blob: 2566bc5501a3548dffa8a9083de6ef288aeab593 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* DOC: Defines scan utility functions
*/
#include <wlan_cmn.h>
#include <wlan_scan_ucfg_api.h>
#include <wlan_scan_utils_api.h>
#include <../../core/src/wlan_scan_cache_db.h>
#include <../../core/src/wlan_scan_main.h>
#include <wlan_reg_services_api.h>
#define MAX_IE_LEN 1024
#define SHORT_SSID_LEN 4
#define NEIGHBOR_AP_LEN 1
#define BSS_PARAMS_LEN 1
const char*
util_scan_get_ev_type_name(enum scan_event_type type)
{
static const char * const event_name[] = {
[SCAN_EVENT_TYPE_STARTED] = "STARTED",
[SCAN_EVENT_TYPE_COMPLETED] = "COMPLETED",
[SCAN_EVENT_TYPE_BSS_CHANNEL] = "HOME_CHANNEL",
[SCAN_EVENT_TYPE_FOREIGN_CHANNEL] = "FOREIGN_CHANNEL",
[SCAN_EVENT_TYPE_DEQUEUED] = "DEQUEUED",
[SCAN_EVENT_TYPE_PREEMPTED] = "PREEMPTED",
[SCAN_EVENT_TYPE_START_FAILED] = "START_FAILED",
[SCAN_EVENT_TYPE_RESTARTED] = "RESTARTED",
[SCAN_EVENT_TYPE_FOREIGN_CHANNEL_EXIT] = "FOREIGN_CHANNEL_EXIT",
[SCAN_EVENT_TYPE_SUSPENDED] = "SUSPENDED",
[SCAN_EVENT_TYPE_RESUMED] = "RESUMED",
[SCAN_EVENT_TYPE_NLO_COMPLETE] = "NLO_COMPLETE",
[SCAN_EVENT_TYPE_NLO_MATCH] = "NLO_MATCH",
[SCAN_EVENT_TYPE_INVALID] = "INVALID",
[SCAN_EVENT_TYPE_GPIO_TIMEOUT] = "GPIO_TIMEOUT",
[SCAN_EVENT_TYPE_RADIO_MEASUREMENT_START] =
"RADIO_MEASUREMENT_START",
[SCAN_EVENT_TYPE_RADIO_MEASUREMENT_END] =
"RADIO_MEASUREMENT_END",
[SCAN_EVENT_TYPE_BSSID_MATCH] = "BSSID_MATCH",
[SCAN_EVENT_TYPE_FOREIGN_CHANNEL_GET_NF] =
"FOREIGN_CHANNEL_GET_NF",
};
if (type >= SCAN_EVENT_TYPE_MAX)
return "UNKNOWN";
return event_name[type];
}
const char*
util_scan_get_ev_reason_name(enum scan_completion_reason reason)
{
static const char * const reason_name[] = {
[SCAN_REASON_NONE] = "NONE",
[SCAN_REASON_COMPLETED] = "COMPLETED",
[SCAN_REASON_CANCELLED] = "CANCELLED",
[SCAN_REASON_PREEMPTED] = "PREEMPTED",
[SCAN_REASON_TIMEDOUT] = "TIMEDOUT",
[SCAN_REASON_INTERNAL_FAILURE] = "INTERNAL_FAILURE",
[SCAN_REASON_SUSPENDED] = "SUSPENDED",
[SCAN_REASON_RUN_FAILED] = "RUN_FAILED",
[SCAN_REASON_TERMINATION_FUNCTION] = "TERMINATION_FUNCTION",
[SCAN_REASON_MAX_OFFCHAN_RETRIES] = "MAX_OFFCHAN_RETRIES",
[SCAN_REASON_DFS_VIOLATION] = "DFS_NOL_VIOLATION",
};
if (reason >= SCAN_REASON_MAX)
return "UNKNOWN";
return reason_name[reason];
}
qdf_time_t
util_get_last_scan_time(struct wlan_objmgr_vdev *vdev)
{
uint8_t pdev_id;
struct wlan_scan_obj *scan_obj;
if (!vdev) {
scm_warn("null vdev");
QDF_ASSERT(0);
return 0;
}
pdev_id = wlan_scan_vdev_get_pdev_id(vdev);
scan_obj = wlan_vdev_get_scan_obj(vdev);
if (scan_obj)
return scan_obj->pdev_info[pdev_id].last_scan_time;
else
return 0;
}
enum wlan_band util_scan_scm_chan_to_band(uint32_t chan)
{
if (WLAN_CHAN_IS_2GHZ(chan))
return WLAN_BAND_2_4_GHZ;
return WLAN_BAND_5_GHZ;
}
enum wlan_band util_scan_scm_freq_to_band(uint16_t freq)
{
if (WLAN_REG_IS_24GHZ_CH_FREQ(freq))
return WLAN_BAND_2_4_GHZ;
return WLAN_BAND_5_GHZ;
}
bool util_is_scan_entry_match(
struct scan_cache_entry *entry1,
struct scan_cache_entry *entry2)
{
if (entry1->cap_info.wlan_caps.ess !=
entry2->cap_info.wlan_caps.ess)
return false;
if (entry1->cap_info.wlan_caps.ess &&
!qdf_mem_cmp(entry1->bssid.bytes,
entry2->bssid.bytes, QDF_MAC_ADDR_SIZE)) {
/* Check for BSS */
if (util_is_ssid_match(&entry1->ssid, &entry2->ssid) ||
util_scan_is_null_ssid(&entry1->ssid) ||
util_scan_is_null_ssid(&entry2->ssid))
return true;
} else if (entry1->cap_info.wlan_caps.ibss &&
(entry1->channel.chan_freq ==
entry2->channel.chan_freq)) {
/*
* Same channel cannot have same SSID for
* different IBSS, so no need to check BSSID
*/
if (util_is_ssid_match(
&entry1->ssid, &entry2->ssid))
return true;
} else if (!entry1->cap_info.wlan_caps.ibss &&
!entry1->cap_info.wlan_caps.ess &&
!qdf_mem_cmp(entry1->bssid.bytes,
entry2->bssid.bytes, QDF_MAC_ADDR_SIZE)) {
/* In case of P2P devices, ess and ibss will be set to zero */
return true;
}
return false;
}
static bool util_is_pureg_rate(uint8_t *rates, uint8_t nrates)
{
static const uint8_t g_rates[] = {12, 18, 24, 36, 48, 72, 96, 108};
bool pureg = false;
uint8_t i, j;
for (i = 0; i < nrates; i++) {
for (j = 0; j < QDF_ARRAY_SIZE(g_rates); j++) {
if (WLAN_RV(rates[i]) == g_rates[j]) {
pureg = true;
break;
}
}
if (pureg)
break;
}
return pureg;
}
#ifdef CONFIG_BAND_6GHZ
static struct he_oper_6g_param *util_scan_get_he_6g_params(uint8_t *he_ops)
{
uint8_t len;
uint32_t he_oper_params;
if (!he_ops)
return NULL;
len = he_ops[1];
he_ops += sizeof(struct ie_header);
if (len < WLAN_HEOP_FIXED_PARAM_LENGTH)
return NULL;
/* element id extension */
he_ops++;
len--;
he_oper_params = LE_READ_4(he_ops);
if (!(he_oper_params & WLAN_HEOP_6GHZ_INFO_PRESENT_MASK))
return NULL;
/* fixed params - element id extension */
he_ops += WLAN_HEOP_FIXED_PARAM_LENGTH - 1;
len -= WLAN_HEOP_FIXED_PARAM_LENGTH - 1;
if (!len)
return NULL;
/* vht oper params */
if (he_oper_params & WLAN_HEOP_VHTOP_PRESENT_MASK) {
if (len < WLAN_HEOP_VHTOP_LENGTH)
return NULL;
he_ops += WLAN_HEOP_VHTOP_LENGTH;
len -= WLAN_HEOP_VHTOP_LENGTH;
}
if (!len)
return NULL;
if (he_oper_params & WLAN_HEOP_CO_LOCATED_BSS_MASK) {
he_ops += WLAN_HEOP_CO_LOCATED_BSS_LENGTH;
len -= WLAN_HEOP_CO_LOCATED_BSS_LENGTH;
}
if (len < sizeof(struct he_oper_6g_param))
return NULL;
return (struct he_oper_6g_param *)he_ops;
}
static void
util_scan_get_chan_from_he_6g_params(struct scan_cache_entry *scan_params,
uint8_t *chan_idx)
{
struct he_oper_6g_param *he_6g_params;
uint8_t *he_ops;
he_ops = util_scan_entry_heop(scan_params);
if (!util_scan_entry_hecap(scan_params) || !he_ops)
return;
he_6g_params = util_scan_get_he_6g_params(he_ops);
if (!he_6g_params)
return;
*chan_idx = he_6g_params->primary_channel;
}
static enum wlan_phymode
util_scan_get_phymode_6g(struct wlan_objmgr_pdev *pdev,
struct scan_cache_entry *scan_params)
{
struct he_oper_6g_param *he_6g_params;
enum wlan_phymode phymode = WLAN_PHYMODE_11AXA_HE20;
uint8_t *he_ops;
uint8_t band_mask = BIT(REG_BAND_6G);
he_ops = util_scan_entry_heop(scan_params);
if (!util_scan_entry_hecap(scan_params) || !he_ops)
return phymode;
he_6g_params = util_scan_get_he_6g_params(he_ops);
if (!he_6g_params)
return phymode;
switch (he_6g_params->width) {
case WLAN_HE_6GHZ_CHWIDTH_20:
phymode = WLAN_PHYMODE_11AXA_HE20;
break;
case WLAN_HE_6GHZ_CHWIDTH_40:
phymode = WLAN_PHYMODE_11AXA_HE40;
break;
case WLAN_HE_6GHZ_CHWIDTH_80:
phymode = WLAN_PHYMODE_11AXA_HE80;
break;
case WLAN_HE_6GHZ_CHWIDTH_160_80_80:
if (WLAN_IS_HE80_80(he_6g_params))
phymode = WLAN_PHYMODE_11AXA_HE80_80;
else if (WLAN_IS_HE160(he_6g_params))
phymode = WLAN_PHYMODE_11AXA_HE160;
else
phymode = WLAN_PHYMODE_11AXA_HE80;
break;
default:
scm_err("Invalid he_6g_params width: %d", he_6g_params->width);
phymode = WLAN_PHYMODE_11AXA_HE20;
break;
}
if (he_6g_params->chan_freq_seg0)
scan_params->channel.cfreq0 =
wlan_reg_chan_band_to_freq(pdev,
he_6g_params->chan_freq_seg0,
band_mask);
if (he_6g_params->chan_freq_seg1)
scan_params->channel.cfreq1 =
wlan_reg_chan_band_to_freq(pdev,
he_6g_params->chan_freq_seg1,
band_mask);
return phymode;
}
#else
static void
util_scan_get_chan_from_he_6g_params(struct scan_cache_entry *scan_params,
uint8_t *chan_idx)
{}
static inline enum wlan_phymode
util_scan_get_phymode_6g(struct wlan_objmgr_pdev *pdev,
struct scan_cache_entry *scan_params)
{
return WLAN_PHYMODE_AUTO;
}
#endif
static inline
uint32_t util_scan_sec_chan_freq_from_htinfo(struct wlan_ie_htinfo_cmn *htinfo,
uint32_t primary_chan_freq)
{
if (htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_ABOVE)
return primary_chan_freq + WLAN_CHAN_SPACING_20MHZ;
else if (htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_BELOW)
return primary_chan_freq - WLAN_CHAN_SPACING_20MHZ;
return 0;
}
static enum wlan_phymode
util_scan_get_phymode_5g(struct wlan_objmgr_pdev *pdev,
struct scan_cache_entry *scan_params)
{
enum wlan_phymode phymode = WLAN_PHYMODE_AUTO;
uint16_t ht_cap = 0;
struct htcap_cmn_ie *htcap;
struct wlan_ie_htinfo_cmn *htinfo;
struct wlan_ie_vhtop *vhtop;
uint8_t band_mask = BIT(REG_BAND_5G);
htcap = (struct htcap_cmn_ie *)
util_scan_entry_htcap(scan_params);
htinfo = (struct wlan_ie_htinfo_cmn *)
util_scan_entry_htinfo(scan_params);
vhtop = (struct wlan_ie_vhtop *)
util_scan_entry_vhtop(scan_params);
if (!(htcap && htinfo))
return WLAN_PHYMODE_11A;
if (htcap)
ht_cap = le16toh(htcap->hc_cap);
if (ht_cap & WLAN_HTCAP_C_CHWIDTH40)
phymode = WLAN_PHYMODE_11NA_HT40;
else
phymode = WLAN_PHYMODE_11NA_HT20;
scan_params->channel.cfreq0 =
util_scan_sec_chan_freq_from_htinfo(htinfo,
scan_params->channel.chan_freq);
if (util_scan_entry_vhtcap(scan_params) && vhtop) {
switch (vhtop->vht_op_chwidth) {
case WLAN_VHTOP_CHWIDTH_2040:
if (ht_cap & WLAN_HTCAP_C_CHWIDTH40)
phymode = WLAN_PHYMODE_11AC_VHT40;
else
phymode = WLAN_PHYMODE_11AC_VHT20;
break;
case WLAN_VHTOP_CHWIDTH_80:
if (WLAN_IS_REVSIG_VHT80_80(vhtop))
phymode = WLAN_PHYMODE_11AC_VHT80_80;
else if (WLAN_IS_REVSIG_VHT160(vhtop))
phymode = WLAN_PHYMODE_11AC_VHT160;
else
phymode = WLAN_PHYMODE_11AC_VHT80;
break;
case WLAN_VHTOP_CHWIDTH_160:
phymode = WLAN_PHYMODE_11AC_VHT160;
break;
case WLAN_VHTOP_CHWIDTH_80_80:
phymode = WLAN_PHYMODE_11AC_VHT80_80;
break;
default:
scm_err("bad channel: %d",
vhtop->vht_op_chwidth);
phymode = WLAN_PHYMODE_11AC_VHT20;
break;
}
if (vhtop->vht_op_ch_freq_seg1)
scan_params->channel.cfreq0 =
wlan_reg_chan_band_to_freq(pdev,
vhtop->vht_op_ch_freq_seg1,
band_mask);
if (vhtop->vht_op_ch_freq_seg2)
scan_params->channel.cfreq1 =
wlan_reg_chan_band_to_freq(pdev,
vhtop->vht_op_ch_freq_seg2,
band_mask);
}
if (!util_scan_entry_hecap(scan_params))
return phymode;
/* for 5Ghz Check for HE, only if VHT cap and HE cap are present */
if (!IS_WLAN_PHYMODE_VHT(phymode))
return phymode;
switch (phymode) {
case WLAN_PHYMODE_11AC_VHT20:
phymode = WLAN_PHYMODE_11AXA_HE20;
break;
case WLAN_PHYMODE_11AC_VHT40:
phymode = WLAN_PHYMODE_11AXA_HE40;
break;
case WLAN_PHYMODE_11AC_VHT80:
phymode = WLAN_PHYMODE_11AXA_HE80;
break;
case WLAN_PHYMODE_11AC_VHT160:
phymode = WLAN_PHYMODE_11AXA_HE160;
break;
case WLAN_PHYMODE_11AC_VHT80_80:
phymode = WLAN_PHYMODE_11AXA_HE80_80;
break;
default:
phymode = WLAN_PHYMODE_11AXA_HE20;
break;
}
return phymode;
}
static enum wlan_phymode
util_scan_get_phymode_2g(struct scan_cache_entry *scan_params)
{
enum wlan_phymode phymode = WLAN_PHYMODE_AUTO;
uint16_t ht_cap = 0;
struct htcap_cmn_ie *htcap;
struct wlan_ie_htinfo_cmn *htinfo;
struct wlan_ie_vhtop *vhtop;
htcap = (struct htcap_cmn_ie *)
util_scan_entry_htcap(scan_params);
htinfo = (struct wlan_ie_htinfo_cmn *)
util_scan_entry_htinfo(scan_params);
vhtop = (struct wlan_ie_vhtop *)
util_scan_entry_vhtop(scan_params);
if (htcap)
ht_cap = le16toh(htcap->hc_cap);
if (htcap && htinfo) {
if ((ht_cap & WLAN_HTCAP_C_CHWIDTH40) &&
(htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_ABOVE))
phymode = WLAN_PHYMODE_11NG_HT40PLUS;
else if ((ht_cap & WLAN_HTCAP_C_CHWIDTH40) &&
(htinfo->hi_extchoff == WLAN_HTINFO_EXTOFFSET_BELOW))
phymode = WLAN_PHYMODE_11NG_HT40MINUS;
else
phymode = WLAN_PHYMODE_11NG_HT20;
} else if (util_scan_entry_xrates(scan_params)) {
/* only 11G stations will have more than 8 rates */
phymode = WLAN_PHYMODE_11G;
} else {
/* Some mischievous g-only APs do not set extended rates */
if (util_scan_entry_rates(scan_params)) {
if (util_is_pureg_rate(&scan_params->ie_list.rates[2],
scan_params->ie_list.rates[1]))
phymode = WLAN_PHYMODE_11G;
else
phymode = WLAN_PHYMODE_11B;
} else {
phymode = WLAN_PHYMODE_11B;
}
}
/* Check for VHT only if HT cap is present */
if (!IS_WLAN_PHYMODE_HT(phymode))
return phymode;
scan_params->channel.cfreq0 =
util_scan_sec_chan_freq_from_htinfo(htinfo,
scan_params->channel.chan_freq);
if (util_scan_entry_vhtcap(scan_params) && vhtop) {
switch (vhtop->vht_op_chwidth) {
case WLAN_VHTOP_CHWIDTH_2040:
if (phymode == WLAN_PHYMODE_11NG_HT40PLUS)
phymode = WLAN_PHYMODE_11AC_VHT40PLUS_2G;
else if (phymode == WLAN_PHYMODE_11NG_HT40MINUS)
phymode = WLAN_PHYMODE_11AC_VHT40MINUS_2G;
else
phymode = WLAN_PHYMODE_11AC_VHT20_2G;
break;
default:
scm_info("bad vht_op_chwidth: %d",
vhtop->vht_op_chwidth);
phymode = WLAN_PHYMODE_11AC_VHT20_2G;
break;
}
}
if (!util_scan_entry_hecap(scan_params))
return phymode;
if (phymode == WLAN_PHYMODE_11AC_VHT40PLUS_2G ||
phymode == WLAN_PHYMODE_11NG_HT40PLUS)
phymode = WLAN_PHYMODE_11AXG_HE40PLUS;
else if (phymode == WLAN_PHYMODE_11AC_VHT40MINUS_2G ||
phymode == WLAN_PHYMODE_11NG_HT40MINUS)
phymode = WLAN_PHYMODE_11AXG_HE40MINUS;
else
phymode = WLAN_PHYMODE_11AXG_HE20;
return phymode;
}
static enum wlan_phymode
util_scan_get_phymode(struct wlan_objmgr_pdev *pdev,
struct scan_cache_entry *scan_params)
{
if (WLAN_REG_IS_24GHZ_CH_FREQ(scan_params->channel.chan_freq))
return util_scan_get_phymode_2g(scan_params);
else if (WLAN_REG_IS_6GHZ_CHAN_FREQ(scan_params->channel.chan_freq))
return util_scan_get_phymode_6g(pdev, scan_params);
else
return util_scan_get_phymode_5g(pdev, scan_params);
}
static QDF_STATUS
util_scan_parse_chan_switch_wrapper_ie(struct scan_cache_entry *scan_params,
struct ie_header *sub_ie, qdf_size_t sub_ie_len)
{
/* Walk through to check nothing is malformed */
while (sub_ie_len >= sizeof(struct ie_header)) {
/* At least one more header is present */
sub_ie_len -= sizeof(struct ie_header);
if (sub_ie->ie_len == 0) {
sub_ie += 1;
continue;
}
if (sub_ie_len < sub_ie->ie_len) {
scm_err("Incomplete corrupted IE:%x",
WLAN_ELEMID_CHAN_SWITCH_WRAP);
return QDF_STATUS_E_INVAL;
}
switch (sub_ie->ie_id) {
case WLAN_ELEMID_COUNTRY:
scan_params->ie_list.country = (uint8_t *)sub_ie;
break;
case WLAN_ELEMID_WIDE_BAND_CHAN_SWITCH:
scan_params->ie_list.widebw = (uint8_t *)sub_ie;
break;
case WLAN_ELEMID_VHT_TX_PWR_ENVLP:
scan_params->ie_list.txpwrenvlp = (uint8_t *)sub_ie;
break;
}
/* Consume sub info element */
sub_ie_len -= sub_ie->ie_len;
/* go to next Sub IE */
sub_ie = (struct ie_header *)
(((uint8_t *) sub_ie) +
sizeof(struct ie_header) + sub_ie->ie_len);
}
return QDF_STATUS_SUCCESS;
}
bool
util_scan_is_hidden_ssid(struct ie_ssid *ssid)
{
uint8_t i;
/*
* We flag this as Hidden SSID if the Length is 0
* of the SSID only contains 0's
*/
if (!ssid || !ssid->ssid_len)
return true;
for (i = 0; i < ssid->ssid_len; i++)
if (ssid->ssid[i] != 0)
return false;
/* All 0's */
return true;
}
static QDF_STATUS
util_scan_update_rnr(struct rnr_bss_info *rnr,
struct neighbor_ap_info_field *ap_info,
uint8_t **data)
{
uint16_t fieldtype;
uint8_t *tmp = *data;
fieldtype = ap_info->tbtt_header.tbbt_info_fieldtype;
switch (fieldtype) {
case TBTT_NEIGHBOR_AP_OFFSET_ONLY:
/* Dont store it skip*/
*data = tmp + NEIGHBOR_AP_LEN;
break;
case TBTT_NEIGHBOR_AP_BSS_PARAM:
/* Dont store it skip*/
break;
case TBTT_NEIGHBOR_AP_SHORTSSID:
rnr->channel_number = ap_info->channel_number;
rnr->operating_class = ap_info->operting_class;
qdf_mem_copy(&rnr->short_ssid, &tmp[1], SHORT_SSID_LEN);
*data = tmp + NEIGHBOR_AP_LEN + SHORT_SSID_LEN;
break;
case TBTT_NEIGHBOR_AP_S_SSID_BSS_PARAM:
rnr->channel_number = ap_info->channel_number;
rnr->operating_class = ap_info->operting_class;
qdf_mem_copy(&rnr->short_ssid, &tmp[1], SHORT_SSID_LEN);
rnr->bss_params = tmp[5];
*data = tmp + NEIGHBOR_AP_LEN + SHORT_SSID_LEN + BSS_PARAMS_LEN;
break;
case TBTT_NEIGHBOR_AP_BSSID:
rnr->channel_number = ap_info->channel_number;
rnr->operating_class = ap_info->operting_class;
qdf_mem_copy(&rnr->bssid, &tmp[1], QDF_MAC_ADDR_SIZE);
*data = tmp + NEIGHBOR_AP_LEN + QDF_MAC_ADDR_SIZE;
break;
case TBTT_NEIGHBOR_AP_BSSID_BSS_PARAM:
rnr->channel_number = ap_info->channel_number;
rnr->operating_class = ap_info->operting_class;
qdf_mem_copy(&rnr->bssid, &tmp[1], QDF_MAC_ADDR_SIZE);
rnr->bss_params = tmp[7];
*data = tmp + NEIGHBOR_AP_LEN + QDF_MAC_ADDR_SIZE
+ BSS_PARAMS_LEN;
break;
case TBTT_NEIGHBOR_AP_BSSSID_S_SSID:
rnr->channel_number = ap_info->channel_number;
rnr->operating_class = ap_info->operting_class;
qdf_mem_copy(&rnr->bssid, &tmp[1], QDF_MAC_ADDR_SIZE);
qdf_mem_copy(&rnr->short_ssid, &tmp[7], SHORT_SSID_LEN);
*data = tmp + NEIGHBOR_AP_LEN + QDF_MAC_ADDR_SIZE
+ SHORT_SSID_LEN;
break;
case TBTT_NEIGHBOR_AP_BSSID_S_SSID_BSS_PARAM:
rnr->channel_number = ap_info->channel_number;
rnr->operating_class = ap_info->operting_class;
qdf_mem_copy(&rnr->bssid, &tmp[1], QDF_MAC_ADDR_SIZE);
qdf_mem_copy(&rnr->short_ssid, &tmp[7], SHORT_SSID_LEN);
rnr->bss_params = tmp[11];
*data = tmp + NEIGHBOR_AP_LEN + QDF_MAC_ADDR_SIZE
+ SHORT_SSID_LEN + BSS_PARAMS_LEN;
break;
default:
scm_debug("Wrong fieldtype");
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
util_scan_parse_rnr_ie(struct scan_cache_entry *scan_entry,
struct ie_header *ie)
{
uint32_t rnr_ie_len;
uint16_t tbtt_count, tbtt_length, i, fieldtype;
uint8_t *data;
struct neighbor_ap_info_field *neighbor_ap_info;
rnr_ie_len = ie->ie_len;
data = (uint8_t *)ie + sizeof(struct ie_header);
while (data < (uint8_t *)ie + rnr_ie_len + 2) {
neighbor_ap_info = (struct neighbor_ap_info_field *)data;
tbtt_count = neighbor_ap_info->tbtt_header.tbtt_info_count;
tbtt_length = neighbor_ap_info->tbtt_header.tbtt_info_length;
fieldtype = neighbor_ap_info->tbtt_header.tbbt_info_fieldtype;
scm_debug("channel number %d, op class %d",
neighbor_ap_info->channel_number,
neighbor_ap_info->operting_class);
scm_debug("tbtt_count %d, tbtt_length %d, fieldtype %d",
tbtt_count, tbtt_length, fieldtype);
for (i = 0; i < tbtt_count && i < MAX_RNR_BSS; i++) {
data = data + sizeof(struct neighbor_ap_info_field);
util_scan_update_rnr(&scan_entry->rnr.bss_info[i],
neighbor_ap_info,
&data);
}
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
util_scan_parse_extn_ie(struct scan_cache_entry *scan_params,
struct ie_header *ie)
{
struct extn_ie_header *extn_ie = (struct extn_ie_header *) ie;
switch (extn_ie->ie_extn_id) {
case WLAN_EXTN_ELEMID_MAX_CHAN_SWITCH_TIME:
scan_params->ie_list.mcst = (uint8_t *)ie;
break;
case WLAN_EXTN_ELEMID_SRP:
scan_params->ie_list.srp = (uint8_t *)ie;
break;
case WLAN_EXTN_ELEMID_HECAP:
scan_params->ie_list.hecap = (uint8_t *)ie;
break;
case WLAN_EXTN_ELEMID_HEOP:
scan_params->ie_list.heop = (uint8_t *)ie;
break;
case WLAN_EXTN_ELEMID_ESP:
scan_params->ie_list.esp = (uint8_t *)ie;
break;
case WLAN_EXTN_ELEMID_MUEDCA:
scan_params->ie_list.muedca = (uint8_t *)ie;
break;
case WLAN_EXTN_ELEMID_HE_6G_CAP:
scan_params->ie_list.hecap_6g = (uint8_t *)ie;
break;
default:
break;
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
util_scan_parse_vendor_ie(struct scan_cache_entry *scan_params,
struct ie_header *ie)
{
if (!scan_params->ie_list.vendor)
scan_params->ie_list.vendor = (uint8_t *)ie;
if (is_wpa_oui((uint8_t *)ie)) {
scan_params->ie_list.wpa = (uint8_t *)ie;
} else if (is_wps_oui((uint8_t *)ie)) {
scan_params->ie_list.wps = (uint8_t *)ie;
/* WCN IE should be a subset of WPS IE */
if (is_wcn_oui((uint8_t *)ie))
scan_params->ie_list.wcn = (uint8_t *)ie;
} else if (is_wme_param((uint8_t *)ie)) {
scan_params->ie_list.wmeparam = (uint8_t *)ie;
} else if (is_wme_info((uint8_t *)ie)) {
scan_params->ie_list.wmeinfo = (uint8_t *)ie;
} else if (is_atheros_oui((uint8_t *)ie)) {
scan_params->ie_list.athcaps = (uint8_t *)ie;
} else if (is_atheros_extcap_oui((uint8_t *)ie)) {
scan_params->ie_list.athextcaps = (uint8_t *)ie;
} else if (is_sfa_oui((uint8_t *)ie)) {
scan_params->ie_list.sfa = (uint8_t *)ie;
} else if (is_p2p_oui((uint8_t *)ie)) {
scan_params->ie_list.p2p = (uint8_t *)ie;
} else if (is_qca_son_oui((uint8_t *)ie,
QCA_OUI_WHC_AP_INFO_SUBTYPE)) {
scan_params->ie_list.sonadv = (uint8_t *)ie;
} else if (is_ht_cap((uint8_t *)ie)) {
/* we only care if there isn't already an HT IE (ANA) */
if (!scan_params->ie_list.htcap) {
if (ie->ie_len != (WLAN_VENDOR_HT_IE_OFFSET_LEN +
sizeof(struct htcap_cmn_ie)))
return QDF_STATUS_E_INVAL;
scan_params->ie_list.htcap =
(uint8_t *)&(((struct wlan_vendor_ie_htcap *)ie)->ie);
}
} else if (is_ht_info((uint8_t *)ie)) {
/* we only care if there isn't already an HT IE (ANA) */
if (!scan_params->ie_list.htinfo) {
if (ie->ie_len != WLAN_VENDOR_HT_IE_OFFSET_LEN +
sizeof(struct wlan_ie_htinfo_cmn))
return QDF_STATUS_E_INVAL;
scan_params->ie_list.htinfo =
(uint8_t *)&(((struct wlan_vendor_ie_htinfo *)
ie)->hi_ie);
}
} else if (is_interop_vht((uint8_t *)ie) &&
!(scan_params->ie_list.vhtcap)) {
uint8_t *vendor_ie = (uint8_t *)(ie);
if (ie->ie_len < ((WLAN_VENDOR_VHTCAP_IE_OFFSET +
sizeof(struct wlan_ie_vhtcaps)) -
sizeof(struct ie_header)))
return QDF_STATUS_E_INVAL;
vendor_ie = ((uint8_t *)(ie)) + WLAN_VENDOR_VHTCAP_IE_OFFSET;
if (vendor_ie[1] != (sizeof(struct wlan_ie_vhtcaps)) -
sizeof(struct ie_header))
return QDF_STATUS_E_INVAL;
/* location where Interop Vht Cap IE and VHT OP IE Present */
scan_params->ie_list.vhtcap = (((uint8_t *)(ie)) +
WLAN_VENDOR_VHTCAP_IE_OFFSET);
if (ie->ie_len > ((WLAN_VENDOR_VHTCAP_IE_OFFSET +
sizeof(struct wlan_ie_vhtcaps)) -
sizeof(struct ie_header))) {
if (ie->ie_len < ((WLAN_VENDOR_VHTOP_IE_OFFSET +
sizeof(struct wlan_ie_vhtop)) -
sizeof(struct ie_header)))
return QDF_STATUS_E_INVAL;
vendor_ie = ((uint8_t *)(ie)) +
WLAN_VENDOR_VHTOP_IE_OFFSET;
if (vendor_ie[1] != (sizeof(struct wlan_ie_vhtop) -
sizeof(struct ie_header)))
return QDF_STATUS_E_INVAL;
scan_params->ie_list.vhtop = (((uint8_t *)(ie)) +
WLAN_VENDOR_VHTOP_IE_OFFSET);
}
} else if (is_bwnss_oui((uint8_t *)ie)) {
/*
* Bandwidth-NSS map has sub-type & version.
* hence copy data just after version byte
*/
scan_params->ie_list.bwnss_map = (((uint8_t *)ie) + 8);
} else if (is_mbo_oce_oui((uint8_t *)ie)) {
scan_params->ie_list.mbo_oce = (uint8_t *)ie;
} else if (is_extender_oui((uint8_t *)ie)) {
scan_params->ie_list.extender = (uint8_t *)ie;
} else if (is_adaptive_11r_oui((uint8_t *)ie)) {
if ((ie->ie_len < OUI_LENGTH) ||
(ie->ie_len > MAX_ADAPTIVE_11R_IE_LEN))
return QDF_STATUS_E_INVAL;
scan_params->ie_list.adaptive_11r = (uint8_t *)ie +
sizeof(struct ie_header);
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
util_scan_populate_bcn_ie_list(struct scan_cache_entry *scan_params,
uint8_t *chan_idx)
{
struct ie_header *ie, *sub_ie;
uint32_t ie_len, sub_ie_len;
QDF_STATUS status;
ie_len = util_scan_entry_ie_len(scan_params);
ie = (struct ie_header *)
util_scan_entry_ie_data(scan_params);
while (ie_len >= sizeof(struct ie_header)) {
ie_len -= sizeof(struct ie_header);
if (!ie->ie_len) {
ie += 1;
continue;
}
if (ie_len < ie->ie_len) {
scm_debug("Incomplete corrupted IE:%x",
ie->ie_id);
return QDF_STATUS_E_INVAL;
}
switch (ie->ie_id) {
case WLAN_ELEMID_SSID:
if (ie->ie_len > (sizeof(struct ie_ssid) -
sizeof(struct ie_header)))
goto err;
scan_params->ie_list.ssid = (uint8_t *)ie;
break;
case WLAN_ELEMID_RATES:
if (ie->ie_len > WLAN_SUPPORTED_RATES_IE_MAX_LEN)
goto err;
scan_params->ie_list.rates = (uint8_t *)ie;
break;
case WLAN_ELEMID_DSPARMS:
if (ie->ie_len != WLAN_DS_PARAM_IE_MAX_LEN)
return QDF_STATUS_E_INVAL;
scan_params->ie_list.ds_param = (uint8_t *)ie;
*chan_idx =
((struct ds_ie *)ie)->cur_chan;
break;
case WLAN_ELEMID_TIM:
if (ie->ie_len < WLAN_TIM_IE_MIN_LENGTH)
goto err;
scan_params->ie_list.tim = (uint8_t *)ie;
scan_params->dtim_period =
((struct wlan_tim_ie *)ie)->tim_period;
break;
case WLAN_ELEMID_COUNTRY:
if (ie->ie_len < WLAN_COUNTRY_IE_MIN_LEN)
goto err;
scan_params->ie_list.country = (uint8_t *)ie;
break;
case WLAN_ELEMID_QBSS_LOAD:
if (ie->ie_len != sizeof(struct qbss_load_ie) -
sizeof(struct ie_header)) {
/*
* Expected QBSS IE length is 5Bytes; For some
* old cisco AP, QBSS IE length is 4Bytes, which
* doesn't match with latest spec, So ignore
* QBSS IE in such case.
*/
break;
}
scan_params->ie_list.qbssload = (uint8_t *)ie;
break;
case WLAN_ELEMID_CHANSWITCHANN:
if (ie->ie_len != WLAN_CSA_IE_MAX_LEN)
goto err;
scan_params->ie_list.csa = (uint8_t *)ie;
break;
case WLAN_ELEMID_IBSSDFS:
if (ie->ie_len < WLAN_IBSSDFS_IE_MIN_LEN)
goto err;
scan_params->ie_list.ibssdfs = (uint8_t *)ie;
break;
case WLAN_ELEMID_QUIET:
if (ie->ie_len != WLAN_QUIET_IE_MAX_LEN)
goto err;
scan_params->ie_list.quiet = (uint8_t *)ie;
break;
case WLAN_ELEMID_ERP:
if (ie->ie_len != (sizeof(struct erp_ie) -
sizeof(struct ie_header)))
goto err;
scan_params->erp = ((struct erp_ie *)ie)->value;
break;
case WLAN_ELEMID_HTCAP_ANA:
if (ie->ie_len != sizeof(struct htcap_cmn_ie))
goto err;
scan_params->ie_list.htcap =
(uint8_t *)&(((struct htcap_ie *)ie)->ie);
break;
case WLAN_ELEMID_RSN:
if (ie->ie_len < WLAN_RSN_IE_MIN_LEN)
goto err;
scan_params->ie_list.rsn = (uint8_t *)ie;
break;
case WLAN_ELEMID_XRATES:
scan_params->ie_list.xrates = (uint8_t *)ie;
break;
case WLAN_ELEMID_EXTCHANSWITCHANN:
if (ie->ie_len != WLAN_XCSA_IE_MAX_LEN)
goto err;
scan_params->ie_list.xcsa = (uint8_t *)ie;
break;
case WLAN_ELEMID_SECCHANOFFSET:
if (ie->ie_len != WLAN_SECCHANOFF_IE_MAX_LEN)
goto err;
scan_params->ie_list.secchanoff = (uint8_t *)ie;
break;
case WLAN_ELEMID_HTINFO_ANA:
if (ie->ie_len != sizeof(struct wlan_ie_htinfo_cmn))
goto err;
scan_params->ie_list.htinfo =
(uint8_t *)&(((struct wlan_ie_htinfo *) ie)->hi_ie);
*chan_idx =
((struct wlan_ie_htinfo_cmn *)
(scan_params->ie_list.htinfo))->hi_ctrlchannel;
break;
case WLAN_ELEMID_WAPI:
if (ie->ie_len < WLAN_WAPI_IE_MIN_LEN)
goto err;
scan_params->ie_list.wapi = (uint8_t *)ie;
break;
case WLAN_ELEMID_XCAPS:
if (ie->ie_len > WLAN_EXTCAP_IE_MAX_LEN)
goto err;
scan_params->ie_list.extcaps = (uint8_t *)ie;
break;
case WLAN_ELEMID_VHTCAP:
if (ie->ie_len != (sizeof(struct wlan_ie_vhtcaps) -
sizeof(struct ie_header)))
goto err;
scan_params->ie_list.vhtcap = (uint8_t *)ie;
break;
case WLAN_ELEMID_VHTOP:
if (ie->ie_len != (sizeof(struct wlan_ie_vhtop) -
sizeof(struct ie_header)))
goto err;
scan_params->ie_list.vhtop = (uint8_t *)ie;
break;
case WLAN_ELEMID_OP_MODE_NOTIFY:
if (ie->ie_len != WLAN_OPMODE_IE_MAX_LEN)
goto err;
scan_params->ie_list.opmode = (uint8_t *)ie;
break;
case WLAN_ELEMID_MOBILITY_DOMAIN:
if (ie->ie_len != WLAN_MOBILITY_DOMAIN_IE_MAX_LEN)
goto err;
scan_params->ie_list.mdie = (uint8_t *)ie;
break;
case WLAN_ELEMID_VENDOR:
status = util_scan_parse_vendor_ie(scan_params,
ie);
if (QDF_IS_STATUS_ERROR(status))
goto err_status;
break;
case WLAN_ELEMID_CHAN_SWITCH_WRAP:
scan_params->ie_list.cswrp = (uint8_t *)ie;
/* Go to next sub IE */
sub_ie = (struct ie_header *)
(((uint8_t *)ie) + sizeof(struct ie_header));
sub_ie_len = ie->ie_len;
status =
util_scan_parse_chan_switch_wrapper_ie(
scan_params, sub_ie, sub_ie_len);
if (QDF_IS_STATUS_ERROR(status)) {
goto err_status;
}
break;
case WLAN_ELEMID_FILS_INDICATION:
if (ie->ie_len < WLAN_FILS_INDICATION_IE_MIN_LEN)
goto err;
scan_params->ie_list.fils_indication = (uint8_t *)ie;
break;
case WLAN_ELEMID_EXTN_ELEM:
status = util_scan_parse_extn_ie(scan_params, ie);
if (QDF_IS_STATUS_ERROR(status))
goto err_status;
break;
case WLAN_ELEMID_REDUCED_NEIGHBOR_REPORT:
if (ie->ie_len < WLAN_RNR_IE_MIN_LEN)
goto err;
scan_params->ie_list.rnrie = (uint8_t *)ie;
status = util_scan_parse_rnr_ie(scan_params, ie);
if (QDF_IS_STATUS_ERROR(status))
goto err_status;
break;
default:
break;
}
/* Consume info element */
ie_len -= ie->ie_len;
/* Go to next IE */
ie = (struct ie_header *)
(((uint8_t *) ie) +
sizeof(struct ie_header) +
ie->ie_len);
}
return QDF_STATUS_SUCCESS;
err:
status = QDF_STATUS_E_INVAL;
err_status:
scm_debug("failed to parse IE - id: %d, len: %d",
ie->ie_id, ie->ie_len);
return status;
}
/**
* util_scan_update_esp_data: update ESP params from beacon/probe response
* @esp_information: pointer to wlan_esp_information
* @scan_entry: new received entry
*
* The Estimated Service Parameters element is
* used by a AP to provide information to another STA which
* can then use the information as input to an algorithm to
* generate an estimate of throughput between the two STAs.
* The ESP Information List field contains from 1 to 4 ESP
* Information fields(each field 24 bits), each corresponding
* to an access category for which estimated service parameters
* information is provided.
*
* Return: None
*/
static void util_scan_update_esp_data(struct wlan_esp_ie *esp_information,
struct scan_cache_entry *scan_entry)
{
uint8_t *data;
int i = 0;
uint64_t total_elements;
struct wlan_esp_info *esp_info;
struct wlan_esp_ie *esp_ie;
esp_ie = (struct wlan_esp_ie *)
util_scan_entry_esp_info(scan_entry);
total_elements = esp_ie->esp_len;
data = (uint8_t *)esp_ie + 3;
do_div(total_elements, ESP_INFORMATION_LIST_LENGTH);
if (total_elements > MAX_ESP_INFORMATION_FIELD) {
scm_err("No of Air time fractions are greater than supported");
return;
}
for (i = 0; i < total_elements; i++) {
esp_info = (struct wlan_esp_info *)data;
if (esp_info->access_category == ESP_AC_BK) {
qdf_mem_copy(&esp_information->esp_info_AC_BK,
data, 3);
data = data + ESP_INFORMATION_LIST_LENGTH;
continue;
}
if (esp_info->access_category == ESP_AC_BE) {
qdf_mem_copy(&esp_information->esp_info_AC_BE,
data, 3);
data = data + ESP_INFORMATION_LIST_LENGTH;
continue;
}
if (esp_info->access_category == ESP_AC_VI) {
qdf_mem_copy(&esp_information->esp_info_AC_VI,
data, 3);
data = data + ESP_INFORMATION_LIST_LENGTH;
continue;
}
if (esp_info->access_category == ESP_AC_VO) {
qdf_mem_copy(&esp_information->esp_info_AC_VO,
data, 3);
data = data + ESP_INFORMATION_LIST_LENGTH;
break;
}
}
}
/**
* util_scan_scm_update_bss_with_esp_dataa: calculate estimated air time
* fraction
* @scan_entry: new received entry
*
* This function process all Access category ESP params and provide
* best effort air time fraction.
* If best effort is not available, it will choose VI, VO and BK in sequence
*
*/
static void util_scan_scm_update_bss_with_esp_data(
struct scan_cache_entry *scan_entry)
{
uint8_t air_time_fraction = 0;
struct wlan_esp_ie esp_information;
if (!scan_entry->ie_list.esp)
return;
util_scan_update_esp_data(&esp_information, scan_entry);
/*
* If the ESP metric is transmitting multiple airtime fractions, then
* follow the sequence AC_BE, AC_VI, AC_VO, AC_BK and pick whichever is
* the first one available
*/
if (esp_information.esp_info_AC_BE.access_category
== ESP_AC_BE)
air_time_fraction =
esp_information.esp_info_AC_BE.
estimated_air_fraction;
else if (esp_information.esp_info_AC_VI.access_category
== ESP_AC_VI)
air_time_fraction =
esp_information.esp_info_AC_VI.
estimated_air_fraction;
else if (esp_information.esp_info_AC_VO.access_category
== ESP_AC_VO)
air_time_fraction =
esp_information.esp_info_AC_VO.
estimated_air_fraction;
else if (esp_information.esp_info_AC_BK.access_category
== ESP_AC_BK)
air_time_fraction =
esp_information.esp_info_AC_BK.
estimated_air_fraction;
scan_entry->air_time_fraction = air_time_fraction;
}
/**
* util_scan_scm_calc_nss_supported_by_ap() - finds out nss from AP
* @scan_entry: new received entry
*
* Return: number of nss advertised by AP
*/
static int util_scan_scm_calc_nss_supported_by_ap(
struct scan_cache_entry *scan_params)
{
struct htcap_cmn_ie *htcap;
struct wlan_ie_vhtcaps *vhtcaps;
uint8_t rx_mcs_map;
htcap = (struct htcap_cmn_ie *)
util_scan_entry_htcap(scan_params);
vhtcaps = (struct wlan_ie_vhtcaps *)
util_scan_entry_vhtcap(scan_params);
if (vhtcaps) {
rx_mcs_map = vhtcaps->rx_mcs_map;
if ((rx_mcs_map & 0xC0) != 0xC0)
return 4;
if ((rx_mcs_map & 0x30) != 0x30)
return 3;
if ((rx_mcs_map & 0x0C) != 0x0C)
return 2;
} else if (htcap) {
if (htcap->mcsset[3])
return 4;
if (htcap->mcsset[2])
return 3;
if (htcap->mcsset[1])
return 2;
}
return 1;
}
#ifdef WLAN_DFS_CHAN_HIDDEN_SSID
QDF_STATUS
util_scan_add_hidden_ssid(struct wlan_objmgr_pdev *pdev, qdf_nbuf_t bcnbuf)
{
struct wlan_frame_hdr *hdr;
struct wlan_bcn_frame *bcn;
struct wlan_scan_obj *scan_obj;
struct wlan_ssid *conf_ssid;
struct ie_header *ie;
uint32_t frame_len = qdf_nbuf_len(bcnbuf);
uint16_t bcn_ie_offset, ssid_ie_start_offset, ssid_ie_end_offset;
uint16_t tmplen, ie_length;
uint8_t *pbeacon, *tmp;
bool set_ssid_flag = false;
struct ie_ssid *ssid;
uint8_t pdev_id;
if (!pdev) {
scm_warn("pdev: 0x%pK is NULL", pdev);
return QDF_STATUS_E_NULL_VALUE;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
scan_obj = wlan_pdev_get_scan_obj(pdev);
if (!scan_obj) {
scm_warn("null scan_obj");
return QDF_STATUS_E_NULL_VALUE;
}
conf_ssid = &scan_obj->pdev_info[pdev_id].conf_ssid;
hdr = (struct wlan_frame_hdr *)qdf_nbuf_data(bcnbuf);
/* received bssid does not match configured bssid */
if (qdf_mem_cmp(hdr->i_addr3, scan_obj->pdev_info[pdev_id].conf_bssid,
QDF_MAC_ADDR_SIZE) ||
conf_ssid->length == 0) {
return QDF_STATUS_SUCCESS;
}
bcn = (struct wlan_bcn_frame *)(qdf_nbuf_data(bcnbuf) + sizeof(*hdr));
pbeacon = (uint8_t *)bcn;
ie = (struct ie_header *)(pbeacon +
offsetof(struct wlan_bcn_frame, ie));
bcn_ie_offset = offsetof(struct wlan_bcn_frame, ie);
ie_length = (uint16_t)(frame_len - sizeof(*hdr) -
bcn_ie_offset);
while (ie_length >= sizeof(struct ie_header)) {
ie_length -= sizeof(struct ie_header);
bcn_ie_offset += sizeof(struct ie_header);
if (ie_length < ie->ie_len) {
scm_debug("Incomplete corrupted IE:%x", ie->ie_id);
return QDF_STATUS_E_INVAL;
}
if (ie->ie_id == WLAN_ELEMID_SSID) {
if (ie->ie_len > (sizeof(struct ie_ssid) -
sizeof(struct ie_header))) {
return QDF_STATUS_E_INVAL;
}
ssid = (struct ie_ssid *)ie;
if (util_scan_is_hidden_ssid(ssid)) {
set_ssid_flag = true;
ssid_ie_start_offset = bcn_ie_offset -
sizeof(struct ie_header);
ssid_ie_end_offset = bcn_ie_offset +
ie->ie_len;
}
}
if (ie->ie_len == 0) {
ie += 1; /* next IE */
continue;
}
if (ie->ie_id == WLAN_ELEMID_VENDOR &&
is_wps_oui((uint8_t *)ie)) {
set_ssid_flag = false;
break;
}
/* Consume info element */
ie_length -= ie->ie_len;
/* Go to next IE */
ie = (struct ie_header *)(((uint8_t *)ie) +
sizeof(struct ie_header) +
ie->ie_len);
}
if (set_ssid_flag) {
/* Hidden SSID if the Length is 0 */
if (!ssid->ssid_len) {
/* increase the taillength by length of ssid */
if (qdf_nbuf_put_tail(bcnbuf,
conf_ssid->length) == NULL) {
scm_debug("No enough tailroom");
return QDF_STATUS_E_NOMEM;
}
/* length of the buffer to be copied */
tmplen = frame_len -
sizeof(*hdr) - ssid_ie_end_offset;
/*
* tmp memory to copy the beacon info
* after ssid ie.
*/
tmp = qdf_mem_malloc(tmplen * sizeof(u_int8_t));
if (!tmp)
return QDF_STATUS_E_NOMEM;
/* Copy beacon data after ssid ie to tmp */
qdf_nbuf_copy_bits(bcnbuf, (sizeof(*hdr) +
ssid_ie_end_offset), tmplen, tmp);
/* Add ssid length */
*(pbeacon + (ssid_ie_start_offset + 1))
= conf_ssid->length;
/* Insert the SSID string */
qdf_mem_copy((pbeacon + ssid_ie_end_offset),
conf_ssid->ssid, conf_ssid->length);
/* Copy rest of the beacon data */
qdf_mem_copy((pbeacon + ssid_ie_end_offset +
conf_ssid->length), tmp, tmplen);
qdf_mem_free(tmp);
/* Hidden ssid with all 0's */
} else if (ssid->ssid_len == conf_ssid->length) {
/* Insert the SSID string */
qdf_mem_copy((pbeacon + ssid_ie_start_offset +
sizeof(struct ie_header)),
conf_ssid->ssid, conf_ssid->length);
} else {
scm_debug("mismatch in hidden ssid length");
return QDF_STATUS_E_INVAL;
}
}
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_DFS_CHAN_HIDDEN_SSID */
#ifdef WLAN_ADAPTIVE_11R
/**
* scm_fill_adaptive_11r_cap() - Check if the AP supports adaptive 11r
* @scan_entry: Pointer to the scan entry
*
* Return: true if adaptive 11r is advertised else false
*/
static void scm_fill_adaptive_11r_cap(struct scan_cache_entry *scan_entry)
{
uint8_t *ie;
uint8_t data;
bool adaptive_11r;
ie = util_scan_entry_adaptive_11r(scan_entry);
if (!ie)
return;
data = *(ie + OUI_LENGTH);
adaptive_11r = (data & 0x1) ? true : false;
scan_entry->adaptive_11r_ap = adaptive_11r;
}
#else
static void scm_fill_adaptive_11r_cap(struct scan_cache_entry *scan_entry)
{
scan_entry->adaptive_11r_ap = false;
}
#endif
static QDF_STATUS
util_scan_gen_scan_entry(struct wlan_objmgr_pdev *pdev,
uint8_t *frame, qdf_size_t frame_len,
uint32_t frm_subtype,
struct mgmt_rx_event_params *rx_param,
struct scan_mbssid_info *mbssid_info,
qdf_list_t *scan_list)
{
struct wlan_frame_hdr *hdr;
struct wlan_bcn_frame *bcn;
QDF_STATUS status = QDF_STATUS_SUCCESS;
struct ie_ssid *ssid;
struct scan_cache_entry *scan_entry;
struct qbss_load_ie *qbss_load;
struct scan_cache_node *scan_node;
uint8_t i, chan_idx = 0;
scan_entry = qdf_mem_malloc_atomic(sizeof(*scan_entry));
if (!scan_entry) {
scm_err("failed to allocate memory for scan_entry");
return QDF_STATUS_E_NOMEM;
}
scan_entry->raw_frame.ptr =
qdf_mem_malloc_atomic(frame_len);
if (!scan_entry->raw_frame.ptr) {
scm_err("failed to allocate memory for frame");
qdf_mem_free(scan_entry);
return QDF_STATUS_E_NOMEM;
}
bcn = (struct wlan_bcn_frame *)
(frame + sizeof(*hdr));
hdr = (struct wlan_frame_hdr *)frame;
/* update timestamp in nanoseconds needed by kernel layers */
scan_entry->boottime_ns = qdf_get_bootbased_boottime_ns();
scan_entry->frm_subtype = frm_subtype;
qdf_mem_copy(scan_entry->bssid.bytes,
hdr->i_addr3, QDF_MAC_ADDR_SIZE);
/* Scr addr */
qdf_mem_copy(scan_entry->mac_addr.bytes,
hdr->i_addr2, QDF_MAC_ADDR_SIZE);
scan_entry->seq_num =
(le16toh(*(uint16_t *)hdr->i_seq) >> WLAN_SEQ_SEQ_SHIFT);
scan_entry->snr = rx_param->snr;
scan_entry->avg_snr = WLAN_SNR_IN(scan_entry->snr);
scan_entry->rssi_raw = rx_param->rssi;
scan_entry->avg_rssi = WLAN_RSSI_IN(scan_entry->rssi_raw);
scan_entry->tsf_delta = rx_param->tsf_delta;
scan_entry->pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
/* Copy per chain rssi to scan entry */
qdf_mem_copy(scan_entry->per_chain_rssi, rx_param->rssi_ctl,
WLAN_MGMT_TXRX_HOST_MAX_ANTENNA);
if (!wlan_psoc_nif_fw_ext_cap_get(wlan_pdev_get_psoc(pdev),
WLAN_SOC_CEXT_HW_DB2DBM)) {
for (i = 0; i < WLAN_MGMT_TXRX_HOST_MAX_ANTENNA; i++) {
if (scan_entry->per_chain_rssi[i] !=
WLAN_INVALID_PER_CHAIN_SNR)
scan_entry->per_chain_rssi[i] +=
WLAN_NOISE_FLOOR_DBM_DEFAULT;
else
scan_entry->per_chain_rssi[i] =
WLAN_INVALID_PER_CHAIN_RSSI;
}
}
/* store jiffies */
scan_entry->rrm_parent_tsf = (uint32_t)qdf_system_ticks();
scan_entry->bcn_int = le16toh(bcn->beacon_interval);
/*
* In case if the beacon dosnt have
* valid beacon interval falback to def
*/
if (!scan_entry->bcn_int)
scan_entry->bcn_int = 100;
scan_entry->cap_info.value = le16toh(bcn->capability.value);
qdf_mem_copy(scan_entry->tsf_info.data,
bcn->timestamp, 8);
scan_entry->erp = ERP_NON_ERP_PRESENT;
scan_entry->scan_entry_time =
qdf_mc_timer_get_system_time();
scan_entry->raw_frame.len = frame_len;
qdf_mem_copy(scan_entry->raw_frame.ptr,
frame, frame_len);
status = util_scan_populate_bcn_ie_list(scan_entry, &chan_idx);
if (QDF_IS_STATUS_ERROR(status)) {
scm_debug("failed to parse beacon IE");
qdf_mem_free(scan_entry->raw_frame.ptr);
qdf_mem_free(scan_entry);
return QDF_STATUS_E_FAILURE;
}
ssid = (struct ie_ssid *)
scan_entry->ie_list.ssid;
if (ssid && (ssid->ssid_len > WLAN_SSID_MAX_LEN)) {
qdf_mem_free(scan_entry->raw_frame.ptr);
qdf_mem_free(scan_entry);
return QDF_STATUS_E_FAILURE;
}
if (scan_entry->ie_list.p2p)
scan_entry->is_p2p = true;
if (!chan_idx && util_scan_entry_hecap(scan_entry))
util_scan_get_chan_from_he_6g_params(scan_entry, &chan_idx);
if (chan_idx) {
uint8_t band_mask = BIT(wlan_reg_freq_to_band(
rx_param->chan_freq));
scan_entry->channel.chan_freq =
wlan_reg_chan_band_to_freq(
pdev, chan_idx,
band_mask);
}
/* If no channel info is present in beacon use meta channel */
if (!scan_entry->channel.chan_freq) {
scan_entry->channel.chan_freq = rx_param->chan_freq;
} else if (rx_param->chan_freq !=
scan_entry->channel.chan_freq) {
if (!wlan_reg_is_49ghz_freq(scan_entry->channel.chan_freq))
scan_entry->channel_mismatch = true;
}
if (util_scan_is_hidden_ssid(ssid)) {
scan_entry->ie_list.ssid = NULL;
scan_entry->is_hidden_ssid = true;
} else {
qdf_mem_copy(scan_entry->ssid.ssid,
ssid->ssid, ssid->ssid_len);
scan_entry->ssid.length = ssid->ssid_len;
scan_entry->hidden_ssid_timestamp =
scan_entry->scan_entry_time;
}
qdf_mem_copy(&scan_entry->mbssid_info, mbssid_info,
sizeof(scan_entry->mbssid_info));
scan_entry->phy_mode = util_scan_get_phymode(pdev, scan_entry);
scan_entry->nss = util_scan_scm_calc_nss_supported_by_ap(scan_entry);
scm_fill_adaptive_11r_cap(scan_entry);
util_scan_scm_update_bss_with_esp_data(scan_entry);
qbss_load = (struct qbss_load_ie *)
util_scan_entry_qbssload(scan_entry);
if (qbss_load)
scan_entry->qbss_chan_load = qbss_load->qbss_chan_load;
scan_node = qdf_mem_malloc_atomic(sizeof(*scan_node));
if (!scan_node) {
qdf_mem_free(scan_entry->raw_frame.ptr);
qdf_mem_free(scan_entry);
return QDF_STATUS_E_FAILURE;
}
scan_node->entry = scan_entry;
qdf_list_insert_front(scan_list, &scan_node->node);
return status;
}
/**
* util_scan_find_ie() - find information element
* @eid: element id
* @ies: pointer consisting of IEs
* @len: IE length
*
* Return: NULL if the element ID is not found or
* a pointer to the first byte of the requested
* element
*/
static uint8_t *util_scan_find_ie(uint8_t eid, uint8_t *ies,
int32_t len)
{
while (len >= 2 && len >= ies[1] + 2) {
if (ies[0] == eid)
return ies;
len -= ies[1] + 2;
ies += ies[1] + 2;
}
return NULL;
}
#ifdef WLAN_FEATURE_MBSSID
static void util_gen_new_bssid(uint8_t *bssid, uint8_t max_bssid,
uint8_t mbssid_index,
uint8_t *new_bssid_addr)
{
uint8_t lsb_n;
int i;
for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
new_bssid_addr[i] = bssid[i];
lsb_n = new_bssid_addr[5] & ((1 << max_bssid) - 1);
new_bssid_addr[5] &= ~((1 << max_bssid) - 1);
new_bssid_addr[5] |= (lsb_n + mbssid_index) % (1 << max_bssid);
}
static uint32_t util_gen_new_ie(uint8_t *ie, uint32_t ielen,
uint8_t *subelement,
size_t subie_len, uint8_t *new_ie)
{
uint8_t *pos, *tmp;
const uint8_t *tmp_old, *tmp_new;
uint8_t *sub_copy;
/* copy subelement as we need to change its content to
* mark an ie after it is processed.
*/
sub_copy = qdf_mem_malloc(subie_len);
if (!sub_copy)
return 0;
qdf_mem_copy(sub_copy, subelement, subie_len);
pos = &new_ie[0];
/* new ssid */
tmp_new = util_scan_find_ie(WLAN_ELEMID_SSID, sub_copy, subie_len);
if (tmp_new) {
qdf_mem_copy(pos, tmp_new, tmp_new[1] + 2);
pos += (tmp_new[1] + 2);
}
/* go through IEs in ie (skip SSID) and subelement,
* merge them into new_ie
*/
tmp_old = util_scan_find_ie(WLAN_ELEMID_SSID, ie, ielen);
tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
if (tmp_old[0] == 0) {
tmp_old++;
continue;
}
tmp = (uint8_t *)util_scan_find_ie(tmp_old[0], sub_copy,
subie_len);
if (!tmp) {
/* ie in old ie but not in subelement */
if (tmp_old[0] != WLAN_ELEMID_MULTIPLE_BSSID) {
qdf_mem_copy(pos, tmp_old, tmp_old[1] + 2);
pos += tmp_old[1] + 2;
}
} else {
/* ie in transmitting ie also in subelement,
* copy from subelement and flag the ie in subelement
* as copied (by setting eid field to 0xff). For
* vendor ie, compare OUI + type + subType to
* determine if they are the same ie.
*/
if (tmp_old[0] == WLAN_ELEMID_VENDOR) {
if (!qdf_mem_cmp(tmp_old + 2, tmp + 2, 5)) {
/* same vendor ie, copy from
* subelement
*/
qdf_mem_copy(pos, tmp, tmp[1] + 2);
pos += tmp[1] + 2;
tmp[0] = 0xff;
} else {
qdf_mem_copy(pos, tmp_old,
tmp_old[1] + 2);
pos += tmp_old[1] + 2;
}
} else {
/* copy ie from subelement into new ie */
qdf_mem_copy(pos, tmp, tmp[1] + 2);
pos += tmp[1] + 2;
tmp[0] = 0xff;
}
}
if (tmp_old + tmp_old[1] + 2 - ie == ielen)
break;
tmp_old += tmp_old[1] + 2;
}
/* go through subelement again to check if there is any ie not
* copied to new ie, skip ssid, capability, bssid-index ie
*/
tmp_new = sub_copy;
while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
if (!(tmp_new[0] == WLAN_ELEMID_NONTX_BSSID_CAP ||
tmp_new[0] == WLAN_ELEMID_SSID ||
tmp_new[0] == WLAN_ELEMID_MULTI_BSSID_IDX ||
tmp_new[0] == 0xff)) {
qdf_mem_copy(pos, tmp_new, tmp_new[1] + 2);
pos += tmp_new[1] + 2;
}
if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
break;
tmp_new += tmp_new[1] + 2;
}
qdf_mem_free(sub_copy);
return pos - new_ie;
}
static QDF_STATUS util_scan_parse_mbssid(struct wlan_objmgr_pdev *pdev,
uint8_t *frame, qdf_size_t frame_len,
uint32_t frm_subtype,
struct mgmt_rx_event_params *rx_param,
qdf_list_t *scan_list)
{
struct wlan_bcn_frame *bcn;
struct wlan_frame_hdr *hdr;
struct scan_mbssid_info mbssid_info;
QDF_STATUS status;
uint8_t *pos, *subelement, *mbssid_end_pos;
uint8_t *tmp, *mbssid_index_ie;
uint32_t subie_len, new_ie_len;
uint8_t new_bssid[QDF_MAC_ADDR_SIZE], bssid[QDF_MAC_ADDR_SIZE];
uint8_t *new_ie;
uint8_t *ie, *new_frame = NULL;
uint64_t ielen, new_frame_len;
hdr = (struct wlan_frame_hdr *)frame;
bcn = (struct wlan_bcn_frame *)(frame + sizeof(struct wlan_frame_hdr));
ie = (uint8_t *)&bcn->ie;
ielen = (uint16_t)(frame_len -
sizeof(struct wlan_frame_hdr) -
offsetof(struct wlan_bcn_frame, ie));
qdf_mem_copy(bssid, hdr->i_addr3, QDF_MAC_ADDR_SIZE);
if (!util_scan_find_ie(WLAN_ELEMID_MULTIPLE_BSSID, ie, ielen))
return QDF_STATUS_E_FAILURE;
pos = ie;
new_ie = qdf_mem_malloc(MAX_IE_LEN);
if (!new_ie)
return QDF_STATUS_E_NOMEM;
while (pos < ie + ielen + 2) {
tmp = util_scan_find_ie(WLAN_ELEMID_MULTIPLE_BSSID, pos,
ielen - (pos - ie));
if (!tmp)
break;
mbssid_info.profile_count = 1 << tmp[2];
mbssid_end_pos = tmp + tmp[1] + 2;
/* Skip Element ID, Len, MaxBSSID Indicator */
if (tmp[1] < 4)
break;
for (subelement = tmp + 3; subelement < mbssid_end_pos - 1;
subelement += 2 + subelement[1]) {
subie_len = subelement[1];
if (mbssid_end_pos - subelement < 2 + subie_len)
break;
if (subelement[0] != 0 || subelement[1] < 4) {
/* not a valid BSS profile */
continue;
}
if (subelement[2] != WLAN_ELEMID_NONTX_BSSID_CAP ||
subelement[3] != 2) {
/* The first element within the Nontransmitted
* BSSID Profile is not the Nontransmitted
* BSSID Capability element.
*/
continue;
}
/* found a Nontransmitted BSSID Profile */
mbssid_index_ie =
util_scan_find_ie(WLAN_ELEMID_MULTI_BSSID_IDX,
subelement + 2, subie_len);
if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
mbssid_index_ie[2] == 0) {
/* No valid Multiple BSSID-Index element */
continue;
}
qdf_mem_copy(&mbssid_info.trans_bssid, bssid,
QDF_MAC_ADDR_SIZE);
mbssid_info.profile_num = mbssid_index_ie[2];
util_gen_new_bssid(bssid, tmp[2], mbssid_index_ie[2],
new_bssid);
new_ie_len = util_gen_new_ie(ie, ielen, subelement + 2,
subie_len, new_ie);
if (!new_ie_len)
continue;
new_frame_len = frame_len - ielen + new_ie_len;
new_frame = qdf_mem_malloc(new_frame_len);
if (!new_frame) {
qdf_mem_free(new_ie);
return QDF_STATUS_E_NOMEM;
}
/*
* Copy the header(24byte), timestamp(8 byte),
* beaconinterval(2byte) and capability(2byte)
*/
qdf_mem_copy(new_frame, frame, 36);
/* Copy the new ie generated from MBSSID profile*/
hdr = (struct wlan_frame_hdr *)new_frame;
qdf_mem_copy(hdr->i_addr2, new_bssid,
QDF_MAC_ADDR_SIZE);
qdf_mem_copy(hdr->i_addr3, new_bssid,
QDF_MAC_ADDR_SIZE);
/* Copy the new ie generated from MBSSID profile*/
qdf_mem_copy(new_frame +
offsetof(struct wlan_bcn_frame, ie) +
sizeof(struct wlan_frame_hdr),
new_ie, new_ie_len);
status = util_scan_gen_scan_entry(pdev, new_frame,
new_frame_len,
frm_subtype,
rx_param,
&mbssid_info,
scan_list);
if (QDF_IS_STATUS_ERROR(status)) {
qdf_mem_free(new_frame);
scm_err("failed to generate a scan entry");
break;
}
/* scan entry makes its own copy so free the frame*/
qdf_mem_free(new_frame);
}
pos = mbssid_end_pos;
}
qdf_mem_free(new_ie);
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS util_scan_parse_mbssid(struct wlan_objmgr_pdev *pdev,
uint8_t *frame, qdf_size_t frame_len,
uint32_t frm_subtype,
struct mgmt_rx_event_params *rx_param,
qdf_list_t *scan_list)
{
return QDF_STATUS_SUCCESS;
}
#endif
static QDF_STATUS
util_scan_parse_beacon_frame(struct wlan_objmgr_pdev *pdev,
uint8_t *frame,
qdf_size_t frame_len,
uint32_t frm_subtype,
struct mgmt_rx_event_params *rx_param,
qdf_list_t *scan_list)
{
struct wlan_bcn_frame *bcn;
struct wlan_frame_hdr *hdr;
uint8_t *mbssid_ie = NULL;
uint32_t ie_len = 0;
QDF_STATUS status;
struct scan_mbssid_info mbssid_info = { 0 };
hdr = (struct wlan_frame_hdr *)frame;
bcn = (struct wlan_bcn_frame *)
(frame + sizeof(struct wlan_frame_hdr));
ie_len = (uint16_t)(frame_len -
sizeof(struct wlan_frame_hdr) -
offsetof(struct wlan_bcn_frame, ie));
mbssid_ie = util_scan_find_ie(WLAN_ELEMID_MULTIPLE_BSSID,
(uint8_t *)&bcn->ie, ie_len);
if (mbssid_ie) {
qdf_mem_copy(&mbssid_info.trans_bssid,
hdr->i_addr3, QDF_MAC_ADDR_SIZE);
mbssid_info.profile_count = 1 << mbssid_ie[2];
}
status = util_scan_gen_scan_entry(pdev, frame, frame_len,
frm_subtype, rx_param,
&mbssid_info,
scan_list);
/*
* IF MBSSID IE is present in the beacon then
* scan component will create a new entry for
* each BSSID found in the MBSSID
*/
if (mbssid_ie)
status = util_scan_parse_mbssid(pdev, frame, frame_len,
frm_subtype, rx_param,
scan_list);
if (QDF_IS_STATUS_ERROR(status))
scm_debug_rl("Failed to create a scan entry");
return status;
}
qdf_list_t *
util_scan_unpack_beacon_frame(struct wlan_objmgr_pdev *pdev, uint8_t *frame,
qdf_size_t frame_len, uint32_t frm_subtype,
struct mgmt_rx_event_params *rx_param)
{
qdf_list_t *scan_list;
QDF_STATUS status;
scan_list = qdf_mem_malloc_atomic(sizeof(*scan_list));
if (!scan_list) {
scm_err("failed to allocate scan_list");
return NULL;
}
qdf_list_create(scan_list, MAX_SCAN_CACHE_SIZE);
status = util_scan_parse_beacon_frame(pdev, frame, frame_len,
frm_subtype, rx_param,
scan_list);
if (QDF_IS_STATUS_ERROR(status)) {
ucfg_scan_purge_results(scan_list);
return NULL;
}
return scan_list;
}
QDF_STATUS
util_scan_entry_update_mlme_info(struct wlan_objmgr_pdev *pdev,
struct scan_cache_entry *scan_entry)
{
if (!pdev || !scan_entry) {
scm_err("pdev 0x%pK, scan_entry: 0x%pK", pdev, scan_entry);
return QDF_STATUS_E_INVAL;
}
return scm_update_scan_mlme_info(pdev, scan_entry);
}
bool util_is_scan_completed(struct scan_event *event, bool *success)
{
if ((event->type == SCAN_EVENT_TYPE_COMPLETED) ||
(event->type == SCAN_EVENT_TYPE_DEQUEUED) ||
(event->type == SCAN_EVENT_TYPE_START_FAILED)) {
if ((event->type == SCAN_EVENT_TYPE_COMPLETED) &&
(event->reason == SCAN_REASON_COMPLETED))
*success = true;
else
*success = false;
return true;
}
*success = false;
return false;
}