blob: 1b7ecd1d974fb3097873ef7983b0b7432d283ff6 [file] [log] [blame]
/*
* Copyright (c) 2016 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include "dp_htt.h"
#include "dp_types.h"
#include "dp_internal.h"
#include <hal_api.h>
/* Temporary definitions to be moved to wlan_cfg */
static inline uint32_t wlan_cfg_max_peer_id(void *wlan_cfg_ctx)
{
/* TODO: This should be calculated based on target capabilities */
return 2048;
}
static inline int dp_peer_find_mac_addr_cmp(
union dp_align_mac_addr *mac_addr1,
union dp_align_mac_addr *mac_addr2)
{
return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd)
/*
* Intentionally use & rather than &&.
* because the operands are binary rather than generic boolean,
* the functionality is equivalent.
* Using && has the advantage of short-circuited evaluation,
* but using & has the advantage of no conditional branching,
* which is a more significant benefit.
*/
&
(mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef));
}
static inline struct dp_peer *dp_peer_find_by_id(
struct dp_soc *soc, uint16_t peer_id)
{
struct dp_peer *peer;
peer = (peer_id == HTT_INVALID_PEER) ? NULL :
soc->peer_id_to_obj_map[peer_id];
/*
* Currently, peer IDs are assigned to vdevs as well as peers.
* If the peer ID is for a vdev, the peer_id_to_obj_map entry
* will hold NULL rather than a valid peer pointer.
*/
return peer;
}
static int dp_peer_find_map_attach(struct dp_soc *soc)
{
uint32_t max_peers, peer_map_size;
/* allocate the peer ID -> peer object map */
max_peers = wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1;
soc->max_peers = max_peers;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
"\n<=== cfg max peer id %d ====>\n", max_peers);
peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]);
soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size);
if (!soc->peer_id_to_obj_map) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer map memory allocation failed\n", __func__);
return QDF_STATUS_E_NOMEM;
}
/*
* The peer_id_to_obj_map doesn't really need to be initialized,
* since elements are only used after they have been individually
* initialized.
* However, it is convenient for debugging to have all elements
* that are not in use set to 0.
*/
qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size);
#ifdef notyet /* ATH_BAND_STEERING */
OS_INIT_TIMER(soc->osdev, &(soc->bs_inact_timer),
dp_peer_find_inact_timeout_handler, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
#endif
return 0; /* success */
}
static int dp_log2_ceil(unsigned value)
{
unsigned tmp = value;
int log2 = -1;
while (tmp) {
log2++;
tmp >>= 1;
}
if (1 << log2 != value)
log2++;
return log2;
}
static int dp_peer_find_add_id_to_obj(
struct dp_peer *peer,
uint16_t peer_id)
{
int i;
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
if (peer->peer_ids[i] == HTT_INVALID_PEER) {
peer->peer_ids[i] = peer_id;
return 0; /* success */
}
}
return QDF_STATUS_E_FAILURE; /* failure */
}
#define DP_PEER_HASH_LOAD_MULT 2
#define DP_PEER_HASH_LOAD_SHIFT 0
static int dp_peer_find_hash_attach(struct dp_soc *soc)
{
int i, hash_elems, log2;
/* allocate the peer MAC address -> peer object hash table */
hash_elems = wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1;
hash_elems *= DP_PEER_HASH_LOAD_MULT;
hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
log2 = dp_log2_ceil(hash_elems);
hash_elems = 1 << log2;
soc->peer_hash.mask = hash_elems - 1;
soc->peer_hash.idx_bits = log2;
/* allocate an array of TAILQ peer object lists */
soc->peer_hash.bins = qdf_mem_malloc(
hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
if (!soc->peer_hash.bins)
return QDF_STATUS_E_NOMEM;
for (i = 0; i < hash_elems; i++)
TAILQ_INIT(&soc->peer_hash.bins[i]);
return 0;
}
static void dp_peer_find_hash_detach(struct dp_soc *soc)
{
qdf_mem_free(soc->peer_hash.bins);
}
static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc,
union dp_align_mac_addr *mac_addr)
{
unsigned index;
index =
mac_addr->align2.bytes_ab ^
mac_addr->align2.bytes_cd ^
mac_addr->align2.bytes_ef;
index ^= index >> soc->peer_hash.idx_bits;
index &= soc->peer_hash.mask;
return index;
}
void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer)
{
unsigned index;
index = dp_peer_find_hash_index(soc, &peer->mac_addr);
qdf_spin_lock_bh(&soc->peer_ref_mutex);
/*
* It is important to add the new peer at the tail of the peer list
* with the bin index. Together with having the hash_find function
* search from head to tail, this ensures that if two entries with
* the same MAC address are stored, the one added first will be
* found first.
*/
TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#if ATH_SUPPORT_WRAP
struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id)
#else
struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
uint8_t *peer_mac_addr, int mac_addr_is_aligned)
#endif
{
union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
unsigned index;
struct dp_peer *peer;
if (mac_addr_is_aligned) {
mac_addr = (union dp_align_mac_addr *) peer_mac_addr;
} else {
qdf_mem_copy(
&local_mac_addr_aligned.raw[0],
peer_mac_addr, DP_MAC_ADDR_LEN);
mac_addr = &local_mac_addr_aligned;
}
index = dp_peer_find_hash_index(soc, mac_addr);
qdf_spin_lock_bh(&soc->peer_ref_mutex);
TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
#if ATH_SUPPORT_WRAP
/* ProxySTA may have multiple BSS peer with same MAC address,
* modified find will take care of finding the correct BSS peer.
*/
if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
(peer->vdev->vdev_id == vdev_id)) {
#else
if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
#endif
/* found it - increment the ref count before releasing
* the lock
*/
qdf_atomic_inc(&peer->ref_cnt);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return peer;
}
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return NULL; /* failure */
}
void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer)
{
unsigned index;
struct dp_peer *tmppeer = NULL;
int found = 0;
index = dp_peer_find_hash_index(soc, &peer->mac_addr);
/* Check if tail is not empty before delete*/
QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index]));
/*
* DO NOT take the peer_ref_mutex lock here - it needs to be taken
* by the caller.
* The caller needs to hold the lock from the time the peer object's
* reference count is decremented and tested up through the time the
* reference to the peer object is removed from the hash table, by
* this function.
* Holding the lock only while removing the peer object reference
* from the hash table keeps the hash table consistent, but does not
* protect against a new HL tx context starting to use the peer object
* if it looks up the peer object from its MAC address just after the
* peer ref count is decremented to zero, but just before the peer
* object reference is removed from the hash table.
*/
TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) {
if (tmppeer == peer) {
found = 1;
break;
}
}
QDF_ASSERT(found);
TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem);
}
void dp_peer_find_hash_erase(struct dp_soc *soc)
{
int i;
/*
* Not really necessary to take peer_ref_mutex lock - by this point,
* it's known that the soc is no longer in use.
*/
for (i = 0; i <= soc->peer_hash.mask; i++) {
if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) {
struct dp_peer *peer, *peer_next;
/*
* TAILQ_FOREACH_SAFE must be used here to avoid any
* memory access violation after peer is freed
*/
TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i],
hash_list_elem, peer_next) {
/*
* Don't remove the peer from the hash table -
* that would modify the list we are currently
* traversing, and it's not necessary anyway.
*/
/*
* Artificially adjust the peer's ref count to
* 1, so it will get deleted by
* dp_peer_unref_delete.
*/
/* set to zero */
qdf_atomic_init(&peer->ref_cnt);
/* incr to one */
qdf_atomic_inc(&peer->ref_cnt);
dp_peer_unref_delete(peer);
}
}
}
}
static void dp_peer_find_map_detach(struct dp_soc *soc)
{
#ifdef notyet /* ATH_BAND_STEERING */
OS_FREE_TIMER(&(soc->bs_inact_timer));
#endif
qdf_mem_free(soc->peer_id_to_obj_map);
}
int dp_peer_find_attach(struct dp_soc *soc)
{
if (dp_peer_find_map_attach(soc))
return 1;
if (dp_peer_find_hash_attach(soc)) {
dp_peer_find_map_detach(soc);
return 1;
}
return 0; /* success */
}
static inline void dp_peer_find_add_id(struct dp_soc *soc,
uint8_t *peer_mac_addr, uint16_t peer_id, uint8_t vdev_id)
{
struct dp_peer *peer;
QDF_ASSERT(peer_id <= wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1);
/* check if there's already a peer object with this MAC address */
#if ATH_SUPPORT_WRAP
peer = dp_peer_find_hash_find(soc, peer_mac_addr,
0 /* is aligned */, vdev_id);
#else
peer = dp_peer_find_hash_find(soc, peer_mac_addr, 0 /* is aligned */);
#endif
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer %p ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n",
__func__, peer, peer_id, vdev_id, peer_mac_addr[0],
peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3],
peer_mac_addr[4], peer_mac_addr[5]);
if (peer) {
/* peer's ref count was already incremented by
* peer_find_hash_find
*/
soc->peer_id_to_obj_map[peer_id] = peer;
if (dp_peer_find_add_id_to_obj(peer, peer_id)) {
/* TBDXXX: assert for now */
QDF_ASSERT(0);
}
return;
}
}
void
dp_rx_peer_map_handler(void *soc_handle, uint16_t peer_id, uint8_t vdev_id,
uint8_t *peer_mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"peer_map_event (soc:%p): peer_id %d, peer_mac "
"%02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d\n", soc, peer_id,
peer_mac_addr[0], peer_mac_addr[1], peer_mac_addr[2],
peer_mac_addr[3], peer_mac_addr[4], peer_mac_addr[5], vdev_id);
dp_peer_find_add_id(soc, peer_mac_addr, peer_id, vdev_id);
}
void
dp_rx_peer_unmap_handler(void *soc_handle, uint16_t peer_id)
{
struct dp_peer *peer;
struct dp_soc *soc = (struct dp_soc *)soc_handle;
uint8_t i;
peer = dp_peer_find_by_id(soc, peer_id);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"peer_unmap_event (soc:%p) peer_id %d peer %p\n",
soc, peer_id, peer);
/*
* Currently peer IDs are assigned for vdevs as well as peers.
* If the peer ID is for a vdev, then the peer pointer stored
* in peer_id_to_obj_map will be NULL.
*/
if (!peer)
return;
soc->peer_id_to_obj_map[peer_id] = NULL;
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
if (peer->peer_ids[i] == peer_id) {
peer->peer_ids[i] = HTT_INVALID_PEER;
break;
}
}
/*
* Remove a reference to the peer.
* If there are no more references, delete the peer object.
*/
dp_peer_unref_delete(peer);
}
void
dp_peer_find_detach(struct dp_soc *soc)
{
dp_peer_find_map_detach(soc);
dp_peer_find_hash_detach(soc);
}
/*
* dp_find_peer_by_addr - find peer instance by mac address
* @dev: physical device instance
* @peer_mac_addr: peer mac address
* @local_id: local id for the peer
*
* Return: peer instance pointer
*/
void *dp_find_peer_by_addr(void *dev, uint8_t *peer_mac_addr,
uint8_t *local_id)
{
struct dp_pdev *pdev = dev;
struct dp_peer *peer;
/* WAR, VDEV ID? TEMP 0 */
peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0);
if (!peer)
return NULL;
/* Multiple peer ids? How can know peer id? */
*local_id = peer->local_id;
DP_TRACE(INFO, "%s: peer %p id %d", __func__, peer, *local_id);
return peer;
}
/*
* dp_rx_tid_update_wifi3() – Update receive TID state
* @peer: Datapath peer handle
* @tid: TID
* @ba_window_size: BlockAck window size
* @start_seq: Starting sequence number
*
* Return: 0 on success, error code on failure
*/
int dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
ba_window_size, uint32_t start_seq)
{
/* TODO: Implement this once REO command API is available */
return 0;
}
/*
* dp_rx_tid_setup_wifi3() – Setup receive TID state
* @peer: Datapath peer handle
* @tid: TID
* @ba_window_size: BlockAck window size
* @start_seq: Starting sequence number
*
* Return: 0 on success, error code on failure
*/
int dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
uint32_t ba_window_size, uint32_t start_seq)
{
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
struct dp_vdev *vdev = peer->vdev;
struct dp_soc *soc = vdev->pdev->soc;
uint32_t hw_qdesc_size;
uint32_t hw_qdesc_align;
int hal_pn_type;
void *hw_qdesc_vaddr;
if (rx_tid->hw_qdesc_vaddr_unaligned != NULL)
return dp_rx_tid_update_wifi3(peer, tid, ba_window_size,
start_seq);
#ifdef notyet
hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size);
#else
/* TODO: Allocating HW queue descriptors based on max BA window size
* for all QOS TIDs so that same descriptor can be used later when
* ADDBA request is recevied. This should be changed to allocate HW
* queue descriptors based on BA window size being negotiated (0 for
* non BA cases), and reallocate when BA window size changes and also
* send WMI message to FW to change the REO queue descriptor in Rx
* peer entry as part of dp_rx_tid_update.
*/
if (tid != DP_NON_QOS_TID)
hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
HAL_RX_MAX_BA_WINDOW);
else
hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
ba_window_size);
#endif
hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc);
/* To avoid unnecessary extra allocation for alignment, try allocating
* exact size and see if we already have aligned address.
*/
rx_tid->hw_qdesc_alloc_size = hw_qdesc_size;
rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_alloc_consistent(
soc->osdev, NULL, rx_tid->hw_qdesc_alloc_size,
&(rx_tid->hw_qdesc_paddr_unaligned));
if (!rx_tid->hw_qdesc_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc alloc failed: tid %d\n",
__func__, tid);
return QDF_STATUS_E_NOMEM;
}
if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
hw_qdesc_align) {
/* Address allocated above is not alinged. Allocate extra
* memory for alignment
*/
qdf_mem_free_consistent(soc->osdev, NULL,
rx_tid->hw_qdesc_alloc_size,
rx_tid->hw_qdesc_vaddr_unaligned,
rx_tid->hw_qdesc_paddr_unaligned, 0);
rx_tid->hw_qdesc_alloc_size =
hw_qdesc_size + hw_qdesc_align - 1;
rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_alloc_consistent(
soc->osdev, NULL, rx_tid->hw_qdesc_alloc_size,
&(rx_tid->hw_qdesc_paddr_unaligned));
if (!rx_tid->hw_qdesc_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc alloc failed: tid %d\n",
__func__, tid);
return QDF_STATUS_E_NOMEM;
}
hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned +
((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
hw_qdesc_align);
rx_tid->hw_qdesc_paddr = rx_tid->hw_qdesc_paddr_unaligned +
((unsigned long)hw_qdesc_vaddr -
(unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned));
} else {
hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned;
rx_tid->hw_qdesc_paddr = rx_tid->hw_qdesc_paddr_unaligned;
}
/* TODO: Ensure that sec_type is set before ADDBA is received.
* Currently this is set based on htt indication
* HTT_T2H_MSG_TYPE_SEC_IND from target
*/
switch (peer->security[dp_sec_ucast].sec_type) {
case htt_sec_type_tkip_nomic:
case htt_sec_type_aes_ccmp:
case htt_sec_type_aes_ccmp_256:
case htt_sec_type_aes_gcmp:
case htt_sec_type_aes_gcmp_256:
hal_pn_type = HAL_PN_WPA;
break;
case htt_sec_type_wapi:
if (vdev->opmode == wlan_op_mode_ap)
hal_pn_type = HAL_PN_WAPI_EVEN;
else
hal_pn_type = HAL_PN_WAPI_UNEVEN;
break;
default:
hal_pn_type = HAL_PN_NONE;
break;
}
hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq,
hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type);
if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(soc->osif_soc,
peer->vdev->vdev_id, peer->mac_addr.raw,
rx_tid->hw_qdesc_paddr, tid, tid);
}
return 0;
}
/*
* Rx TID deletion callback to free memory allocated for HW queue descriptor
*/
void dp_rx_tid_delete_cb(struct dp_pdev *pdev, void *cb_ctxt, int status)
{
struct dp_soc *soc = pdev->soc;
struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
if (status) {
/* Should not happen normally. Just print error for now */
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc deletion failed: tid %d\n",
__func__, rx_tid->tid);
}
qdf_mem_free_consistent(soc->osdev, NULL,
rx_tid->hw_qdesc_alloc_size,
rx_tid->hw_qdesc_vaddr_unaligned,
rx_tid->hw_qdesc_paddr_unaligned, 0);
rx_tid->hw_qdesc_vaddr_unaligned = NULL;
rx_tid->hw_qdesc_alloc_size = 0;
}
/*
* dp_rx_tid_delete_wifi3() – Delete receive TID queue
* @peer: Datapath peer handle
* @tid: TID
*
* Return: 0 on success, error code on failure
*/
int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid)
{
#ifdef notyet /* TBD: Enable this once REO command interface is available */
struct dp_rx_tid *rx_tid = peer->rx_tid[tid];
dp_rx_tid_hw_update_valid(rx_tid->hw_qdesc_paddr, 0,
dp_rx_tid_delete_cb, (void *)rx_tid);
#endif
return 0;
}
/*
* dp_peer_rx_init() – Initialize receive TID state
* @pdev: Datapath pdev
* @peer: Datapath peer
*
*/
void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer)
{
int tid;
struct dp_rx_tid *rx_tid;
for (tid = 0; tid < DP_MAX_TIDS; tid++) {
rx_tid = &peer->rx_tid[tid];
rx_tid->array = &rx_tid->base;
rx_tid->base.head = rx_tid->base.tail = NULL;
rx_tid->tid = tid;
rx_tid->defrag_timeout_ms = 0;
rx_tid->ba_win_size = 0;
rx_tid->ba_status = DP_RX_BA_INACTIVE;
rx_tid->defrag_waitlist_elem.tqe_next = NULL;
rx_tid->defrag_waitlist_elem.tqe_prev = NULL;
#ifdef notyet /* TODO: See if this is required for exception handling */
/* invalid sequence number */
peer->tids_last_seq[tid] = 0xffff;
#endif
}
/* Setup default (non-qos) rx tid queue */
dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0);
/*
* Set security defaults: no PN check, no security. The target may
* send a HTT SEC_IND message to overwrite these defaults.
*/
peer->security[dp_sec_ucast].sec_type =
peer->security[dp_sec_mcast].sec_type = htt_sec_type_none;
}
/*
* dp_peer_rx_cleanup() – Cleanup receive TID state
* @vdev: Datapath vdev
* @peer: Datapath peer
*
*/
void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
{
int tid;
struct dp_rx_tid *rx_tid;
uint32_t tid_delete_mask = 0;
for (tid = 0; tid < DP_MAX_TIDS; tid++) {
if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
dp_rx_tid_delete_wifi3(peer, tid);
tid_delete_mask |= (1 << tid);
}
}
#ifdef notyet /* See if FW can remove queues as part of peer cleanup */
if (soc->ol_ops->peer_rx_reorder_queue_remove) {
soc->ol_ops->peer_rx_reorder_queue_remove(soc->osif_soc,
peer->vdev->vdev_id, peer->mac_addr.raw,
tid_delete_mask);
}
#endif
}
/*
* dp_rx_addba_requestprocess_wifi3() – Process ADDBA request from peer
*
* @peer: Datapath peer handle
* @dialogtoken: dialogtoken from ADDBA frame
* @baparamset: BlockAck parameters received in ADDBA frame
* @basequencectrl: BA sequence control received in ADDBA frame
*
* Return: 0 on success, error code on failure
*/
int dp_addba_requestprocess_wifi3(void *peer_handle, uint8_t dialogtoken,
struct ieee80211_ba_parameterset *baparamset, uint16_t batimeout,
struct ieee80211_ba_seqctrl basequencectrl)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
uint16_t tid = baparamset->tid;
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
if ((rx_tid->ba_status == DP_RX_BA_ACTIVE) &&
(rx_tid->hw_qdesc_vaddr_unaligned != NULL))
rx_tid->ba_status = DP_RX_BA_INACTIVE;
if (dp_rx_tid_setup_wifi3(peer, tid, baparamset->buffersize,
basequencectrl.startseqnum)) {
/* TODO: Should we send addba reject in this case */
return QDF_STATUS_E_FAILURE;
}
rx_tid->ba_win_size = baparamset->buffersize;
rx_tid->dialogtoken = dialogtoken;
rx_tid->statuscode = QDF_STATUS_SUCCESS;
rx_tid->ba_status = DP_RX_BA_ACTIVE;
return 0;
}
/*
* dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer
*
* @peer: Datapath peer handle
* @tid: TID number
* @dialogtoken: output dialogtoken
* @statuscode: output dialogtoken
* @baparamset: Ouput structure to populate BA response parameters
* @batimeout: Ouput BA timeout
*/
void dp_addba_responsesetup_wifi3(void *peer_handle, uint8_t tid,
uint8_t *dialogtoken, uint16_t *statuscode,
struct ieee80211_ba_parameterset *baparamset, uint16_t *batimeout)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
/* setup ADDBA response paramters */
*dialogtoken = rx_tid->dialogtoken;
*statuscode = rx_tid->statuscode;
baparamset->amsdusupported = IEEE80211_BA_AMSDU_SUPPORTED;
baparamset->bapolicy = IEEE80211_BA_POLICY_IMMEDIATE;
baparamset->tid = rx_tid->ba_win_size;
baparamset->buffersize = rx_tid->ba_win_size;
*batimeout = 0;
}
/*
* dp_rx_delba_process_wifi3() – Process DELBA from peer
* @peer: Datapath peer handle
* @delbaparamset: DELBA parameters received in DELBA frame
* @reasoncode: Reason code received in DELBA frame
*
* Return: 0 on success, error code on failure
*/
int dp_delba_process_wifi3(void *peer_handle,
struct ieee80211_delba_parameterset *delbaparamset, uint16_t reasoncode)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
uint16_t tid = (uint16_t)delbaparamset->tid;
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
if (rx_tid->ba_status != DP_RX_BA_ACTIVE)
return QDF_STATUS_E_FAILURE;
/* TODO: See if we can delete the existing REO queue descriptor and
* replace with a new one without queue extenstion descript to save
* memory
*/
dp_rx_tid_update_wifi3(peer, tid, 0, 0);
rx_tid->ba_status = DP_RX_BA_INACTIVE;
return 0;
}
void dp_rx_discard(struct dp_vdev *vdev, struct dp_peer *peer, unsigned tid,
qdf_nbuf_t msdu_list)
{
while (msdu_list) {
qdf_nbuf_t msdu = msdu_list;
msdu_list = qdf_nbuf_next(msdu_list);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"discard rx %p from partly-deleted peer %p "
"(%02x:%02x:%02x:%02x:%02x:%02x)\n",
msdu, peer,
peer->mac_addr.raw[0], peer->mac_addr.raw[1],
peer->mac_addr.raw[2], peer->mac_addr.raw[3],
peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
qdf_nbuf_free(msdu);
}
}
void
dp_rx_sec_ind_handler(void *soc_handle, uint16_t peer_id,
enum htt_sec_type sec_type, int is_unicast, u_int32_t *michael_key,
u_int32_t *rx_pn)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_peer *peer;
int sec_index;
peer = dp_peer_find_by_id(soc, peer_id);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Couldn't find peer from ID %d - skipping security inits\n",
peer_id);
return;
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"sec spec for peer %p (%02x:%02x:%02x:%02x:%02x:%02x): "
"%s key of type %d\n",
peer,
peer->mac_addr.raw[0], peer->mac_addr.raw[1],
peer->mac_addr.raw[2], peer->mac_addr.raw[3],
peer->mac_addr.raw[4], peer->mac_addr.raw[5],
is_unicast ? "ucast" : "mcast",
sec_type);
sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast;
peer->security[sec_index].sec_type = sec_type;
#ifdef notyet /* TODO: See if this is required for defrag support */
/* michael key only valid for TKIP, but for simplicity,
* copy it anyway
*/
qdf_mem_copy(
&peer->security[sec_index].michael_key[0],
michael_key,
sizeof(peer->security[sec_index].michael_key));
#ifdef BIG_ENDIAN_HOST
OL_IF_SWAPBO(peer->security[sec_index].michael_key[0],
sizeof(peer->security[sec_index].michael_key));
#endif /* BIG_ENDIAN_HOST */
#endif
#ifdef notyet /* TODO: Check if this is required for wifi3.0 */
if (sec_type != htt_sec_type_wapi) {
qdf_mem_set(peer->tids_last_pn_valid, _EXT_TIDS, 0x00);
} else {
for (i = 0; i < DP_MAX_TIDS; i++) {
/*
* Setting PN valid bit for WAPI sec_type,
* since WAPI PN has to be started with predefined value
*/
peer->tids_last_pn_valid[i] = 1;
qdf_mem_copy(
(u_int8_t *) &peer->tids_last_pn[i],
(u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t));
peer->tids_last_pn[i].pn128[1] =
qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]);
peer->tids_last_pn[i].pn128[0] =
qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]);
}
}
#endif
/* TODO: Update HW TID queue with PN check parameters (pn type for
* all security types and last pn for WAPI) once REO command API
* is available
*/
}
/**
* dp_register_peer() - Register peer into physical device
* @pdev - data path device instance
* @sta_desc - peer description
*
* Register peer into physical device
*
* Return: QDF_STATUS_SUCCESS registration success
* QDF_STATUS_E_FAULT peer not found
*/
QDF_STATUS dp_register_peer(void *pdev_handle,
struct ol_txrx_desc_type *sta_desc)
{
struct dp_peer *peer;
struct dp_pdev *pdev = pdev_handle;
peer = dp_peer_find_by_local_id(pdev, sta_desc->sta_id);
if (!peer)
return QDF_STATUS_E_FAULT;
qdf_spin_lock_bh(&peer->peer_info_lock);
peer->state = OL_TXRX_PEER_STATE_CONN;
qdf_spin_unlock_bh(&peer->peer_info_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_clear_peer() - remove peer from physical device
* @pdev - data path device instance
* @sta_id - local peer id
*
* remove peer from physical device
*
* Return: QDF_STATUS_SUCCESS registration success
* QDF_STATUS_E_FAULT peer not found
*/
QDF_STATUS dp_clear_peer(void *pdev_handle, uint8_t local_id)
{
struct dp_peer *peer;
struct dp_pdev *pdev = pdev_handle;
peer = dp_peer_find_by_local_id(pdev, local_id);
if (!peer)
return QDF_STATUS_E_FAULT;
qdf_spin_lock_bh(&peer->peer_info_lock);
peer->state = OL_TXRX_PEER_STATE_DISC;
qdf_spin_unlock_bh(&peer->peer_info_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev
* @pdev - data path device instance
* @vdev - virtual interface instance
* @peer_addr - peer mac address
* @peer_id - local peer id with target mac address
*
* Find peer by peer mac address within vdev
*
* Return: peer instance void pointer
* NULL cannot find target peer
*/
void *dp_find_peer_by_addr_and_vdev(void *pdev_handle, void *vdev,
uint8_t *peer_addr, uint8_t *local_id)
{
struct dp_pdev *pdev = pdev_handle;
struct dp_peer *peer;
DP_TRACE(INFO, "vdev %p peer_addr %p", vdev, peer_addr);
peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0);
DP_TRACE(INFO, "peer %p vdev %p", peer, vdev);
if (!peer)
return NULL;
if (peer->vdev != vdev)
return NULL;
*local_id = peer->local_id;
DP_TRACE(INFO, "peer %p vdev %p lcoal id %d",
peer, vdev, *local_id);
return peer;
}
/**
* dp_local_peer_id() - Find local peer id within peer instance
* @peer - peer instance
*
* Find local peer id within peer instance
*
* Return: local peer id
*/
uint16_t dp_local_peer_id(void *peer)
{
return ((struct dp_peer *)peer)->local_id;
}
/**
* dp_peer_find_by_local_id() - Find peer by local peer id
* @pdev - data path device instance
* @local_peer_id - local peer id want to find
*
* Find peer by local peer id within physical device
*
* Return: peer instance void pointer
* NULL cannot find target peer
*/
void *dp_peer_find_by_local_id(void *pdev_handle, uint8_t local_id)
{
struct dp_peer *peer;
struct dp_pdev *pdev = pdev_handle;
qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
peer = pdev->local_peer_ids.map[local_id];
qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
DP_TRACE(INFO, "peer %p lcoal id %d",
peer, local_id);
return peer;
}
/**
* dp_peer_state_update() - update peer local state
* @pdev - data path device instance
* @peer_addr - peer mac address
* @state - new peer local state
*
* update peer local state
*
* Return: QDF_STATUS_SUCCESS registration success
*/
QDF_STATUS dp_peer_state_update(void *pdev_handle, uint8_t *peer_mac,
enum ol_txrx_peer_state state)
{
struct dp_peer *peer;
struct dp_pdev *pdev = pdev_handle;
peer = dp_peer_find_hash_find(pdev->soc, peer_mac, 0);
peer->state = state;
DP_TRACE(INFO, "peer %p state %d",
peer, peer->state);
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_vdevid() - Get virtaul interface id which peer registered
* @peer - peer instance
* @vdev_id - virtaul interface id which peer registered
*
* Get virtaul interface id which peer registered
*
* Return: QDF_STATUS_SUCCESS registration success
*/
QDF_STATUS dp_get_vdevid(void *peer_handle, uint8_t *vdev_id)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p vdev %p vdev id %d",
peer, peer->vdev, peer->vdev->vdev_id);
*vdev_id = peer->vdev->vdev_id;
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
* @peer - peer instance
*
* Get virtual interface instance which peer belongs
*
* Return: virtual interface instance pointer
* NULL in case cannot find
*/
void *dp_get_vdev_for_peer(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p vdev %p", peer, peer->vdev);
return (void *)peer->vdev;
}
/**
* dp_peer_get_peer_mac_addr() - Get peer mac address
* @peer - peer instance
*
* Get peer mac address
*
* Return: peer mac address pointer
* NULL in case cannot find
*/
uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
uint8_t *mac;
mac = peer->mac_addr.raw;
DP_TRACE(INFO, "peer %p mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return peer->mac_addr.raw;
}
/**
* dp_get_peer_state() - Get local peer state
* @peer - peer instance
*
* Get local peer state
*
* Return: peer status
*/
int dp_get_peer_state(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p stats %d", peer, peer->state);
return peer->state;
}
/**
* dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
* @pdev - data path device instance
*
* local peer id pool alloc for physical device
*
* Return: none
*/
void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
{
int i;
/* point the freelist to the first ID */
pdev->local_peer_ids.freelist = 0;
/* link each ID to the next one */
for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) {
pdev->local_peer_ids.pool[i] = i + 1;
pdev->local_peer_ids.map[i] = NULL;
}
/* link the last ID to itself, to mark the end of the list */
i = OL_TXRX_NUM_LOCAL_PEER_IDS;
pdev->local_peer_ids.pool[i] = i;
qdf_spinlock_create(&pdev->local_peer_ids.lock);
DP_TRACE(INFO, "Peer pool init");
}
/**
* dp_local_peer_id_alloc() - allocate local peer id
* @pdev - data path device instance
* @peer - new peer instance
*
* allocate local peer id
*
* Return: none
*/
void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
{
int i;
qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
i = pdev->local_peer_ids.freelist;
if (pdev->local_peer_ids.pool[i] == i) {
/* the list is empty, except for the list-end marker */
peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID;
} else {
/* take the head ID and advance the freelist */
peer->local_id = i;
pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i];
pdev->local_peer_ids.map[i] = peer;
}
qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
DP_TRACE(INFO, "peer %p, local id %d", peer, peer->local_id);
}
/**
* dp_local_peer_id_free() - remove local peer id
* @pdev - data path device instance
* @peer - peer instance should be removed
*
* remove local peer id
*
* Return: none
*/
void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
{
int i = peer->local_id;
if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) ||
(i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) {
return;
}
/* put this ID on the head of the freelist */
qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist;
pdev->local_peer_ids.freelist = i;
pdev->local_peer_ids.map[i] = NULL;
qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
}