blob: cbbc1891c9c7386587c87aa67da1fcc1e3ecb9e5 [file] [log] [blame]
/*
* Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: qdf_mem
* QCA driver framework (QDF) memory management APIs
*/
#if !defined(__QDF_MEMORY_H)
#define __QDF_MEMORY_H
/* Include Files */
#include <qdf_types.h>
#include <i_qdf_mem.h>
#define QDF_CACHE_LINE_SZ __qdf_cache_line_sz
/**
* qdf_align() - align to the given size.
* @a: input that needs to be aligned.
* @align_size: boundary on which 'a' has to be alinged.
*
* Return: aligned value.
*/
#define qdf_align(a, align_size) __qdf_align(a, align_size)
/**
* struct qdf_mem_dma_page_t - Allocated dmaable page
* @page_v_addr_start: Page start virtual address
* @page_v_addr_end: Page end virtual address
* @page_p_addr: Page start physical address
*/
struct qdf_mem_dma_page_t {
char *page_v_addr_start;
char *page_v_addr_end;
qdf_dma_addr_t page_p_addr;
};
/**
* struct qdf_mem_multi_page_t - multiple page allocation information storage
* @num_element_per_page: Number of element in single page
* @num_pages: Number of allocation needed pages
* @dma_pages: page information storage in case of coherent memory
* @cacheable_pages: page information storage in case of cacheable memory
*/
struct qdf_mem_multi_page_t {
uint16_t num_element_per_page;
uint16_t num_pages;
struct qdf_mem_dma_page_t *dma_pages;
void **cacheable_pages;
};
/* Preprocessor definitions and constants */
typedef __qdf_mempool_t qdf_mempool_t;
/**
* qdf_mem_init() - Initialize QDF memory module
*
* Return: None
*
*/
void qdf_mem_init(void);
/**
* qdf_mem_exit() - Exit QDF memory module
*
* Return: None
*
*/
void qdf_mem_exit(void);
#ifdef MEMORY_DEBUG
/**
* qdf_mem_malloc_debug() - debug version of QDF memory allocation API
* @size: Number of bytes of memory to allocate.
* @file: File name of the call site
* @line: Line number of the call site
* @caller: Address of the caller function
* @flag: GFP flag
*
* This function will dynamicallly allocate the specified number of bytes of
* memory and add it to the qdf tracking list to check for memory leaks and
* corruptions
*
* Return: A valid memory location on success, or NULL on failure
*/
void *qdf_mem_malloc_debug(size_t size, const char *file, uint32_t line,
void *caller, uint32_t flag);
#define qdf_mem_malloc(size) \
qdf_mem_malloc_debug(size, __FILE__, __LINE__, QDF_RET_IP, 0)
#define qdf_mem_malloc_atomic(size) \
qdf_mem_malloc_debug(size, __FILE__, __LINE__, QDF_RET_IP, GFP_ATOMIC)
/**
* qdf_mem_free_debug() - debug version of qdf_mem_free
* @ptr: Pointer to the starting address of the memory to be freed.
*
* This function will free the memory pointed to by 'ptr'. It also checks for
* memory corruption, underrun, overrun, double free, domain mismatch, etc.
*
* Return: none
*/
void qdf_mem_free_debug(void *ptr, const char *file, uint32_t line);
#define qdf_mem_free(ptr) \
qdf_mem_free_debug(ptr, __FILE__, __LINE__)
/**
* qdf_mem_check_for_leaks() - Assert that the current memory domain is empty
*
* Call this to ensure there are no active memory allocations being tracked
* against the current debug domain. For example, one should call this function
* immediately before a call to qdf_debug_domain_set() as a memory leak
* detection mechanism.
*
* e.g.
* qdf_debug_domain_set(QDF_DEBUG_DOMAIN_ACTIVE);
*
* ...
*
* // memory is allocated and freed
*
* ...
*
* // before transitioning back to inactive state,
* // make sure all active memory has been freed
* qdf_mem_check_for_leaks();
* qdf_debug_domain_set(QDF_DEBUG_DOMAIN_INIT);
*
* ...
*
* // also, before program exit, make sure init time memory is freed
* qdf_mem_check_for_leaks();
* exit();
*
* Return: None
*/
void qdf_mem_check_for_leaks(void);
/**
* qdf_mem_alloc_consistent_debug() - allocates consistent qdf memory
* @osdev: OS device handle
* @dev: Pointer to device handle
* @size: Size to be allocated
* @paddr: Physical address
* @file: file name of the call site
* @line: line numbe rof the call site
* @caller: Address of the caller function
*
* Return: pointer of allocated memory or null if memory alloc fails
*/
void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
qdf_size_t size, qdf_dma_addr_t *paddr,
const char *file, uint32_t line,
void *caller);
#define qdf_mem_alloc_consistent(osdev, dev, size, paddr) \
qdf_mem_alloc_consistent_debug(osdev, dev, size, paddr, \
__FILE__, __LINE__, QDF_RET_IP)
/**
* qdf_mem_free_consistent_debug() - free consistent qdf memory
* @osdev: OS device handle
* @size: Size to be allocated
* @vaddr: virtual address
* @paddr: Physical address
* @memctx: Pointer to DMA context
* @file: file name of the call site
* @line: line numbe rof the call site
*
* Return: none
*/
void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
qdf_size_t size, void *vaddr,
qdf_dma_addr_t paddr,
qdf_dma_context_t memctx,
const char *file, uint32_t line);
#define qdf_mem_free_consistent(osdev, dev, size, vaddr, paddr, memctx) \
qdf_mem_free_consistent_debug(osdev, dev, size, vaddr, paddr, memctx, \
__FILE__, __LINE__)
#else
void *qdf_mem_malloc(qdf_size_t size);
void *qdf_mem_malloc_atomic(qdf_size_t size);
/**
* qdf_mem_free() - free QDF memory
* @ptr: Pointer to the starting address of the memory to be freed.
*
* Return: None
*/
void qdf_mem_free(void *ptr);
static inline void qdf_mem_check_for_leaks(void) { }
void *qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
qdf_size_t size, qdf_dma_addr_t *paddr);
void qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
qdf_size_t size, void *vaddr,
qdf_dma_addr_t paddr, qdf_dma_context_t memctx);
#endif /* MEMORY_DEBUG */
void *qdf_mem_alloc_outline(qdf_device_t osdev, qdf_size_t size);
void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value);
void qdf_mem_zero(void *ptr, uint32_t num_bytes);
void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes);
void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes);
void qdf_mem_free_outline(void *buf);
void qdf_mem_zero_outline(void *buf, qdf_size_t size);
void qdf_ether_addr_copy(void *dst_addr, const void *src_addr);
/**
* qdf_mem_cmp() - memory compare
* @memory1: pointer to one location in memory to compare.
* @memory2: pointer to second location in memory to compare.
* @num_bytes: the number of bytes to compare.
*
* Function to compare two pieces of memory, similar to memcmp function
* in standard C.
* Return:
* int32_t - returns an int value that tells if the memory
* locations are equal or not equal.
* 0 -- equal
* < 0 -- *memory1 is less than *memory2
* > 0 -- *memory1 is bigger than *memory2
*/
static inline int32_t qdf_mem_cmp(const void *memory1, const void *memory2,
uint32_t num_bytes)
{
return __qdf_mem_cmp(memory1, memory2, num_bytes);
}
/**
* qdf_mem_map_nbytes_single - Map memory for DMA
* @osdev: pomter OS device context
* @buf: pointer to memory to be dma mapped
* @dir: DMA map direction
* @nbytes: number of bytes to be mapped.
* @phy_addr: ponter to recive physical address.
*
* Return: success/failure
*/
static inline uint32_t qdf_mem_map_nbytes_single(qdf_device_t osdev, void *buf,
qdf_dma_dir_t dir, int nbytes,
qdf_dma_addr_t *phy_addr)
{
#if defined(HIF_PCI)
return __qdf_mem_map_nbytes_single(osdev, buf, dir, nbytes, phy_addr);
#else
return 0;
#endif
}
/**
* qdf_mem_unmap_nbytes_single() - un_map memory for DMA
* @osdev: pomter OS device context
* @phy_addr: physical address of memory to be dma unmapped
* @dir: DMA unmap direction
* @nbytes: number of bytes to be unmapped.
*
* Return: none
*/
static inline void qdf_mem_unmap_nbytes_single(qdf_device_t osdev,
qdf_dma_addr_t phy_addr,
qdf_dma_dir_t dir,
int nbytes)
{
#if defined(HIF_PCI)
__qdf_mem_unmap_nbytes_single(osdev, phy_addr, dir, nbytes);
#endif
}
/**
* qdf_mempool_init - Create and initialize memory pool
* @osdev: platform device object
* @pool_addr: address of the pool created
* @elem_cnt: no. of elements in pool
* @elem_size: size of each pool element in bytes
* @flags: flags
* Return: Handle to memory pool or NULL if allocation failed
*/
static inline int qdf_mempool_init(qdf_device_t osdev,
qdf_mempool_t *pool_addr, int elem_cnt,
size_t elem_size, uint32_t flags)
{
return __qdf_mempool_init(osdev, pool_addr, elem_cnt, elem_size,
flags);
}
/**
* qdf_mempool_destroy - Destroy memory pool
* @osdev: platform device object
* @Handle: to memory pool
* Return: none
*/
static inline void qdf_mempool_destroy(qdf_device_t osdev, qdf_mempool_t pool)
{
__qdf_mempool_destroy(osdev, pool);
}
/**
* qdf_mempool_alloc - Allocate an element memory pool
* @osdev: platform device object
* @Handle: to memory pool
* Return: Pointer to the allocated element or NULL if the pool is empty
*/
static inline void *qdf_mempool_alloc(qdf_device_t osdev, qdf_mempool_t pool)
{
return (void *)__qdf_mempool_alloc(osdev, pool);
}
/**
* qdf_mempool_free - Free a memory pool element
* @osdev: Platform device object
* @pool: Handle to memory pool
* @buf: Element to be freed
* Return: none
*/
static inline void qdf_mempool_free(qdf_device_t osdev, qdf_mempool_t pool,
void *buf)
{
__qdf_mempool_free(osdev, pool, buf);
}
void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
qdf_dma_addr_t bus_addr,
qdf_size_t size,
__dma_data_direction direction);
void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
qdf_dma_addr_t bus_addr,
qdf_size_t size,
__dma_data_direction direction);
void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
size_t element_size, uint16_t element_num,
qdf_dma_context_t memctxt, bool cacheable);
void qdf_mem_multi_pages_free(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
qdf_dma_context_t memctxt, bool cacheable);
int qdf_mem_multi_page_link(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
uint32_t elem_size, uint32_t elem_count, uint8_t cacheable);
/**
* qdf_mem_skb_inc() - increment total skb allocation size
* @size: size to be added
*
* Return: none
*/
void qdf_mem_skb_inc(qdf_size_t size);
/**
* qdf_mem_skb_dec() - decrement total skb allocation size
* @size: size to be decremented
*
* Return: none
*/
void qdf_mem_skb_dec(qdf_size_t size);
/**
* qdf_mem_map_table_alloc() - Allocate shared memory info structure
* @num: number of required storage
*
* Allocate mapping table for DMA memory allocation. This is needed for
* IPA-WLAN buffer sharing when SMMU Stage1 Translation is enabled.
*
* Return: shared memory info storage table pointer
*/
static inline qdf_mem_info_t *qdf_mem_map_table_alloc(uint32_t num)
{
qdf_mem_info_t *mem_info_arr;
mem_info_arr = qdf_mem_malloc(num * sizeof(mem_info_arr[0]));
return mem_info_arr;
}
/**
* qdf_update_mem_map_table() - Update DMA memory map info
* @osdev: Parent device instance
* @mem_info: Pointer to shared memory information
* @dma_addr: dma address
* @mem_size: memory size allocated
*
* Store DMA shared memory information
*
* Return: none
*/
static inline void qdf_update_mem_map_table(qdf_device_t osdev,
qdf_mem_info_t *mem_info,
qdf_dma_addr_t dma_addr,
uint32_t mem_size)
{
if (!mem_info) {
__qdf_print("%s: NULL mem_info\n", __func__);
return;
}
__qdf_update_mem_map_table(osdev, mem_info, dma_addr, mem_size);
}
/**
* qdf_mem_smmu_s1_enabled() - Return SMMU stage 1 translation enable status
* @osdev parent device instance
*
* Return: true if smmu s1 enabled, false if smmu s1 is bypassed
*/
static inline bool qdf_mem_smmu_s1_enabled(qdf_device_t osdev)
{
return __qdf_mem_smmu_s1_enabled(osdev);
}
/**
* qdf_mem_paddr_from_dmaaddr() - get actual physical address from dma address
* @osdev: Parent device instance
* @dma_addr: DMA/IOVA address
*
* Get actual physical address from dma_addr based on SMMU enablement status.
* IF SMMU Stage 1 tranlation is enabled, DMA APIs return IO virtual address
* (IOVA) otherwise returns physical address. So get SMMU physical address
* mapping from IOVA.
*
* Return: dmaable physical address
*/
static inline qdf_dma_addr_t qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev,
qdf_dma_addr_t dma_addr)
{
return __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
}
/**
* qdf_os_mem_dma_get_sgtable() - Returns DMA memory scatter gather table
* @dev: device instace
* @sgt: scatter gather table pointer
* @cpu_addr: HLOS virtual address
* @dma_addr: dma address
* @size: allocated memory size
*
* Return: physical address
*/
static inline int
qdf_mem_dma_get_sgtable(struct device *dev, void *sgt, void *cpu_addr,
qdf_dma_addr_t dma_addr, size_t size)
{
return __qdf_os_mem_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr, size);
}
/**
* qdf_mem_get_dma_addr() - Return dma address based on SMMU translation status.
* @osdev: Parent device instance
* @mem_info: Pointer to allocated memory information
*
* Get dma address based on SMMU enablement status. If SMMU Stage 1
* tranlation is enabled, DMA APIs return IO virtual address otherwise
* returns physical address.
*
* Return: dma address
*/
static inline qdf_dma_addr_t qdf_mem_get_dma_addr(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
return __qdf_mem_get_dma_addr(osdev, mem_info);
}
/**
* qdf_mem_get_dma_addr_ptr() - Return DMA address pointer from mem info struct
* @osdev: Parent device instance
* @mem_info: Pointer to allocated memory information
*
* Based on smmu stage 1 translation enablement, return corresponding dma
* address storage pointer.
*
* Return: dma address storage pointer
*/
static inline qdf_dma_addr_t *qdf_mem_get_dma_addr_ptr(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
return __qdf_mem_get_dma_addr_ptr(osdev, mem_info);
}
/**
* qdf_mem_get_dma_size() - Return DMA memory size
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
*
* Return: DMA memory size
*/
static inline uint32_t
qdf_mem_get_dma_size(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
return __qdf_mem_get_dma_size(osdev, mem_info);
}
/**
* qdf_mem_set_dma_size() - Set DMA memory size
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
* @mem_size: memory size allocated
*
* Return: none
*/
static inline void
qdf_mem_set_dma_size(qdf_device_t osdev,
qdf_mem_info_t *mem_info,
uint32_t mem_size)
{
__qdf_mem_set_dma_size(osdev, mem_info, mem_size);
}
/**
* qdf_mem_get_dma_size() - Return DMA physical address
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
*
* Return: DMA physical address
*/
static inline qdf_dma_addr_t
qdf_mem_get_dma_pa(qdf_device_t osdev,
qdf_mem_info_t *mem_info)
{
return __qdf_mem_get_dma_pa(osdev, mem_info);
}
/**
* qdf_mem_set_dma_size() - Set DMA physical address
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
* @dma_pa: DMA phsical address
*
* Return: none
*/
static inline void
qdf_mem_set_dma_pa(qdf_device_t osdev,
qdf_mem_info_t *mem_info,
qdf_dma_addr_t dma_pa)
{
__qdf_mem_set_dma_pa(osdev, mem_info, dma_pa);
}
/**
* qdf_mem_shared_mem_alloc() - Allocate DMA memory for shared resource
* @osdev: parent device instance
* @mem_info: Pointer to allocated memory information
* @size: size to be allocated
*
* Allocate DMA memory which will be shared with external kernel module. This
* information is needed for SMMU mapping.
*
* Return: 0 suceess
*/
static inline qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev,
uint32_t size)
{
qdf_shared_mem_t *shared_mem;
shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
if (!shared_mem) {
__qdf_print("%s: Unable to allocate memory for shared resource struct\n",
__func__);
return NULL;
}
shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
size, qdf_mem_get_dma_addr_ptr(osdev,
&shared_mem->mem_info));
if (!shared_mem->vaddr) {
__qdf_print("%s; Unable to allocate DMA memory for shared resource\n",
__func__);
qdf_mem_free(shared_mem);
return NULL;
}
qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
qdf_mem_zero(shared_mem->vaddr,
qdf_mem_get_dma_size(osdev, &shared_mem->mem_info));
qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info,
qdf_mem_paddr_from_dmaaddr(osdev,
qdf_mem_get_dma_addr(osdev,
&shared_mem->mem_info)));
qdf_mem_dma_get_sgtable(osdev->dev,
(void *)&shared_mem->sgtable,
shared_mem->vaddr,
qdf_mem_get_dma_addr(osdev,
&shared_mem->mem_info),
qdf_mem_get_dma_size(osdev,
&shared_mem->mem_info));
shared_mem->sgtable.sgl->dma_address =
qdf_mem_get_dma_pa(osdev, &shared_mem->mem_info);
return shared_mem;
}
/**
* qdf_mem_shared_mem_free() - Free shared memory
* @osdev: parent device instance
* @shared_mem: shared memory information storage
*
* Free DMA shared memory resource
*
* Return: None
*/
static inline void qdf_mem_shared_mem_free(qdf_device_t osdev,
qdf_shared_mem_t *shared_mem)
{
if (!shared_mem) {
__qdf_print("%s: NULL shared mem struct passed\n",
__func__);
return;
}
if (shared_mem->vaddr) {
qdf_mem_free_consistent(osdev, osdev->dev,
qdf_mem_get_dma_size(osdev,
&shared_mem->mem_info),
shared_mem->vaddr,
qdf_mem_get_dma_addr(osdev,
&shared_mem->mem_info),
qdf_get_dma_mem_context(shared_mem,
memctx));
}
qdf_mem_free(shared_mem);
}
#endif /* __QDF_MEMORY_H */