blob: 16c416c481e4d458a0893552d3b3eb1e67d7ab43 [file] [log] [blame]
/*
* Copyright (c) 2016 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_htt.h"
#include "dp_types.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_rx.h"
#include "../../wlan_cfg/wlan_cfg.h"
/**
* dp_setup_srng - Internal function to setup SRNG rings used by data path
*/
static int dp_srng_setup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num, int pdev_id, uint32_t num_entries)
{
void *hal_soc = soc->hal_soc;
uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
/* TODO: See if we should get align size from hal */
uint32_t ring_base_align = 8;
struct hal_srng_params ring_params;
srng->hal_srng = NULL;
srng->alloc_size = (num_entries * entry_size) + ring_base_align - 1;
srng->base_vaddr_unaligned = qdf_mem_alloc_consistent(
soc->osdev, NULL, srng->alloc_size,
&(srng->base_paddr_unaligned));
if (!srng->base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: alloc failed - ring_type: %d, ring_num %d\n",
__func__, ring_type, ring_num);
return QDF_STATUS_E_NOMEM;
}
ring_params.ring_base_vaddr = srng->base_vaddr_unaligned +
((unsigned long)srng->base_vaddr_unaligned % ring_base_align);
ring_params.ring_base_paddr = srng->base_paddr_unaligned +
((unsigned long)(ring_params.ring_base_vaddr) -
(unsigned long)srng->base_vaddr_unaligned);
ring_params.num_entries = num_entries;
/* TODO: Check MSI support and get MSI settings from HIF layer */
ring_params.msi_data = 0;
ring_params.msi_addr = 0;
/* TODO: Setup interrupt timer and batch counter thresholds for
* interrupt mitigation based on ring type
*/
ring_params.intr_timer_thres_us = 8;
ring_params.intr_batch_cntr_thres_entries = 1;
/* TODO: Currently hal layer takes care of endianness related settings.
* See if these settings need to passed from DP layer
*/
ring_params.flags = 0;
/* Enable low threshold interrupts for rx buffer rings (regular and
* monitor buffer rings.
* TODO: See if this is required for any other ring
*/
if ((ring_type == RXDMA_BUF) || (ring_type == RXDMA_MONITOR_BUF)) {
/* TODO: Setting low threshold to 1/8th of ring size
* see if this needs to be configurable
*/
ring_params.low_threshold = num_entries >> 3;
ring_params.flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
}
srng->hal_srng = hal_srng_setup(hal_soc, ring_type, ring_num,
pdev_id, &ring_params);
return 0;
}
/**
* dp_srng_cleanup - Internal function to cleanup SRNG rings used by data path
* Any buffers allocated and attached to ring entries are expected to be freed
* before calling this function.
*/
static void dp_srng_cleanup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!srng->hal_srng) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Ring type: %d, num:%d not setup\n",
__func__, ring_type, ring_num);
return;
}
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
qdf_mem_free_consistent(soc->osdev, NULL,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
/* TODO: Need this interface from HIF */
void *hif_get_hal_handle(void *hif_handle);
/*
* dp_service_srngs() - Top level interrupt handler for DP Ring interrupts
* @dp_ctx: DP SOC handle
* @budget: Number of frames/descriptors that can be processed in one shot
*
* Return: remaining budget/quota for the soc device
*/
uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_soc *soc = int_ctx->soc;
int ring = 0;
uint32_t work_done = 0;
uint32_t budget = dp_budget;
uint8_t tx_mask = int_ctx->tx_ring_mask;
uint8_t rx_mask = int_ctx->rx_ring_mask;
/* Process Tx completion interrupts first to return back buffers */
if (tx_mask) {
for (ring = 0; ring < soc->num_tcl_data_rings; ring++) {
if (tx_mask & (1 << ring)) {
work_done =
dp_tx_comp_handler(soc, ring, budget);
budget -= work_done;
if (work_done)
DP_TRACE(INFO, "tx mask 0x%x ring %d, budget %d\n",
tx_mask, ring, budget);
if (budget <= 0)
goto budget_done;
}
}
}
/* Process Rx interrupts */
if (rx_mask) {
for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
if (rx_mask & (1 << ring)) {
work_done =
dp_rx_process(soc,
soc->reo_dest_ring[ring].hal_srng,
budget);
budget -= work_done;
if (work_done)
DP_TRACE(INFO, "rx mask 0x%x ring %d, budget %d\n",
tx_mask, ring, budget);
if (budget <= 0)
goto budget_done;
}
}
}
budget_done:
return dp_budget - budget;
}
/* dp_interrupt_timer()- timer poll for interrupts
*
* @arg: SoC Handle
*
* Return:
*
*/
#ifdef DP_INTR_POLL_BASED
void dp_interrupt_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *) arg;
int i;
for (i = 0 ; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
dp_service_srngs(&soc->intr_ctx[i], 0xffff);
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
/*
* dp_soc_interrupt_attach() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0xF;
soc->intr_ctx[i].rx_ring_mask = 0xF;
soc->intr_ctx[i].rx_mon_ring_mask = 0xF;
soc->intr_ctx[i].soc = soc;
}
qdf_timer_init(soc->osdev, &soc->int_timer,
dp_interrupt_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
* @txrx_soc: DP SOC handle
*
* Return: void
*/
void dp_soc_interrupt_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
qdf_timer_stop(&soc->int_timer);
qdf_timer_detach(&soc->int_timer);
}
#else
/*
* dp_soc_interrupt_attach() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i = 0;
int num_irq = 0;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
int j = 0;
int ret = 0;
/* Map of IRQ ids registered with one interrupt context */
int irq_id_map[HIF_MAX_GRP_IRQ];
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].tx_ring_mask = tx_mask;
soc->intr_ctx[i].rx_ring_mask = rx_mask;
soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask;
soc->intr_ctx[i].soc = soc;
num_irq = 0;
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(wbm2host_tx_completions_ring1 - j);
}
if (rx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(reo2host_destination_ring1 - j);
}
if (rx_mon_mask & (1 << j)) {
irq_id_map[num_irq++] =
(rxdma2host_monitor_destination_mac1
- j);
}
}
ret = hif_register_ext_group_int_handler(soc->hif_handle,
num_irq, irq_id_map,
dp_service_srngs,
&soc->intr_ctx[i]);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: failed, ret = %d", __func__, ret);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
* @txrx_soc: DP SOC handle
*
* Return: void
*/
void dp_soc_interrupt_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0;
soc->intr_ctx[i].rx_ring_mask = 0;
soc->intr_ctx[i].rx_mon_ring_mask = 0;
}
}
#endif
#define AVG_MAX_MPDUS_PER_TID 128
#define AVG_TIDS_PER_CLIENT 2
#define AVG_FLOWS_PER_TID 2
#define AVG_MSDUS_PER_FLOW 128
#define AVG_MSDUS_PER_MPDU 4
/*
* Allocate and setup link descriptor pool that will be used by HW for
* various link and queue descriptors and managed by WBM
*/
static int dp_hw_link_desc_pool_setup(struct dp_soc *soc)
{
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
int link_desc_align = hal_get_link_desc_align(soc->hal_soc);
uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx);
uint32_t num_mpdus_per_link_desc =
hal_num_mpdus_per_link_desc(soc->hal_soc);
uint32_t num_msdus_per_link_desc =
hal_num_msdus_per_link_desc(soc->hal_soc);
uint32_t num_mpdu_links_per_queue_desc =
hal_num_mpdu_links_per_queue_desc(soc->hal_soc);
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t total_link_descs, total_mem_size;
uint32_t num_mpdu_link_descs, num_mpdu_queue_descs;
uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs;
uint32_t num_link_desc_banks;
uint32_t last_bank_size = 0;
uint32_t entry_size, num_entries;
int i;
/* Only Tx queue descriptors are allocated from common link descriptor
* pool Rx queue descriptors are not included in this because (REO queue
* extension descriptors) they are expected to be allocated contiguously
* with REO queue descriptors
*/
num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc;
num_mpdu_queue_descs = num_mpdu_link_descs /
num_mpdu_links_per_queue_desc;
num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) /
num_msdus_per_link_desc;
num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6;
num_entries = num_mpdu_link_descs + num_mpdu_queue_descs +
num_tx_msdu_link_descs + num_rx_msdu_link_descs;
/* Round up to power of 2 */
total_link_descs = 1;
while (total_link_descs < num_entries)
total_link_descs <<= 1;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"%s: total_link_descs: %u, link_desc_size: %d\n",
__func__, total_link_descs, link_desc_size);
total_mem_size = total_link_descs * link_desc_size;
total_mem_size += link_desc_align;
if (total_mem_size <= max_alloc_size) {
num_link_desc_banks = 0;
last_bank_size = total_mem_size;
} else {
num_link_desc_banks = (total_mem_size) /
(max_alloc_size - link_desc_align);
last_bank_size = total_mem_size %
(max_alloc_size - link_desc_align);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"%s: total_mem_size: %d, num_link_desc_banks: %u\n",
__func__, total_mem_size, num_link_desc_banks);
for (i = 0; i < num_link_desc_banks; i++) {
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev, NULL,
max_alloc_size,
&(soc->link_desc_banks[i].base_paddr_unaligned));
soc->link_desc_banks[i].size = max_alloc_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
if (!soc->link_desc_banks[i].base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Link descriptor memory alloc failed\n",
__func__);
goto fail;
}
}
if (last_bank_size) {
/* Allocate last bank in case total memory required is not exact
* multiple of max_alloc_size
*/
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev, NULL,
last_bank_size,
&(soc->link_desc_banks[i].base_paddr_unaligned));
soc->link_desc_banks[i].size = last_bank_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)
(soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr =
(unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
}
/* Allocate and setup link descriptor idle list for HW internal use */
entry_size = hal_srng_get_entrysize(soc->hal_soc, WBM_IDLE_LINK);
total_mem_size = entry_size * total_link_descs;
if (total_mem_size <= max_alloc_size) {
void *desc;
if (dp_srng_setup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0, 0, total_link_descs)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Link desc idle ring setup failed\n",
__func__);
goto fail;
}
hal_srng_access_start_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_entries = (soc->link_desc_banks[i].size -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_entries && (desc = hal_srng_src_get_next(
soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng))) {
hal_set_link_desc_addr(desc, i, paddr);
num_entries--;
paddr += link_desc_size;
}
}
hal_srng_access_end_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
} else {
uint32_t num_scatter_bufs;
uint32_t num_entries_per_buf;
uint32_t rem_entries;
uint8_t *scatter_buf_ptr;
uint16_t scatter_buf_num;
soc->wbm_idle_scatter_buf_size =
hal_idle_list_scatter_buf_size(soc->hal_soc);
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc, soc->wbm_idle_scatter_buf_size);
num_scatter_bufs = (total_mem_size /
soc->wbm_idle_scatter_buf_size) + (total_mem_size %
soc->wbm_idle_scatter_buf_size) ? 1 : 0;
for (i = 0; i < num_scatter_bufs; i++) {
soc->wbm_idle_scatter_buf_base_vaddr[i] =
qdf_mem_alloc_consistent(soc->osdev, NULL,
soc->wbm_idle_scatter_buf_size,
&(soc->wbm_idle_scatter_buf_base_paddr[i]));
if (soc->wbm_idle_scatter_buf_base_vaddr[i] == NULL) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"%s:Scatter list memory alloc failed\n",
__func__);
goto fail;
}
}
/* Populate idle list scatter buffers with link descriptor
* pointers
*/
scatter_buf_num = 0;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
rem_entries = num_entries_per_buf;
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_link_descs =
(soc->link_desc_banks[i].size -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)) /
link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
void *desc = NULL;
while (num_link_descs && (desc =
hal_srng_src_get_next(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng))) {
hal_set_link_desc_addr((void *)scatter_buf_ptr,
i, paddr);
num_link_descs--;
paddr += link_desc_size;
if (rem_entries) {
rem_entries--;
scatter_buf_ptr += link_desc_size;
} else {
rem_entries = num_entries_per_buf;
scatter_buf_num++;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num]);
}
}
}
/* Setup link descriptor idle list in HW */
hal_setup_link_idle_list(soc->hal_soc,
soc->wbm_idle_scatter_buf_base_paddr,
soc->wbm_idle_scatter_buf_base_vaddr,
num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
(uint32_t)(scatter_buf_ptr -
(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num])));
}
return 0;
fail:
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc->hal_soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, NULL,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, NULL,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
}
}
return QDF_STATUS_E_FAILURE;
}
/*
* Free link descriptor pool that was setup HW
*/
void dp_hw_link_desc_pool_cleanup(struct dp_soc *soc)
{
int i;
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc->hal_soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, NULL,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, NULL,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
}
}
}
/* TODO: Following should be configurable */
#define WBM_RELEASE_RING_SIZE 64
#define TCL_DATA_RING_SIZE 512
#define TCL_CMD_RING_SIZE 32
#define TCL_STATUS_RING_SIZE 32
#define REO_DST_RING_SIZE 2048
#define REO_REINJECT_RING_SIZE 32
#define RX_RELEASE_RING_SIZE 256
#define REO_EXCEPTION_RING_SIZE 128
#define REO_CMD_RING_SIZE 32
#define REO_STATUS_RING_SIZE 32
#define RXDMA_BUF_RING_SIZE 8192
#define RXDMA_MONITOR_BUF_RING_SIZE 8192
#define RXDMA_MONITOR_DST_RING_SIZE 2048
#define RXDMA_MONITOR_STATUS_RING_SIZE 2048
/*
* dp_soc_cmn_setup() - Common SoC level initializion
* @soc: Datapath SOC handle
*
* This is an internal function used to setup common SOC data structures,
* to be called from PDEV attach after receiving HW mode capabilities from FW
*/
static int dp_soc_cmn_setup(struct dp_soc *soc)
{
int i;
if (soc->cmn_init_done)
return 0;
if (dp_peer_find_attach(soc))
goto fail0;
if (dp_hw_link_desc_pool_setup(soc))
goto fail1;
/* Setup SRNG rings */
/* Common rings */
if (dp_srng_setup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0,
WBM_RELEASE_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for wbm_desc_rel_ring\n",
__func__);
goto fail1;
}
soc->num_tcl_data_rings = 0;
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
soc->num_tcl_data_rings =
wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_srng_setup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i, 0, TCL_DATA_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for tcl_data_ring[%d]\n",
__func__, i);
goto fail1;
}
if (dp_srng_setup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i, 0, TCL_DATA_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for tx_comp_ring[%d]\n",
__func__, i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_tcl_data_rings = 0;
}
if (dp_tx_soc_attach(soc)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_tx_soc_attach failed\n", __func__);
goto fail1;
}
/* TCL command and status rings */
if (dp_srng_setup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0, 0,
TCL_CMD_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for tcl_cmd_ring\n",
__func__);
goto fail1;
}
if (dp_srng_setup(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0,
TCL_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for tcl_status_ring\n",
__func__);
goto fail1;
}
/* TBD: call dp_tx_init to setup Tx SW descriptors and MSDU extension
* descriptors
*/
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[i], REO_DST,
i, 0, REO_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for reo_dest_ring[%d]\n",
__func__, i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_reo_dest_rings = 0;
}
/* TBD: call dp_rx_init to setup Rx SW descriptors */
/* REO reinjection ring */
if (dp_srng_setup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0,
REO_REINJECT_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for reo_reinject_ring\n",
__func__);
goto fail1;
}
/* Rx release ring */
if (dp_srng_setup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3, 0,
RX_RELEASE_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for rx_rel_ring\n",
__func__);
goto fail1;
}
/* Rx exception ring */
if (dp_srng_setup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0,
MAX_REO_DEST_RINGS, REO_EXCEPTION_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for reo_exception_ring\n",
__func__);
goto fail1;
}
/* REO command and status rings */
if (dp_srng_setup(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0,
REO_CMD_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for reo_cmd_ring\n",
__func__);
goto fail1;
}
if (dp_srng_setup(soc, &soc->reo_status_ring, REO_STATUS, 0, 0,
REO_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for reo_status_ring\n",
__func__);
goto fail1;
}
dp_soc_interrupt_attach(soc);
/* Setup HW REO */
hal_reo_setup(soc->hal_soc);
soc->cmn_init_done = 1;
return 0;
fail1:
/*
* Cleanup will be done as part of soc_detach, which will
* be called on pdev attach failure
*/
fail0:
return QDF_STATUS_E_FAILURE;
}
static void dp_pdev_detach_wifi3(void *txrx_pdev, int force);
/*
* dp_pdev_attach_wifi3() - attach txrx pdev
* @osif_pdev: Opaque PDEV handle from OSIF/HDD
* @txrx_soc: Datapath SOC handle
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @pdev_id: PDEV ID
*
* Return: DP PDEV handle on success, NULL on failure
*/
void *dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc, void *ctrl_pdev,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, uint8_t pdev_id)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = qdf_mem_malloc(sizeof(*pdev));
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: DP PDEV memory allocation failed\n", __func__);
goto fail0;
}
pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach();
if (!pdev->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: pdev cfg_attach failed\n", __func__);
qdf_mem_free(pdev);
goto fail0;
}
pdev->soc = soc;
pdev->osif_pdev = ctrl_pdev;
pdev->pdev_id = pdev_id;
soc->pdev_list[pdev_id] = pdev;
TAILQ_INIT(&pdev->vdev_list);
pdev->vdev_count = 0;
if (dp_soc_cmn_setup(soc)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_soc_cmn_setup failed\n", __func__);
goto fail1;
}
/* Setup per PDEV TCL rings if configured */
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
if (dp_srng_setup(soc, &soc->tcl_data_ring[pdev_id], TCL_DATA,
pdev_id, pdev_id, TCL_DATA_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for tcl_data_ring\n",
__func__);
goto fail1;
}
if (dp_srng_setup(soc, &soc->tx_comp_ring[pdev_id],
WBM2SW_RELEASE, pdev_id, pdev_id, TCL_DATA_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for tx_comp_ring\n",
__func__);
goto fail1;
}
soc->num_tcl_data_rings++;
}
/* Tx specific init */
if (dp_tx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_tx_pdev_attach failed\n", __func__);
goto fail1;
}
/* Setup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[pdev_id], REO_DST,
pdev_id, pdev_id, REO_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for reo_dest_ring\n",
__func__);
goto fail1;
}
soc->num_reo_dest_rings++;
}
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0, pdev_id,
RXDMA_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed rx refill ring\n", __func__);
goto fail1;
}
#ifdef QCA_HOST2FW_RXBUF_RING
if (dp_srng_setup(soc, &pdev->rx_mac_buf_ring, RXDMA_BUF, 1, pdev_id,
RXDMA_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed rx mac ring\n", __func__);
goto fail1;
}
#endif
/* TODO: RXDMA destination ring is not planned to be used currently.
* Setup the ring when required
*/
if (dp_srng_setup(soc, &pdev->rxdma_mon_buf_ring, RXDMA_MONITOR_BUF, 0,
pdev_id, RXDMA_MONITOR_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for rxdma_mon_buf_ring\n",
__func__);
goto fail1;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_dst_ring, RXDMA_MONITOR_DST, 0,
pdev_id, RXDMA_MONITOR_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for rxdma_mon_dst_ring\n",
__func__);
goto fail1;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_status_ring,
RXDMA_MONITOR_STATUS, 0, pdev_id,
RXDMA_MONITOR_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed for rxdma_mon_status_ring\n",
__func__);
goto fail1;
}
/* Rx specific init */
if (dp_rx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_rx_pdev_attach failed \n", __func__);
goto fail0;
}
/* MCL */
dp_local_peer_id_pool_init(pdev);
return (void *)pdev;
fail1:
dp_pdev_detach_wifi3((void *)pdev, 0);
fail0:
return NULL;
}
/*
* dp_pdev_detach_wifi3() - detach txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force detach
*
*/
static void dp_pdev_detach_wifi3(void *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
dp_tx_pdev_detach(pdev);
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[pdev->pdev_id],
TCL_DATA, pdev->pdev_id);
dp_srng_cleanup(soc, &soc->tx_comp_ring[pdev->pdev_id],
WBM2SW_RELEASE, pdev->pdev_id);
}
dp_rx_pdev_detach(pdev);
/* Setup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->reo_dest_ring[pdev->pdev_id],
REO_DST, pdev->pdev_id);
}
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0);
#ifdef QCA_HOST2FW_RXBUF_RING
dp_srng_cleanup(soc, &pdev->rx_mac_buf_ring, RXDMA_BUF, 1);
#endif
dp_srng_cleanup(soc, &pdev->rxdma_mon_buf_ring, RXDMA_MONITOR_BUF, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_dst_ring, RXDMA_MONITOR_DST, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_status_ring,
RXDMA_MONITOR_STATUS, 0);
soc->pdev_list[pdev->pdev_id] = NULL;
qdf_mem_free(pdev);
}
/*
* dp_soc_detach_wifi3() - Detach txrx SOC
* @txrx_soc: DP SOC handle
*
*/
void dp_soc_detach_wifi3(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = qdf_mem_malloc(sizeof(*pdev));
int i;
soc->cmn_init_done = 0;
for (i = 0; i < MAX_PDEV_CNT; i++) {
if (soc->pdev_list[i])
dp_pdev_detach_wifi3((void *)pdev, 1);
}
dp_peer_find_detach(soc);
/* TBD: Call Tx and Rx cleanup functions to free buffers and
* SW descriptors
*/
/* Free the ring memories */
/* Common rings */
dp_srng_cleanup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_tx_soc_detach(soc);
for (i = 0; i < soc->num_tcl_data_rings; i++) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i);
dp_srng_cleanup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i);
}
}
/* TCL command and status rings */
dp_srng_cleanup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0);
dp_srng_cleanup(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
dp_srng_cleanup(soc, &soc->reo_dest_ring[i],
REO_DST, i);
}
}
/* REO reinjection ring */
dp_srng_cleanup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
dp_srng_cleanup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
dp_srng_cleanup(soc, &soc->reo_cmd_ring, REO_CMD, 0);
dp_srng_cleanup(soc, &soc->reo_status_ring, REO_STATUS, 0);
qdf_spinlock_destroy(&soc->peer_ref_mutex);
htt_soc_detach(soc->htt_handle);
}
/*
* dp_soc_attach_target_wifi3() - SOC initialization in the target
* @txrx_soc: Datapath SOC handle
*/
int dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
int i;
htt_soc_attach_target(soc->htt_handle);
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
htt_srng_setup(soc->htt_handle, i,
pdev->rx_refill_buf_ring.hal_srng, RXDMA_BUF);
#ifdef QCA_HOST2FW_RXBUF_RING
htt_srng_setup(soc->htt_handle, i,
pdev->rx_mac_buf_ring.hal_srng, RXDMA_BUF);
#endif
#ifdef notyet /* FW doesn't handle monitor rings yet */
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_buf_ring.hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_dst_ring.hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_status_ring.hal_srng,
RXDMA_MONITOR_STATUS);
#endif
}
}
return 0;
}
/*
* dp_vdev_attach_wifi3() - attach txrx vdev
* @txrx_pdev: Datapath PDEV handle
* @vdev_mac_addr: MAC address of the virtual interface
* @vdev_id: VDEV Id
* @wlan_op_mode: VDEV operating mode
*
* Return: DP VDEV handle on success, NULL on failure
*/
void *dp_vdev_attach_wifi3(void *txrx_pdev,
uint8_t *vdev_mac_addr, uint8_t vdev_id, enum wlan_op_mode op_mode)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev = qdf_mem_malloc(sizeof(*vdev));
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: DP VDEV memory allocation failed\n", __func__);
goto fail0;
}
vdev->pdev = pdev;
vdev->vdev_id = vdev_id;
vdev->opmode = op_mode;
vdev->osdev = soc->osdev;
vdev->osif_rx = NULL;
vdev->osif_rx_mon = NULL;
vdev->osif_vdev = NULL;
vdev->delete.pending = 0;
vdev->safemode = 0;
vdev->drop_unenc = 1;
#ifdef notyet
vdev->filters_num = 0;
#endif
qdf_mem_copy(
&vdev->mac_addr.raw[0], vdev_mac_addr, OL_TXRX_MAC_ADDR_LEN);
vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
/* TODO: Initialize default HTT meta data that will be used in
* TCL descriptors for packets transmitted from this VDEV
*/
TAILQ_INIT(&vdev->peer_list);
/* add this vdev into the pdev's list */
TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
pdev->vdev_count++;
dp_tx_vdev_attach(vdev);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Created vdev %p (%02x:%02x:%02x:%02x:%02x:%02x)\n", vdev,
vdev->mac_addr.raw[0], vdev->mac_addr.raw[1],
vdev->mac_addr.raw[2], vdev->mac_addr.raw[3],
vdev->mac_addr.raw[4], vdev->mac_addr.raw[5]);
return (void *)vdev;
fail0:
return NULL;
}
/**
* dp_vdev_register_wifi3() - Register VDEV operations from osif layer
* @vdev: Datapath VDEV handle
* @osif_vdev: OSIF vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: DP VDEV handle on success, NULL on failure
*/
void dp_vdev_register_wifi3(void *vdev_handle, void *osif_vdev,
struct ol_txrx_ops *txrx_ops)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->osif_vdev = osif_vdev;
vdev->osif_rx = txrx_ops->rx.rx;
vdev->osif_rx_mon = txrx_ops->rx.mon;
#ifdef notyet
#if ATH_SUPPORT_WAPI
vdev->osif_check_wai = txrx_ops->rx.wai_check;
#endif
#if UMAC_SUPPORT_PROXY_ARP
vdev->osif_proxy_arp = txrx_ops->proxy_arp;
#endif
#endif
/* TODO: Enable the following once Tx code is integrated */
txrx_ops->tx.tx = dp_tx_send;
DP_TRACE(ERROR, "DP Vdev Register success");
}
/*
* dp_vdev_detach_wifi3() - Detach txrx vdev
* @txrx_vdev: Datapath VDEV handle
* @callback: Callback OL_IF on completion of detach
* @cb_context: Callback context
*
*/
void dp_vdev_detach_wifi3(void *vdev_handle,
ol_txrx_vdev_delete_cb callback, void *cb_context)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
/* preconditions */
qdf_assert(vdev);
/* remove the vdev from its parent pdev's list */
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
/*
* Use peer_ref_mutex while accessing peer_list, in case
* a peer is in the process of being removed from the list.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
/* check that the vdev has no peers allocated */
if (!TAILQ_EMPTY(&vdev->peer_list)) {
/* debug print - will be removed later */
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"%s: not deleting vdev object %p (%02x:%02x:%02x:%02x:%02x:%02x)"
"until deletion finishes for all its peers\n",
__func__, vdev,
vdev->mac_addr.raw[0], vdev->mac_addr.raw[1],
vdev->mac_addr.raw[2], vdev->mac_addr.raw[3],
vdev->mac_addr.raw[4], vdev->mac_addr.raw[5]);
/* indicate that the vdev needs to be deleted */
vdev->delete.pending = 1;
vdev->delete.callback = callback;
vdev->delete.context = cb_context;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return;
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
dp_tx_vdev_detach(vdev);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"%s: deleting vdev object %p (%02x:%02x:%02x:%02x:%02x:%02x)\n",
__func__, vdev,
vdev->mac_addr.raw[0], vdev->mac_addr.raw[1],
vdev->mac_addr.raw[2], vdev->mac_addr.raw[3],
vdev->mac_addr.raw[4], vdev->mac_addr.raw[5]);
qdf_mem_free(vdev);
if (callback)
callback(cb_context);
}
/*
* dp_peer_attach_wifi3() - attach txrx peer
* @txrx_vdev: Datapath VDEV handle
* @peer_mac_addr: Peer MAC address
*
* Return: DP peeer handle on success, NULL on failure
*/
void *dp_peer_attach_wifi3(void *vdev_handle, uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
int i;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer_mac_addr);
pdev = vdev->pdev;
soc = pdev->soc;
#ifdef notyet
peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
soc->mempool_ol_ath_peer);
#else
peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
#endif
if (!peer)
return NULL; /* failure */
qdf_mem_zero(peer, sizeof(struct dp_peer));
qdf_spinlock_create(&peer->peer_info_lock);
/* store provided params */
peer->vdev = vdev;
qdf_mem_copy(
&peer->mac_addr.raw[0], peer_mac_addr, OL_TXRX_MAC_ADDR_LEN);
/* TODO: See of rx_opt_proc is really required */
peer->rx_opt_proc = soc->rx_opt_proc;
dp_peer_rx_init(pdev, peer);
/* initialize the peer_id */
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
peer->peer_ids[i] = HTT_INVALID_PEER;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_atomic_init(&peer->ref_cnt);
/* keep one reference for attach */
qdf_atomic_inc(&peer->ref_cnt);
/* add this peer into the vdev's list */
TAILQ_INSERT_TAIL(&vdev->peer_list, peer, peer_list_elem);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/* TODO: See if hash based search is required */
dp_peer_find_hash_add(soc, peer);
if (soc->cdp_soc.ol_ops->peer_set_default_routing) {
/* TODO: Check on the destination ring number to be passed to FW */
soc->cdp_soc.ol_ops->peer_set_default_routing(soc->osif_soc, peer->mac_addr.raw,
peer->vdev->vdev_id, 0, 1);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"vdev %p created peer %p (%02x:%02x:%02x:%02x:%02x:%02x)\n",
vdev, peer,
peer->mac_addr.raw[0], peer->mac_addr.raw[1],
peer->mac_addr.raw[2], peer->mac_addr.raw[3],
peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
/*
* For every peer MAp message search and set if bss_peer
*/
if (memcmp(peer->mac_addr.raw, vdev->mac_addr.raw, 6) == 0) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"vdev bss_peer!!!!\n");
peer->bss_peer = 1;
vdev->vap_bss_peer = peer;
}
dp_local_peer_id_alloc(pdev, peer);
return (void *)peer;
}
/*
* dp_peer_authorize() - authorize txrx peer
* @peer_handle: Datapath peer handle
* @authorize
*
*/
void dp_peer_authorize(void *peer_handle, uint32_t authorize)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_soc *soc;
if (peer != NULL) {
soc = peer->vdev->pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
peer->authorize = authorize ? 1 : 0;
#ifdef notyet /* ATH_BAND_STEERING */
peer->peer_bs_inact_flag = 0;
peer->peer_bs_inact = soc->pdev_bs_inact_reload;
#endif
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
/*
* dp_peer_unref_delete() - unref and delete peer
* @peer_handle: Datapath peer handle
*
*/
void dp_peer_unref_delete(void *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_vdev *vdev = peer->vdev;
struct dp_soc *soc = vdev->pdev->soc;
struct dp_peer *tmppeer;
int found = 0;
uint16_t peer_id;
/*
* Hold the lock all the way from checking if the peer ref count
* is zero until the peer references are removed from the hash
* table and vdev list (if the peer ref count is zero).
* This protects against a new HL tx operation starting to use the
* peer object just after this function concludes it's done being used.
* Furthermore, the lock needs to be held while checking whether the
* vdev's list of peers is empty, to make sure that list is not modified
* concurrently with the empty check.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
peer_id = peer->peer_ids[0];
/*
* Make sure that the reference to the peer in
* peer object map is removed
*/
if (peer_id != HTT_INVALID_PEER)
soc->peer_id_to_obj_map[peer_id] = NULL;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"Deleting peer %p (%02x:%02x:%02x:%02x:%02x:%02x)\n",
peer, peer->mac_addr.raw[0], peer->mac_addr.raw[1],
peer->mac_addr.raw[2], peer->mac_addr.raw[3],
peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
/* remove the reference to the peer from the hash table */
dp_peer_find_hash_remove(soc, peer);
TAILQ_FOREACH(tmppeer, &peer->vdev->peer_list, peer_list_elem) {
if (tmppeer == peer) {
found = 1;
break;
}
}
if (found) {
TAILQ_REMOVE(&peer->vdev->peer_list, peer,
peer_list_elem);
} else {
/*Ignoring the remove operation as peer not found*/
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"WARN peer %p not found in vdev (%p)->peer_list:%p\n",
peer, vdev, &peer->vdev->peer_list);
}
/* cleanup the Rx reorder queues for this peer */
dp_peer_rx_cleanup(vdev, peer);
/* check whether the parent vdev has no peers left */
if (TAILQ_EMPTY(&vdev->peer_list)) {
/*
* Now that there are no references to the peer, we can
* release the peer reference lock.
*/
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/*
* Check if the parent vdev was waiting for its peers
* to be deleted, in order for it to be deleted too.
*/
if (vdev->delete.pending) {
ol_txrx_vdev_delete_cb vdev_delete_cb =
vdev->delete.callback;
void *vdev_delete_context =
vdev->delete.context;
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_INFO_HIGH,
"%s: deleting vdev object %p "
"(%02x:%02x:%02x:%02x:%02x:%02x)"
" - its last peer is done\n",
__func__, vdev,
vdev->mac_addr.raw[0],
vdev->mac_addr.raw[1],
vdev->mac_addr.raw[2],
vdev->mac_addr.raw[3],
vdev->mac_addr.raw[4],
vdev->mac_addr.raw[5]);
/* all peers are gone, go ahead and delete it */
qdf_mem_free(vdev);
if (vdev_delete_cb)
vdev_delete_cb(vdev_delete_context);
}
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#ifdef notyet
qdf_mempool_free(soc->osdev, soc->mempool_ol_ath_peer, peer);
#else
qdf_mem_free(peer);
#endif
#ifdef notyet /* See why this should be done in DP layer */
qdf_atomic_inc(&soc->peer_count);
#endif
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
/*
* dp_peer_detach_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
void dp_peer_detach_wifi3(void *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
/* redirect the peer's rx delivery function to point to a
* discard func
*/
peer->rx_opt_proc = dp_rx_discard;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"%s:peer %p (%02x:%02x:%02x:%02x:%02x:%02x)\n", __func__, peer,
peer->mac_addr.raw[0], peer->mac_addr.raw[1],
peer->mac_addr.raw[2], peer->mac_addr.raw[3],
peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
/*
* Remove the reference added during peer_attach.
* The peer will still be left allocated until the
* PEER_UNMAP message arrives to remove the other
* reference, added by the PEER_MAP message.
*/
dp_peer_unref_delete(peer_handle);
dp_local_peer_id_free(peer->vdev->pdev, peer);
qdf_spinlock_destroy(&peer->peer_info_lock);
}
/*
* dp_get_vdev_mac_addr_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
uint8 *dp_get_vdev_mac_addr_wifi3(void *pvdev)
{
struct dp_vdev *vdev = pvdev;
return vdev->mac_addr.raw;
}
/*
* dp_get_vdev_from_vdev_id_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
void *dp_get_vdev_from_vdev_id_wifi3(void *dev, uint8_t vdev_id)
{
struct dp_pdev *pdev = dev;
struct dp_vdev *vdev = NULL;
if (qdf_unlikely(!pdev))
return NULL;
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->vdev_id == vdev_id)
break;
}
return vdev;
}
int dp_get_opmode(void *vdev_handle)
{
struct dp_vdev *vdev = vdev_handle;
return vdev->opmode;
}
void *dp_get_ctrl_pdev_from_vdev_wifi3(void *pvdev)
{
struct dp_vdev *vdev = pvdev;
struct dp_pdev *pdev = vdev->pdev;
return (void *)pdev->wlan_cfg_ctx;
}
static struct cdp_cmn_ops dp_ops_cmn = {
.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
.txrx_vdev_attach = dp_vdev_attach_wifi3,
.txrx_vdev_detach = dp_vdev_detach_wifi3,
.txrx_pdev_attach = dp_pdev_attach_wifi3,
.txrx_pdev_detach = dp_pdev_detach_wifi3,
.txrx_peer_attach = dp_peer_attach_wifi3,
.txrx_peer_detach = dp_peer_detach_wifi3,
.txrx_vdev_register = dp_vdev_register_wifi3,
.txrx_soc_detach = dp_soc_detach_wifi3,
.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
.txrx_get_vdev_from_vdev_id = dp_get_vdev_from_vdev_id_wifi3,
.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
/* TODO: Add other functions */
};
static struct cdp_ctrl_ops dp_ops_ctrl = {
.txrx_peer_authorize = dp_peer_authorize,
/* TODO: Add other functions */
};
static struct cdp_me_ops dp_ops_me = {
/* TODO */
};
static struct cdp_mon_ops dp_ops_mon = {
/* TODO */
};
static struct cdp_host_stats_ops dp_ops_host_stats = {
/* TODO */
};
static struct cdp_wds_ops dp_ops_wds = {
/* TODO */
};
static struct cdp_raw_ops dp_ops_raw = {
/* TODO */
};
#ifdef CONFIG_WIN
static struct cdp_pflow_ops dp_ops_pflow = {
/* TODO */
};
#endif /* CONFIG_WIN */
static struct cdp_misc_ops dp_ops_misc = {
.get_opmode = dp_get_opmode,
};
static struct cdp_flowctl_ops dp_ops_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_ipa_ops dp_ops_ipa = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_lro_ops dp_ops_lro = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_bus_ops dp_ops_bus = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_ocb_ops dp_ops_ocb = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_throttle_ops dp_ops_throttle = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_mob_stats_ops dp_ops_mob_stats = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_cfg_ops dp_ops_cfg = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_peer_ops dp_ops_peer = {
.register_peer = dp_register_peer,
.clear_peer = dp_clear_peer,
.find_peer_by_addr = dp_find_peer_by_addr,
.find_peer_by_addr_and_vdev = dp_find_peer_by_addr_and_vdev,
.local_peer_id = dp_local_peer_id,
.peer_find_by_local_id = dp_peer_find_by_local_id,
.peer_state_update = dp_peer_state_update,
.get_vdevid = dp_get_vdevid,
.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
.get_vdev_for_peer = dp_get_vdev_for_peer,
.get_peer_state = dp_get_peer_state,
};
static struct cdp_ops dp_txrx_ops = {
.cmn_drv_ops = &dp_ops_cmn,
.ctrl_ops = &dp_ops_ctrl,
.me_ops = &dp_ops_me,
.mon_ops = &dp_ops_mon,
.host_stats_ops = &dp_ops_host_stats,
.wds_ops = &dp_ops_wds,
.raw_ops = &dp_ops_raw,
#ifdef CONFIG_WIN
.pflow_ops = &dp_ops_pflow,
#endif /* CONFIG_WIN */
.misc_ops = &dp_ops_misc,
.cfg_ops = &dp_ops_cfg,
.flowctl_ops = &dp_ops_flowctl,
.l_flowctl_ops = &dp_ops_l_flowctl,
.ipa_ops = &dp_ops_ipa,
.lro_ops = &dp_ops_lro,
.bus_ops = &dp_ops_bus,
.ocb_ops = &dp_ops_ocb,
.peer_ops = &dp_ops_peer,
.throttle_ops = &dp_ops_throttle,
.mob_stats_ops = &dp_ops_mob_stats,
};
/*
* dp_soc_attach_wifi3() - Attach txrx SOC
* @osif_soc: Opaque SOC handle from OSIF/HDD
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_attach_wifi3(void *osif_soc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops)
{
struct dp_soc *soc = qdf_mem_malloc(sizeof(*soc));
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: DP SOC memory allocation failed\n", __func__);
goto fail0;
}
soc->cdp_soc.ops = &dp_txrx_ops;
soc->cdp_soc.ol_ops = ol_ops;
soc->osif_soc = osif_soc;
soc->osdev = qdf_osdev;
soc->hif_handle = hif_handle;
soc->hal_soc = hif_get_hal_handle(hif_handle);
soc->htt_handle = htt_soc_attach(soc, osif_soc, htc_handle,
soc->hal_soc, qdf_osdev);
if (soc->htt_handle == NULL) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: HTT attach failed\n", __func__);
goto fail1;
}
soc->wlan_cfg_ctx = wlan_cfg_soc_attach();
if (!soc->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: wlan_cfg_soc_attach failed\n", __func__);
goto fail2;
}
qdf_spinlock_create(&soc->peer_ref_mutex);
#ifdef notyet
if (wdi_event_attach(soc)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: WDI event attach failed\n", __func__);
goto fail2;
}
#endif
if (dp_soc_interrupt_attach(soc) != QDF_STATUS_SUCCESS) {
goto fail2;
}
return (void *)soc;
fail2:
htt_soc_detach(soc->htt_handle);
fail1:
qdf_mem_free(soc);
fail0:
return NULL;
}