blob: 95b79746033a9b4d26d9954a881a529644fe25f4 [file] [log] [blame]
/*
* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include "dp_htt.h"
#include "dp_types.h"
#include "dp_internal.h"
#include "dp_peer.h"
#include <hal_api.h>
#include <hal_reo.h>
#ifdef CONFIG_MCL
#include <cds_ieee80211_common.h>
#endif
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#ifdef DP_LFR
static inline void
dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
uint8_t valid)
{
params->u.upd_queue_params.update_svld = 1;
params->u.upd_queue_params.svld = valid;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: Setting SSN valid bit to %d\n",
__func__, valid);
}
#else
static inline void
dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params,
uint8_t valid) {};
#endif
static inline int dp_peer_find_mac_addr_cmp(
union dp_align_mac_addr *mac_addr1,
union dp_align_mac_addr *mac_addr2)
{
return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd)
/*
* Intentionally use & rather than &&.
* because the operands are binary rather than generic boolean,
* the functionality is equivalent.
* Using && has the advantage of short-circuited evaluation,
* but using & has the advantage of no conditional branching,
* which is a more significant benefit.
*/
&
(mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef));
}
static int dp_peer_find_map_attach(struct dp_soc *soc)
{
uint32_t max_peers, peer_map_size;
/* allocate the peer ID -> peer object map */
max_peers = wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1;
soc->max_peers = max_peers;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
"\n<=== cfg max peer id %d ====>\n", max_peers);
peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]);
soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size);
if (!soc->peer_id_to_obj_map) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer map memory allocation failed\n", __func__);
return QDF_STATUS_E_NOMEM;
}
/*
* The peer_id_to_obj_map doesn't really need to be initialized,
* since elements are only used after they have been individually
* initialized.
* However, it is convenient for debugging to have all elements
* that are not in use set to 0.
*/
qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size);
return 0; /* success */
}
static int dp_log2_ceil(unsigned value)
{
unsigned tmp = value;
int log2 = -1;
while (tmp) {
log2++;
tmp >>= 1;
}
if (1 << log2 != value)
log2++;
return log2;
}
static int dp_peer_find_add_id_to_obj(
struct dp_peer *peer,
uint16_t peer_id)
{
int i;
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
if (peer->peer_ids[i] == HTT_INVALID_PEER) {
peer->peer_ids[i] = peer_id;
return 0; /* success */
}
}
return QDF_STATUS_E_FAILURE; /* failure */
}
#define DP_PEER_HASH_LOAD_MULT 2
#define DP_PEER_HASH_LOAD_SHIFT 0
#define DP_AST_HASH_LOAD_MULT 2
#define DP_AST_HASH_LOAD_SHIFT 0
static int dp_peer_find_hash_attach(struct dp_soc *soc)
{
int i, hash_elems, log2;
/* allocate the peer MAC address -> peer object hash table */
hash_elems = wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1;
hash_elems *= DP_PEER_HASH_LOAD_MULT;
hash_elems >>= DP_PEER_HASH_LOAD_SHIFT;
log2 = dp_log2_ceil(hash_elems);
hash_elems = 1 << log2;
soc->peer_hash.mask = hash_elems - 1;
soc->peer_hash.idx_bits = log2;
/* allocate an array of TAILQ peer object lists */
soc->peer_hash.bins = qdf_mem_malloc(
hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer)));
if (!soc->peer_hash.bins)
return QDF_STATUS_E_NOMEM;
for (i = 0; i < hash_elems; i++)
TAILQ_INIT(&soc->peer_hash.bins[i]);
return 0;
}
static void dp_peer_find_hash_detach(struct dp_soc *soc)
{
qdf_mem_free(soc->peer_hash.bins);
}
static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc,
union dp_align_mac_addr *mac_addr)
{
unsigned index;
index =
mac_addr->align2.bytes_ab ^
mac_addr->align2.bytes_cd ^
mac_addr->align2.bytes_ef;
index ^= index >> soc->peer_hash.idx_bits;
index &= soc->peer_hash.mask;
return index;
}
void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer)
{
unsigned index;
index = dp_peer_find_hash_index(soc, &peer->mac_addr);
qdf_spin_lock_bh(&soc->peer_ref_mutex);
/*
* It is important to add the new peer at the tail of the peer list
* with the bin index. Together with having the hash_find function
* search from head to tail, this ensures that if two entries with
* the same MAC address are stored, the one added first will be
* found first.
*/
TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#ifdef FEATURE_WDS
/*
* dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table
* @soc: SoC handle
*
* Return: None
*/
static int dp_peer_ast_hash_attach(struct dp_soc *soc)
{
int i, hash_elems, log2;
hash_elems = ((WLAN_UMAC_PSOC_MAX_PEERS * DP_AST_HASH_LOAD_MULT) >>
DP_AST_HASH_LOAD_SHIFT);
log2 = dp_log2_ceil(hash_elems);
hash_elems = 1 << log2;
soc->ast_hash.mask = hash_elems - 1;
soc->ast_hash.idx_bits = log2;
/* allocate an array of TAILQ peer object lists */
soc->ast_hash.bins = qdf_mem_malloc(
hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q,
dp_ast_entry)));
if (!soc->ast_hash.bins)
return QDF_STATUS_E_NOMEM;
for (i = 0; i < hash_elems; i++)
TAILQ_INIT(&soc->ast_hash.bins[i]);
return 0;
}
/*
* dp_peer_ast_hash_detach() - Free AST Hash table
* @soc: SoC handle
*
* Return: None
*/
static void dp_peer_ast_hash_detach(struct dp_soc *soc)
{
qdf_mem_free(soc->ast_hash.bins);
}
/*
* dp_peer_ast_hash_index() - Compute the AST hash from MAC address
* @soc: SoC handle
*
* Return: AST hash
*/
static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc,
union dp_align_mac_addr *mac_addr)
{
uint32_t index;
index =
mac_addr->align2.bytes_ab ^
mac_addr->align2.bytes_cd ^
mac_addr->align2.bytes_ef;
index ^= index >> soc->ast_hash.idx_bits;
index &= soc->ast_hash.mask;
return index;
}
/*
* dp_peer_ast_hash_add() - Add AST entry into hash table
* @soc: SoC handle
*
* This function adds the AST entry into SoC AST hash table
* It assumes caller has taken the ast lock to protect the access to this table
*
* Return: None
*/
static inline void dp_peer_ast_hash_add(struct dp_soc *soc,
struct dp_ast_entry *ase)
{
uint32_t index;
index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem);
}
/*
* dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table
* @soc: SoC handle
*
* This function removes the AST entry from soc AST hash table
* It assumes caller has taken the ast lock to protect the access to this table
*
* Return: None
*/
static inline void dp_peer_ast_hash_remove(struct dp_soc *soc,
struct dp_ast_entry *ase)
{
unsigned index;
struct dp_ast_entry *tmpase;
int found = 0;
index = dp_peer_ast_hash_index(soc, &ase->mac_addr);
/* Check if tail is not empty before delete*/
QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index]));
TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) {
if (tmpase == ase) {
found = 1;
break;
}
}
QDF_ASSERT(found);
TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem);
}
/*
* dp_peer_ast_hash_find() - Find AST entry by MAC address
* @soc: SoC handle
*
* It assumes caller has taken the ast lock to protect the access to
* AST hash table
*
* Return: AST entry
*/
struct dp_ast_entry *dp_peer_ast_hash_find(struct dp_soc *soc,
uint8_t *ast_mac_addr, int mac_addr_is_aligned)
{
union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
unsigned index;
struct dp_ast_entry *ase;
if (mac_addr_is_aligned) {
mac_addr = (union dp_align_mac_addr *) ast_mac_addr;
} else {
qdf_mem_copy(
&local_mac_addr_aligned.raw[0],
ast_mac_addr, DP_MAC_ADDR_LEN);
mac_addr = &local_mac_addr_aligned;
}
index = dp_peer_ast_hash_index(soc, mac_addr);
TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) {
if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) {
return ase;
}
}
return NULL;
}
/*
* dp_peer_map_ast() - Map the ast entry with HW AST Index
* @soc: SoC handle
* @peer: peer to which ast node belongs
* @mac_addr: MAC address of ast node
* @hw_peer_id: HW AST Index returned by target in peer map event
* @vdev_id: vdev id for VAP to which the peer belongs to
*
* Return: None
*/
static inline void dp_peer_map_ast(struct dp_soc *soc,
struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id,
uint8_t vdev_id)
{
struct dp_ast_entry *ast_entry;
if (!peer) {
return;
}
if (soc->cdp_soc.ol_ops->peer_map_event) {
soc->cdp_soc.ol_ops->peer_map_event(soc->osif_soc,
peer->peer_ids[0], hw_peer_id, vdev_id,
mac_addr);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer %p ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n",
__func__, peer, hw_peer_id, vdev_id, mac_addr[0],
mac_addr[1], mac_addr[2], mac_addr[3],
mac_addr[4], mac_addr[5]);
qdf_spin_lock_bh(&soc->ast_lock);
TAILQ_FOREACH(ast_entry, &peer->ast_entry_list, ase_list_elem) {
if (!(qdf_mem_cmp(mac_addr, ast_entry->mac_addr.raw,
DP_MAC_ADDR_LEN))) {
qdf_spin_unlock_bh(&soc->ast_lock);
ast_entry->ast_idx = hw_peer_id;
soc->ast_table[hw_peer_id] = ast_entry;
ast_entry->is_active = TRUE;
return;
}
}
qdf_spin_unlock_bh(&soc->ast_lock);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"AST entry not found\n");
return;
}
/*
* dp_peer_add_ast() - Allocate and add AST entry into peer list
* @soc: SoC handle
* @peer: peer to which ast node belongs
* @mac_addr: MAC address of ast node
* @is_self: Is this base AST entry with peer mac address
*
* This API is used by WDS source port learning funtion to
* add a new AST entry into peer AST list
*
* Return: 0 if new entry is allocated,
* 1 if entry already exists or if allocation has failed
*/
int dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer,
uint8_t *mac_addr, bool is_self)
{
struct dp_ast_entry *ast_entry;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer %p mac %02x:%02x:%02x:%02x:%02x:%02x\n",
__func__, peer, mac_addr[0], mac_addr[1], mac_addr[2],
mac_addr[3], mac_addr[4], mac_addr[5]);
qdf_spin_lock_bh(&soc->ast_lock);
/* If AST entry already exists , just return from here */
if (dp_peer_ast_hash_find(soc, mac_addr, 0)) {
qdf_spin_unlock_bh(&soc->ast_lock);
return 1;
}
ast_entry = (struct dp_ast_entry *)
qdf_mem_malloc(sizeof(struct dp_ast_entry));
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("fail to allocate ast_entry"));
QDF_ASSERT(0);
return 1;
}
qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, DP_MAC_ADDR_LEN);
ast_entry->peer = peer;
if (is_self) {
peer->self_ast_entry = ast_entry;
ast_entry->is_static = TRUE;
} else {
ast_entry->next_hop = 1;
ast_entry->is_static = FALSE;
}
ast_entry->is_active = TRUE;
TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem);
dp_peer_ast_hash_add(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
return 0;
}
/*
* dp_peer_del_ast() - Delete and free AST entry
* @soc: SoC handle
* @ast_entry: AST entry of the node
*
* This function removes the AST entry from peer and soc tables
* It assumes caller has taken the ast lock to protect the access to these
* tables
*
* Return: None
*/
void dp_peer_del_ast(struct dp_soc *soc,
struct dp_ast_entry *ast_entry)
{
struct dp_peer *peer = ast_entry->peer;
soc->ast_table[ast_entry->ast_idx] = NULL;
TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem);
dp_peer_ast_hash_remove(soc, ast_entry);
qdf_mem_free(ast_entry);
}
#else
static int dp_peer_ast_hash_attach(struct dp_soc *soc)
{
return 0;
}
static void dp_peer_ast_hash_detach(struct dp_soc *soc)
{
}
static inline void dp_peer_map_ast(struct dp_soc *soc, struct dp_peer *peer,
uint8_t *mac_addr, uint16_t hw_peer_id, uint8_t vdev_id)
{
}
#endif
#if ATH_SUPPORT_WRAP
static struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id)
#else
static struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc,
uint8_t *peer_mac_addr, int mac_addr_is_aligned)
#endif
{
union dp_align_mac_addr local_mac_addr_aligned, *mac_addr;
unsigned index;
struct dp_peer *peer;
if (mac_addr_is_aligned) {
mac_addr = (union dp_align_mac_addr *) peer_mac_addr;
} else {
qdf_mem_copy(
&local_mac_addr_aligned.raw[0],
peer_mac_addr, DP_MAC_ADDR_LEN);
mac_addr = &local_mac_addr_aligned;
}
index = dp_peer_find_hash_index(soc, mac_addr);
qdf_spin_lock_bh(&soc->peer_ref_mutex);
TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) {
#if ATH_SUPPORT_WRAP
/* ProxySTA may have multiple BSS peer with same MAC address,
* modified find will take care of finding the correct BSS peer.
*/
if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 &&
(peer->vdev->vdev_id == vdev_id)) {
#else
if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0) {
#endif
/* found it - increment the ref count before releasing
* the lock
*/
qdf_atomic_inc(&peer->ref_cnt);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return peer;
}
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return NULL; /* failure */
}
void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer)
{
unsigned index;
struct dp_peer *tmppeer = NULL;
int found = 0;
index = dp_peer_find_hash_index(soc, &peer->mac_addr);
/* Check if tail is not empty before delete*/
QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index]));
/*
* DO NOT take the peer_ref_mutex lock here - it needs to be taken
* by the caller.
* The caller needs to hold the lock from the time the peer object's
* reference count is decremented and tested up through the time the
* reference to the peer object is removed from the hash table, by
* this function.
* Holding the lock only while removing the peer object reference
* from the hash table keeps the hash table consistent, but does not
* protect against a new HL tx context starting to use the peer object
* if it looks up the peer object from its MAC address just after the
* peer ref count is decremented to zero, but just before the peer
* object reference is removed from the hash table.
*/
TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) {
if (tmppeer == peer) {
found = 1;
break;
}
}
QDF_ASSERT(found);
TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem);
}
void dp_peer_find_hash_erase(struct dp_soc *soc)
{
int i;
/*
* Not really necessary to take peer_ref_mutex lock - by this point,
* it's known that the soc is no longer in use.
*/
for (i = 0; i <= soc->peer_hash.mask; i++) {
if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) {
struct dp_peer *peer, *peer_next;
/*
* TAILQ_FOREACH_SAFE must be used here to avoid any
* memory access violation after peer is freed
*/
TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i],
hash_list_elem, peer_next) {
/*
* Don't remove the peer from the hash table -
* that would modify the list we are currently
* traversing, and it's not necessary anyway.
*/
/*
* Artificially adjust the peer's ref count to
* 1, so it will get deleted by
* dp_peer_unref_delete.
*/
/* set to zero */
qdf_atomic_init(&peer->ref_cnt);
/* incr to one */
qdf_atomic_inc(&peer->ref_cnt);
dp_peer_unref_delete(peer);
}
}
}
}
static void dp_peer_find_map_detach(struct dp_soc *soc)
{
qdf_mem_free(soc->peer_id_to_obj_map);
}
int dp_peer_find_attach(struct dp_soc *soc)
{
if (dp_peer_find_map_attach(soc))
return 1;
if (dp_peer_find_hash_attach(soc)) {
dp_peer_find_map_detach(soc);
return 1;
}
if (dp_peer_ast_hash_attach(soc)) {
dp_peer_find_hash_detach(soc);
dp_peer_find_map_detach(soc);
return 1;
}
return 0; /* success */
}
static void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
DP_TRACE_STATS(FATAL, "REO stats failure %d for TID %d\n",
queue_status->header.status, rx_tid->tid);
return;
}
DP_TRACE_STATS(FATAL, "REO queue stats (TID: %d): \n"
"ssn: %d\n"
"curr_idx : %d\n"
"pn_31_0 : %08x\n"
"pn_63_32 : %08x\n"
"pn_95_64 : %08x\n"
"pn_127_96 : %08x\n"
"last_rx_enq_tstamp : %08x\n"
"last_rx_deq_tstamp : %08x\n"
"rx_bitmap_31_0 : %08x\n"
"rx_bitmap_63_32 : %08x\n"
"rx_bitmap_95_64 : %08x\n"
"rx_bitmap_127_96 : %08x\n"
"rx_bitmap_159_128 : %08x\n"
"rx_bitmap_191_160 : %08x\n"
"rx_bitmap_223_192 : %08x\n"
"rx_bitmap_255_224 : %08x\n",
rx_tid->tid,
queue_status->ssn, queue_status->curr_idx,
queue_status->pn_31_0, queue_status->pn_63_32,
queue_status->pn_95_64, queue_status->pn_127_96,
queue_status->last_rx_enq_tstamp,
queue_status->last_rx_deq_tstamp,
queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32,
queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96,
queue_status->rx_bitmap_159_128,
queue_status->rx_bitmap_191_160,
queue_status->rx_bitmap_223_192,
queue_status->rx_bitmap_255_224);
DP_TRACE_STATS(FATAL,
"curr_mpdu_cnt : %d\n"
"curr_msdu_cnt : %d\n"
"fwd_timeout_cnt : %d\n"
"fwd_bar_cnt : %d\n"
"dup_cnt : %d\n"
"frms_in_order_cnt : %d\n"
"bar_rcvd_cnt : %d\n"
"mpdu_frms_cnt : %d\n"
"msdu_frms_cnt : %d\n"
"total_byte_cnt : %d\n"
"late_recv_mpdu_cnt : %d\n"
"win_jump_2k : %d\n"
"hole_cnt : %d\n",
queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt,
queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt,
queue_status->dup_cnt, queue_status->frms_in_order_cnt,
queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt,
queue_status->msdu_frms_cnt, queue_status->total_cnt,
queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k,
queue_status->hole_cnt);
}
static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc,
uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id,
uint8_t vdev_id)
{
struct dp_peer *peer;
QDF_ASSERT(peer_id <= wlan_cfg_max_peer_id(soc->wlan_cfg_ctx) + 1);
/* check if there's already a peer object with this MAC address */
#if ATH_SUPPORT_WRAP
peer = dp_peer_find_hash_find(soc, peer_mac_addr,
0 /* is aligned */, vdev_id);
#else
peer = dp_peer_find_hash_find(soc, peer_mac_addr, 0 /* is aligned */);
#endif
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer %p ID %d vid %d mac %02x:%02x:%02x:%02x:%02x:%02x\n",
__func__, peer, peer_id, vdev_id, peer_mac_addr[0],
peer_mac_addr[1], peer_mac_addr[2], peer_mac_addr[3],
peer_mac_addr[4], peer_mac_addr[5]);
if (peer) {
/* peer's ref count was already incremented by
* peer_find_hash_find
*/
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: ref_cnt: %d", __func__,
qdf_atomic_read(&peer->ref_cnt));
soc->peer_id_to_obj_map[peer_id] = peer;
if (dp_peer_find_add_id_to_obj(peer, peer_id)) {
/* TBDXXX: assert for now */
QDF_ASSERT(0);
}
return peer;
}
return NULL;
}
/**
* dp_rx_peer_map_handler() - handle peer map event from firmware
* @soc_handle - genereic soc handle
* @peeri_id - peer_id from firmware
* @hw_peer_id - ast index for this peer
* vdev_id - vdev ID
* peer_mac_addr - macc assress of the peer
*
* associate the peer_id that firmware provided with peer entry
* and update the ast table in the host with the hw_peer_id.
*
* Return: none
*/
void
dp_rx_peer_map_handler(void *soc_handle, uint16_t peer_id, uint16_t hw_peer_id,
uint8_t vdev_id, uint8_t *peer_mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_peer *peer = NULL;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"peer_map_event (soc:%p): peer_id %di, hw_peer_id %d, peer_mac "
"%02x:%02x:%02x:%02x:%02x:%02x, vdev_id %d\n", soc, peer_id,
hw_peer_id, peer_mac_addr[0], peer_mac_addr[1],
peer_mac_addr[2], peer_mac_addr[3], peer_mac_addr[4],
peer_mac_addr[5], vdev_id);
peer = soc->peer_id_to_obj_map[peer_id];
if ((hw_peer_id < 0) || (hw_peer_id > WLAN_UMAC_PSOC_MAX_PEERS)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"invalid hw_peer_id: %d", hw_peer_id);
QDF_ASSERT(0);
}
/*
* check if peer already exists for this peer_id, if so
* this peer map event is in response for a wds peer add
* wmi command sent during wds source port learning.
* in this case just add the ast entry to the existing
* peer ast_list.
*/
if (!peer)
peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id,
hw_peer_id, vdev_id);
dp_peer_map_ast(soc, peer, peer_mac_addr,
hw_peer_id, vdev_id);
}
void
dp_rx_peer_unmap_handler(void *soc_handle, uint16_t peer_id)
{
struct dp_peer *peer;
struct dp_soc *soc = (struct dp_soc *)soc_handle;
uint8_t i;
peer = dp_peer_find_by_id(soc, peer_id);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"peer_unmap_event (soc:%p) peer_id %d peer %p\n",
soc, peer_id, peer);
/*
* Currently peer IDs are assigned for vdevs as well as peers.
* If the peer ID is for a vdev, then the peer pointer stored
* in peer_id_to_obj_map will be NULL.
*/
if (!peer)
return;
soc->peer_id_to_obj_map[peer_id] = NULL;
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) {
if (peer->peer_ids[i] == peer_id) {
peer->peer_ids[i] = HTT_INVALID_PEER;
break;
}
}
if (soc->cdp_soc.ol_ops->peer_unmap_event) {
soc->cdp_soc.ol_ops->peer_unmap_event(soc->osif_soc,
peer_id);
}
/*
* Remove a reference to the peer.
* If there are no more references, delete the peer object.
*/
dp_peer_unref_delete(peer);
}
void
dp_peer_find_detach(struct dp_soc *soc)
{
dp_peer_find_map_detach(soc);
dp_peer_find_hash_detach(soc);
dp_peer_ast_hash_detach(soc);
}
static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt;
if (reo_status->queue_status.header.status) {
/* Should not happen normally. Just print error for now */
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc update failed(%d): tid %d\n",
__func__,
reo_status->rx_queue_status.header.status,
rx_tid->tid);
}
}
/*
* dp_find_peer_by_addr - find peer instance by mac address
* @dev: physical device instance
* @peer_mac_addr: peer mac address
* @local_id: local id for the peer
*
* Return: peer instance pointer
*/
void *dp_find_peer_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr,
uint8_t *local_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
struct dp_peer *peer;
#if ATH_SUPPORT_WRAP
peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, 0);
/* WAR, VDEV ID? TEMP 0 */
#else
peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0);
#endif
if (!peer)
return NULL;
/* Multiple peer ids? How can know peer id? */
*local_id = peer->local_id;
DP_TRACE(INFO, "%s: peer %p id %d", __func__, peer, *local_id);
/* ref_cnt is incremented inside dp_peer_find_hash_find().
* Decrement it here.
*/
qdf_atomic_dec(&peer->ref_cnt);
return peer;
}
/*
* dp_rx_tid_update_wifi3() – Update receive TID state
* @peer: Datapath peer handle
* @tid: TID
* @ba_window_size: BlockAck window size
* @start_seq: Starting sequence number
*
* Return: 0 on success, error code on failure
*/
static int dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t
ba_window_size, uint32_t start_seq)
{
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
struct dp_soc *soc = peer->vdev->pdev->soc;
struct hal_reo_cmd_params params;
qdf_mem_zero(&params, sizeof(params));
params.std.need_status = 1;
params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
params.u.upd_queue_params.update_ba_window_size = 1;
params.u.upd_queue_params.ba_window_size = ba_window_size;
if (start_seq < IEEE80211_SEQ_MAX) {
params.u.upd_queue_params.update_ssn = 1;
params.u.upd_queue_params.ssn = start_seq;
}
dp_set_ssn_valid_flag(&params, 0);
dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params, dp_rx_tid_update_cb, rx_tid);
return 0;
}
/*
* dp_reo_desc_free() - Add reo descriptor to deferred freelist and free any
* aged out descriptors
*
* @soc: DP SOC handle
* @freedesc: REO descriptor to be freed
*/
static void dp_reo_desc_free(struct dp_soc *soc,
struct reo_desc_list_node *freedesc)
{
uint32_t list_size;
struct reo_desc_list_node *desc;
unsigned long curr_ts = qdf_get_system_timestamp();
qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
freedesc->free_ts = curr_ts;
qdf_list_insert_back_size(&soc->reo_desc_freelist,
(qdf_list_node_t *)freedesc, &list_size);
while ((qdf_list_peek_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) &&
((list_size >= REO_DESC_FREELIST_SIZE) ||
((curr_ts - desc->free_ts) > REO_DESC_FREE_DEFER_MS))) {
struct dp_rx_tid *rx_tid;
qdf_list_remove_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc);
list_size--;
rx_tid = &desc->rx_tid;
qdf_mem_unmap_nbytes_single(soc->osdev,
rx_tid->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
rx_tid->hw_qdesc_alloc_size);
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: Freed: %p\n",
__func__, desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
}
#if defined(QCA_WIFI_QCA8074) && defined(BUILD_X86)
/* Hawkeye emulation requires bus address to be >= 0x50000000 */
static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
{
if (dma_addr < 0x50000000)
return QDF_STATUS_E_FAILURE;
else
return QDF_STATUS_SUCCESS;
}
#else
static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rx_tid_setup_wifi3() – Setup receive TID state
* @peer: Datapath peer handle
* @tid: TID
* @ba_window_size: BlockAck window size
* @start_seq: Starting sequence number
*
* Return: 0 on success, error code on failure
*/
int dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid,
uint32_t ba_window_size, uint32_t start_seq)
{
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
struct dp_vdev *vdev = peer->vdev;
struct dp_soc *soc = vdev->pdev->soc;
uint32_t hw_qdesc_size;
uint32_t hw_qdesc_align;
int hal_pn_type;
void *hw_qdesc_vaddr;
uint32_t alloc_tries = 0;
if (rx_tid->hw_qdesc_vaddr_unaligned != NULL)
return dp_rx_tid_update_wifi3(peer, tid, ba_window_size,
start_seq);
#ifdef notyet
hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size);
#else
/* TODO: Allocating HW queue descriptors based on max BA window size
* for all QOS TIDs so that same descriptor can be used later when
* ADDBA request is recevied. This should be changed to allocate HW
* queue descriptors based on BA window size being negotiated (0 for
* non BA cases), and reallocate when BA window size changes and also
* send WMI message to FW to change the REO queue descriptor in Rx
* peer entry as part of dp_rx_tid_update.
*/
if (tid != DP_NON_QOS_TID)
hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
HAL_RX_MAX_BA_WINDOW);
else
hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc,
ba_window_size);
#endif
hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc);
/* To avoid unnecessary extra allocation for alignment, try allocating
* exact size and see if we already have aligned address.
*/
rx_tid->hw_qdesc_alloc_size = hw_qdesc_size;
try_desc_alloc:
rx_tid->hw_qdesc_vaddr_unaligned =
qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size);
if (!rx_tid->hw_qdesc_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc alloc failed: tid %d\n",
__func__, tid);
return QDF_STATUS_E_NOMEM;
}
if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) %
hw_qdesc_align) {
/* Address allocated above is not alinged. Allocate extra
* memory for alignment
*/
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
rx_tid->hw_qdesc_vaddr_unaligned =
qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size +
hw_qdesc_align - 1);
if (!rx_tid->hw_qdesc_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc alloc failed: tid %d\n",
__func__, tid);
return QDF_STATUS_E_NOMEM;
}
hw_qdesc_vaddr = (void *)qdf_align((unsigned long)
rx_tid->hw_qdesc_vaddr_unaligned,
hw_qdesc_align);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"%s: Total Size %d Aligned Addr %p\n",
__func__, rx_tid->hw_qdesc_alloc_size,
hw_qdesc_vaddr);
} else {
hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned;
}
/* TODO: Ensure that sec_type is set before ADDBA is received.
* Currently this is set based on htt indication
* HTT_T2H_MSG_TYPE_SEC_IND from target
*/
switch (peer->security[dp_sec_ucast].sec_type) {
case cdp_sec_type_tkip_nomic:
case cdp_sec_type_aes_ccmp:
case cdp_sec_type_aes_ccmp_256:
case cdp_sec_type_aes_gcmp:
case cdp_sec_type_aes_gcmp_256:
hal_pn_type = HAL_PN_WPA;
break;
case cdp_sec_type_wapi:
if (vdev->opmode == wlan_op_mode_ap)
hal_pn_type = HAL_PN_WAPI_EVEN;
else
hal_pn_type = HAL_PN_WAPI_UNEVEN;
break;
default:
hal_pn_type = HAL_PN_NONE;
break;
}
hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq,
hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type);
qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr,
QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size,
&(rx_tid->hw_qdesc_paddr));
if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) !=
QDF_STATUS_SUCCESS) {
if (alloc_tries++ < 10)
goto try_desc_alloc;
else {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc alloc failed (lowmem): tid %d\n",
__func__, tid);
return QDF_STATUS_E_NOMEM;
}
}
if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) {
soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup(
vdev->pdev->osif_pdev,
peer->vdev->vdev_id, peer->mac_addr.raw,
rx_tid->hw_qdesc_paddr, tid, tid);
}
return 0;
}
/*
* Rx TID deletion callback to free memory allocated for HW queue descriptor
*/
static void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct reo_desc_list_node *freedesc =
(struct reo_desc_list_node *)cb_ctxt;
if (reo_status->rx_queue_status.header.status) {
/* Should not happen normally. Just print error for now */
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Rx tid HW desc deletion failed(%d): tid %d\n",
__func__,
reo_status->rx_queue_status.header.status,
freedesc->rx_tid.tid);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: rx_tid: %d status: %d\n", __func__,
freedesc->rx_tid.tid,
reo_status->rx_queue_status.header.status);
dp_reo_desc_free(soc, freedesc);
}
/*
* dp_rx_tid_delete_wifi3() – Delete receive TID queue
* @peer: Datapath peer handle
* @tid: TID
*
* Return: 0 on success, error code on failure
*/
static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid)
{
struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]);
struct dp_soc *soc = peer->vdev->pdev->soc;
struct hal_reo_cmd_params params;
struct reo_desc_list_node *freedesc =
qdf_mem_malloc(sizeof(*freedesc));
if (!freedesc) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: malloc failed for freedesc: tid %d\n",
__func__, tid);
return -ENOMEM;
}
freedesc->rx_tid = *rx_tid;
qdf_mem_zero(&params, sizeof(params));
params.std.need_status = 0;
params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
params.u.upd_queue_params.update_vld = 1;
params.u.upd_queue_params.vld = 0;
dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params, NULL, NULL);
/* Flush and invalidate the REO descriptor from HW cache */
qdf_mem_zero(&params, sizeof(params));
params.std.need_status = 1;
params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff;
params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, &params, dp_rx_tid_delete_cb,
(void *)freedesc);
rx_tid->hw_qdesc_vaddr_unaligned = NULL;
rx_tid->hw_qdesc_alloc_size = 0;
rx_tid->hw_qdesc_paddr = 0;
return 0;
}
#ifdef DP_LFR
static void dp_peer_setup_remaining_tids(struct dp_peer *peer)
{
int tid;
for (tid = 1; tid < DP_MAX_TIDS-1; tid++) {
dp_rx_tid_setup_wifi3(peer, tid, 1, 0);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"Setting up TID %d for peer %p peer->local_id %d\n",
tid, peer, peer->local_id);
}
}
#else
static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {};
#endif
/*
* dp_peer_rx_init() – Initialize receive TID state
* @pdev: Datapath pdev
* @peer: Datapath peer
*
*/
void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer)
{
int tid;
struct dp_rx_tid *rx_tid;
for (tid = 0; tid < DP_MAX_TIDS; tid++) {
rx_tid = &peer->rx_tid[tid];
rx_tid->array = &rx_tid->base;
rx_tid->base.head = rx_tid->base.tail = NULL;
rx_tid->tid = tid;
rx_tid->defrag_timeout_ms = 0;
rx_tid->ba_win_size = 0;
rx_tid->ba_status = DP_RX_BA_INACTIVE;
rx_tid->defrag_waitlist_elem.tqe_next = NULL;
rx_tid->defrag_waitlist_elem.tqe_prev = NULL;
#ifdef notyet /* TODO: See if this is required for exception handling */
/* invalid sequence number */
peer->tids_last_seq[tid] = 0xffff;
#endif
}
/* Setup default (non-qos) rx tid queue */
dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0);
/* Setup rx tid queue for TID 0.
* Other queues will be setup on receiving first packet, which will cause
* NULL REO queue error
*/
dp_rx_tid_setup_wifi3(peer, 0, 1, 0);
/*
* Setup the rest of TID's to handle LFR
*/
dp_peer_setup_remaining_tids(peer);
/*
* Set security defaults: no PN check, no security. The target may
* send a HTT SEC_IND message to overwrite these defaults.
*/
peer->security[dp_sec_ucast].sec_type =
peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none;
}
/*
* dp_peer_rx_cleanup() – Cleanup receive TID state
* @vdev: Datapath vdev
* @peer: Datapath peer
*
*/
void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
{
int tid;
uint32_t tid_delete_mask = 0;
for (tid = 0; tid < DP_MAX_TIDS; tid++) {
if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned != NULL) {
dp_rx_tid_delete_wifi3(peer, tid);
tid_delete_mask |= (1 << tid);
}
}
#ifdef notyet /* See if FW can remove queues as part of peer cleanup */
if (soc->ol_ops->peer_rx_reorder_queue_remove) {
soc->ol_ops->peer_rx_reorder_queue_remove(vdev->pdev->osif_pdev,
peer->vdev->vdev_id, peer->mac_addr.raw,
tid_delete_mask);
}
#endif
}
/*
* dp_peer_cleanup() – Cleanup peer information
* @vdev: Datapath vdev
* @peer: Datapath peer
*
*/
void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer)
{
peer->last_assoc_rcvd = 0;
peer->last_disassoc_rcvd = 0;
peer->last_deauth_rcvd = 0;
/* cleanup the Rx reorder queues for this peer */
dp_peer_rx_cleanup(vdev, peer);
}
/*
* dp_rx_addba_requestprocess_wifi3() – Process ADDBA request from peer
*
* @peer: Datapath peer handle
* @dialogtoken: dialogtoken from ADDBA frame
* @tid: TID number
* @startseqnum: Start seq. number received in BA sequence control
* in ADDBA frame
*
* Return: 0 on success, error code on failure
*/
int dp_addba_requestprocess_wifi3(void *peer_handle,
uint8_t dialogtoken, uint16_t tid, uint16_t batimeout,
uint16_t buffersize, uint16_t startseqnum)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
if ((rx_tid->ba_status == DP_RX_BA_ACTIVE) &&
(rx_tid->hw_qdesc_vaddr_unaligned != NULL))
rx_tid->ba_status = DP_RX_BA_INACTIVE;
if (dp_rx_tid_setup_wifi3(peer, tid, buffersize,
startseqnum)) {
/* TODO: Should we send addba reject in this case */
return QDF_STATUS_E_FAILURE;
}
rx_tid->ba_win_size = buffersize;
rx_tid->dialogtoken = dialogtoken;
rx_tid->statuscode = QDF_STATUS_SUCCESS;
rx_tid->ba_status = DP_RX_BA_ACTIVE;
return 0;
}
/*
* dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer
*
* @peer: Datapath peer handle
* @tid: TID number
* @dialogtoken: output dialogtoken
* @statuscode: output dialogtoken
* @buffersize: Ouput BA window sizze
* @batimeout: Ouput BA timeout
*/
void dp_addba_responsesetup_wifi3(void *peer_handle, uint8_t tid,
uint8_t *dialogtoken, uint16_t *statuscode,
uint16_t *buffersize, uint16_t *batimeout)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
/* setup ADDBA response paramters */
*dialogtoken = rx_tid->dialogtoken;
*statuscode = rx_tid->statuscode;
*buffersize = rx_tid->ba_win_size;
*batimeout = 0;
}
/*
* dp_rx_delba_process_wifi3() – Process DELBA from peer
* @peer: Datapath peer handle
* @tid: TID number
* @reasoncode: Reason code received in DELBA frame
*
* Return: 0 on success, error code on failure
*/
int dp_delba_process_wifi3(void *peer_handle,
int tid, uint16_t reasoncode)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
if (rx_tid->ba_status != DP_RX_BA_ACTIVE)
return QDF_STATUS_E_FAILURE;
/* TODO: See if we can delete the existing REO queue descriptor and
* replace with a new one without queue extenstion descript to save
* memory
*/
dp_rx_tid_update_wifi3(peer, tid, 1, 0);
rx_tid->ba_status = DP_RX_BA_INACTIVE;
return 0;
}
void dp_rx_discard(struct dp_vdev *vdev, struct dp_peer *peer, unsigned tid,
qdf_nbuf_t msdu_list)
{
while (msdu_list) {
qdf_nbuf_t msdu = msdu_list;
msdu_list = qdf_nbuf_next(msdu_list);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"discard rx %p from partly-deleted peer %p "
"(%02x:%02x:%02x:%02x:%02x:%02x)\n",
msdu, peer,
peer->mac_addr.raw[0], peer->mac_addr.raw[1],
peer->mac_addr.raw[2], peer->mac_addr.raw[3],
peer->mac_addr.raw[4], peer->mac_addr.raw[5]);
qdf_nbuf_free(msdu);
}
}
/**
* dp_set_pn_check_wifi3() - enable PN check in REO for security
* @peer: Datapath peer handle
* @vdev: Datapath vdev
* @pdev - data path device instance
* @sec_type - security type
* @rx_pn - Receive pn starting number
*
*/
void
dp_set_pn_check_wifi3(struct cdp_vdev *vdev_handle, struct cdp_peer *peer_handle, enum cdp_sec_type sec_type, uint32_t *rx_pn)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
int i;
struct hal_reo_cmd_params params;
/* preconditions */
qdf_assert(vdev);
pdev = vdev->pdev;
soc = pdev->soc;
qdf_mem_zero(&params, sizeof(params));
params.std.need_status = 1;
params.u.upd_queue_params.update_pn_valid = 1;
params.u.upd_queue_params.update_pn_size = 1;
params.u.upd_queue_params.update_pn = 1;
params.u.upd_queue_params.update_pn_check_needed = 1;
peer->security[dp_sec_ucast].sec_type = sec_type;
switch (sec_type) {
case cdp_sec_type_tkip_nomic:
case cdp_sec_type_aes_ccmp:
case cdp_sec_type_aes_ccmp_256:
case cdp_sec_type_aes_gcmp:
case cdp_sec_type_aes_gcmp_256:
params.u.upd_queue_params.pn_check_needed = 1;
params.u.upd_queue_params.pn_size = 48;
break;
case cdp_sec_type_wapi:
params.u.upd_queue_params.pn_check_needed = 1;
params.u.upd_queue_params.pn_size = 128;
if (vdev->opmode == wlan_op_mode_ap) {
params.u.upd_queue_params.pn_even = 1;
params.u.upd_queue_params.update_pn_even = 1;
} else {
params.u.upd_queue_params.pn_uneven = 1;
params.u.upd_queue_params.update_pn_uneven = 1;
}
break;
default:
params.u.upd_queue_params.pn_check_needed = 0;
break;
}
for (i = 0; i < DP_MAX_TIDS; i++) {
struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
params.std.addr_lo =
rx_tid->hw_qdesc_paddr & 0xffffffff;
params.std.addr_hi =
(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
if (sec_type != cdp_sec_type_wapi) {
params.u.upd_queue_params.update_pn_valid = 0;
} else {
/*
* Setting PN valid bit for WAPI sec_type,
* since WAPI PN has to be started with
* predefined value
*/
params.u.upd_queue_params.update_pn_valid = 1;
params.u.upd_queue_params.pn_31_0 = rx_pn[0];
params.u.upd_queue_params.pn_63_32 = rx_pn[1];
params.u.upd_queue_params.pn_95_64 = rx_pn[2];
params.u.upd_queue_params.pn_127_96 = rx_pn[3];
}
dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, &params,
dp_rx_tid_update_cb, rx_tid);
} else {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"PN Check not setup for TID :%d \n", i);
}
}
}
void
dp_rx_sec_ind_handler(void *soc_handle, uint16_t peer_id,
enum htt_sec_type sec_type, int is_unicast, u_int32_t *michael_key,
u_int32_t *rx_pn)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_peer *peer;
int sec_index;
peer = dp_peer_find_by_id(soc, peer_id);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Couldn't find peer from ID %d - skipping security inits\n",
peer_id);
return;
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"sec spec for peer %p (%02x:%02x:%02x:%02x:%02x:%02x): "
"%s key of type %d\n",
peer,
peer->mac_addr.raw[0], peer->mac_addr.raw[1],
peer->mac_addr.raw[2], peer->mac_addr.raw[3],
peer->mac_addr.raw[4], peer->mac_addr.raw[5],
is_unicast ? "ucast" : "mcast",
sec_type);
sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast;
peer->security[sec_index].sec_type = sec_type;
#ifdef notyet /* TODO: See if this is required for defrag support */
/* michael key only valid for TKIP, but for simplicity,
* copy it anyway
*/
qdf_mem_copy(
&peer->security[sec_index].michael_key[0],
michael_key,
sizeof(peer->security[sec_index].michael_key));
#ifdef BIG_ENDIAN_HOST
OL_IF_SWAPBO(peer->security[sec_index].michael_key[0],
sizeof(peer->security[sec_index].michael_key));
#endif /* BIG_ENDIAN_HOST */
#endif
#ifdef notyet /* TODO: Check if this is required for wifi3.0 */
if (sec_type != htt_sec_type_wapi) {
qdf_mem_set(peer->tids_last_pn_valid, _EXT_TIDS, 0x00);
} else {
for (i = 0; i < DP_MAX_TIDS; i++) {
/*
* Setting PN valid bit for WAPI sec_type,
* since WAPI PN has to be started with predefined value
*/
peer->tids_last_pn_valid[i] = 1;
qdf_mem_copy(
(u_int8_t *) &peer->tids_last_pn[i],
(u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t));
peer->tids_last_pn[i].pn128[1] =
qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]);
peer->tids_last_pn[i].pn128[0] =
qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]);
}
}
#endif
/* TODO: Update HW TID queue with PN check parameters (pn type for
* all security types and last pn for WAPI) once REO command API
* is available
*/
}
#ifndef CONFIG_WIN
/**
* dp_register_peer() - Register peer into physical device
* @pdev - data path device instance
* @sta_desc - peer description
*
* Register peer into physical device
*
* Return: QDF_STATUS_SUCCESS registration success
* QDF_STATUS_E_FAULT peer not found
*/
QDF_STATUS dp_register_peer(struct cdp_pdev *pdev_handle,
struct ol_txrx_desc_type *sta_desc)
{
struct dp_peer *peer;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev,
sta_desc->sta_id);
if (!peer)
return QDF_STATUS_E_FAULT;
qdf_spin_lock_bh(&peer->peer_info_lock);
peer->state = OL_TXRX_PEER_STATE_CONN;
qdf_spin_unlock_bh(&peer->peer_info_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_clear_peer() - remove peer from physical device
* @pdev - data path device instance
* @sta_id - local peer id
*
* remove peer from physical device
*
* Return: QDF_STATUS_SUCCESS registration success
* QDF_STATUS_E_FAULT peer not found
*/
QDF_STATUS dp_clear_peer(struct cdp_pdev *pdev_handle, uint8_t local_id)
{
struct dp_peer *peer;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
peer = dp_peer_find_by_local_id((struct cdp_pdev *)pdev, local_id);
if (!peer)
return QDF_STATUS_E_FAULT;
qdf_spin_lock_bh(&peer->peer_info_lock);
peer->state = OL_TXRX_PEER_STATE_DISC;
qdf_spin_unlock_bh(&peer->peer_info_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_find_peer_by_addr_and_vdev() - Find peer by peer mac address within vdev
* @pdev - data path device instance
* @vdev - virtual interface instance
* @peer_addr - peer mac address
* @peer_id - local peer id with target mac address
*
* Find peer by peer mac address within vdev
*
* Return: peer instance void pointer
* NULL cannot find target peer
*/
void *dp_find_peer_by_addr_and_vdev(struct cdp_pdev *pdev_handle,
struct cdp_vdev *vdev_handle,
uint8_t *peer_addr, uint8_t *local_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_peer *peer;
DP_TRACE(INFO, "vdev %p peer_addr %p", vdev, peer_addr);
peer = dp_peer_find_hash_find(pdev->soc, peer_addr, 0);
DP_TRACE(INFO, "peer %p vdev %p", peer, vdev);
if (!peer)
return NULL;
if (peer->vdev != vdev)
return NULL;
*local_id = peer->local_id;
DP_TRACE(INFO, "peer %p vdev %p lcoal id %d", peer, vdev, *local_id);
/* ref_cnt is incremented inside dp_peer_find_hash_find().
* Decrement it here.
*/
qdf_atomic_dec(&peer->ref_cnt);
return peer;
}
/**
* dp_local_peer_id() - Find local peer id within peer instance
* @peer - peer instance
*
* Find local peer id within peer instance
*
* Return: local peer id
*/
uint16_t dp_local_peer_id(void *peer)
{
return ((struct dp_peer *)peer)->local_id;
}
/**
* dp_peer_find_by_local_id() - Find peer by local peer id
* @pdev - data path device instance
* @local_peer_id - local peer id want to find
*
* Find peer by local peer id within physical device
*
* Return: peer instance void pointer
* NULL cannot find target peer
*/
void *dp_peer_find_by_local_id(struct cdp_pdev *pdev_handle, uint8_t local_id)
{
struct dp_peer *peer;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
peer = pdev->local_peer_ids.map[local_id];
qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
DP_TRACE(INFO, "peer %p lcoal id %d",
peer, local_id);
return peer;
}
/**
* dp_peer_state_update() - update peer local state
* @pdev - data path device instance
* @peer_addr - peer mac address
* @state - new peer local state
*
* update peer local state
*
* Return: QDF_STATUS_SUCCESS registration success
*/
QDF_STATUS dp_peer_state_update(struct cdp_pdev *pdev_handle, uint8_t *peer_mac,
enum ol_txrx_peer_state state)
{
struct dp_peer *peer;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
peer = dp_peer_find_hash_find(pdev->soc, peer_mac, 0);
if (NULL == peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Failed to find peer for: [%pM]", peer_mac);
return QDF_STATUS_E_FAILURE;
}
peer->state = state;
DP_TRACE(INFO, "peer %p state %d", peer, peer->state);
/* ref_cnt is incremented inside dp_peer_find_hash_find().
* Decrement it here.
*/
qdf_atomic_dec(&peer->ref_cnt);
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_vdevid() - Get virtaul interface id which peer registered
* @peer - peer instance
* @vdev_id - virtaul interface id which peer registered
*
* Get virtaul interface id which peer registered
*
* Return: QDF_STATUS_SUCCESS registration success
*/
QDF_STATUS dp_get_vdevid(void *peer_handle, uint8_t *vdev_id)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p vdev %p vdev id %d",
peer, peer->vdev, peer->vdev->vdev_id);
*vdev_id = peer->vdev->vdev_id;
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs
* @peer - peer instance
*
* Get virtual interface instance which peer belongs
*
* Return: virtual interface instance pointer
* NULL in case cannot find
*/
struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p vdev %p", peer, peer->vdev);
return (struct cdp_vdev *)peer->vdev;
}
/**
* dp_peer_get_peer_mac_addr() - Get peer mac address
* @peer - peer instance
*
* Get peer mac address
*
* Return: peer mac address pointer
* NULL in case cannot find
*/
uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
uint8_t *mac;
mac = peer->mac_addr.raw;
DP_TRACE(INFO, "peer %p mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x",
peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return peer->mac_addr.raw;
}
/**
* dp_get_peer_state() - Get local peer state
* @peer - peer instance
*
* Get local peer state
*
* Return: peer status
*/
int dp_get_peer_state(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p stats %d", peer, peer->state);
return peer->state;
}
/**
* dp_get_last_assoc_received() - get time of last assoc received
* @peer_handle: peer handle
*
* Return: pointer for the time of last assoc received
*/
qdf_time_t *dp_get_last_assoc_received(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p last_assoc_rcvd: %lu", peer,
peer->last_assoc_rcvd);
return &peer->last_assoc_rcvd;
}
/**
* dp_get_last_disassoc_received() - get time of last disassoc received
* @peer_handle: peer handle
*
* Return: pointer for the time of last disassoc received
*/
qdf_time_t *dp_get_last_disassoc_received(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p last_disassoc_rcvd: %lu", peer,
peer->last_disassoc_rcvd);
return &peer->last_disassoc_rcvd;
}
/**
* dp_get_last_deauth_received() - get time of last deauth received
* @peer_handle: peer handle
*
* Return: pointer for the time of last deauth received
*/
qdf_time_t *dp_get_last_deauth_received(void *peer_handle)
{
struct dp_peer *peer = peer_handle;
DP_TRACE(INFO, "peer %p last_deauth_rcvd: %lu", peer,
peer->last_deauth_rcvd);
return &peer->last_deauth_rcvd;
}
/**
* dp_local_peer_id_pool_init() - local peer id pool alloc for physical device
* @pdev - data path device instance
*
* local peer id pool alloc for physical device
*
* Return: none
*/
void dp_local_peer_id_pool_init(struct dp_pdev *pdev)
{
int i;
/* point the freelist to the first ID */
pdev->local_peer_ids.freelist = 0;
/* link each ID to the next one */
for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) {
pdev->local_peer_ids.pool[i] = i + 1;
pdev->local_peer_ids.map[i] = NULL;
}
/* link the last ID to itself, to mark the end of the list */
i = OL_TXRX_NUM_LOCAL_PEER_IDS;
pdev->local_peer_ids.pool[i] = i;
qdf_spinlock_create(&pdev->local_peer_ids.lock);
DP_TRACE(INFO, "Peer pool init");
}
/**
* dp_local_peer_id_alloc() - allocate local peer id
* @pdev - data path device instance
* @peer - new peer instance
*
* allocate local peer id
*
* Return: none
*/
void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer)
{
int i;
qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
i = pdev->local_peer_ids.freelist;
if (pdev->local_peer_ids.pool[i] == i) {
/* the list is empty, except for the list-end marker */
peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID;
} else {
/* take the head ID and advance the freelist */
peer->local_id = i;
pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i];
pdev->local_peer_ids.map[i] = peer;
}
qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
DP_TRACE(INFO, "peer %p, local id %d", peer, peer->local_id);
}
/**
* dp_local_peer_id_free() - remove local peer id
* @pdev - data path device instance
* @peer - peer instance should be removed
*
* remove local peer id
*
* Return: none
*/
void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer)
{
int i = peer->local_id;
if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) ||
(i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) {
return;
}
/* put this ID on the head of the freelist */
qdf_spin_lock_bh(&pdev->local_peer_ids.lock);
pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist;
pdev->local_peer_ids.freelist = i;
pdev->local_peer_ids.map[i] = NULL;
qdf_spin_unlock_bh(&pdev->local_peer_ids.lock);
}
#endif
/**
* dp_get_peer_mac_addr_frm_id(): get mac address of the peer
* @soc_handle: DP SOC handle
* @peer_id:peer_id of the peer
*
* return: vdev_id of the vap
*/
uint8_t dp_get_peer_mac_addr_frm_id(struct cdp_soc_t *soc_handle,
uint16_t peer_id, uint8_t *peer_mac)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_peer *peer;
peer = dp_peer_find_by_id(soc, peer_id);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"soc %p peer_id %d", soc, peer_id);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"peer not found ");
return CDP_INVALID_VDEV_ID;
}
qdf_mem_copy(peer_mac, peer->mac_addr.raw, 6);
return peer->vdev->vdev_id;
}
/**
* dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW
* @peer: DP peer handle
*
* Return: 0 on success, error code on failure
*/
int dp_peer_rxtid_stats(struct dp_peer *peer)
{
struct dp_soc *soc = peer->vdev->pdev->soc;
struct hal_reo_cmd_params params;
int i;
qdf_mem_zero(&params, sizeof(params));
for (i = 0; i < DP_MAX_TIDS; i++) {
struct dp_rx_tid *rx_tid = &peer->rx_tid[i];
if (rx_tid->hw_qdesc_vaddr_unaligned != NULL) {
params.std.need_status = 1;
params.std.addr_lo =
rx_tid->hw_qdesc_paddr & 0xffffffff;
params.std.addr_hi =
(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS, &params,
dp_rx_tid_stats_cb, rx_tid);
/* Flush REO descriptor from HW cache to update stats
* in descriptor memory. This is to help debugging */
qdf_mem_zero(&params, sizeof(params));
params.std.need_status = 0;
params.std.addr_lo =
rx_tid->hw_qdesc_paddr & 0xffffffff;
params.std.addr_hi =
(uint64_t)(rx_tid->hw_qdesc_paddr) >> 32;
dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, &params, NULL,
NULL);
}
}
return 0;
}