blob: e276b7fe56b8ded52c040ad9dd5782352338704a [file] [log] [blame]
/*
* Copyright (c) 2013-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "hif.h"
#include "hif_io32.h"
#include "ce_api.h"
#include "ce_main.h"
#include "ce_internal.h"
#include "ce_reg.h"
#include "qdf_lock.h"
#include "regtable.h"
#include "hif_main.h"
#include "hif_debug.h"
#include "hif_napi.h"
#include "qdf_module.h"
#ifdef IPA_OFFLOAD
#ifdef QCA_WIFI_3_0
#define CE_IPA_RING_INIT(ce_desc) \
do { \
ce_desc->gather = 0; \
ce_desc->enable_11h = 0; \
ce_desc->meta_data_low = 0; \
ce_desc->packet_result_offset = 64; \
ce_desc->toeplitz_hash_enable = 0; \
ce_desc->addr_y_search_disable = 0; \
ce_desc->addr_x_search_disable = 0; \
ce_desc->misc_int_disable = 0; \
ce_desc->target_int_disable = 0; \
ce_desc->host_int_disable = 0; \
ce_desc->dest_byte_swap = 0; \
ce_desc->byte_swap = 0; \
ce_desc->type = 2; \
ce_desc->tx_classify = 1; \
ce_desc->buffer_addr_hi = 0; \
ce_desc->meta_data = 0; \
ce_desc->nbytes = 128; \
} while (0)
#else
#define CE_IPA_RING_INIT(ce_desc) \
do { \
ce_desc->byte_swap = 0; \
ce_desc->nbytes = 60; \
ce_desc->gather = 0; \
} while (0)
#endif /* QCA_WIFI_3_0 */
#endif /* IPA_OFFLOAD */
static int war1_allow_sleep;
/* io32 write workaround */
static int hif_ce_war1;
/**
* hif_ce_war_disable() - disable ce war gobally
*/
void hif_ce_war_disable(void)
{
hif_ce_war1 = 0;
}
/**
* hif_ce_war_enable() - enable ce war gobally
*/
void hif_ce_war_enable(void)
{
hif_ce_war1 = 1;
}
/*
* Note: For MCL, #if defined (HIF_CONFIG_SLUB_DEBUG_ON) needs to be checked
* for defined here
*/
#if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
#define CE_DEBUG_PRINT_BUF_SIZE(x) (((x) * 3) - 1)
#define CE_DEBUG_DATA_PER_ROW 16
static const char *ce_event_type_to_str(enum hif_ce_event_type type);
/**
* get_next_record_index() - get the next record index
* @table_index: atomic index variable to increment
* @array_size: array size of the circular buffer
*
* Increment the atomic index and reserve the value.
* Takes care of buffer wrap.
* Guaranteed to be thread safe as long as fewer than array_size contexts
* try to access the array. If there are more than array_size contexts
* trying to access the array, full locking of the recording process would
* be needed to have sane logging.
*/
static int get_next_record_index(qdf_atomic_t *table_index, int array_size)
{
int record_index = qdf_atomic_inc_return(table_index);
if (record_index == array_size)
qdf_atomic_sub(array_size, table_index);
while (record_index >= array_size)
record_index -= array_size;
return record_index;
}
#ifdef HIF_CE_DEBUG_DATA_BUF
/**
* hif_ce_desc_data_record() - Record data pointed by the CE descriptor
* @event: structure detailing a ce event
* @len: length of the data
* Return:
*/
static void hif_ce_desc_data_record(struct hif_ce_desc_event *event, int len)
{
uint8_t *data = NULL;
if (!event->data)
return;
if (event->memory && len > 0)
data = qdf_nbuf_data((qdf_nbuf_t)event->memory);
event->actual_data_len = 0;
qdf_mem_zero(event->data, CE_DEBUG_MAX_DATA_BUF_SIZE);
if (data && len > 0) {
qdf_mem_copy(event->data, data,
((len < CE_DEBUG_MAX_DATA_BUF_SIZE) ?
len : CE_DEBUG_MAX_DATA_BUF_SIZE));
event->actual_data_len = len;
}
}
#endif
/**
* hif_record_ce_desc_event() - record ce descriptor events
* @scn: hif_softc
* @ce_id: which ce is the event occurring on
* @type: what happened
* @descriptor: pointer to the descriptor posted/completed
* @memory: virtual address of buffer related to the descriptor
* @index: index that the descriptor was/will be at.
*/
void hif_record_ce_desc_event(struct hif_softc *scn, int ce_id,
enum hif_ce_event_type type,
union ce_desc *descriptor,
void *memory, int index,
int len)
{
int record_index;
struct hif_ce_desc_event *event;
struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
struct hif_ce_desc_event *hist_ev = NULL;
if (ce_id < CE_COUNT_MAX)
hist_ev = (struct hif_ce_desc_event *)ce_hist->hist_ev[ce_id];
else
return;
if (ce_id >= CE_COUNT_MAX)
return;
if (!ce_hist->enable[ce_id])
return;
if (!hist_ev)
return;
record_index = get_next_record_index(
&ce_hist->history_index[ce_id], HIF_CE_HISTORY_MAX);
event = &hist_ev[record_index];
event->type = type;
event->time = qdf_get_log_timestamp();
if (descriptor != NULL) {
qdf_mem_copy(&event->descriptor, descriptor, sizeof(union ce_desc));
} else {
qdf_mem_zero(&event->descriptor, sizeof(union ce_desc));
}
event->memory = memory;
event->index = index;
#ifdef HIF_CE_DEBUG_DATA_BUF
if (ce_hist->data_enable[ce_id])
hif_ce_desc_data_record(event, len);
#endif
}
qdf_export_symbol(hif_record_ce_desc_event);
/**
* ce_init_ce_desc_event_log() - initialize the ce event log
* @ce_id: copy engine id for which we are initializing the log
* @size: size of array to dedicate
*
* Currently the passed size is ignored in favor of a precompiled value.
*/
void ce_init_ce_desc_event_log(struct hif_softc *scn, int ce_id, int size)
{
struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
qdf_atomic_init(&ce_hist->history_index[ce_id]);
qdf_mutex_create(&ce_hist->ce_dbg_datamem_lock[ce_id]);
}
/**
* ce_deinit_ce_desc_event_log() - deinitialize the ce event log
* @ce_id: copy engine id for which we are deinitializing the log
*
*/
inline void ce_deinit_ce_desc_event_log(struct hif_softc *scn, int ce_id)
{
struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
qdf_mutex_destroy(&ce_hist->ce_dbg_datamem_lock[ce_id]);
}
#else /* (HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
void hif_record_ce_desc_event(struct hif_softc *scn,
int ce_id, enum hif_ce_event_type type,
union ce_desc *descriptor, void *memory,
int index, int len)
{
}
qdf_export_symbol(hif_record_ce_desc_event);
inline void ce_init_ce_desc_event_log(struct hif_softc *scn, int ce_id,
int size)
{
}
void ce_deinit_ce_desc_event_log(struct hif_softc *scn, int ce_id)
{
}
#endif /*defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
#ifdef NAPI_YIELD_BUDGET_BASED
bool hif_ce_service_should_yield(struct hif_softc *scn,
struct CE_state *ce_state)
{
bool yield = hif_max_num_receives_reached(scn, ce_state->receive_count);
/* Setting receive_count to MAX_NUM_OF_RECEIVES when this count goes
* beyond MAX_NUM_OF_RECEIVES for NAPI backet calulation issue. This
* can happen in fast path handling as processing is happenning in
* batches.
*/
if (yield)
ce_state->receive_count = MAX_NUM_OF_RECEIVES;
return yield;
}
#else
/**
* hif_ce_service_should_yield() - return true if the service is hogging the cpu
* @scn: hif context
* @ce_state: context of the copy engine being serviced
*
* Return: true if the service should yield
*/
bool hif_ce_service_should_yield(struct hif_softc *scn,
struct CE_state *ce_state)
{
bool yield, time_limit_reached, rxpkt_thresh_reached = 0;
time_limit_reached =
sched_clock() > ce_state->ce_service_yield_time ? 1 : 0;
if (!time_limit_reached)
rxpkt_thresh_reached = hif_max_num_receives_reached
(scn, ce_state->receive_count);
/* Setting receive_count to MAX_NUM_OF_RECEIVES when this count goes
* beyond MAX_NUM_OF_RECEIVES for NAPI backet calulation issue. This
* can happen in fast path handling as processing is happenning in
* batches.
*/
if (rxpkt_thresh_reached)
ce_state->receive_count = MAX_NUM_OF_RECEIVES;
yield = time_limit_reached || rxpkt_thresh_reached;
if (yield && ce_state->htt_rx_data)
hif_napi_update_yield_stats(ce_state,
time_limit_reached,
rxpkt_thresh_reached);
return yield;
}
qdf_export_symbol(hif_ce_service_should_yield);
#endif
/*
* Guts of ce_send, used by both ce_send and ce_sendlist_send.
* The caller takes responsibility for any needed locking.
*/
void war_ce_src_ring_write_idx_set(struct hif_softc *scn,
u32 ctrl_addr, unsigned int write_index)
{
if (hif_ce_war1) {
void __iomem *indicator_addr;
indicator_addr = scn->mem + ctrl_addr + DST_WATERMARK_ADDRESS;
if (!war1_allow_sleep
&& ctrl_addr == CE_BASE_ADDRESS(CDC_WAR_DATA_CE)) {
hif_write32_mb(scn, indicator_addr,
(CDC_WAR_MAGIC_STR | write_index));
} else {
unsigned long irq_flags;
local_irq_save(irq_flags);
hif_write32_mb(scn, indicator_addr, 1);
/*
* PCIE write waits for ACK in IPQ8K, there is no
* need to read back value.
*/
(void)hif_read32_mb(scn, indicator_addr);
/* conservative */
(void)hif_read32_mb(scn, indicator_addr);
CE_SRC_RING_WRITE_IDX_SET(scn,
ctrl_addr, write_index);
hif_write32_mb(scn, indicator_addr, 0);
local_irq_restore(irq_flags);
}
} else {
CE_SRC_RING_WRITE_IDX_SET(scn, ctrl_addr, write_index);
}
}
qdf_export_symbol(war_ce_src_ring_write_idx_set);
int
ce_send(struct CE_handle *copyeng,
void *per_transfer_context,
qdf_dma_addr_t buffer,
uint32_t nbytes,
uint32_t transfer_id,
uint32_t flags,
uint32_t user_flag)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
int status;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(CE_state->scn);
qdf_spin_lock_bh(&CE_state->ce_index_lock);
status = hif_state->ce_services->ce_send_nolock(copyeng,
per_transfer_context, buffer, nbytes,
transfer_id, flags, user_flag);
qdf_spin_unlock_bh(&CE_state->ce_index_lock);
return status;
}
qdf_export_symbol(ce_send);
unsigned int ce_sendlist_sizeof(void)
{
return sizeof(struct ce_sendlist);
}
void ce_sendlist_init(struct ce_sendlist *sendlist)
{
struct ce_sendlist_s *sl = (struct ce_sendlist_s *)sendlist;
sl->num_items = 0;
}
int
ce_sendlist_buf_add(struct ce_sendlist *sendlist,
qdf_dma_addr_t buffer,
uint32_t nbytes,
uint32_t flags,
uint32_t user_flags)
{
struct ce_sendlist_s *sl = (struct ce_sendlist_s *)sendlist;
unsigned int num_items = sl->num_items;
struct ce_sendlist_item *item;
if (num_items >= CE_SENDLIST_ITEMS_MAX) {
QDF_ASSERT(num_items < CE_SENDLIST_ITEMS_MAX);
return QDF_STATUS_E_RESOURCES;
}
item = &sl->item[num_items];
item->send_type = CE_SIMPLE_BUFFER_TYPE;
item->data = buffer;
item->u.nbytes = nbytes;
item->flags = flags;
item->user_flags = user_flags;
sl->num_items = num_items + 1;
return QDF_STATUS_SUCCESS;
}
int
ce_sendlist_send(struct CE_handle *copyeng,
void *per_transfer_context,
struct ce_sendlist *sendlist, unsigned int transfer_id)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(CE_state->scn);
return hif_state->ce_services->ce_sendlist_send(copyeng,
per_transfer_context, sendlist, transfer_id);
}
#ifndef AH_NEED_TX_DATA_SWAP
#define AH_NEED_TX_DATA_SWAP 0
#endif
/**
* ce_batch_send() - sends bunch of msdus at once
* @ce_tx_hdl : pointer to CE handle
* @msdu : list of msdus to be sent
* @transfer_id : transfer id
* @len : Downloaded length
* @sendhead : sendhead
*
* Assumption : Called with an array of MSDU's
* Function:
* For each msdu in the array
* 1. Send each msdu
* 2. Increment write index accordinlgy.
*
* Return: list of msds not sent
*/
qdf_nbuf_t ce_batch_send(struct CE_handle *ce_tx_hdl, qdf_nbuf_t msdu,
uint32_t transfer_id, u_int32_t len, uint32_t sendhead)
{
struct CE_state *ce_state = (struct CE_state *)ce_tx_hdl;
struct hif_softc *scn = ce_state->scn;
struct CE_ring_state *src_ring = ce_state->src_ring;
u_int32_t ctrl_addr = ce_state->ctrl_addr;
/* A_target_id_t targid = TARGID(scn);*/
uint32_t nentries_mask = src_ring->nentries_mask;
uint32_t sw_index, write_index;
struct CE_src_desc *src_desc_base =
(struct CE_src_desc *)src_ring->base_addr_owner_space;
uint32_t *src_desc;
struct CE_src_desc lsrc_desc = {0};
int deltacount = 0;
qdf_nbuf_t freelist = NULL, hfreelist = NULL, tempnext;
DATA_CE_UPDATE_SWINDEX(src_ring->sw_index, scn, ctrl_addr);
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
deltacount = CE_RING_DELTA(nentries_mask, write_index, sw_index-1);
while (msdu) {
tempnext = qdf_nbuf_next(msdu);
if (deltacount < 2) {
if (sendhead)
return msdu;
HIF_ERROR("%s: Out of descriptors", __func__);
src_ring->write_index = write_index;
war_ce_src_ring_write_idx_set(scn, ctrl_addr,
write_index);
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
deltacount = CE_RING_DELTA(nentries_mask, write_index,
sw_index-1);
if (freelist == NULL) {
freelist = msdu;
hfreelist = msdu;
} else {
qdf_nbuf_set_next(freelist, msdu);
freelist = msdu;
}
qdf_nbuf_set_next(msdu, NULL);
msdu = tempnext;
continue;
}
src_desc = (uint32_t *)CE_SRC_RING_TO_DESC(src_desc_base,
write_index);
src_desc[0] = qdf_nbuf_get_frag_paddr(msdu, 0);
lsrc_desc.meta_data = transfer_id;
if (len > msdu->len)
len = msdu->len;
lsrc_desc.nbytes = len;
/* Data packet is a byte stream, so disable byte swap */
lsrc_desc.byte_swap = AH_NEED_TX_DATA_SWAP;
lsrc_desc.gather = 0; /*For the last one, gather is not set*/
src_desc[1] = ((uint32_t *)&lsrc_desc)[1];
src_ring->per_transfer_context[write_index] = msdu;
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
if (sendhead)
break;
qdf_nbuf_set_next(msdu, NULL);
msdu = tempnext;
}
src_ring->write_index = write_index;
war_ce_src_ring_write_idx_set(scn, ctrl_addr, write_index);
return hfreelist;
}
/**
* ce_update_tx_ring() - Advance sw index.
* @ce_tx_hdl : pointer to CE handle
* @num_htt_cmpls : htt completions received.
*
* Function:
* Increment the value of sw index of src ring
* according to number of htt completions
* received.
*
* Return: void
*/
#ifdef DATA_CE_SW_INDEX_NO_INLINE_UPDATE
void ce_update_tx_ring(struct CE_handle *ce_tx_hdl, uint32_t num_htt_cmpls)
{
struct CE_state *ce_state = (struct CE_state *)ce_tx_hdl;
struct CE_ring_state *src_ring = ce_state->src_ring;
uint32_t nentries_mask = src_ring->nentries_mask;
/*
* Advance the s/w index:
* This effectively simulates completing the CE ring descriptors
*/
src_ring->sw_index =
CE_RING_IDX_ADD(nentries_mask, src_ring->sw_index,
num_htt_cmpls);
}
#else
void ce_update_tx_ring(struct CE_handle *ce_tx_hdl, uint32_t num_htt_cmpls)
{}
#endif
/**
* ce_send_single() - sends
* @ce_tx_hdl : pointer to CE handle
* @msdu : msdu to be sent
* @transfer_id : transfer id
* @len : Downloaded length
*
* Function:
* 1. Send one msdu
* 2. Increment write index of src ring accordinlgy.
*
* Return: int: CE sent status
*/
int ce_send_single(struct CE_handle *ce_tx_hdl, qdf_nbuf_t msdu,
uint32_t transfer_id, u_int32_t len)
{
struct CE_state *ce_state = (struct CE_state *)ce_tx_hdl;
struct hif_softc *scn = ce_state->scn;
struct CE_ring_state *src_ring = ce_state->src_ring;
uint32_t ctrl_addr = ce_state->ctrl_addr;
/*A_target_id_t targid = TARGID(scn);*/
uint32_t nentries_mask = src_ring->nentries_mask;
uint32_t sw_index, write_index;
struct CE_src_desc *src_desc_base =
(struct CE_src_desc *)src_ring->base_addr_owner_space;
uint32_t *src_desc;
struct CE_src_desc lsrc_desc = {0};
enum hif_ce_event_type event_type;
DATA_CE_UPDATE_SWINDEX(src_ring->sw_index, scn, ctrl_addr);
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
if (qdf_unlikely(CE_RING_DELTA(nentries_mask, write_index,
sw_index-1) < 1)) {
/* ol_tx_stats_inc_ring_error(sc->scn->pdev_txrx_handle, 1); */
HIF_ERROR("%s: ce send fail %d %d %d", __func__, nentries_mask,
write_index, sw_index);
return 1;
}
src_desc = (uint32_t *)CE_SRC_RING_TO_DESC(src_desc_base, write_index);
src_desc[0] = qdf_nbuf_get_frag_paddr(msdu, 0);
lsrc_desc.meta_data = transfer_id;
lsrc_desc.nbytes = len;
/* Data packet is a byte stream, so disable byte swap */
lsrc_desc.byte_swap = AH_NEED_TX_DATA_SWAP;
lsrc_desc.gather = 0; /* For the last one, gather is not set */
src_desc[1] = ((uint32_t *)&lsrc_desc)[1];
src_ring->per_transfer_context[write_index] = msdu;
if (((struct CE_src_desc *)src_desc)->gather)
event_type = HIF_TX_GATHER_DESC_POST;
else if (qdf_unlikely(ce_state->state != CE_RUNNING))
event_type = HIF_TX_DESC_SOFTWARE_POST;
else
event_type = HIF_TX_DESC_POST;
hif_record_ce_desc_event(scn, ce_state->id, event_type,
(union ce_desc *)src_desc, msdu,
write_index, len);
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
src_ring->write_index = write_index;
war_ce_src_ring_write_idx_set(scn, ctrl_addr, write_index);
return QDF_STATUS_SUCCESS;
}
/**
* ce_recv_buf_enqueue() - enqueue a recv buffer into a copy engine
* @coyeng: copy engine handle
* @per_recv_context: virtual address of the nbuf
* @buffer: physical address of the nbuf
*
* Return: 0 if the buffer is enqueued
*/
int
ce_recv_buf_enqueue(struct CE_handle *copyeng,
void *per_recv_context, qdf_dma_addr_t buffer)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(CE_state->scn);
return hif_state->ce_services->ce_recv_buf_enqueue(copyeng,
per_recv_context, buffer);
}
qdf_export_symbol(ce_recv_buf_enqueue);
void
ce_send_watermarks_set(struct CE_handle *copyeng,
unsigned int low_alert_nentries,
unsigned int high_alert_nentries)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
uint32_t ctrl_addr = CE_state->ctrl_addr;
struct hif_softc *scn = CE_state->scn;
CE_SRC_RING_LOWMARK_SET(scn, ctrl_addr, low_alert_nentries);
CE_SRC_RING_HIGHMARK_SET(scn, ctrl_addr, high_alert_nentries);
}
void
ce_recv_watermarks_set(struct CE_handle *copyeng,
unsigned int low_alert_nentries,
unsigned int high_alert_nentries)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
uint32_t ctrl_addr = CE_state->ctrl_addr;
struct hif_softc *scn = CE_state->scn;
CE_DEST_RING_LOWMARK_SET(scn, ctrl_addr,
low_alert_nentries);
CE_DEST_RING_HIGHMARK_SET(scn, ctrl_addr,
high_alert_nentries);
}
unsigned int ce_send_entries_avail(struct CE_handle *copyeng)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct CE_ring_state *src_ring = CE_state->src_ring;
unsigned int nentries_mask = src_ring->nentries_mask;
unsigned int sw_index;
unsigned int write_index;
qdf_spin_lock(&CE_state->ce_index_lock);
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
qdf_spin_unlock(&CE_state->ce_index_lock);
return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
}
unsigned int ce_recv_entries_avail(struct CE_handle *copyeng)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct CE_ring_state *dest_ring = CE_state->dest_ring;
unsigned int nentries_mask = dest_ring->nentries_mask;
unsigned int sw_index;
unsigned int write_index;
qdf_spin_lock(&CE_state->ce_index_lock);
sw_index = dest_ring->sw_index;
write_index = dest_ring->write_index;
qdf_spin_unlock(&CE_state->ce_index_lock);
return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
}
/*
* Guts of ce_send_entries_done.
* The caller takes responsibility for any necessary locking.
*/
unsigned int ce_send_entries_done(struct CE_handle *copyeng)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
unsigned int nentries;
struct hif_softc *scn = CE_state->scn;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
qdf_spin_lock(&CE_state->ce_index_lock);
nentries = hif_state->ce_services->ce_send_entries_done_nolock(
CE_state->scn, CE_state);
qdf_spin_unlock(&CE_state->ce_index_lock);
return nentries;
}
/*
* Guts of ce_recv_entries_done.
* The caller takes responsibility for any necessary locking.
*/
unsigned int ce_recv_entries_done(struct CE_handle *copyeng)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
unsigned int nentries;
struct hif_softc *scn = CE_state->scn;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
qdf_spin_lock(&CE_state->ce_index_lock);
nentries = hif_state->ce_services->ce_recv_entries_done_nolock(
CE_state->scn, CE_state);
qdf_spin_unlock(&CE_state->ce_index_lock);
return nentries;
}
/*
* Guts of ce_completed_recv_next.
* The caller takes responsibility for any necessary locking.
*/
int
ce_completed_recv_next(struct CE_handle *copyeng,
void **per_CE_contextp,
void **per_transfer_contextp,
qdf_dma_addr_t *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp, unsigned int *flagsp)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
int status;
struct hif_softc *scn = CE_state->scn;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
struct ce_ops *ce_services;
ce_services = hif_state->ce_services;
qdf_spin_lock_bh(&CE_state->ce_index_lock);
status =
ce_services->ce_completed_recv_next_nolock(CE_state,
per_CE_contextp, per_transfer_contextp, bufferp,
nbytesp, transfer_idp, flagsp);
qdf_spin_unlock_bh(&CE_state->ce_index_lock);
return status;
}
QDF_STATUS
ce_revoke_recv_next(struct CE_handle *copyeng,
void **per_CE_contextp,
void **per_transfer_contextp, qdf_dma_addr_t *bufferp)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(CE_state->scn);
return hif_state->ce_services->ce_revoke_recv_next(copyeng,
per_CE_contextp, per_transfer_contextp, bufferp);
}
QDF_STATUS
ce_cancel_send_next(struct CE_handle *copyeng,
void **per_CE_contextp,
void **per_transfer_contextp,
qdf_dma_addr_t *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp,
uint32_t *toeplitz_hash_result)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(CE_state->scn);
return hif_state->ce_services->ce_cancel_send_next
(copyeng, per_CE_contextp, per_transfer_contextp,
bufferp, nbytesp, transfer_idp, toeplitz_hash_result);
}
qdf_export_symbol(ce_cancel_send_next);
int
ce_completed_send_next(struct CE_handle *copyeng,
void **per_CE_contextp,
void **per_transfer_contextp,
qdf_dma_addr_t *bufferp,
unsigned int *nbytesp,
unsigned int *transfer_idp,
unsigned int *sw_idx,
unsigned int *hw_idx,
unsigned int *toeplitz_hash_result)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct hif_softc *scn = CE_state->scn;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
struct ce_ops *ce_services;
int status;
ce_services = hif_state->ce_services;
qdf_spin_lock_bh(&CE_state->ce_index_lock);
status =
ce_services->ce_completed_send_next_nolock(CE_state,
per_CE_contextp, per_transfer_contextp,
bufferp, nbytesp, transfer_idp, sw_idx,
hw_idx, toeplitz_hash_result);
qdf_spin_unlock_bh(&CE_state->ce_index_lock);
return status;
}
#ifdef ATH_11AC_TXCOMPACT
/* CE engine descriptor reap
* Similar to ce_per_engine_service , Only difference is ce_per_engine_service
* does receive and reaping of completed descriptor ,
* This function only handles reaping of Tx complete descriptor.
* The Function is called from threshold reap poll routine
* hif_send_complete_check so should not countain receive functionality
* within it .
*/
void ce_per_engine_servicereap(struct hif_softc *scn, unsigned int ce_id)
{
void *CE_context;
void *transfer_context;
qdf_dma_addr_t buf;
unsigned int nbytes;
unsigned int id;
unsigned int sw_idx, hw_idx;
uint32_t toeplitz_hash_result;
struct CE_state *CE_state = scn->ce_id_to_state[ce_id];
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
return;
hif_record_ce_desc_event(scn, ce_id, HIF_CE_REAP_ENTRY,
NULL, NULL, 0, 0);
/* Since this function is called from both user context and
* tasklet context the spinlock has to lock the bottom halves.
* This fix assumes that ATH_11AC_TXCOMPACT flag is always
* enabled in TX polling mode. If this is not the case, more
* bottom halve spin lock changes are needed. Due to data path
* performance concern, after internal discussion we've decided
* to make minimum change, i.e., only address the issue occurred
* in this function. The possible negative effect of this minimum
* change is that, in the future, if some other function will also
* be opened to let the user context to use, those cases need to be
* addressed by change spin_lock to spin_lock_bh also.
*/
qdf_spin_lock_bh(&CE_state->ce_index_lock);
if (CE_state->send_cb) {
{
struct ce_ops *ce_services = hif_state->ce_services;
/* Pop completed send buffers and call the
* registered send callback for each
*/
while (ce_services->ce_completed_send_next_nolock
(CE_state, &CE_context,
&transfer_context, &buf,
&nbytes, &id, &sw_idx, &hw_idx,
&toeplitz_hash_result) ==
QDF_STATUS_SUCCESS) {
if (ce_id != CE_HTT_H2T_MSG) {
qdf_spin_unlock_bh(
&CE_state->ce_index_lock);
CE_state->send_cb(
(struct CE_handle *)
CE_state, CE_context,
transfer_context, buf,
nbytes, id, sw_idx, hw_idx,
toeplitz_hash_result);
qdf_spin_lock_bh(
&CE_state->ce_index_lock);
} else {
struct HIF_CE_pipe_info *pipe_info =
(struct HIF_CE_pipe_info *)
CE_context;
qdf_spin_lock_bh(&pipe_info->
completion_freeq_lock);
pipe_info->num_sends_allowed++;
qdf_spin_unlock_bh(&pipe_info->
completion_freeq_lock);
}
}
}
}
qdf_spin_unlock_bh(&CE_state->ce_index_lock);
hif_record_ce_desc_event(scn, ce_id, HIF_CE_REAP_EXIT,
NULL, NULL, 0, 0);
Q_TARGET_ACCESS_END(scn);
}
#endif /*ATH_11AC_TXCOMPACT */
/*
* ce_engine_service_reg:
*
* Called from ce_per_engine_service and goes through the regular interrupt
* handling that does not involve the WLAN fast path feature.
*
* Returns void
*/
void ce_engine_service_reg(struct hif_softc *scn, int CE_id)
{
struct CE_state *CE_state = scn->ce_id_to_state[CE_id];
uint32_t ctrl_addr = CE_state->ctrl_addr;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
void *CE_context;
void *transfer_context;
qdf_dma_addr_t buf;
unsigned int nbytes;
unsigned int id;
unsigned int flags;
unsigned int more_comp_cnt = 0;
unsigned int more_snd_comp_cnt = 0;
unsigned int sw_idx, hw_idx;
uint32_t toeplitz_hash_result;
uint32_t mode = hif_get_conparam(scn);
more_completions:
if (CE_state->recv_cb) {
/* Pop completed recv buffers and call
* the registered recv callback for each
*/
while (hif_state->ce_services->ce_completed_recv_next_nolock
(CE_state, &CE_context, &transfer_context,
&buf, &nbytes, &id, &flags) ==
QDF_STATUS_SUCCESS) {
qdf_spin_unlock(&CE_state->ce_index_lock);
CE_state->recv_cb((struct CE_handle *)CE_state,
CE_context, transfer_context, buf,
nbytes, id, flags);
qdf_spin_lock(&CE_state->ce_index_lock);
/*
* EV #112693 -
* [Peregrine][ES1][WB342][Win8x86][Performance]
* BSoD_0x133 occurred in VHT80 UDP_DL
* Break out DPC by force if number of loops in
* hif_pci_ce_recv_data reaches MAX_NUM_OF_RECEIVES
* to avoid spending too long time in
* DPC for each interrupt handling. Schedule another
* DPC to avoid data loss if we had taken
* force-break action before apply to Windows OS
* only currently, Linux/MAC os can expand to their
* platform if necessary
*/
/* Break the receive processes by
* force if force_break set up
*/
if (qdf_unlikely(CE_state->force_break)) {
qdf_atomic_set(&CE_state->rx_pending, 1);
return;
}
}
}
/*
* Attention: We may experience potential infinite loop for below
* While Loop during Sending Stress test.
* Resolve the same way as Receive Case (Refer to EV #112693)
*/
if (CE_state->send_cb) {
/* Pop completed send buffers and call
* the registered send callback for each
*/
#ifdef ATH_11AC_TXCOMPACT
while (hif_state->ce_services->ce_completed_send_next_nolock
(CE_state, &CE_context,
&transfer_context, &buf, &nbytes,
&id, &sw_idx, &hw_idx,
&toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
if (CE_id != CE_HTT_H2T_MSG ||
QDF_IS_EPPING_ENABLED(mode)) {
qdf_spin_unlock(&CE_state->ce_index_lock);
CE_state->send_cb((struct CE_handle *)CE_state,
CE_context, transfer_context,
buf, nbytes, id, sw_idx,
hw_idx, toeplitz_hash_result);
qdf_spin_lock(&CE_state->ce_index_lock);
} else {
struct HIF_CE_pipe_info *pipe_info =
(struct HIF_CE_pipe_info *)CE_context;
qdf_spin_lock_bh(&pipe_info->
completion_freeq_lock);
pipe_info->num_sends_allowed++;
qdf_spin_unlock_bh(&pipe_info->
completion_freeq_lock);
}
}
#else /*ATH_11AC_TXCOMPACT */
while (hif_state->ce_services->ce_completed_send_next_nolock
(CE_state, &CE_context,
&transfer_context, &buf, &nbytes,
&id, &sw_idx, &hw_idx,
&toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
qdf_spin_unlock(&CE_state->ce_index_lock);
CE_state->send_cb((struct CE_handle *)CE_state,
CE_context, transfer_context, buf,
nbytes, id, sw_idx, hw_idx,
toeplitz_hash_result);
qdf_spin_lock(&CE_state->ce_index_lock);
}
#endif /*ATH_11AC_TXCOMPACT */
}
more_watermarks:
if (CE_state->misc_cbs) {
if (CE_state->watermark_cb &&
hif_state->ce_services->watermark_int(CE_state,
&flags)) {
qdf_spin_unlock(&CE_state->ce_index_lock);
/* Convert HW IS bits to software flags */
CE_state->watermark_cb((struct CE_handle *)CE_state,
CE_state->wm_context, flags);
qdf_spin_lock(&CE_state->ce_index_lock);
}
}
/*
* Clear the misc interrupts (watermark) that were handled above,
* and that will be checked again below.
* Clear and check for copy-complete interrupts again, just in case
* more copy completions happened while the misc interrupts were being
* handled.
*/
if (!ce_srng_based(scn)) {
if (TARGET_REGISTER_ACCESS_ALLOWED(scn)) {
CE_ENGINE_INT_STATUS_CLEAR(scn, ctrl_addr,
CE_WATERMARK_MASK |
HOST_IS_COPY_COMPLETE_MASK);
} else {
qdf_atomic_set(&CE_state->rx_pending, 0);
hif_err_rl("%s: target access is not allowed",
__func__);
return;
}
}
/*
* Now that per-engine interrupts are cleared, verify that
* no recv interrupts arrive while processing send interrupts,
* and no recv or send interrupts happened while processing
* misc interrupts.Go back and check again.Keep checking until
* we find no more events to process.
*/
if (CE_state->recv_cb &&
hif_state->ce_services->ce_recv_entries_done_nolock(scn,
CE_state)) {
if (QDF_IS_EPPING_ENABLED(mode) ||
more_comp_cnt++ < CE_TXRX_COMP_CHECK_THRESHOLD) {
goto more_completions;
} else {
if (!ce_srng_based(scn)) {
HIF_ERROR(
"%s:Potential infinite loop detected during Rx processing nentries_mask:0x%x sw read_idx:0x%x hw read_idx:0x%x",
__func__,
CE_state->dest_ring->nentries_mask,
CE_state->dest_ring->sw_index,
CE_DEST_RING_READ_IDX_GET(scn,
CE_state->ctrl_addr));
}
}
}
if (CE_state->send_cb &&
hif_state->ce_services->ce_send_entries_done_nolock(scn,
CE_state)) {
if (QDF_IS_EPPING_ENABLED(mode) ||
more_snd_comp_cnt++ < CE_TXRX_COMP_CHECK_THRESHOLD) {
goto more_completions;
} else {
if (!ce_srng_based(scn)) {
HIF_ERROR(
"%s:Potential infinite loop detected during send completion nentries_mask:0x%x sw read_idx:0x%x hw read_idx:0x%x",
__func__,
CE_state->src_ring->nentries_mask,
CE_state->src_ring->sw_index,
CE_SRC_RING_READ_IDX_GET(scn,
CE_state->ctrl_addr));
}
}
}
if (CE_state->misc_cbs && CE_state->watermark_cb) {
if (hif_state->ce_services->watermark_int(CE_state, &flags))
goto more_watermarks;
}
qdf_atomic_set(&CE_state->rx_pending, 0);
}
/*
* Guts of interrupt handler for per-engine interrupts on a particular CE.
*
* Invokes registered callbacks for recv_complete,
* send_complete, and watermarks.
*
* Returns: number of messages processed
*/
int ce_per_engine_service(struct hif_softc *scn, unsigned int CE_id)
{
struct CE_state *CE_state = scn->ce_id_to_state[CE_id];
if (hif_is_nss_wifi_enabled(scn) && (CE_state->htt_rx_data))
return CE_state->receive_count;
if (Q_TARGET_ACCESS_BEGIN(scn) < 0) {
HIF_ERROR("[premature rc=0]");
return 0; /* no work done */
}
/* Clear force_break flag and re-initialize receive_count to 0 */
CE_state->receive_count = 0;
CE_state->force_break = 0;
CE_state->ce_service_start_time = sched_clock();
CE_state->ce_service_yield_time =
CE_state->ce_service_start_time +
hif_get_ce_service_max_yield_time(
(struct hif_opaque_softc *)scn);
qdf_spin_lock(&CE_state->ce_index_lock);
CE_state->service(scn, CE_id);
qdf_spin_unlock(&CE_state->ce_index_lock);
if (Q_TARGET_ACCESS_END(scn) < 0)
HIF_ERROR("<--[premature rc=%d]", CE_state->receive_count);
return CE_state->receive_count;
}
qdf_export_symbol(ce_per_engine_service);
/*
* Handler for per-engine interrupts on ALL active CEs.
* This is used in cases where the system is sharing a
* single interrput for all CEs
*/
void ce_per_engine_service_any(int irq, struct hif_softc *scn)
{
int CE_id;
uint32_t intr_summary;
if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
return;
if (!qdf_atomic_read(&scn->tasklet_from_intr)) {
for (CE_id = 0; CE_id < scn->ce_count; CE_id++) {
struct CE_state *CE_state = scn->ce_id_to_state[CE_id];
if (qdf_atomic_read(&CE_state->rx_pending)) {
qdf_atomic_set(&CE_state->rx_pending, 0);
ce_per_engine_service(scn, CE_id);
}
}
Q_TARGET_ACCESS_END(scn);
return;
}
intr_summary = CE_INTERRUPT_SUMMARY(scn);
for (CE_id = 0; intr_summary && (CE_id < scn->ce_count); CE_id++) {
if (intr_summary & (1 << CE_id))
intr_summary &= ~(1 << CE_id);
else
continue; /* no intr pending on this CE */
ce_per_engine_service(scn, CE_id);
}
Q_TARGET_ACCESS_END(scn);
}
/*Iterate the CE_state list and disable the compl interrupt
* if it has been registered already.
*/
void ce_disable_any_copy_compl_intr_nolock(struct hif_softc *scn)
{
int CE_id;
if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
return;
for (CE_id = 0; CE_id < scn->ce_count; CE_id++) {
struct CE_state *CE_state = scn->ce_id_to_state[CE_id];
uint32_t ctrl_addr = CE_state->ctrl_addr;
/* if the interrupt is currently enabled, disable it */
if (!CE_state->disable_copy_compl_intr
&& (CE_state->send_cb || CE_state->recv_cb))
CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr);
if (CE_state->watermark_cb)
CE_WATERMARK_INTR_DISABLE(scn, ctrl_addr);
}
Q_TARGET_ACCESS_END(scn);
}
void ce_enable_any_copy_compl_intr_nolock(struct hif_softc *scn)
{
int CE_id;
if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
return;
for (CE_id = 0; CE_id < scn->ce_count; CE_id++) {
struct CE_state *CE_state = scn->ce_id_to_state[CE_id];
uint32_t ctrl_addr = CE_state->ctrl_addr;
/*
* If the CE is supposed to have copy complete interrupts
* enabled (i.e. there a callback registered, and the
* "disable" flag is not set), then re-enable the interrupt.
*/
if (!CE_state->disable_copy_compl_intr
&& (CE_state->send_cb || CE_state->recv_cb))
CE_COPY_COMPLETE_INTR_ENABLE(scn, ctrl_addr);
if (CE_state->watermark_cb)
CE_WATERMARK_INTR_ENABLE(scn, ctrl_addr);
}
Q_TARGET_ACCESS_END(scn);
}
/**
* ce_send_cb_register(): register completion handler
* @copyeng: CE_state representing the ce we are adding the behavior to
* @fn_ptr: callback that the ce should use when processing tx completions
* @disable_interrupts: if the interupts should be enabled or not.
*
* Caller should guarantee that no transactions are in progress before
* switching the callback function.
*
* Registers the send context before the fn pointer so that if the cb is valid
* the context should be valid.
*
* Beware that currently this function will enable completion interrupts.
*/
void
ce_send_cb_register(struct CE_handle *copyeng,
ce_send_cb fn_ptr,
void *ce_send_context, int disable_interrupts)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct hif_softc *scn;
struct HIF_CE_state *hif_state;
if (CE_state == NULL) {
HIF_ERROR("%s: Error CE state = NULL", __func__);
return;
}
scn = CE_state->scn;
hif_state = HIF_GET_CE_STATE(scn);
if (hif_state == NULL) {
HIF_ERROR("%s: Error HIF state = NULL", __func__);
return;
}
CE_state->send_context = ce_send_context;
CE_state->send_cb = fn_ptr;
hif_state->ce_services->ce_per_engine_handler_adjust(CE_state,
disable_interrupts);
}
qdf_export_symbol(ce_send_cb_register);
/**
* ce_recv_cb_register(): register completion handler
* @copyeng: CE_state representing the ce we are adding the behavior to
* @fn_ptr: callback that the ce should use when processing rx completions
* @disable_interrupts: if the interupts should be enabled or not.
*
* Registers the send context before the fn pointer so that if the cb is valid
* the context should be valid.
*
* Caller should guarantee that no transactions are in progress before
* switching the callback function.
*/
void
ce_recv_cb_register(struct CE_handle *copyeng,
CE_recv_cb fn_ptr,
void *CE_recv_context, int disable_interrupts)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct hif_softc *scn;
struct HIF_CE_state *hif_state;
if (CE_state == NULL) {
HIF_ERROR("%s: ERROR CE state = NULL", __func__);
return;
}
scn = CE_state->scn;
hif_state = HIF_GET_CE_STATE(scn);
if (hif_state == NULL) {
HIF_ERROR("%s: Error HIF state = NULL", __func__);
return;
}
CE_state->recv_context = CE_recv_context;
CE_state->recv_cb = fn_ptr;
hif_state->ce_services->ce_per_engine_handler_adjust(CE_state,
disable_interrupts);
}
qdf_export_symbol(ce_recv_cb_register);
/**
* ce_watermark_cb_register(): register completion handler
* @copyeng: CE_state representing the ce we are adding the behavior to
* @fn_ptr: callback that the ce should use when processing watermark events
*
* Caller should guarantee that no watermark events are being processed before
* switching the callback function.
*/
void
ce_watermark_cb_register(struct CE_handle *copyeng,
CE_watermark_cb fn_ptr, void *CE_wm_context)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
struct hif_softc *scn = CE_state->scn;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
CE_state->watermark_cb = fn_ptr;
CE_state->wm_context = CE_wm_context;
hif_state->ce_services->ce_per_engine_handler_adjust(CE_state,
0);
if (fn_ptr)
CE_state->misc_cbs = 1;
}
bool ce_get_rx_pending(struct hif_softc *scn)
{
int CE_id;
for (CE_id = 0; CE_id < scn->ce_count; CE_id++) {
struct CE_state *CE_state = scn->ce_id_to_state[CE_id];
if (qdf_atomic_read(&CE_state->rx_pending))
return true;
}
return false;
}
/**
* ce_check_rx_pending() - ce_check_rx_pending
* @CE_state: context of the copy engine to check
*
* Return: true if there per_engine_service
* didn't process all the rx descriptors.
*/
bool ce_check_rx_pending(struct CE_state *CE_state)
{
if (qdf_atomic_read(&CE_state->rx_pending))
return true;
else
return false;
}
qdf_export_symbol(ce_check_rx_pending);
#ifdef IPA_OFFLOAD
/**
* ce_ipa_get_resource() - get uc resource on copyengine
* @ce: copyengine context
* @ce_sr: copyengine source ring resource info
* @ce_sr_ring_size: copyengine source ring size
* @ce_reg_paddr: copyengine register physical address
*
* Copy engine should release resource to micro controller
* Micro controller needs
* - Copy engine source descriptor base address
* - Copy engine source descriptor size
* - PCI BAR address to access copy engine regiser
*
* Return: None
*/
void ce_ipa_get_resource(struct CE_handle *ce,
qdf_shared_mem_t **ce_sr,
uint32_t *ce_sr_ring_size,
qdf_dma_addr_t *ce_reg_paddr)
{
struct CE_state *CE_state = (struct CE_state *)ce;
uint32_t ring_loop;
struct CE_src_desc *ce_desc;
qdf_dma_addr_t phy_mem_base;
struct hif_softc *scn = CE_state->scn;
if (CE_UNUSED == CE_state->state) {
*qdf_mem_get_dma_addr_ptr(scn->qdf_dev,
&CE_state->scn->ipa_ce_ring->mem_info) = 0;
*ce_sr_ring_size = 0;
return;
}
/* Update default value for descriptor */
for (ring_loop = 0; ring_loop < CE_state->src_ring->nentries;
ring_loop++) {
ce_desc = (struct CE_src_desc *)
((char *)CE_state->src_ring->base_addr_owner_space +
ring_loop * (sizeof(struct CE_src_desc)));
CE_IPA_RING_INIT(ce_desc);
}
/* Get BAR address */
hif_read_phy_mem_base(CE_state->scn, &phy_mem_base);
*ce_sr = CE_state->scn->ipa_ce_ring;
*ce_sr_ring_size = (uint32_t)(CE_state->src_ring->nentries *
sizeof(struct CE_src_desc));
*ce_reg_paddr = phy_mem_base + CE_BASE_ADDRESS(CE_state->id) +
SR_WR_INDEX_ADDRESS;
}
#endif /* IPA_OFFLOAD */
#ifdef HIF_CE_DEBUG_DATA_BUF
/**
* hif_dump_desc_data_buf() - record ce descriptor events
* @buf: buffer to copy to
* @pos: Current position till which the buf is filled
* @data: Data to be copied
* @data_len: Length of the data to be copied
*/
static uint32_t hif_dump_desc_data_buf(uint8_t *buf, ssize_t pos,
uint8_t *data, uint32_t data_len)
{
pos += snprintf(buf + pos, PAGE_SIZE - pos, "Data:(Max%dBytes)\n",
CE_DEBUG_MAX_DATA_BUF_SIZE);
if ((data_len > 0) && data) {
if (data_len < 16) {
hex_dump_to_buffer(data,
CE_DEBUG_DATA_PER_ROW,
16, 1, buf + pos,
(ssize_t)PAGE_SIZE - pos,
false);
pos += CE_DEBUG_PRINT_BUF_SIZE(data_len);
pos += snprintf(buf + pos, PAGE_SIZE - pos, "\n");
} else {
uint32_t rows = (data_len / 16) + 1;
uint32_t row = 0;
for (row = 0; row < rows; row++) {
hex_dump_to_buffer(data + (row * 16),
CE_DEBUG_DATA_PER_ROW,
16, 1, buf + pos,
(ssize_t)PAGE_SIZE
- pos, false);
pos +=
CE_DEBUG_PRINT_BUF_SIZE(CE_DEBUG_DATA_PER_ROW);
pos += snprintf(buf + pos, PAGE_SIZE - pos,
"\n");
}
}
}
return pos;
}
#endif
/*
* Note: For MCL, #if defined (HIF_CONFIG_SLUB_DEBUG_ON) needs to be checked
* for defined here
*/
#if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
static const char *ce_event_type_to_str(enum hif_ce_event_type type)
{
switch (type) {
case HIF_RX_DESC_POST:
return "HIF_RX_DESC_POST";
case HIF_RX_DESC_COMPLETION:
return "HIF_RX_DESC_COMPLETION";
case HIF_TX_GATHER_DESC_POST:
return "HIF_TX_GATHER_DESC_POST";
case HIF_TX_DESC_POST:
return "HIF_TX_DESC_POST";
case HIF_TX_DESC_SOFTWARE_POST:
return "HIF_TX_DESC_SOFTWARE_POST";
case HIF_TX_DESC_COMPLETION:
return "HIF_TX_DESC_COMPLETION";
case FAST_RX_WRITE_INDEX_UPDATE:
return "FAST_RX_WRITE_INDEX_UPDATE";
case FAST_RX_SOFTWARE_INDEX_UPDATE:
return "FAST_RX_SOFTWARE_INDEX_UPDATE";
case FAST_TX_WRITE_INDEX_UPDATE:
return "FAST_TX_WRITE_INDEX_UPDATE";
case FAST_TX_WRITE_INDEX_SOFTWARE_UPDATE:
return "FAST_TX_WRITE_INDEX_SOFTWARE_UPDATE";
case FAST_TX_SOFTWARE_INDEX_UPDATE:
return "FAST_TX_SOFTWARE_INDEX_UPDATE";
case RESUME_WRITE_INDEX_UPDATE:
return "RESUME_WRITE_INDEX_UPDATE";
case HIF_IRQ_EVENT:
return "HIF_IRQ_EVENT";
case HIF_CE_TASKLET_ENTRY:
return "HIF_CE_TASKLET_ENTRY";
case HIF_CE_TASKLET_RESCHEDULE:
return "HIF_CE_TASKLET_RESCHEDULE";
case HIF_CE_TASKLET_EXIT:
return "HIF_CE_TASKLET_EXIT";
case HIF_CE_REAP_ENTRY:
return "HIF_CE_REAP_ENTRY";
case HIF_CE_REAP_EXIT:
return "HIF_CE_REAP_EXIT";
case NAPI_SCHEDULE:
return "NAPI_SCHEDULE";
case NAPI_POLL_ENTER:
return "NAPI_POLL_ENTER";
case NAPI_COMPLETE:
return "NAPI_COMPLETE";
case NAPI_POLL_EXIT:
return "NAPI_POLL_EXIT";
case HIF_RX_NBUF_ALLOC_FAILURE:
return "HIF_RX_NBUF_ALLOC_FAILURE";
case HIF_RX_NBUF_MAP_FAILURE:
return "HIF_RX_NBUF_MAP_FAILURE";
case HIF_RX_NBUF_ENQUEUE_FAILURE:
return "HIF_RX_NBUF_ENQUEUE_FAILURE";
default:
return "invalid";
}
}
/**
* hif_dump_desc_event() - record ce descriptor events
* @buf: Buffer to which to be copied
* @ce_id: which ce is the event occurring on
* @index: index that the descriptor was/will be at.
*/
ssize_t hif_dump_desc_event(struct hif_softc *scn, char *buf)
{
struct hif_ce_desc_event *event;
uint64_t secs, usecs;
ssize_t len = 0;
struct ce_desc_hist *ce_hist = NULL;
struct hif_ce_desc_event *hist_ev = NULL;
if (!scn)
return -EINVAL;
ce_hist = &scn->hif_ce_desc_hist;
if (ce_hist->hist_id >= CE_COUNT_MAX ||
ce_hist->hist_index >= HIF_CE_HISTORY_MAX) {
qdf_print("Invalid values");
return -EINVAL;
}
hist_ev =
(struct hif_ce_desc_event *)ce_hist->hist_ev[ce_hist->hist_id];
if (!hist_ev) {
qdf_print("Low Memory");
return -EINVAL;
}
event = &hist_ev[ce_hist->hist_index];
qdf_log_timestamp_to_secs(event->time, &secs, &usecs);
len += snprintf(buf, PAGE_SIZE - len,
"\nTime:%lld.%06lld, CE:%d, EventType: %s, EventIndex: %d\nDataAddr=%pK",
secs, usecs, ce_hist->hist_id,
ce_event_type_to_str(event->type),
event->index, event->memory);
#ifdef HIF_CE_DEBUG_DATA_BUF
len += snprintf(buf + len, PAGE_SIZE - len, ", Data len=%d",
event->actual_data_len);
#endif
len += snprintf(buf + len, PAGE_SIZE - len, "\nCE descriptor: ");
hex_dump_to_buffer(&event->descriptor, sizeof(union ce_desc),
16, 1, buf + len,
(ssize_t)PAGE_SIZE - len, false);
len += CE_DEBUG_PRINT_BUF_SIZE(sizeof(union ce_desc));
len += snprintf(buf + len, PAGE_SIZE - len, "\n");
#ifdef HIF_CE_DEBUG_DATA_BUF
if (ce_hist->data_enable[ce_hist->hist_id])
len = hif_dump_desc_data_buf(buf, len, event->data,
(event->actual_data_len <
CE_DEBUG_MAX_DATA_BUF_SIZE) ?
event->actual_data_len :
CE_DEBUG_MAX_DATA_BUF_SIZE);
#endif /*HIF_CE_DEBUG_DATA_BUF*/
len += snprintf(buf + len, PAGE_SIZE - len, "END\n");
return len;
}
/*
* hif_store_desc_trace_buf_index() -
* API to get the CE id and CE debug storage buffer index
*
* @dev: network device
* @attr: sysfs attribute
* @buf: data got from the user
*
* Return total length
*/
ssize_t hif_input_desc_trace_buf_index(struct hif_softc *scn,
const char *buf, size_t size)
{
struct ce_desc_hist *ce_hist = NULL;
if (!scn)
return -EINVAL;
ce_hist = &scn->hif_ce_desc_hist;
if (!size) {
pr_err("%s: Invalid input buffer.\n", __func__);
return -EINVAL;
}
if (sscanf(buf, "%u %u", (unsigned int *)&ce_hist->hist_id,
(unsigned int *)&ce_hist->hist_index) != 2) {
pr_err("%s: Invalid input value.\n", __func__);
return -EINVAL;
}
if ((ce_hist->hist_id >= CE_COUNT_MAX) ||
(ce_hist->hist_index >= HIF_CE_HISTORY_MAX)) {
qdf_print("Invalid values");
return -EINVAL;
}
return size;
}
#endif /*defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
#ifdef HIF_CE_DEBUG_DATA_BUF
/*
* hif_ce_en_desc_hist() -
* API to enable recording the CE desc history
*
* @dev: network device
* @attr: sysfs attribute
* @buf: buffer to copy the data.
*
* Starts recording the ce desc history
*
* Return total length copied
*/
ssize_t hif_ce_en_desc_hist(struct hif_softc *scn, const char *buf, size_t size)
{
struct ce_desc_hist *ce_hist = NULL;
uint32_t cfg = 0;
uint32_t ce_id = 0;
if (!scn)
return -EINVAL;
ce_hist = &scn->hif_ce_desc_hist;
if (!size) {
pr_err("%s: Invalid input buffer.\n", __func__);
return -EINVAL;
}
if (sscanf(buf, "%u %u", (unsigned int *)&ce_id,
(unsigned int *)&cfg) != 2) {
pr_err("%s: Invalid input: Enter CE Id<sp><1/0>.\n", __func__);
return -EINVAL;
}
if (ce_id >= CE_COUNT_MAX) {
qdf_print("Invalid value CE Id");
return -EINVAL;
}
if ((cfg > 1 || cfg < 0)) {
qdf_print("Invalid values: enter 0 or 1");
return -EINVAL;
}
if (!ce_hist->hist_ev[ce_id])
return -EINVAL;
qdf_mutex_acquire(&ce_hist->ce_dbg_datamem_lock[ce_id]);
if (cfg == 1) {
if (ce_hist->data_enable[ce_id] == 1) {
qdf_print("\nAlready Enabled");
} else {
if (alloc_mem_ce_debug_hist_data(scn, ce_id)
== QDF_STATUS_E_NOMEM){
ce_hist->data_enable[ce_id] = 0;
qdf_print("%s:Memory Alloc failed");
} else
ce_hist->data_enable[ce_id] = 1;
}
} else if (cfg == 0) {
if (ce_hist->data_enable[ce_id] == 0) {
qdf_print("\nAlready Disabled");
} else {
ce_hist->data_enable[ce_id] = 0;
free_mem_ce_debug_hist_data(scn, ce_id);
}
}
qdf_mutex_release(&ce_hist->ce_dbg_datamem_lock[ce_id]);
return size;
}
/*
* hif_disp_ce_enable_desc_data_hist() -
* API to display value of data_enable
*
* @dev: network device
* @attr: sysfs attribute
* @buf: buffer to copy the data.
*
* Return total length copied
*/
ssize_t hif_disp_ce_enable_desc_data_hist(struct hif_softc *scn, char *buf)
{
ssize_t len = 0;
uint32_t ce_id = 0;
struct ce_desc_hist *ce_hist = NULL;
if (!scn)
return -EINVAL;
ce_hist = &scn->hif_ce_desc_hist;
for (ce_id = 0; ce_id < CE_COUNT_MAX; ce_id++) {
len += snprintf(buf + len, PAGE_SIZE - len, " CE%d: %d\n",
ce_id, ce_hist->data_enable[ce_id]);
}
return len;
}
#endif /* HIF_CE_DEBUG_DATA_BUF */
#ifdef OL_ATH_SMART_LOGGING
#define GUARD_SPACE 10
#define LOG_ID_SZ 4
/*
* hif_log_src_ce_dump() - Copy all the CE SRC ring to buf
* @src_ring: SRC ring state
* @buf_cur: Current pointer in ring buffer
* @buf_init:Start of the ring buffer
* @buf_sz: Size of the ring buffer
* @skb_sz: Max size of the SKB buffer to be copied
*
* Dumps all the CE SRC ring descriptors and buffers pointed by them in to
* the given buf, skb_sz is the max buffer size to be copied
*
* Return: Current pointer in ring buffer
*/
static uint8_t *hif_log_src_ce_dump(struct CE_ring_state *src_ring,
uint8_t *buf_cur, uint8_t *buf_init,
uint32_t buf_sz, uint32_t skb_sz)
{
struct CE_src_desc *src_ring_base;
uint32_t len, entry;
struct CE_src_desc *src_desc;
qdf_nbuf_t nbuf;
uint32_t available_buf;
src_ring_base = (struct CE_src_desc *)src_ring->base_addr_owner_space;
len = sizeof(struct CE_ring_state);
available_buf = buf_sz - (buf_cur - buf_init);
if (available_buf < (len + GUARD_SPACE)) {
buf_cur = buf_init;
}
qdf_mem_copy(buf_cur, src_ring, sizeof(struct CE_ring_state));
buf_cur += sizeof(struct CE_ring_state);
for (entry = 0; entry < src_ring->nentries; entry++) {
src_desc = CE_SRC_RING_TO_DESC(src_ring_base, entry);
nbuf = src_ring->per_transfer_context[entry];
if (nbuf) {
uint32_t skb_len = qdf_nbuf_len(nbuf);
uint32_t skb_cp_len = qdf_min(skb_len, skb_sz);
len = sizeof(struct CE_src_desc) + skb_cp_len
+ LOG_ID_SZ + sizeof(skb_cp_len);
available_buf = buf_sz - (buf_cur - buf_init);
if (available_buf < (len + GUARD_SPACE)) {
buf_cur = buf_init;
}
qdf_mem_copy(buf_cur, src_desc,
sizeof(struct CE_src_desc));
buf_cur += sizeof(struct CE_src_desc);
available_buf = buf_sz - (buf_cur - buf_init);
buf_cur += snprintf(buf_cur, available_buf, "SKB%d",
skb_cp_len);
if (skb_cp_len) {
qdf_mem_copy(buf_cur, qdf_nbuf_data(nbuf),
skb_cp_len);
buf_cur += skb_cp_len;
}
} else {
len = sizeof(struct CE_src_desc) + LOG_ID_SZ;
available_buf = buf_sz - (buf_cur - buf_init);
if (available_buf < (len + GUARD_SPACE)) {
buf_cur = buf_init;
}
qdf_mem_copy(buf_cur, src_desc,
sizeof(struct CE_src_desc));
buf_cur += sizeof(struct CE_src_desc);
available_buf = buf_sz - (buf_cur - buf_init);
buf_cur += snprintf(buf_cur, available_buf, "NUL");
}
}
return buf_cur;
}
/*
* hif_log_dest_ce_dump() - Copy all the CE DEST ring to buf
* @dest_ring: SRC ring state
* @buf_cur: Current pointer in ring buffer
* @buf_init:Start of the ring buffer
* @buf_sz: Size of the ring buffer
* @skb_sz: Max size of the SKB buffer to be copied
*
* Dumps all the CE SRC ring descriptors and buffers pointed by them in to
* the given buf, skb_sz is the max buffer size to be copied
*
* Return: Current pointer in ring buffer
*/
static uint8_t *hif_log_dest_ce_dump(struct CE_ring_state *dest_ring,
uint8_t *buf_cur, uint8_t *buf_init,
uint32_t buf_sz, uint32_t skb_sz)
{
struct CE_dest_desc *dest_ring_base;
uint32_t len, entry;
struct CE_dest_desc *dest_desc;
qdf_nbuf_t nbuf;
uint32_t available_buf;
dest_ring_base =
(struct CE_dest_desc *)dest_ring->base_addr_owner_space;
len = sizeof(struct CE_ring_state);
available_buf = buf_sz - (buf_cur - buf_init);
if (available_buf < (len + GUARD_SPACE)) {
buf_cur = buf_init;
}
qdf_mem_copy(buf_cur, dest_ring, sizeof(struct CE_ring_state));
buf_cur += sizeof(struct CE_ring_state);
for (entry = 0; entry < dest_ring->nentries; entry++) {
dest_desc = CE_DEST_RING_TO_DESC(dest_ring_base, entry);
nbuf = dest_ring->per_transfer_context[entry];
if (nbuf) {
uint32_t skb_len = qdf_nbuf_len(nbuf);
uint32_t skb_cp_len = qdf_min(skb_len, skb_sz);
len = sizeof(struct CE_dest_desc) + skb_cp_len
+ LOG_ID_SZ + sizeof(skb_cp_len);
available_buf = buf_sz - (buf_cur - buf_init);
if (available_buf < (len + GUARD_SPACE)) {
buf_cur = buf_init;
}
qdf_mem_copy(buf_cur, dest_desc,
sizeof(struct CE_dest_desc));
buf_cur += sizeof(struct CE_dest_desc);
available_buf = buf_sz - (buf_cur - buf_init);
buf_cur += snprintf(buf_cur, available_buf, "SKB%d",
skb_cp_len);
if (skb_cp_len) {
qdf_mem_copy(buf_cur, qdf_nbuf_data(nbuf),
skb_cp_len);
buf_cur += skb_cp_len;
}
} else {
len = sizeof(struct CE_dest_desc) + LOG_ID_SZ;
available_buf = buf_sz - (buf_cur - buf_init);
if (available_buf < (len + GUARD_SPACE)) {
buf_cur = buf_init;
}
qdf_mem_copy(buf_cur, dest_desc,
sizeof(struct CE_dest_desc));
buf_cur += sizeof(struct CE_dest_desc);
available_buf = buf_sz - (buf_cur - buf_init);
buf_cur += snprintf(buf_cur, available_buf, "NUL");
}
}
return buf_cur;
}
/**
* hif_log_ce_dump() - Copy all the CE DEST ring to buf
* Calls the respective function to dump all the CE SRC/DEST ring descriptors
* and buffers pointed by them in to the given buf
*/
uint8_t *hif_log_dump_ce(struct hif_softc *scn, uint8_t *buf_cur,
uint8_t *buf_init, uint32_t buf_sz,
uint32_t ce, uint32_t skb_sz)
{
struct CE_state *ce_state;
struct CE_ring_state *src_ring;
struct CE_ring_state *dest_ring;
ce_state = scn->ce_id_to_state[ce];
src_ring = ce_state->src_ring;
dest_ring = ce_state->dest_ring;
if (src_ring) {
buf_cur = hif_log_src_ce_dump(src_ring, buf_cur,
buf_init, buf_sz, skb_sz);
} else if (dest_ring) {
buf_cur = hif_log_dest_ce_dump(dest_ring, buf_cur,
buf_init, buf_sz, skb_sz);
}
return buf_cur;
}
qdf_export_symbol(hif_log_dump_ce);
#endif /* OL_ATH_SMART_LOGGING */