blob: b78854563fc8b93e3748f44cf78587fdfb1406dd [file] [log] [blame]
/*
* Copyright (c) 2017 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef _HAL_API_MON_H_
#define _HAL_API_MON_H_
#include "qdf_types.h"
#include "hal_internal.h"
#define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
#define HAL_RX_LSB(block, field) block##_##field##_LSB
#define HAL_RX_MASk(block, field) block##_##field##_MASK
#define HAL_RX_GET(_ptr, block, field) \
(((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
HAL_RX_MASk(block, field)) >> \
HAL_RX_LSB(block, field))
#define HAL_RX_PHY_DATA_RADAR 0x01
#define HAL_SU_MU_CODING_LDPC 0x01
#define HAL_RX_FCS_LEN (4)
#define KEY_EXTIV 0x20
#define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
#define HAL_RX_USER_TLV32_TYPE_LSB 1
#define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
#define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
#define HAL_RX_USER_TLV32_LEN_LSB 10
#define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
#define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
#define HAL_RX_USER_TLV32_USERID_LSB 26
#define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
#define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
#define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
#define HAL_RX_TLV32_HDR_SIZE 4
#define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
((*((uint32_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV32_TYPE_MASK) >> \
HAL_RX_USER_TLV32_TYPE_LSB)
#define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
((*((uint32_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV32_LEN_MASK) >> \
HAL_RX_USER_TLV32_LEN_LSB)
#define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
((*((uint32_t *)(rx_status_tlv_ptr)) & \
HAL_RX_USER_TLV32_USERID_MASK) >> \
HAL_RX_USER_TLV32_USERID_LSB)
#define HAL_TLV_STATUS_PPDU_NOT_DONE 0
#define HAL_TLV_STATUS_PPDU_DONE 1
#define HAL_TLV_STATUS_DUMMY 2
#define HAL_MAX_UL_MU_USERS 8
#define HAL_RX_PKT_TYPE_11A 0
#define HAL_RX_PKT_TYPE_11B 1
#define HAL_RX_PKT_TYPE_11N 2
#define HAL_RX_PKT_TYPE_11AC 3
#define HAL_RX_PKT_TYPE_11AX 4
#define HAL_RX_RECEPTION_TYPE_SU 0
#define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
#define HAL_RX_RECEPTION_TYPE_OFDMA 2
#define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
enum {
HAL_HW_RX_DECAP_FORMAT_RAW = 0,
HAL_HW_RX_DECAP_FORMAT_NWIFI,
HAL_HW_RX_DECAP_FORMAT_ETH2,
HAL_HW_RX_DECAP_FORMAT_8023,
};
enum {
DP_PPDU_STATUS_START,
DP_PPDU_STATUS_DONE,
};
static inline
uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
{
/* return the HW_RX_DESC size */
return sizeof(struct rx_pkt_tlvs);
}
static inline
uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
{
return data;
}
static inline
uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
{
struct rx_attention *rx_attn;
struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
rx_attn = &rx_desc->attn_tlv.rx_attn;
return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
}
static inline
uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
{
struct rx_attention *rx_attn;
struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
rx_attn = &rx_desc->attn_tlv.rx_attn;
return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
}
static inline
uint32_t
HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
struct rx_msdu_start *rx_msdu_start;
struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
}
static inline
uint8_t *
HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
uint8_t *rx_pkt_hdr;
struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
return rx_pkt_hdr;
}
static inline
uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
{
struct rx_attention *rx_attn;
struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
rx_attn = &rx_desc->attn_tlv.rx_attn;
return HAL_RX_GET(rx_attn, RX_ATTENTION_0, PHY_PPDU_ID);
}
/* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
static inline
uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
{
struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
}
#define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
(_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
#define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
(HAL_RX_BUFFER_ADDR_39_32_GET(& \
(((struct reo_entrance_ring *)reo_ent_desc) \
->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
#define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
(HAL_RX_BUFFER_ADDR_31_0_GET(& \
(((struct reo_entrance_ring *)reo_ent_desc) \
->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
#define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
(HAL_RX_BUF_COOKIE_GET(& \
(((struct reo_entrance_ring *)reo_ent_desc) \
->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
/**
* hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
* cookie from the REO entrance ring element
*
* @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
* the current descriptor
* @ buf_info: structure to return the buffer information
* @ msdu_cnt: pointer to msdu count in MPDU
* Return: void
*/
static inline
void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
struct hal_buf_info *buf_info,
void **pp_buf_addr_info,
uint32_t *msdu_cnt
)
{
struct reo_entrance_ring *reo_ent_ring =
(struct reo_entrance_ring *)rx_desc;
struct buffer_addr_info *buf_addr_info;
struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
uint32_t loop_cnt;
rx_mpdu_desc_info_details =
&reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
*msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
RX_MPDU_DESC_INFO_0, MSDU_COUNT);
loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
buf_addr_info =
&reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
buf_info->paddr =
(HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
((uint64_t)
(HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"[%s][%d] ReoAddr=%p, addrInfo=%p, paddr=0x%llx, loopcnt=%d\n",
__func__, __LINE__, reo_ent_ring, buf_addr_info,
(unsigned long long)buf_info->paddr, loop_cnt);
*pp_buf_addr_info = (void *)buf_addr_info;
}
static inline
void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
struct hal_buf_info *buf_info, void **pp_buf_addr_info)
{
struct rx_msdu_link *msdu_link =
(struct rx_msdu_link *)rx_msdu_link_desc;
struct buffer_addr_info *buf_addr_info;
buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
buf_info->paddr =
(HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
((uint64_t)
(HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
*pp_buf_addr_info = (void *)buf_addr_info;
}
/**
* hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
*
* @ soc : HAL version of the SOC pointer
* @ src_srng_desc : void pointer to the WBM Release Ring descriptor
* @ buf_addr_info : void pointer to the buffer_addr_info
*
* Return: void
*/
static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
void *src_srng_desc, void *buf_addr_info)
{
struct buffer_addr_info *wbm_srng_buffer_addr_info =
(struct buffer_addr_info *)src_srng_desc;
uint64_t paddr;
struct buffer_addr_info *p_buffer_addr_info =
(struct buffer_addr_info *)buf_addr_info;
paddr =
(HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
((uint64_t)
(HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"[%s][%d] src_srng_desc=%p, buf_addr=0x%llx, cookie=0x%llx\n",
__func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
(unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
/* Structure copy !!! */
*wbm_srng_buffer_addr_info =
*((struct buffer_addr_info *)buf_addr_info);
}
static inline
uint32 hal_get_rx_msdu_link_desc_size(void)
{
return sizeof(struct rx_msdu_link);
}
enum {
HAL_PKT_TYPE_OFDM = 0,
HAL_PKT_TYPE_CCK,
HAL_PKT_TYPE_HT,
HAL_PKT_TYPE_VHT,
HAL_PKT_TYPE_HE,
};
enum {
HAL_SGI_0_8_US,
HAL_SGI_0_4_US,
HAL_SGI_1_6_US,
HAL_SGI_3_2_US,
};
enum {
HAL_FULL_RX_BW_20,
HAL_FULL_RX_BW_40,
HAL_FULL_RX_BW_80,
HAL_FULL_RX_BW_160,
};
enum {
HAL_RX_TYPE_SU,
HAL_RX_TYPE_MU_MIMO,
HAL_RX_TYPE_MU_OFDMA,
HAL_RX_TYPE_MU_OFDMA_MIMO,
};
/**
* hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
*
* @ hw_desc_addr: Start address of Rx HW TLVs
* @ rs: Status for monitor mode
*
* Return: void
*/
static inline
void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
struct mon_rx_status *rs)
{
struct rx_msdu_start *rx_msdu_start;
struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
uint32_t reg_value;
static uint32_t sgi_hw_to_cdp[] = {
CDP_SGI_0_8_US,
CDP_SGI_0_4_US,
CDP_SGI_1_6_US,
CDP_SGI_3_2_US,
};
rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
RX_MSDU_START_5, USER_RSSI);
rs->mcs = HAL_RX_GET(rx_msdu_start,
RX_MSDU_START_5, RATE_MCS);
rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
rs->sgi = sgi_hw_to_cdp[reg_value];
rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, PKT_TYPE);
switch (reg_value) {
case HAL_RX_PKT_TYPE_11AC:
rs->vht_flags = 1;
reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
RECEIVE_BANDWIDTH);
rs->vht_flag_values2 = 0x01 << reg_value;
rs->vht_flag_values3[0] = rs->mcs << 4;
break;
case HAL_RX_PKT_TYPE_11AX:
rs->he_flags = 1;
break;
default:
break;
}
reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
/* TODO: rs->beamformed should be set for SU beamforming also */
}
struct hal_rx_ppdu_user_info {
};
struct hal_rx_ppdu_common_info {
uint32_t ppdu_id;
uint32_t ppdu_timestamp;
};
struct hal_rx_ppdu_info {
struct hal_rx_ppdu_common_info com_info;
struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
struct mon_rx_status rx_status;
};
static inline uint32_t
hal_get_rx_status_buf_size(void) {
/* RX status buffer size is hard coded for now */
return 2048;
}
static inline uint8_t*
hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
uint32_t tlv_len, tlv_tag;
tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
/* The actual length of PPDU_END is the combined lenght of many PHY
* TLVs that follow. Skip the TLV header and
* rx_rxpcu_classification_overview that follows the header to get to
* next TLV.
*/
if (tlv_tag == WIFIRX_PPDU_END_E)
tlv_len = sizeof(struct rx_rxpcu_classification_overview);
return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
}
static inline uint32_t
hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
{
uint32_t tlv_tag, user_id, tlv_len, value;
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
switch (tlv_tag) {
case WIFIRX_PPDU_START_E:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"[%s][%d] ppdu_start_e len=%d\n",
__func__, __LINE__, tlv_len);
ppdu_info->com_info.ppdu_id =
HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
PHY_PPDU_ID);
/* TODO: Ensure channel number is set in PHY meta data */
ppdu_info->rx_status.chan_freq =
HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
SW_PHY_META_DATA);
ppdu_info->com_info.ppdu_timestamp =
HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
PPDU_START_TIMESTAMP);
break;
case WIFIRX_PPDU_START_USER_INFO_E:
break;
case WIFIRX_PPDU_END_E:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"[%s][%d] ppdu_end_e len=%d\n",
__func__, __LINE__, tlv_len);
/* This is followed by sub-TLVs of PPDU_END */
break;
case WIFIRXPCU_PPDU_END_INFO_E:
ppdu_info->rx_status.tsft =
HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
WB_TIMESTAMP_UPPER_32);
ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
WB_TIMESTAMP_LOWER_32);
break;
case WIFIRX_PPDU_END_USER_STATS_E:
break;
case WIFIRX_PPDU_END_USER_STATS_EXT_E:
break;
case WIFIRX_PPDU_END_STATUS_DONE_E:
return HAL_TLV_STATUS_PPDU_DONE;
case WIFIDUMMY_E:
return HAL_TLV_STATUS_PPDU_DONE;
case WIFIPHYRX_HT_SIG_E:
{
uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HT_SIG_0,
HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
FEC_CODING);
ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
1 : 0;
break;
}
case WIFIPHYRX_VHT_SIG_A_E:
{
uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
SU_MU_CODING);
ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
1 : 0;
break;
}
case WIFIPHYRX_HE_SIG_A_SU_E:
ppdu_info->rx_status.he_sig_A1 =
*((uint32_t *)((uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS)));
ppdu_info->rx_status.he_sig_A1 |=
QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_SU;
/* TODO: Enabling all known bits. Check if this should be
* enabled selectively
*/
ppdu_info->rx_status.he_sig_A1_known =
QDF_MON_STATUS_HE_SIG_A1_SU_KNOWN_ALL;
ppdu_info->rx_status.he_sig_A2 =
*((uint32_t *)((uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_1,
HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS)));
ppdu_info->rx_status.he_sig_A2_known =
QDF_MON_STATUS_HE_SIG_A2_SU_KNOWN_ALL;
break;
case WIFIPHYRX_HE_SIG_A_MU_DL_E:
ppdu_info->rx_status.he_sig_A1 =
*((uint32_t *)((uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
ppdu_info->rx_status.he_sig_A1 |=
QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
ppdu_info->rx_status.he_sig_A1_known =
QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
ppdu_info->rx_status.he_sig_A2 =
*((uint32_t *)((uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
ppdu_info->rx_status.he_sig_A2_known =
QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
break;
case WIFIPHYRX_HE_SIG_B1_MU_E:
{
uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
*((uint32_t *)((uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
ppdu_info->rx_status.he_sig_b_common_RU[0] =
HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
RU_ALLOCATION);
ppdu_info->rx_status.he_sig_b_common_known =
QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
/* TODO: Check on the availability of other fields in
* sig_b_common
*/
break;
}
case WIFIPHYRX_HE_SIG_B2_MU_E:
ppdu_info->rx_status.he_sig_b_user =
*((uint32_t *)((uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
ppdu_info->rx_status.he_sig_b_user_known =
QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
break;
case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
ppdu_info->rx_status.he_sig_b_user =
*((uint32_t *)((uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
ppdu_info->rx_status.he_sig_b_user_known =
QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
break;
case WIFIPHYRX_RSSI_LEGACY_E:
{
uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_PRI20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
value = HAL_RX_GET(rssi_info_tlv,
RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
break;
}
case 0:
return HAL_TLV_STATUS_PPDU_DONE;
default:
break;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s TLV type: %d, TLV len:%d\n",
__func__, tlv_tag, tlv_len);
return HAL_TLV_STATUS_PPDU_NOT_DONE;
}
static inline
uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
{
return HAL_RX_TLV32_HDR_SIZE;
}
static inline QDF_STATUS
hal_get_rx_status_done(uint8_t *rx_tlv)
{
uint32_t tlv_tag;
tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
return QDF_STATUS_SUCCESS;
else
return QDF_STATUS_E_EMPTY;
}
static inline QDF_STATUS
hal_clear_rx_status_done(uint8_t *rx_tlv)
{
*(uint32_t *)rx_tlv = 0;
return QDF_STATUS_SUCCESS;
}
#endif