))
if (dp_rx_intrabss_fwd(soc,
peer,
rx_tlv_hdr,
nbuf)) {
nbuf = next;
continue; /* Get next desc */
}
}
dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
DP_RX_LIST_APPEND(deliver_list_head,
deliver_list_tail,
nbuf);
DP_STATS_INC_PKT(peer, rx.to_stack, 1,
qdf_nbuf_len(nbuf));
nbuf = next;
}
if (deliver_list_head)
dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
deliver_list_tail);
return rx_bufs_used; /* Assume no scale factor for now */
}
/**
* dp_rx_detach() - detach dp rx
* @pdev: core txrx pdev context
*
* This function will detach DP RX into main device context
* will free DP Rx resources.
*
* Return: void
*/
void
dp_rx_pdev_detach(struct dp_pdev *pdev)
{
uint8_t pdev_id = pdev->pdev_id;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[pdev_id];
if (rx_desc_pool->pool_size != 0) {
dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
}
return;
}
/**
* dp_rx_attach() - attach DP RX
* @pdev: core txrx pdev context
*
* This function will attach a DP RX instance into the main
* device (SOC) context. Will allocate dp rx resource and
* initialize resources.
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS
dp_rx_pdev_attach(struct dp_pdev *pdev)
{
uint8_t pdev_id = pdev->pdev_id;
struct dp_soc *soc = pdev->soc;
struct dp_srng rxdma_srng;
uint32_t rxdma_entries;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"nss-wifi<4> skip Rx refil %d", pdev_id);
return QDF_STATUS_SUCCESS;
}
pdev = soc->pdev_list[pdev_id];
rxdma_srng = pdev->rx_refill_buf_ring;
soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
soc->hal_soc, RXDMA_BUF);
rx_desc_pool = &soc->rx_desc_buf[pdev_id];
dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
rx_desc_pool->owner = DP_WBM2SW_RBM;
/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
dp_rxdma_srng = &pdev->rx_refill_buf_ring;
dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
0, &desc_list, &tail);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_nbuf_prepare() - prepare RX nbuf
* @soc: core txrx main context
* @pdev: core txrx pdev context
*
* This function alloc & map nbuf for RX dma usage, retry it if failed
* until retry times reaches max threshold or succeeded.
*
* Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
*/
qdf_nbuf_t
dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
{
uint8_t *buf;
int32_t nbuf_retry_count;
QDF_STATUS ret;
qdf_nbuf_t nbuf = NULL;
for (nbuf_retry_count = 0; nbuf_retry_count <
QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
nbuf_retry_count++) {
/* Allocate a new skb */
nbuf = qdf_nbuf_alloc(soc->osdev,
RX_BUFFER_SIZE,
RX_BUFFER_RESERVATION,
RX_BUFFER_ALIGNMENT,
FALSE);
if (nbuf == NULL) {
DP_STATS_INC(pdev,
replenish.nbuf_alloc_fail, 1);
continue;
}
buf = qdf_nbuf_data(nbuf);
memset(buf, 0, RX_BUFFER_SIZE);
ret = qdf_nbuf_map_single(soc->osdev, nbuf,
QDF_DMA_BIDIRECTIONAL);
/* nbuf map failed */
if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
qdf_nbuf_free(nbuf);
DP_STATS_INC(pdev, replenish.map_err, 1);
continue;
}
/* qdf_nbuf alloc and map succeeded */
break;
}
/* qdf_nbuf still alloc or map failed */
if (qdf_unlikely(nbuf_retry_count >=
QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
return NULL;
return nbuf;
}