blob: bdace54570a712268b35d507b30900ae879b9b93 [file] [log] [blame]
/*
* Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include <qdf_net_types.h>
#include <qdf_lro.h>
#include <qdf_module.h>
#include <hal_hw_headers.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_htt.h"
#include "dp_types.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_rx.h"
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#include "cdp_txrx_cmn_struct.h"
#include "cdp_txrx_stats_struct.h"
#include <qdf_util.h>
#include "dp_peer.h"
#include "dp_rx_mon.h"
#include "htt_stats.h"
#include "qdf_mem.h" /* qdf_mem_malloc,free */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
#include "cdp_txrx_flow_ctrl_v2.h"
#else
static inline void
cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
{
return;
}
#endif
#include "dp_ipa.h"
#ifdef CONFIG_MCL
#ifndef REMOVE_PKT_LOG
#include <pktlog_ac_api.h>
#include <pktlog_ac.h>
#endif
#endif
static void dp_pktlogmod_exit(struct dp_pdev *handle);
static void *dp_peer_create_wifi3(struct cdp_vdev *vdev_handle,
uint8_t *peer_mac_addr,
struct cdp_ctrl_objmgr_peer *ctrl_peer);
static void dp_peer_delete_wifi3(void *peer_handle, uint32_t bitmap);
#define DP_INTR_POLL_TIMER_MS 10
#define DP_WDS_AGING_TIMER_DEFAULT_MS 120000
#define DP_MCS_LENGTH (6*MAX_MCS)
#define DP_NSS_LENGTH (6*SS_COUNT)
#define DP_RXDMA_ERR_LENGTH (6*HAL_RXDMA_ERR_MAX)
#define DP_REO_ERR_LENGTH (6*HAL_REO_ERR_MAX)
#define DP_MAX_MCS_STRING_LEN 30
#define DP_CURR_FW_STATS_AVAIL 19
#define DP_HTT_DBG_EXT_STATS_MAX 256
#define DP_MAX_SLEEP_TIME 100
#ifdef IPA_OFFLOAD
/* Exclude IPA rings from the interrupt context */
#define TX_RING_MASK_VAL 0xb
#define RX_RING_MASK_VAL 0x7
#else
#define TX_RING_MASK_VAL 0xF
#define RX_RING_MASK_VAL 0xF
#endif
bool rx_hash = 1;
qdf_declare_param(rx_hash, bool);
#define STR_MAXLEN 64
#define DP_PPDU_STATS_CFG_ALL 0xFFFF
/* PPDU stats mask sent to FW to enable enhanced stats */
#define DP_PPDU_STATS_CFG_ENH_STATS 0xE67
/* PPDU stats mask sent to FW to support debug sniffer feature */
#define DP_PPDU_STATS_CFG_SNIFFER 0x2FFF
/* PPDU stats mask sent to FW to support BPR feature*/
#define DP_PPDU_STATS_CFG_BPR 0x2000
/* PPDU stats mask sent to FW to support BPR and enhanced stats feature */
#define DP_PPDU_STATS_CFG_BPR_ENH (DP_PPDU_STATS_CFG_BPR | \
DP_PPDU_STATS_CFG_ENH_STATS)
/* PPDU stats mask sent to FW to support BPR and pcktlog stats feature */
#define DP_PPDU_STATS_CFG_BPR_PKTLOG (DP_PPDU_STATS_CFG_BPR | \
DP_PPDU_TXLITE_STATS_BITMASK_CFG)
/**
* default_dscp_tid_map - Default DSCP-TID mapping
*
* DSCP TID
* 000000 0
* 001000 1
* 010000 2
* 011000 3
* 100000 4
* 101000 5
* 110000 6
* 111000 7
*/
static uint8_t default_dscp_tid_map[DSCP_TID_MAP_MAX] = {
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
};
/*
* struct dp_rate_debug
*
* @mcs_type: print string for a given mcs
* @valid: valid mcs rate?
*/
struct dp_rate_debug {
char mcs_type[DP_MAX_MCS_STRING_LEN];
uint8_t valid;
};
#define MCS_VALID 1
#define MCS_INVALID 0
static const struct dp_rate_debug dp_rate_string[DOT11_MAX][MAX_MCS] = {
{
{"OFDM 48 Mbps", MCS_VALID},
{"OFDM 24 Mbps", MCS_VALID},
{"OFDM 12 Mbps", MCS_VALID},
{"OFDM 6 Mbps ", MCS_VALID},
{"OFDM 54 Mbps", MCS_VALID},
{"OFDM 36 Mbps", MCS_VALID},
{"OFDM 18 Mbps", MCS_VALID},
{"OFDM 9 Mbps ", MCS_VALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_VALID},
},
{
{"CCK 11 Mbps Long ", MCS_VALID},
{"CCK 5.5 Mbps Long ", MCS_VALID},
{"CCK 2 Mbps Long ", MCS_VALID},
{"CCK 1 Mbps Long ", MCS_VALID},
{"CCK 11 Mbps Short ", MCS_VALID},
{"CCK 5.5 Mbps Short", MCS_VALID},
{"CCK 2 Mbps Short ", MCS_VALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_VALID},
},
{
{"HT MCS 0 (BPSK 1/2) ", MCS_VALID},
{"HT MCS 1 (QPSK 1/2) ", MCS_VALID},
{"HT MCS 2 (QPSK 3/4) ", MCS_VALID},
{"HT MCS 3 (16-QAM 1/2)", MCS_VALID},
{"HT MCS 4 (16-QAM 3/4)", MCS_VALID},
{"HT MCS 5 (64-QAM 2/3)", MCS_VALID},
{"HT MCS 6 (64-QAM 3/4)", MCS_VALID},
{"HT MCS 7 (64-QAM 5/6)", MCS_VALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_INVALID},
{"INVALID ", MCS_VALID},
},
{
{"VHT MCS 0 (BPSK 1/2) ", MCS_VALID},
{"VHT MCS 1 (QPSK 1/2) ", MCS_VALID},
{"VHT MCS 2 (QPSK 3/4) ", MCS_VALID},
{"VHT MCS 3 (16-QAM 1/2) ", MCS_VALID},
{"VHT MCS 4 (16-QAM 3/4) ", MCS_VALID},
{"VHT MCS 5 (64-QAM 2/3) ", MCS_VALID},
{"VHT MCS 6 (64-QAM 3/4) ", MCS_VALID},
{"VHT MCS 7 (64-QAM 5/6) ", MCS_VALID},
{"VHT MCS 8 (256-QAM 3/4) ", MCS_VALID},
{"VHT MCS 9 (256-QAM 5/6) ", MCS_VALID},
{"VHT MCS 10 (1024-QAM 3/4)", MCS_VALID},
{"VHT MCS 11 (1024-QAM 5/6)", MCS_VALID},
{"INVALID ", MCS_VALID},
},
{
{"HE MCS 0 (BPSK 1/2) ", MCS_VALID},
{"HE MCS 1 (QPSK 1/2) ", MCS_VALID},
{"HE MCS 2 (QPSK 3/4) ", MCS_VALID},
{"HE MCS 3 (16-QAM 1/2) ", MCS_VALID},
{"HE MCS 4 (16-QAM 3/4) ", MCS_VALID},
{"HE MCS 5 (64-QAM 2/3) ", MCS_VALID},
{"HE MCS 6 (64-QAM 3/4) ", MCS_VALID},
{"HE MCS 7 (64-QAM 5/6) ", MCS_VALID},
{"HE MCS 8 (256-QAM 3/4) ", MCS_VALID},
{"HE MCS 9 (256-QAM 5/6) ", MCS_VALID},
{"HE MCS 10 (1024-QAM 3/4)", MCS_VALID},
{"HE MCS 11 (1024-QAM 5/6)", MCS_VALID},
{"INVALID ", MCS_VALID},
}
};
/**
* @brief Cpu ring map types
*/
enum dp_cpu_ring_map_types {
DP_DEFAULT_MAP,
DP_NSS_FIRST_RADIO_OFFLOADED_MAP,
DP_NSS_SECOND_RADIO_OFFLOADED_MAP,
DP_NSS_ALL_RADIO_OFFLOADED_MAP,
DP_CPU_RING_MAP_MAX
};
/**
* @brief Cpu to tx ring map
*/
static uint8_t dp_cpu_ring_map[DP_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS] = {
{0x0, 0x1, 0x2, 0x0},
{0x1, 0x2, 0x1, 0x2},
{0x0, 0x2, 0x0, 0x2},
{0x2, 0x2, 0x2, 0x2}
};
/**
* @brief Select the type of statistics
*/
enum dp_stats_type {
STATS_FW = 0,
STATS_HOST = 1,
STATS_TYPE_MAX = 2,
};
/**
* @brief General Firmware statistics options
*
*/
enum dp_fw_stats {
TXRX_FW_STATS_INVALID = -1,
};
/**
* dp_stats_mapping_table - Firmware and Host statistics
* currently supported
*/
const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
/* Last ENUM for HTT FW STATS */
{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
};
/* MCL specific functions */
#ifdef CONFIG_MCL
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* For MCL, monitor mode rings are being processed in timer contexts (polled).
* This function is returning 0, since in interrupt mode(softirq based RX),
* we donot want to process monitor mode rings in a softirq.
*
* So, in case packet log is enabled for SAP/STA/P2P modes,
* regular interrupt processing will not process monitor mode rings. It would be
* done in a separate timer context.
*
* Return: 0
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return 0;
}
/*
* dp_service_mon_rings()- timer to reap monitor rings
* reqd as we are not getting ppdu end interrupts
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_service_mon_rings(void *arg)
{
struct dp_soc *soc = (struct dp_soc *)arg;
int ring = 0, work_done, mac_id;
struct dp_pdev *pdev = NULL;
for (ring = 0 ; ring < MAX_PDEV_CNT; ring++) {
pdev = soc->pdev_list[ring];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
work_done = dp_mon_process(soc, mac_for_pdev,
QCA_NAPI_BUDGET);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("Reaped %d descs from Monitor rings"),
work_done);
}
}
qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS);
}
#ifndef REMOVE_PKT_LOG
/**
* dp_pkt_log_init() - API to initialize packet log
* @ppdev: physical device handle
* @scn: HIF context
*
* Return: none
*/
void dp_pkt_log_init(struct cdp_pdev *ppdev, void *scn)
{
struct dp_pdev *handle = (struct dp_pdev *)ppdev;
if (handle->pkt_log_init) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Packet log not initialized", __func__);
return;
}
pktlog_sethandle(&handle->pl_dev, scn);
pktlog_set_callback_regtype(PKTLOG_LITE_CALLBACK_REGISTRATION);
if (pktlogmod_init(scn)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: pktlogmod_init failed", __func__);
handle->pkt_log_init = false;
} else {
handle->pkt_log_init = true;
}
}
/**
* dp_pkt_log_con_service() - connect packet log service
* @ppdev: physical device handle
* @scn: device context
*
* Return: none
*/
static void dp_pkt_log_con_service(struct cdp_pdev *ppdev, void *scn)
{
struct dp_pdev *pdev = (struct dp_pdev *)ppdev;
dp_pkt_log_init((struct cdp_pdev *)pdev, scn);
pktlog_htc_attach();
}
/**
* dp_pktlogmod_exit() - API to cleanup pktlog info
* @handle: Pdev handle
*
* Return: none
*/
static void dp_pktlogmod_exit(struct dp_pdev *handle)
{
void *scn = (void *)handle->soc->hif_handle;
if (!scn) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid hif(scn) handle", __func__);
return;
}
pktlogmod_exit(scn);
handle->pkt_log_init = false;
}
#endif
#else
static void dp_pktlogmod_exit(struct dp_pdev *handle) { }
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* Return: mon mask value
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
}
#endif
static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
struct cdp_peer *peer_hdl,
uint8_t *mac_addr,
enum cdp_txrx_ast_entry_type type,
uint32_t flags)
{
return dp_peer_add_ast((struct dp_soc *)soc_hdl,
(struct dp_peer *)peer_hdl,
mac_addr,
type,
flags);
}
static void dp_peer_del_ast_wifi3(struct cdp_soc_t *soc_hdl,
void *ast_entry_hdl)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_del_ast((struct dp_soc *)soc_hdl,
(struct dp_ast_entry *)ast_entry_hdl);
qdf_spin_unlock_bh(&soc->ast_lock);
}
static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
struct cdp_peer *peer_hdl,
uint8_t *wds_macaddr,
uint32_t flags)
{
int status = -1;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find(soc, wds_macaddr);
if (ast_entry) {
status = dp_peer_update_ast(soc,
(struct dp_peer *)peer_hdl,
ast_entry, flags);
}
qdf_spin_unlock_bh(&soc->ast_lock);
return status;
}
/*
* dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
* @soc_handle: Datapath SOC handle
* @wds_macaddr: MAC address of the WDS entry to be added
* @vdev_hdl: vdev handle
* Return: None
*/
static void dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t *wds_macaddr, void *vdev_hdl)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find(soc, wds_macaddr);
if (ast_entry) {
if (ast_entry->type != CDP_TXRX_AST_TYPE_STATIC)
ast_entry->is_active = TRUE;
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
/*
* dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
* @soc: Datapath SOC handle
* @vdev_hdl: vdev handle
*
* Return: None
*/
static void dp_wds_reset_ast_table_wifi3(struct cdp_soc_t *soc_hdl,
void *vdev_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *temp_ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if (ase->type ==
CDP_TXRX_AST_TYPE_STATIC)
continue;
ase->is_active = TRUE;
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
/*
* dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *temp_ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if (ase->type ==
CDP_TXRX_AST_TYPE_STATIC)
continue;
dp_peer_del_ast(soc, ase);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
static void *dp_peer_ast_hash_find_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr)
{
struct dp_ast_entry *ast_entry;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find(soc, ast_mac_addr);
qdf_spin_unlock_bh(&soc->ast_lock);
return (void *)ast_entry;
}
static uint8_t dp_peer_ast_get_pdev_id_wifi3(struct cdp_soc_t *soc_hdl,
void *ast_entry_hdl)
{
return dp_peer_ast_get_pdev_id((struct dp_soc *)soc_hdl,
(struct dp_ast_entry *)ast_entry_hdl);
}
static uint8_t dp_peer_ast_get_next_hop_wifi3(struct cdp_soc_t *soc_hdl,
void *ast_entry_hdl)
{
return dp_peer_ast_get_next_hop((struct dp_soc *)soc_hdl,
(struct dp_ast_entry *)ast_entry_hdl);
}
static void dp_peer_ast_set_type_wifi3(
struct cdp_soc_t *soc_hdl,
void *ast_entry_hdl,
enum cdp_txrx_ast_entry_type type)
{
dp_peer_ast_set_type((struct dp_soc *)soc_hdl,
(struct dp_ast_entry *)ast_entry_hdl,
type);
}
/**
* dp_srng_find_ring_in_mask() - find which ext_group a ring belongs
* @ring_num: ring num of the ring being queried
* @grp_mask: the grp_mask array for the ring type in question.
*
* The grp_mask array is indexed by group number and the bit fields correspond
* to ring numbers. We are finding which interrupt group a ring belongs to.
*
* Return: the index in the grp_mask array with the ring number.
* -QDF_STATUS_E_NOENT if no entry is found
*/
static int dp_srng_find_ring_in_mask(int ring_num, int *grp_mask)
{
int ext_group_num;
int mask = 1 << ring_num;
for (ext_group_num = 0; ext_group_num < WLAN_CFG_INT_NUM_CONTEXTS;
ext_group_num++) {
if (mask & grp_mask[ext_group_num])
return ext_group_num;
}
return -QDF_STATUS_E_NOENT;
}
static int dp_srng_calculate_msi_group(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
int *grp_mask;
switch (ring_type) {
case WBM2SW_RELEASE:
/* dp_tx_comp_handler - soc->tx_comp_ring */
if (ring_num < 3)
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* dp_rx_wbm_err_process - soc->rx_rel_ring */
else if (ring_num == 3) {
/* sw treats this as a separate ring type */
grp_mask = &soc->wlan_cfg_ctx->
int_rx_wbm_rel_ring_mask[0];
ring_num = 0;
} else {
qdf_assert(0);
return -QDF_STATUS_E_NOENT;
}
break;
case REO_EXCEPTION:
/* dp_rx_err_process - &soc->reo_exception_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
break;
case REO_DST:
/* dp_rx_process - soc->reo_dest_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
break;
case REO_STATUS:
/* dp_reo_status_ring_handler - soc->reo_status_ring */
grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
break;
/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
case RXDMA_MONITOR_STATUS:
/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
case RXDMA_MONITOR_DST:
/* dp_mon_process */
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
break;
case RXDMA_DST:
/* dp_rxdma_err_process */
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
break;
case RXDMA_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
break;
case RXDMA_MONITOR_BUF:
/* TODO: support low_thresh interrupt */
return -QDF_STATUS_E_NOENT;
break;
case TCL_DATA:
case TCL_CMD:
case REO_CMD:
case SW2WBM_RELEASE:
case WBM_IDLE_LINK:
/* normally empty SW_TO_HW rings */
return -QDF_STATUS_E_NOENT;
break;
case TCL_STATUS:
case REO_REINJECT:
/* misc unused rings */
return -QDF_STATUS_E_NOENT;
break;
case CE_SRC:
case CE_DST:
case CE_DST_STATUS:
/* CE_rings - currently handled by hif */
default:
return -QDF_STATUS_E_NOENT;
break;
}
return dp_srng_find_ring_in_mask(ring_num, grp_mask);
}
static void dp_srng_msi_setup(struct dp_soc *soc, struct hal_srng_params
*ring_params, int ring_type, int ring_num)
{
int msi_group_number;
int msi_data_count;
int ret;
uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret)
return;
msi_group_number = dp_srng_calculate_msi_group(soc, ring_type,
ring_num);
if (msi_group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
FL("ring not part of an ext_group; ring_type: %d,ring_num %d"),
ring_type, ring_num);
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
return;
}
if (msi_group_number > msi_data_count) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
FL("2 msi_groups will share an msi; msi_group_num %d"),
msi_group_number);
QDF_ASSERT(0);
}
pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
ring_params->msi_addr = addr_low;
ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
ring_params->msi_data = (msi_group_number % msi_data_count)
+ msi_data_start;
ring_params->flags |= HAL_SRNG_MSI_INTR;
}
/**
* dp_print_ast_stats() - Dump AST table contents
* @soc: Datapath soc handle
*
* return void
*/
#ifdef FEATURE_AST
static void dp_print_ast_stats(struct dp_soc *soc)
{
uint8_t i;
uint8_t num_entries = 0;
struct dp_vdev *vdev;
struct dp_pdev *pdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *tmp_ase;
char type[5][10] = {"NONE", "STATIC", "WDS", "MEC", "HMWDS"};
DP_PRINT_STATS("AST Stats:");
DP_PRINT_STATS(" Entries Added = %d", soc->stats.ast.added);
DP_PRINT_STATS(" Entries Deleted = %d", soc->stats.ast.deleted);
DP_PRINT_STATS(" Entries Agedout = %d", soc->stats.ast.aged_out);
DP_PRINT_STATS("AST Table:");
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
DP_PRINT_STATS("%6d mac_addr = %pM"
" peer_mac_addr = %pM"
" type = %s"
" next_hop = %d"
" is_active = %d"
" is_bss = %d"
" ast_idx = %d"
" pdev_id = %d"
" vdev_id = %d",
++num_entries,
ase->mac_addr.raw,
ase->peer->mac_addr.raw,
type[ase->type],
ase->next_hop,
ase->is_active,
ase->is_bss,
ase->ast_idx,
ase->pdev_id,
ase->vdev_id);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
}
#else
static void dp_print_ast_stats(struct dp_soc *soc)
{
DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
return;
}
#endif
static void dp_print_peer_table(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
DP_PRINT_STATS("Dumping Peer Table Stats:");
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer) {
DP_PRINT_STATS("Invalid Peer");
return;
}
DP_PRINT_STATS(" peer_mac_addr = %pM"
" nawds_enabled = %d"
" bss_peer = %d"
" wapi = %d"
" wds_enabled = %d"
" delete in progress = %d",
peer->mac_addr.raw,
peer->nawds_enabled,
peer->bss_peer,
peer->wapi,
peer->wds_enabled,
peer->delete_in_progress);
}
}
/*
* dp_setup_srng - Internal function to setup SRNG rings used by data path
*/
static int dp_srng_setup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num, int mac_id, uint32_t num_entries)
{
void *hal_soc = soc->hal_soc;
uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
/* TODO: See if we should get align size from hal */
uint32_t ring_base_align = 8;
struct hal_srng_params ring_params;
uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
/* TODO: Currently hal layer takes care of endianness related settings.
* See if these settings need to passed from DP layer
*/
ring_params.flags = 0;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
FL("Ring type: %d, num:%d"), ring_type, ring_num);
num_entries = (num_entries > max_entries) ? max_entries : num_entries;
srng->hal_srng = NULL;
srng->alloc_size = (num_entries * entry_size) + ring_base_align - 1;
srng->num_entries = num_entries;
srng->base_vaddr_unaligned = qdf_mem_alloc_consistent(
soc->osdev, soc->osdev->dev, srng->alloc_size,
&(srng->base_paddr_unaligned));
if (!srng->base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("alloc failed - ring_type: %d, ring_num %d"),
ring_type, ring_num);
return QDF_STATUS_E_NOMEM;
}
ring_params.ring_base_vaddr = srng->base_vaddr_unaligned +
((unsigned long)srng->base_vaddr_unaligned % ring_base_align);
ring_params.ring_base_paddr = srng->base_paddr_unaligned +
((unsigned long)(ring_params.ring_base_vaddr) -
(unsigned long)srng->base_vaddr_unaligned);
ring_params.num_entries = num_entries;
if (soc->intr_mode == DP_INTR_MSI) {
dp_srng_msi_setup(soc, &ring_params, ring_type, ring_num);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Using MSI for ring_type: %d, ring_num %d"),
ring_type, ring_num);
} else {
ring_params.msi_data = 0;
ring_params.msi_addr = 0;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Skipping MSI for ring_type: %d, ring_num %d"),
ring_type, ring_num);
}
/*
* Setup interrupt timer and batch counter thresholds for
* interrupt mitigation based on ring type
*/
if (ring_type == REO_DST) {
ring_params.intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params.intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE && (ring_num < 3)) {
ring_params.intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
ring_params.intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
} else {
ring_params.intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params.intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
}
/* Enable low threshold interrupts for rx buffer rings (regular and
* monitor buffer rings.
* TODO: See if this is required for any other ring
*/
if ((ring_type == RXDMA_BUF) || (ring_type == RXDMA_MONITOR_BUF) ||
(ring_type == RXDMA_MONITOR_STATUS)) {
/* TODO: Setting low threshold to 1/8th of ring size
* see if this needs to be configurable
*/
ring_params.low_threshold = num_entries >> 3;
ring_params.flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
ring_params.intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params.intr_batch_cntr_thres_entries = 0;
}
srng->hal_srng = hal_srng_setup(hal_soc, ring_type, ring_num,
mac_id, &ring_params);
if (!srng->hal_srng) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
return 0;
}
/**
* dp_srng_cleanup - Internal function to cleanup SRNG rings used by data path
* Any buffers allocated and attached to ring entries are expected to be freed
* before calling this function.
*/
static void dp_srng_cleanup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!srng->hal_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d not setup"),
ring_type, ring_num);
return;
}
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
srng->hal_srng = NULL;
}
/* TODO: Need this interface from HIF */
void *hif_get_hal_handle(void *hif_handle);
/*
* dp_service_srngs() - Top level interrupt handler for DP Ring interrupts
* @dp_ctx: DP SOC handle
* @budget: Number of frames/descriptors that can be processed in one shot
*
* Return: remaining budget/quota for the soc device
*/
static uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_soc *soc = int_ctx->soc;
int ring = 0;
uint32_t work_done = 0;
int budget = dp_budget;
uint8_t tx_mask = int_ctx->tx_ring_mask;
uint8_t rx_mask = int_ctx->rx_ring_mask;
uint8_t rx_err_mask = int_ctx->rx_err_ring_mask;
uint8_t rx_wbm_rel_mask = int_ctx->rx_wbm_rel_ring_mask;
uint8_t reo_status_mask = int_ctx->reo_status_ring_mask;
uint32_t remaining_quota = dp_budget;
struct dp_pdev *pdev = NULL;
int mac_id;
/* Process Tx completion interrupts first to return back buffers */
while (tx_mask) {
if (tx_mask & 0x1) {
work_done = dp_tx_comp_handler(soc,
soc->tx_comp_ring[ring].hal_srng,
remaining_quota);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"tx mask 0x%x ring %d, budget %d, work_done %d",
tx_mask, ring, budget, work_done);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
tx_mask = tx_mask >> 1;
ring++;
}
/* Process REO Exception ring interrupt */
if (rx_err_mask) {
work_done = dp_rx_err_process(soc,
soc->reo_exception_ring.hal_srng,
remaining_quota);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"REO Exception Ring: work_done %d budget %d",
work_done, budget);
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx WBM release ring interrupt */
if (rx_wbm_rel_mask) {
work_done = dp_rx_wbm_err_process(soc,
soc->rx_rel_ring.hal_srng, remaining_quota);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"WBM Release Ring: work_done %d budget %d",
work_done, budget);
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx interrupts */
if (rx_mask) {
for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
if (rx_mask & (1 << ring)) {
work_done = dp_rx_process(int_ctx,
soc->reo_dest_ring[ring].hal_srng,
remaining_quota);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"rx mask 0x%x ring %d, work_done %d budget %d",
rx_mask, ring, work_done, budget);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
for (ring = 0; ring < MAX_RX_MAC_RINGS; ring++) {
work_done = dp_rxdma_err_process(soc, ring,
remaining_quota);
budget -= work_done;
}
}
if (reo_status_mask)
dp_reo_status_ring_handler(soc);
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_PDEV_CNT; ring++) {
pdev = soc->pdev_list[ring];
if (pdev == NULL)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
work_done = dp_mon_process(soc, mac_for_pdev,
remaining_quota);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->rxdma2host_ring_mask &
(1 << mac_for_pdev)) {
work_done = dp_rxdma_err_process(soc,
mac_for_pdev,
remaining_quota);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->host2rxdma_ring_mask &
(1 << mac_for_pdev)) {
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
struct dp_srng *rx_refill_buf_ring =
&pdev->rx_refill_buf_ring;
DP_STATS_INC(pdev, replenish.low_thresh_intrs,
1);
dp_rx_buffers_replenish(soc, mac_for_pdev,
rx_refill_buf_ring,
&soc->rx_desc_buf[mac_for_pdev], 0,
&desc_list, &tail);
}
}
}
qdf_lro_flush(int_ctx->lro_ctx);
budget_done:
return dp_budget - budget;
}
#ifdef DP_INTR_POLL_BASED
/* dp_interrupt_timer()- timer poll for interrupts
*
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_interrupt_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *) arg;
int i;
if (qdf_atomic_read(&soc->cmn_init_done)) {
for (i = 0;
i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
dp_service_srngs(&soc->intr_ctx[i], 0xffff);
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
}
/*
* dp_soc_interrupt_attach_poll() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_attach_poll(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
soc->intr_mode = DP_INTR_POLL;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_ring_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_mon_ring_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].soc = soc;
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
qdf_timer_init(soc->osdev, &soc->int_timer,
dp_interrupt_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS dp_soc_attach_poll(void *txrx_soc)
{
return -QDF_STATUS_E_NOSUPPORT;
}
#endif
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc);
#if defined(CONFIG_MCL)
extern int con_mode_monitor;
/*
* dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Call the appropriate attach function based on the mode of operation.
* This is a WAR for enabling monitor mode.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
con_mode_monitor == QDF_GLOBAL_MONITOR_MODE) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: Poll mode", __func__);
return dp_soc_attach_poll(txrx_soc);
} else {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: Interrupt mode", __func__);
return dp_soc_interrupt_attach(txrx_soc);
}
}
#else
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (hif_is_polled_mode_enabled(soc->hif_handle))
return dp_soc_attach_poll(txrx_soc);
else
return dp_soc_interrupt_attach(txrx_soc);
}
#endif
static void dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r)
{
int j;
int num_irq = 0;
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(wbm2host_tx_completions_ring1 - j);
}
if (rx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(reo2host_destination_ring1 - j);
}
if (rxdma2host_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
rxdma2host_destination_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (host2rxdma_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_host_buf_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (rx_mon_mask & (1 << j)) {
irq_id_map[num_irq++] =
ppdu_end_interrupts_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
irq_id_map[num_irq++] =
rxdma2host_monitor_status_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (rx_wbm_rel_ring_mask & (1 << j))
irq_id_map[num_irq++] = wbm2host_rx_release;
if (rx_err_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_exception;
if (reo_status_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_status;
}
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r,
int msi_vector_count, int msi_vector_start)
{
int tx_mask = wlan_cfg_get_tx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask = wlan_cfg_get_rx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
unsigned int vector =
(intr_ctx_num % msi_vector_count) + msi_vector_start;
int num_irq = 0;
soc->intr_mode = DP_INTR_MSI;
if (tx_mask | rx_mask | rx_mon_mask | rx_err_ring_mask |
rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask)
irq_id_map[num_irq++] =
pld_get_msi_irq(soc->osdev->dev, vector);
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
int *irq_id_map, int *num_irq)
{
int msi_vector_count, ret;
uint32_t msi_base_data, msi_vector_start;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return dp_soc_interrupt_map_calculate_integrated(soc,
intr_ctx_num, irq_id_map, num_irq);
else
dp_soc_interrupt_map_calculate_msi(soc,
intr_ctx_num, irq_id_map, num_irq,
msi_vector_count, msi_vector_start);
}
/*
* dp_soc_interrupt_attach() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i = 0;
int num_irq = 0;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
int ret = 0;
/* Map of IRQ ids registered with one interrupt context */
int irq_id_map[HIF_MAX_GRP_IRQ];
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mon_mask =
dp_soc_get_mon_mask_for_interrupt_mode(soc, i);
int rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
int rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
int reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
int rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_ring_mask =
wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask = tx_mask;
soc->intr_ctx[i].rx_ring_mask = rx_mask;
soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask;
soc->intr_ctx[i].rx_err_ring_mask = rx_err_ring_mask;
soc->intr_ctx[i].rxdma2host_ring_mask = rxdma2host_ring_mask;
soc->intr_ctx[i].host2rxdma_ring_mask = host2rxdma_ring_mask;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = rx_wbm_rel_ring_mask;
soc->intr_ctx[i].reo_status_ring_mask = reo_status_ring_mask;
soc->intr_ctx[i].soc = soc;
num_irq = 0;
dp_soc_interrupt_map_calculate(soc, i, &irq_id_map[0],
&num_irq);
ret = hif_register_ext_group(soc->hif_handle,
num_irq, irq_id_map, dp_service_srngs,
&soc->intr_ctx[i], "dp_intr",
HIF_EXEC_NAPI_TYPE, QCA_NAPI_DEF_SCALE_BIN_SHIFT);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("failed, ret = %d"), ret);
return QDF_STATUS_E_FAILURE;
}
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
hif_configure_ext_group_interrupts(soc->hif_handle);
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
* @txrx_soc: DP SOC handle
*
* Return: void
*/
static void dp_soc_interrupt_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
if (soc->intr_mode == DP_INTR_POLL) {
qdf_timer_stop(&soc->int_timer);
qdf_timer_free(&soc->int_timer);
} else {
hif_deregister_exec_group(soc->hif_handle, "dp_intr");
}
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0;
soc->intr_ctx[i].rx_ring_mask = 0;
soc->intr_ctx[i].rx_mon_ring_mask = 0;
soc->intr_ctx[i].rx_err_ring_mask = 0;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0;
soc->intr_ctx[i].reo_status_ring_mask = 0;
soc->intr_ctx[i].rxdma2host_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_ring_mask = 0;
qdf_lro_deinit(soc->intr_ctx[i].lro_ctx);
}
}
#define AVG_MAX_MPDUS_PER_TID 128
#define AVG_TIDS_PER_CLIENT 2
#define AVG_FLOWS_PER_TID 2
#define AVG_MSDUS_PER_FLOW 128
#define AVG_MSDUS_PER_MPDU 4
/*
* Allocate and setup link descriptor pool that will be used by HW for
* various link and queue descriptors and managed by WBM
*/
static int dp_hw_link_desc_pool_setup(struct dp_soc *soc)
{
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
int link_desc_align = hal_get_link_desc_align(soc->hal_soc);
uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx);
uint32_t num_mpdus_per_link_desc =
hal_num_mpdus_per_link_desc(soc->hal_soc);
uint32_t num_msdus_per_link_desc =
hal_num_msdus_per_link_desc(soc->hal_soc);
uint32_t num_mpdu_links_per_queue_desc =
hal_num_mpdu_links_per_queue_desc(soc->hal_soc);
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t total_link_descs, total_mem_size;
uint32_t num_mpdu_link_descs, num_mpdu_queue_descs;
uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs;
uint32_t num_link_desc_banks;
uint32_t last_bank_size = 0;
uint32_t entry_size, num_entries;
int i;
uint32_t desc_id = 0;
/* Only Tx queue descriptors are allocated from common link descriptor
* pool Rx queue descriptors are not included in this because (REO queue
* extension descriptors) they are expected to be allocated contiguously
* with REO queue descriptors
*/
num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc;
num_mpdu_queue_descs = num_mpdu_link_descs /
num_mpdu_links_per_queue_desc;
num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) /
num_msdus_per_link_desc;
num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6;
num_entries = num_mpdu_link_descs + num_mpdu_queue_descs +
num_tx_msdu_link_descs + num_rx_msdu_link_descs;
/* Round up to power of 2 */
total_link_descs = 1;
while (total_link_descs < num_entries)
total_link_descs <<= 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_link_descs: %u, link_desc_size: %d"),
total_link_descs, link_desc_size);
total_mem_size = total_link_descs * link_desc_size;
total_mem_size += link_desc_align;
if (total_mem_size <= max_alloc_size) {
num_link_desc_banks = 0;
last_bank_size = total_mem_size;
} else {
num_link_desc_banks = (total_mem_size) /
(max_alloc_size - link_desc_align);
last_bank_size = total_mem_size %
(max_alloc_size - link_desc_align);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_mem_size: %d, num_link_desc_banks: %u"),
total_mem_size, num_link_desc_banks);
for (i = 0; i < num_link_desc_banks; i++) {
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev, soc->osdev->dev,
max_alloc_size,
&(soc->link_desc_banks[i].base_paddr_unaligned));
soc->link_desc_banks[i].size = max_alloc_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
if (!soc->link_desc_banks[i].base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link descriptor memory alloc failed"));
goto fail;
}
}
if (last_bank_size) {
/* Allocate last bank in case total memory required is not exact
* multiple of max_alloc_size
*/
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev, soc->osdev->dev,
last_bank_size,
&(soc->link_desc_banks[i].base_paddr_unaligned));
soc->link_desc_banks[i].size = last_bank_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)
(soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr =
(unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
}
/* Allocate and setup link descriptor idle list for HW internal use */
entry_size = hal_srng_get_entrysize(soc->hal_soc, WBM_IDLE_LINK);
total_mem_size = entry_size * total_link_descs;
if (total_mem_size <= max_alloc_size) {
void *desc;
if (dp_srng_setup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0, 0, total_link_descs)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link desc idle ring setup failed"));
goto fail;
}
hal_srng_access_start_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_entries = (soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_entries && (desc = hal_srng_src_get_next(
soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng))) {
hal_set_link_desc_addr(desc,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_entries--;
desc_id++;
paddr += link_desc_size;
}
}
hal_srng_access_end_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
} else {
uint32_t num_scatter_bufs;
uint32_t num_entries_per_buf;
uint32_t rem_entries;
uint8_t *scatter_buf_ptr;
uint16_t scatter_buf_num;
soc->wbm_idle_scatter_buf_size =
hal_idle_list_scatter_buf_size(soc->hal_soc);
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc, soc->wbm_idle_scatter_buf_size);
num_scatter_bufs = hal_idle_list_num_scatter_bufs(
soc->hal_soc, total_mem_size,
soc->wbm_idle_scatter_buf_size);
if (num_scatter_bufs > MAX_IDLE_SCATTER_BUFS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("scatter bufs size out of bounds"));
goto fail;
}
for (i = 0; i < num_scatter_bufs; i++) {
soc->wbm_idle_scatter_buf_base_vaddr[i] =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
&(soc->wbm_idle_scatter_buf_base_paddr[i]));
if (soc->wbm_idle_scatter_buf_base_vaddr[i] == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Scatter list memory alloc failed"));
goto fail;
}
}
/* Populate idle list scatter buffers with link descriptor
* pointers
*/
scatter_buf_num = 0;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
rem_entries = num_entries_per_buf;
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_link_descs =
(soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_link_descs) {
hal_set_link_desc_addr((void *)scatter_buf_ptr,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_link_descs--;
desc_id++;
paddr += link_desc_size;
rem_entries--;
if (rem_entries) {
scatter_buf_ptr += entry_size;
} else {
rem_entries = num_entries_per_buf;
scatter_buf_num++;
if (scatter_buf_num >= num_scatter_bufs)
break;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num]);
}
}
}
/* Setup link descriptor idle list in HW */
hal_setup_link_idle_list(soc->hal_soc,
soc->wbm_idle_scatter_buf_base_paddr,
soc->wbm_idle_scatter_buf_base_vaddr,
num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
(uint32_t)(scatter_buf_ptr -
(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num-1])), total_link_descs);
}
return 0;
fail:
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc->hal_soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL;
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
soc->link_desc_banks[i].base_vaddr_unaligned = NULL;
}
}
return QDF_STATUS_E_FAILURE;
}
/*
* Free link descriptor pool that was setup HW
*/
static void dp_hw_link_desc_pool_cleanup(struct dp_soc *soc)
{
int i;
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL;
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
soc->link_desc_banks[i].base_vaddr_unaligned = NULL;
}
}
}
/* TODO: Following should be configurable */
#define WBM_RELEASE_RING_SIZE 64
#define TCL_CMD_RING_SIZE 32
#define TCL_STATUS_RING_SIZE 32
#define REO_DST_RING_SIZE_QCA6290 1024
#define REO_DST_RING_SIZE_QCA8074 2048
#define REO_REINJECT_RING_SIZE 32
#define RX_RELEASE_RING_SIZE 1024
#define REO_EXCEPTION_RING_SIZE 128
#define REO_CMD_RING_SIZE 64
#define REO_STATUS_RING_SIZE 128
#define RXDMA_BUF_RING_SIZE 1024
#define RXDMA_REFILL_RING_SIZE 4096
#define RXDMA_MONITOR_BUF_RING_SIZE 4096
#define RXDMA_MONITOR_DST_RING_SIZE 2048
#define RXDMA_MONITOR_STATUS_RING_SIZE 1024
#define RXDMA_MONITOR_DESC_RING_SIZE 4096
#define RXDMA_ERR_DST_RING_SIZE 1024
/*
* dp_wds_aging_timer_fn() - Timer callback function for WDS aging
* @soc: Datapath SOC handle
*
* This is a timer function used to age out stale AST nodes from
* AST table
*/
#ifdef FEATURE_WDS
static void dp_wds_aging_timer_fn(void *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *temp_ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
/*
* Do not expire static ast entries
* and HM WDS entries
*/
if (ase->type != CDP_TXRX_AST_TYPE_WDS)
continue;
if (ase->is_active) {
ase->is_active = FALSE;
continue;
}
DP_STATS_INC(soc, ast.aged_out, 1);
dp_peer_del_ast(soc, ase);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
if (qdf_atomic_read(&soc->cmn_init_done))
qdf_timer_mod(&soc->wds_aging_timer, DP_WDS_AGING_TIMER_DEFAULT_MS);
}
/*
* dp_soc_wds_attach() - Setup WDS timer and AST table
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_soc_wds_attach(struct dp_soc *soc)
{
qdf_timer_init(soc->osdev, &soc->wds_aging_timer,
dp_wds_aging_timer_fn, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
qdf_timer_mod(&soc->wds_aging_timer, DP_WDS_AGING_TIMER_DEFAULT_MS);
}
/*
* dp_soc_wds_detach() - Detach WDS data structures and timers
* @txrx_soc: DP SOC handle
*
* Return: None
*/
static void dp_soc_wds_detach(struct dp_soc *soc)
{
qdf_timer_stop(&soc->wds_aging_timer);
qdf_timer_free(&soc->wds_aging_timer);
}
#else
static void dp_soc_wds_attach(struct dp_soc *soc)
{
}
static void dp_soc_wds_detach(struct dp_soc *soc)
{
}
#endif
/*
* dp_soc_reset_ring_map() - Reset cpu ring map
* @soc: Datapath soc handler
*
* This api resets the default cpu ring map
*/
static void dp_soc_reset_cpu_ring_map(struct dp_soc *soc)
{
uint8_t i;
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
if (nss_config == 1) {
/*
* Setting Tx ring map for one nss offloaded radio
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_FIRST_RADIO_OFFLOADED_MAP][i];
} else if (nss_config == 2) {
/*
* Setting Tx ring for two nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_SECOND_RADIO_OFFLOADED_MAP][i];
} else {
/*
* Setting Tx ring map for all nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_ALL_RADIO_OFFLOADED_MAP][i];
}
}
}
/*
* dp_soc_ring_if_nss_offloaded() - find if ring is offloaded to NSS
* @dp_soc - DP soc handle
* @ring_type - ring type
* @ring_num - ring_num
*
* return 0 or 1
*/
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc, enum hal_ring_type ring_type, int ring_num)
{
uint8_t nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint8_t status = 0;
switch (ring_type) {
case WBM2SW_RELEASE:
case REO_DST:
case RXDMA_BUF:
status = ((nss_config) & (1 << ring_num));
break;
default:
break;
}
return status;
}
/*
* dp_soc_reset_intr_mask() - reset interrupt mask
* @dp_soc - DP Soc handle
*
* Return: Return void
*/
static void dp_soc_reset_intr_mask(struct dp_soc *soc)
{
uint8_t j;
int *grp_mask = NULL;
int group_number, mask, num_ring;
/* number of tx ring */
num_ring = wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
/*
* group mask for tx completion ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, WBM2SW_RELEASE, j)) {
continue;
}
/*
* Group number corresponding to tx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
WBM2SW_RELEASE, j);
return;
}
/* reset the tx mask for offloaded ring */
mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, group_number);
mask &= (~(1 << j));
/*
* reset the interrupt mask for offloaded ring.
*/
wlan_cfg_set_tx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/* number of rx rings */
num_ring = wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
/*
* group mask for reo destination ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, REO_DST, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, j);
return;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, group_number);
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/*
* group mask for Rx buffer refill ring
*/
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < MAX_PDEV_CNT; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, j);
return;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number);
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, mask);
}
}
#ifdef IPA_OFFLOAD
/**
* dp_reo_remap_config() - configure reo remap register value based
* nss configuration.
* based on offload_radio value below remap configuration
* get applied.
* 0 - both Radios handled by host (remap rings 1, 2, 3 & 4)
* 1 - 1st Radio handled by NSS (remap rings 2, 3 & 4)
* 2 - 2nd Radio handled by NSS (remap rings 1, 2 & 4)
* 3 - both Radios handled by NSS (remap not required)
* 4 - IPA OFFLOAD enabled (remap rings 1,2 & 3)
*
* @remap1: output parameter indicates reo remap 1 register value
* @remap2: output parameter indicates reo remap 2 register value
* Return: bool type, true if remap is configured else false.
*/
static bool dp_reo_remap_config(struct dp_soc *soc,
uint32_t *remap1,
uint32_t *remap2)
{
*remap1 = ((0x1 << 0) | (0x2 << 3) | (0x3 << 6) | (0x1 << 9) |
(0x2 << 12) | (0x3 << 15) | (0x1 << 18) | (0x2 << 21)) << 8;
*remap2 = ((0x3 << 0) | (0x1 << 3) | (0x2 << 6) | (0x3 << 9) |
(0x1 << 12) | (0x2 << 15) | (0x3 << 18) | (0x1 << 21)) << 8;
return true;
}
#else
static bool dp_reo_remap_config(struct dp_soc *soc,
uint32_t *remap1,
uint32_t *remap2)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
switch (offload_radio) {
case 0:
*remap1 = ((0x1 << 0) | (0x2 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x1 << 12) | (0x2 << 15) |
(0x3 << 18) | (0x4 << 21)) << 8;
*remap2 = ((0x1 << 0) | (0x2 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x1 << 12) | (0x2 << 15) |
(0x3 << 18) | (0x4 << 21)) << 8;
break;
case 1:
*remap1 = ((0x2 << 0) | (0x3 << 3) | (0x4 << 6) |
(0x2 << 9) | (0x3 << 12) | (0x4 << 15) |
(0x2 << 18) | (0x3 << 21)) << 8;
*remap2 = ((0x4 << 0) | (0x2 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x2 << 12) | (0x3 << 15) |
(0x4 << 18) | (0x2 << 21)) << 8;
break;
case 2:
*remap1 = ((0x1 << 0) | (0x3 << 3) | (0x4 << 6) |
(0x1 << 9) | (0x3 << 12) | (0x4 << 15) |
(0x1 << 18) | (0x3 << 21)) << 8;
*remap2 = ((0x4 << 0) | (0x1 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x1 << 12) | (0x3 << 15) |
(0x4 << 18) | (0x1 << 21)) << 8;
break;
case 3:
/* return false if both radios are offloaded to NSS */
return false;
}
return true;
}
#endif
/*
* dp_reo_frag_dst_set() - configure reo register to set the
* fragment destination ring
* @soc : Datapath soc
* @frag_dst_ring : output parameter to set fragment destination ring
*
* Based on offload_radio below fragment destination rings is selected
* 0 - TCL
* 1 - SW1
* 2 - SW2
* 3 - SW3
* 4 - SW4
* 5 - Release
* 6 - FW
* 7 - alternate select
*
* return: void
*/
static void dp_reo_frag_dst_set(struct dp_soc *soc, uint8_t *frag_dst_ring)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
switch (offload_radio) {
case 0:
*frag_dst_ring = HAL_SRNG_REO_EXCEPTION;
break;
case 3:
*frag_dst_ring = HAL_SRNG_REO_ALTERNATE_SELECT;
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_reo_frag_dst_set invalid offload radio config"));
break;
}
}
/*
* dp_soc_cmn_setup() - Common SoC level initializion
* @soc: Datapath SOC handle
*
* This is an internal function used to setup common SOC data structures,
* to be called from PDEV attach after receiving HW mode capabilities from FW
*/
static int dp_soc_cmn_setup(struct dp_soc *soc)
{
int i;
struct hal_reo_params reo_params;
int tx_ring_size;
int tx_comp_ring_size;
int reo_dst_ring_size;
if (qdf_atomic_read(&soc->cmn_init_done))
return 0;
if (dp_hw_link_desc_pool_setup(soc))
goto fail1;
/* Setup SRNG rings */
/* Common rings */
if (dp_srng_setup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0,
WBM_RELEASE_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for wbm_desc_rel_ring"));
goto fail1;
}
soc->num_tcl_data_rings = 0;
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
soc->num_tcl_data_rings =
wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
tx_comp_ring_size =
wlan_cfg_tx_comp_ring_size(soc->wlan_cfg_ctx);
tx_ring_size =
wlan_cfg_tx_ring_size(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_srng_setup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i, 0, tx_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring[%d]"), i);
goto fail1;
}
/*
* TBD: Set IPA WBM ring size with ini IPA UC tx buffer
* count
*/
if (dp_srng_setup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i, 0, tx_comp_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring[%d]"), i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_tcl_data_rings = 0;
}
if (dp_tx_soc_attach(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_soc_attach failed"));
goto fail1;
}
/* TCL command and status rings */
if (dp_srng_setup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0, 0,
TCL_CMD_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_cmd_ring"));
goto fail1;
}
if (dp_srng_setup(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0,
TCL_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_status_ring"));
goto fail1;
}
reo_dst_ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx);
/* TBD: call dp_tx_init to setup Tx SW descriptors and MSDU extension
* descriptors
*/
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("num_reo_dest_rings %d\n"), soc->num_reo_dest_rings);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[i], REO_DST,
i, 0, reo_dst_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_dest_ring[%d]"), i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_reo_dest_rings = 0;
}
/* LMAC RxDMA to SW Rings configuration */
if (!wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
/* Only valid for MCL */
struct dp_pdev *pdev = soc->pdev_list[0];
for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
if (dp_srng_setup(soc, &pdev->rxdma_err_dst_ring[i],
RXDMA_DST, 0, i, RXDMA_ERR_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rxdma_err_dst_ring"));
goto fail1;
}
}
}
/* TBD: call dp_rx_init to setup Rx SW descriptors */
/* REO reinjection ring */
if (dp_srng_setup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0,
REO_REINJECT_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_reinject_ring"));
goto fail1;
}
/* Rx release ring */
if (dp_srng_setup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3, 0,
RX_RELEASE_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rx_rel_ring"));
goto fail1;
}
/* Rx exception ring */
if (dp_srng_setup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0,
MAX_REO_DEST_RINGS, REO_EXCEPTION_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_exception_ring"));
goto fail1;
}
/* REO command and status rings */
if (dp_srng_setup(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0,
REO_CMD_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_cmd_ring"));
goto fail1;
}
hal_reo_init_cmd_ring(soc->hal_soc, soc->reo_cmd_ring.hal_srng);
TAILQ_INIT(&soc->rx.reo_cmd_list);
qdf_spinlock_create(&soc->rx.reo_cmd_lock);
if (dp_srng_setup(soc, &soc->reo_status_ring, REO_STATUS, 0, 0,
REO_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_status_ring"));
goto fail1;
}
qdf_spinlock_create(&soc->ast_lock);
dp_soc_wds_attach(soc);
/* Reset the cpu ring map if radio is NSS offloaded */
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
dp_soc_reset_cpu_ring_map(soc);
dp_soc_reset_intr_mask(soc);
}
/* Setup HW REO */
qdf_mem_zero(&reo_params, sizeof(reo_params));
if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
/*
* Reo ring remap is not required if both radios
* are offloaded to NSS
*/
if (!dp_reo_remap_config(soc,
&reo_params.remap1,
&reo_params.remap2))
goto out;
reo_params.rx_hash_enabled = true;
}
/* setup the global rx defrag waitlist */
TAILQ_INIT(&soc->rx.defrag.waitlist);
soc->rx.defrag.timeout_ms =
wlan_cfg_get_rx_defrag_min_timeout(soc->wlan_cfg_ctx);
soc->rx.flags.defrag_timeout_check =
wlan_cfg_get_defrag_timeout_check(soc->wlan_cfg_ctx);
qdf_spinlock_create(&soc->rx.defrag.defrag_lock);
out:
/*
* set the fragment destination ring
*/
dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
hal_reo_setup(soc->hal_soc, &reo_params);
qdf_atomic_set(&soc->cmn_init_done, 1);
qdf_nbuf_queue_init(&soc->htt_stats.msg);
return 0;
fail1:
/*
* Cleanup will be done as part of soc_detach, which will
* be called on pdev attach failure
*/
return QDF_STATUS_E_FAILURE;
}
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force);
static void dp_lro_hash_setup(struct dp_soc *soc)
{
struct cdp_lro_hash_config lro_hash;
if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("LRO disabled RX hash disabled"));
return;
}
qdf_mem_zero(&lro_hash, sizeof(lro_hash));
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx)) {
lro_hash.lro_enable = 1;
lro_hash.tcp_flag = QDF_TCPHDR_ACK;
lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW, FL("enabled"));
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
"lro_hash: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
lro_hash.lro_enable, lro_hash.tcp_flag,
lro_hash.tcp_flag_mask);
qdf_trace_hex_dump(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
(void *)lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
qdf_trace_hex_dump(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
(void *)lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
if (soc->cdp_soc.ol_ops->lro_hash_config)
(void)soc->cdp_soc.ol_ops->lro_hash_config
(soc->ctrl_psoc, &lro_hash);
}
/*
* dp_rxdma_ring_setup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: 0 - success, > 0 - failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
int i;
for (i = 0; i < max_mac_rings; i++) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: pdev_id %d mac_id %d\n",
__func__, pdev->pdev_id, i);
if (dp_srng_setup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1, i, RXDMA_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("failed rx mac ring setup"));
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#else
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_dscp_tid_map_setup(): Initialize the dscp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_dscp_tid_map_setup(struct dp_pdev *pdev)
{
uint8_t map_id;
for (map_id = 0; map_id < DP_MAX_TID_MAPS; map_id++) {
qdf_mem_copy(pdev->dscp_tid_map[map_id], default_dscp_tid_map,
sizeof(default_dscp_tid_map));
}
for (map_id = 0; map_id < HAL_MAX_HW_DSCP_TID_MAPS; map_id++) {
hal_tx_set_dscp_tid_map(pdev->soc->hal_soc,
pdev->dscp_tid_map[map_id],
map_id);
}
}
#ifdef QCA_SUPPORT_SON
/**
* dp_mark_peer_inact(): Update peer inactivity status
* @peer_handle - datapath peer handle
*
* Return: void
*/
void dp_mark_peer_inact(void *peer_handle, bool inactive)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
bool inactive_old;
if (!peer)
return;
pdev = peer->vdev->pdev;
soc = pdev->soc;
inactive_old = peer->peer_bs_inact_flag == 1;
if (!inactive)
peer->peer_bs_inact = soc->pdev_bs_inact_reload;
peer->peer_bs_inact_flag = inactive ? 1 : 0;
if (inactive_old != inactive) {
/**
* Note: a node lookup can happen in RX datapath context
* when a node changes from inactive to active (at most once
* per inactivity timeout threshold)
*/
if (soc->cdp_soc.ol_ops->record_act_change) {
soc->cdp_soc.ol_ops->record_act_change(
(void *)pdev->ctrl_pdev,
peer->mac_addr.raw, !inactive);
}
}
}
/**
* dp_txrx_peer_find_inact_timeout_handler(): Inactivity timeout function
*
* Periodically checks the inactivity status
*/
static os_timer_func(dp_txrx_peer_find_inact_timeout_handler)
{
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_soc *soc;
int i;
OS_GET_TIMER_ARG(soc, struct dp_soc *);
qdf_spin_lock(&soc->peer_ref_mutex);
for (i = 0; i < soc->pdev_count; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->opmode != wlan_op_mode_ap)
continue;
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer->authorize) {
/**
* Inactivity check only interested in
* connected node
*/
continue;
}
if (peer->peer_bs_inact > soc->pdev_bs_inact_reload) {
/**
* This check ensures we do not wait extra long
* due to the potential race condition
*/
peer->peer_bs_inact = soc->pdev_bs_inact_reload;
}
if (peer->peer_bs_inact > 0) {
/* Do not let it wrap around */
peer->peer_bs_inact--;
}
if (peer->peer_bs_inact == 0)
dp_mark_peer_inact(peer, true);
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock(&soc->peer_ref_mutex);
qdf_timer_mod(&soc->pdev_bs_inact_timer,
soc->pdev_bs_inact_interval * 1000);
}
/**
* dp_free_inact_timer(): free inact timer
* @timer - inact timer handle
*
* Return: bool
*/
void dp_free_inact_timer(struct dp_soc *soc)
{
qdf_timer_free(&soc->pdev_bs_inact_timer);
}
#else
void dp_mark_peer_inact(void *peer, bool inactive)
{
return;
}
void dp_free_inact_timer(struct dp_soc *soc)
{
return;
}
#endif
#ifdef IPA_OFFLOAD
/**
* dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
/* Setup second Rx refill buffer ring */
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX,
pdev->pdev_id, RXDMA_REFILL_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed second rx refill ring"));
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_cleanup_ipa_rx_refill_buf_ring - Cleanup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: void
*/
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX);
}
#else
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
#ifndef QCA_WIFI_QCA6390
static
QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
int mac_id = 0;
int pdev_id = pdev->pdev_id;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
if (dp_srng_setup(soc, &pdev->rxdma_mon_buf_ring[mac_id],
RXDMA_MONITOR_BUF, 0, mac_for_pdev,
RXDMA_MONITOR_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Srng setup failed for rxdma_mon_buf_ring"));
return QDF_STATUS_E_NOMEM;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_dst_ring[mac_id],
RXDMA_MONITOR_DST, 0, mac_for_pdev,
RXDMA_MONITOR_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Srng setup failed for rxdma_mon_dst_ring"));
return QDF_STATUS_E_NOMEM;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0, mac_for_pdev,
RXDMA_MONITOR_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Srng setup failed for rxdma_mon_status_ring"));
return QDF_STATUS_E_NOMEM;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_desc_ring[mac_id],
RXDMA_MONITOR_DESC, 0, mac_for_pdev,
RXDMA_MONITOR_DESC_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Srng setup failed for rxdma_mon_desc_ring\n");
return QDF_STATUS_E_NOMEM;
}
}
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_pdev_attach_wifi3() - attach txrx pdev
* @ctrl_pdev: Opaque PDEV object
* @txrx_soc: Datapath SOC handle
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @pdev_id: PDEV ID
*
* Return: DP PDEV handle on success, NULL on failure
*/
static struct cdp_pdev *dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
struct cdp_ctrl_objmgr_pdev *ctrl_pdev,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, uint8_t pdev_id)
{
int tx_ring_size;
int tx_comp_ring_size;
int reo_dst_ring_size;
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = qdf_mem_malloc(sizeof(*pdev));
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV memory allocation failed"));
goto fail0;
}
pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach();
if (!pdev->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("pdev cfg_attach failed"));
qdf_mem_free(pdev);
goto fail0;
}
/*
* set nss pdev config based on soc config
*/
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx) & (1 << pdev_id)));
pdev->soc = soc;
pdev->ctrl_pdev = ctrl_pdev;
pdev->pdev_id = pdev_id;
soc->pdev_list[pdev_id] = pdev;
soc->pdev_count++;
TAILQ_INIT(&pdev->vdev_list);
qdf_spinlock_create(&pdev->vdev_list_lock);
pdev->vdev_count = 0;
qdf_spinlock_create(&pdev->tx_mutex);
qdf_spinlock_create(&pdev->neighbour_peer_mutex);
TAILQ_INIT(&pdev->neighbour_peers_list);
if (dp_soc_cmn_setup(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_soc_cmn_setup failed"));
goto fail1;
}
/* Setup per PDEV TCL rings if configured */
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
tx_ring_size =
wlan_cfg_tx_ring_size(soc->wlan_cfg_ctx);
tx_comp_ring_size =
wlan_cfg_tx_comp_ring_size(soc->wlan_cfg_ctx);
if (dp_srng_setup(soc, &soc->tcl_data_ring[pdev_id], TCL_DATA,
pdev_id, pdev_id, tx_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring"));
goto fail1;
}
if (dp_srng_setup(soc, &soc->tx_comp_ring[pdev_id],
WBM2SW_RELEASE, pdev_id, pdev_id, tx_comp_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring"));
goto fail1;
}
soc->num_tcl_data_rings++;
}
/* Tx specific init */
if (dp_tx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_pdev_attach failed"));
goto fail1;
}
reo_dst_ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx);
/* Setup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[pdev_id], REO_DST,
pdev_id, pdev_id, reo_dst_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_dest_ringn"));
goto fail1;
}
soc->num_reo_dest_rings++;
}
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0, pdev_id,
RXDMA_REFILL_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed rx refill ring"));
goto fail1;
}
if (dp_rxdma_ring_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("RXDMA ring config failed"));
goto fail1;
}
if (dp_mon_rings_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("MONITOR rings setup failed"));
goto fail1;
}
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
if (dp_srng_setup(soc, &pdev->rxdma_err_dst_ring[0], RXDMA_DST,
0, pdev_id, RXDMA_ERR_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rxdma_err_dst_ring"));
goto fail1;
}
}
if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev))
goto fail1;
if (dp_ipa_ring_resource_setup(soc, pdev))
goto fail1;
if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_ipa_uc_attach failed"));
goto fail1;
}
/* Rx specific init */
if (dp_rx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_rx_pdev_attach failed"));
goto fail0;
}
DP_STATS_INIT(pdev);
/* Monitor filter init */
pdev->mon_filter_mode = MON_FILTER_ALL;
pdev->fp_mgmt_filter = FILTER_MGMT_ALL;
pdev->fp_ctrl_filter = FILTER_CTRL_ALL;
pdev->fp_data_filter = FILTER_DATA_ALL;
pdev->mo_mgmt_filter = FILTER_MGMT_ALL;
pdev->mo_ctrl_filter = FILTER_CTRL_ALL;
pdev->mo_data_filter = FILTER_DATA_ALL;
dp_local_peer_id_pool_init(pdev);
dp_dscp_tid_map_setup(pdev);
/* Rx monitor mode specific init */
if (dp_rx_pdev_mon_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_rx_pdev_attach failed\n");
goto fail1;
}
if (dp_wdi_event_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_wdi_evet_attach failed\n");
goto fail1;
}
/* set the reo destination during initialization */
pdev->reo_dest = pdev->pdev_id + 1;
/*
* initialize ppdu tlv list
*/
TAILQ_INIT(&pdev->ppdu_info_list);
pdev->tlv_count = 0;
pdev->list_depth = 0;
return (struct cdp_pdev *)pdev;
fail1:
dp_pdev_detach_wifi3((struct cdp_pdev *)pdev, 0);
fail0:
return NULL;
}
/*
* dp_rxdma_ring_cleanup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: void
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
int max_mac_rings =
wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
int i;
max_mac_rings = max_mac_rings < MAX_RX_MAC_RINGS ?
max_mac_rings : MAX_RX_MAC_RINGS;
for (i = 0; i < MAX_RX_MAC_RINGS; i++)
dp_srng_cleanup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1);
qdf_timer_free(&soc->mon_reap_timer);
}
#else
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
/*
* dp_neighbour_peers_detach() - Detach neighbour peers(nac clients)
* @pdev: device object
*
* Return: void
*/
static void dp_neighbour_peers_detach(struct dp_pdev *pdev)
{
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
}
qdf_spinlock_destroy(&pdev->neighbour_peer_mutex);
}
/**
* dp_htt_ppdu_stats_detach() - detach stats resources
* @pdev: Datapath PDEV handle
*
* Return: void
*/
static void dp_htt_ppdu_stats_detach(struct dp_pdev *pdev)
{
struct ppdu_info *ppdu_info, *ppdu_info_next;
TAILQ_FOREACH_SAFE(ppdu_info, &pdev->ppdu_info_list,
ppdu_info_list_elem, ppdu_info_next) {
if (!ppdu_info)
break;
qdf_assert_always(ppdu_info->nbuf);
qdf_nbuf_free(ppdu_info->nbuf);
qdf_mem_free(ppdu_info);
}
}
#ifndef QCA_WIFI_QCA6390
static
void dp_mon_ring_deinit(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
dp_srng_cleanup(soc, &pdev->rxdma_mon_buf_ring[mac_id],
RXDMA_MONITOR_BUF, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_dst_ring[mac_id],
RXDMA_MONITOR_DST, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_desc_ring[mac_id],
RXDMA_MONITOR_DESC, 0);
dp_srng_cleanup(soc, &pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
}
#else
static void dp_mon_ring_deinit(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
}
#endif
/*
* dp_pdev_detach_wifi3() - detach txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force detach
*
*/
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
qdf_nbuf_t curr_nbuf, next_nbuf;
int mac_id;
dp_wdi_event_detach(pdev);
dp_tx_pdev_detach(pdev);
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[pdev->pdev_id],
TCL_DATA, pdev->pdev_id);
dp_srng_cleanup(soc, &soc->tx_comp_ring[pdev->pdev_id],
WBM2SW_RELEASE, pdev->pdev_id);
}
dp_pktlogmod_exit(pdev);
dp_rx_pdev_detach(pdev);
dp_rx_pdev_mon_detach(pdev);
dp_neighbour_peers_detach(pdev);
qdf_spinlock_destroy(&pdev->tx_mutex);
qdf_spinlock_destroy(&pdev->vdev_list_lock);
dp_ipa_uc_detach(soc, pdev);
dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev);
/* Cleanup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->reo_dest_ring[pdev->pdev_id],
REO_DST, pdev->pdev_id);
}
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0);
dp_rxdma_ring_cleanup(soc, pdev);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
dp_mon_ring_deinit(soc, pdev, mac_id);
dp_srng_cleanup(soc, &pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
}
curr_nbuf = pdev->invalid_peer_head_msdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
dp_htt_ppdu_stats_detach(pdev);
soc->pdev_list[pdev->pdev_id] = NULL;
soc->pdev_count--;
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
qdf_mem_free(pdev->dp_txrx_handle);
qdf_mem_free(pdev);
}
/*
* dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
* @soc: DP SOC handle
*/
static inline void dp_reo_desc_freelist_destroy(struct dp_soc *soc)
{
struct reo_desc_list_node *desc;
struct dp_rx_tid *rx_tid;
qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
while (qdf_list_remove_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) {
rx_tid = &desc->rx_tid;
qdf_mem_unmap_nbytes_single(soc->osdev,
rx_tid->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
rx_tid->hw_qdesc_alloc_size);
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
qdf_list_destroy(&soc->reo_desc_freelist);
qdf_spinlock_destroy(&soc->reo_desc_freelist_lock);
}
/*
* dp_soc_detach_wifi3() - Detach txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*/
static void dp_soc_detach_wifi3(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
qdf_atomic_set(&soc->cmn_init_done, 0);
qdf_flush_work(&soc->htt_stats.work);
qdf_disable_work(&soc->htt_stats.work);
/* Free pending htt stats messages */
qdf_nbuf_queue_free(&soc->htt_stats.msg);
dp_free_inact_timer(soc);
for (i = 0; i < MAX_PDEV_CNT; i++) {
if (soc->pdev_list[i])
dp_pdev_detach_wifi3(
(struct cdp_pdev *)soc->pdev_list[i], 1);
}
dp_peer_find_detach(soc);
/* TBD: Call Tx and Rx cleanup functions to free buffers and
* SW descriptors
*/
/* Free the ring memories */
/* Common rings */
dp_srng_cleanup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
dp_tx_soc_detach(soc);
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i);
dp_srng_cleanup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i);
}
}
/* TCL command and status rings */
dp_srng_cleanup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0);
dp_srng_cleanup(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
dp_srng_cleanup(soc, &soc->reo_dest_ring[i],
REO_DST, i);
}
}
/* REO reinjection ring */
dp_srng_cleanup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
dp_srng_cleanup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
dp_srng_cleanup(soc, &soc->reo_cmd_ring, REO_CMD, 0);
dp_srng_cleanup(soc, &soc->reo_status_ring, REO_STATUS, 0);
dp_hw_link_desc_pool_cleanup(soc);
qdf_spinlock_destroy(&soc->peer_ref_mutex);
qdf_spinlock_destroy(&soc->htt_stats.lock);
htt_soc_detach(soc->htt_handle);
qdf_spinlock_destroy(&soc->rx.defrag.defrag_lock);
dp_reo_cmdlist_destroy(soc);
qdf_spinlock_destroy(&soc->rx.reo_cmd_lock);
dp_reo_desc_freelist_destroy(soc);
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
dp_soc_wds_detach(soc);
qdf_spinlock_destroy(&soc->ast_lock);
qdf_mem_free(soc);
}
#ifndef QCA_WIFI_QCA6390
static void dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_dst_ring[mac_id].hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_desc_ring[mac_id].hal_srng,
RXDMA_MONITOR_DESC);
}
#else
static void dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
}
#endif
/*
* dp_rxdma_ring_config() - configure the RX DMA rings
*
* This function is used to configure the MAC rings.
* On MCL host provides buffers in Host2FW ring
* FW refills (copies) buffers to the ring and updates
* ring_idx in register
*
* @soc: data path SoC handle
*
* Return: void
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static void dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
int mac_id;
bool dbs_enable = 0;
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring.hal_srng,
RXDMA_BUF);
if (pdev->rx_refill_buf_ring2.hal_srng)
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring2.hal_srng,
RXDMA_BUF);
if (soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable) {
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable(soc->ctrl_psoc);
}
if (dbs_enable) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS enabled max_mac_rings %d\n"),
max_mac_rings);
} else {
max_mac_rings = 1;
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS disabled, max_mac_rings %d\n"),
max_mac_rings);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("pdev_id %d max_mac_rings %d\n"),
pdev->pdev_id, max_mac_rings);
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(
mac_id, pdev->pdev_id);
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("mac_id %d\n"), mac_for_pdev);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[mac_id]
.hal_srng,
RXDMA_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_err_dst_ring[mac_id]
.hal_srng,
RXDMA_DST);
/* Configure monitor mode rings */
dp_mon_htt_srng_setup(soc, pdev, mac_id,
mac_for_pdev);
}
}
}
/*
* Timer to reap rxdma status rings.
* Needed until we enable ppdu end interrupts
*/
qdf_timer_init(soc->osdev, &soc->mon_reap_timer,
dp_service_mon_rings, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
soc->reap_timer_init = 1;
}
#else
/* This is only for WIN */
static void dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
int mac_id;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev == NULL)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, i);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_refill_buf_ring.hal_srng, RXDMA_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_dst_ring[mac_id].hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_desc_ring[mac_id].hal_srng,
RXDMA_MONITOR_DESC);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_err_dst_ring[mac_id].hal_srng,
RXDMA_DST);
}
}
}
#endif
/*
* dp_soc_attach_target_wifi3() - SOC initialization in the target
* @txrx_soc: Datapath SOC handle
*/
static int dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
htt_soc_attach_target(soc->htt_handle);
dp_rxdma_ring_config(soc);
DP_STATS_INIT(soc);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
return 0;
}
/*
* dp_soc_get_nss_cfg_wifi3() - SOC get nss config
* @txrx_soc: Datapath SOC handle
*/
static int dp_soc_get_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
return wlan_cfg_get_dp_soc_nss_cfg(dsoc->wlan_cfg_ctx);
}
/*
* dp_soc_set_nss_cfg_wifi3() - SOC set nss config
* @txrx_soc: Datapath SOC handle
* @nss_cfg: nss config
*/
static void dp_soc_set_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc, int config)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = dsoc->wlan_cfg_ctx;
wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx, config);
/*
* TODO: masked out based on the per offloaded radio
*/
if (config == dp_nss_cfg_dbdc) {
wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("nss-wifi<0> nss config is enabled"));
}
/*
* dp_vdev_attach_wifi3() - attach txrx vdev
* @txrx_pdev: Datapath PDEV handle
* @vdev_mac_addr: MAC address of the virtual interface
* @vdev_id: VDEV Id
* @wlan_op_mode: VDEV operating mode
*
* Return: DP VDEV handle on success, NULL on failure
*/
static struct cdp_vdev *dp_vdev_attach_wifi3(struct cdp_pdev *txrx_pdev,
uint8_t *vdev_mac_addr, uint8_t vdev_id, enum wlan_op_mode op_mode)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev = qdf_mem_malloc(sizeof(*vdev));
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP VDEV memory allocation failed"));
goto fail0;
}
vdev->pdev = pdev;
vdev->vdev_id = vdev_id;
vdev->opmode = op_mode;
vdev->osdev = soc->osdev;
vdev->osif_rx = NULL;
vdev->osif_rsim_rx_decap = NULL;
vdev->osif_get_key = NULL;
vdev->osif_rx_mon = NULL;
vdev->osif_tx_free_ext = NULL;
vdev->osif_vdev = NULL;
vdev->delete.pending = 0;
vdev->safemode = 0;
vdev->drop_unenc = 1;
vdev->sec_type = cdp_sec_type_none;
#ifdef notyet
vdev->filters_num = 0;
#endif
qdf_mem_copy(
&vdev->mac_addr.raw[0], vdev_mac_addr, OL_TXRX_MAC_ADDR_LEN);
vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->dscp_tid_map_id = 0;
vdev->mcast_enhancement_en = 0;
/* TODO: Initialize default HTT meta data that will be used in
* TCL descriptors for packets transmitted from this VDEV
*/
TAILQ_INIT(&vdev->peer_list);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
/* add this vdev into the pdev's list */
TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
pdev->vdev_count++;
dp_tx_vdev_attach(vdev);
if ((soc->intr_mode == DP_INTR_POLL) &&
wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
if (pdev->vdev_count == 1)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
dp_lro_hash_setup(soc);
/* LRO */
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
wlan_op_mode_sta == vdev->opmode)
vdev->lro_enable = true;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"LRO: vdev_id %d lro_enable %d", vdev_id, vdev->lro_enable);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Created vdev %pK (%pM)", vdev, vdev->mac_addr.raw);
DP_STATS_INIT(vdev);
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_create_wifi3((struct cdp_vdev *)vdev,
vdev->mac_addr.raw,
NULL);
return (struct cdp_vdev *)vdev;
fail0:
return NULL;
}
/**
* dp_vdev_register_wifi3() - Register VDEV operations from osif layer
* @vdev: Datapath VDEV handle
* @osif_vdev: OSIF vdev handle
* @ctrl_vdev: UMAC vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: DP VDEV handle on success, NULL on failure
*/
static void dp_vdev_register_wifi3(struct cdp_vdev *vdev_handle,
void *osif_vdev, struct cdp_ctrl_objmgr_vdev *ctrl_vdev,
struct ol_txrx_ops *txrx_ops)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->osif_vdev = osif_vdev;
vdev->ctrl_vdev = ctrl_vdev;
vdev->osif_rx = txrx_ops->rx.rx;
vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
vdev->osif_get_key = txrx_ops->get_key;
vdev->osif_rx_mon = txrx_ops->rx.mon;
vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
#ifdef notyet
#if ATH_SUPPORT_WAPI
vdev->osif_check_wai = txrx_ops->rx.wai_check;
#endif
#endif
#ifdef UMAC_SUPPORT_PROXY_ARP
vdev->osif_proxy_arp = txrx_ops->proxy_arp;
#endif
vdev->me_convert = txrx_ops->me_convert;
/* TODO: Enable the following once Tx code is integrated */
if (vdev->mesh_vdev)
txrx_ops->tx.tx = dp_tx_send_mesh;
else
txrx_ops->tx.tx = dp_tx_send;
txrx_ops->tx.tx_exception = dp_tx_send_exception;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
"DP Vdev Register success");
}
/**
* dp_vdev_flush_peers() - Forcibily Flush peers of vdev
* @vdev: Datapath VDEV handle
*
* Return: void
*/
static void dp_vdev_flush_peers(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *peer;
uint16_t *peer_ids;
uint8_t i = 0, j = 0;
peer_ids = qdf_mem_malloc(soc->max_peers * sizeof(peer_ids[0]));
if (!peer_ids) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to flush peers");
return;
}
qdf_spin_lock_bh(&soc->peer_ref_mutex);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
if (peer->peer_ids[i] != HTT_INVALID_PEER)
if (j < soc->max_peers)
peer_ids[j++] = peer->peer_ids[i];
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
for (i = 0; i < j ; i++)
dp_rx_peer_unmap_handler(soc, peer_ids[i]);
qdf_mem_free(peer_ids);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("Flushed peers for vdev object %pK "), vdev);
}
/*
* dp_vdev_detach_wifi3() - Detach txrx vdev
* @txrx_vdev: Datapath VDEV handle
* @callback: Callback OL_IF on completion of detach
* @cb_context: Callback context
*
*/
static void dp_vdev_detach_wifi3(struct cdp_vdev *vdev_handle,
ol_txrx_vdev_delete_cb callback, void *cb_context)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
/* preconditions */
qdf_assert(vdev);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
/* remove the vdev from its parent pdev's list */
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_delete_wifi3(vdev->vap_bss_peer, 0);
/*
* If Target is hung, flush all peers before detaching vdev
* this will free all references held due to missing
* unmap commands from Target
*/
if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET)
dp_vdev_flush_peers(vdev);
/*
* Use peer_ref_mutex while accessing peer_list, in case
* a peer is in the process of being removed from the list.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
/* check that the vdev has no peers allocated */
if (!TAILQ_EMPTY(&vdev->peer_list)) {
/* debug print - will be removed later */
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
FL("not deleting vdev object %pK (%pM)"
"until deletion finishes for all its peers"),
vdev, vdev->mac_addr.raw);
/* indicate that the vdev needs to be deleted */
vdev->delete.pending = 1;
vdev->delete.callback = callback;
vdev->delete.context = cb_context;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return;
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
dp_tx_vdev_detach(vdev);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("deleting vdev object %pK (%pM)"), vdev, vdev->mac_addr.raw);
qdf_mem_free(vdev);
if (callback)
callback(cb_context);
}
/*
* dp_peer_delete_ast_entries(): Delete all AST entries for a peer
* @soc - datapath soc handle
* @peer - datapath peer handle
*
* Delete the AST entries belonging to a peer
*/
#ifdef FEATURE_AST
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
struct dp_ast_entry *ast_entry, *temp_ast_entry;
qdf_spin_lock_bh(&soc->ast_lock);
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, temp_ast_entry)
dp_peer_del_ast(soc, ast_entry);
peer->self_ast_entry = NULL;
TAILQ_INIT(&peer->ast_entry_list);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#else
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
}
#endif
/*
* dp_peer_create_wifi3() - attach txrx peer
* @txrx_vdev: Datapath VDEV handle
* @peer_mac_addr: Peer MAC address
*
* Return: DP peeer handle on success, NULL on failure
*/
static void *dp_peer_create_wifi3(struct cdp_vdev *vdev_handle,
uint8_t *peer_mac_addr, struct cdp_ctrl_objmgr_peer *ctrl_peer)
{
struct dp_peer *peer;
int i;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct dp_ast_entry *ast_entry;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer_mac_addr);
pdev = vdev->pdev;
soc = pdev->soc;
peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr,
0, vdev->vdev_id);
if (peer) {
peer->delete_in_progress = false;
dp_peer_delete_ast_entries(soc, peer);
/*
* on peer create, peer ref count decrements, sice new peer is not
* getting created earlier reference is reused, peer_unref_delete will
* take care of incrementing count
* */
if (soc->cdp_soc.ol_ops->peer_unref_delete) {
soc->cdp_soc.ol_ops->peer_unref_delete(pdev->ctrl_pdev,
vdev->vdev_id, peer->mac_addr.raw);
}
peer->ctrl_peer = ctrl_peer;
dp_local_peer_id_alloc(pdev, peer);
DP_STATS_INIT(peer);
return (void *)peer;
} else {
/*
* When a STA roams from RPTR AP to ROOT AP and vice versa, we
* need to remove the AST entry which was earlier added as a WDS
* entry.
*/
ast_entry = dp_peer_ast_hash_find(soc, peer_mac_addr);
if (ast_entry)
dp_peer_del_ast(soc, ast_entry);
}
#ifdef notyet
peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
soc->mempool_ol_ath_peer);
#else
peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
#endif
if (!peer)
return NULL; /* failure */
qdf_mem_zero(peer, sizeof(struct dp_peer));
TAILQ_INIT(&peer->ast_entry_list);
/* store provided params */
peer->vdev = vdev;
peer->ctrl_peer = ctrl_peer;
dp_peer_add_ast(soc, peer, peer_mac_addr, CDP_TXRX_AST_TYPE_STATIC, 0);
qdf_spinlock_create(&peer->peer_info_lock);
qdf_mem_copy(
&peer->mac_addr.raw[0], peer_mac_addr, OL_TXRX_MAC_ADDR_LEN);
/* TODO: See of rx_opt_proc is really required */
peer->rx_opt_proc = soc->rx_opt_proc;
/* initialize the peer_id */
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
peer->peer_ids[i] = HTT_INVALID_PEER;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_atomic_init(&peer->ref_cnt);
/* keep one reference for attach */
qdf_atomic_inc(&peer->ref_cnt);
/* add this peer into the vdev's list */
if (wlan_op_mode_sta == vdev->opmode)
TAILQ_INSERT_HEAD(&vdev->peer_list, peer, peer_list_elem);
else
TAILQ_INSERT_TAIL(&vdev->peer_list, peer, peer_list_elem);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/* TODO: See if hash based search is required */
dp_peer_find_hash_add(soc, peer);
/* Initialize the peer state */
peer->state = OL_TXRX_PEER_STATE_DISC;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
"vdev %pK created peer %pK (%pM) ref_cnt: %d",
vdev, peer, peer->mac_addr.raw,
qdf_atomic_read(&peer->ref_cnt));
/*
* For every peer MAp message search and set if bss_peer
*/
if (memcmp(peer->mac_addr.raw, vdev->mac_addr.raw, 6) == 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
"vdev bss_peer!!!!");
peer->bss_peer = 1;
vdev->vap_bss_peer = peer;
}
dp_local_peer_id_alloc(pdev, peer);
DP_STATS_INIT(peer);
return (void *)peer;
}
/*
* dp_peer_setup_wifi3() - initialize the peer
* @vdev_hdl: virtual device object
* @peer: Peer object
*
* Return: void
*/
static void dp_peer_setup_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_pdev *pdev;
struct dp_soc *soc;
bool hash_based = 0;
enum cdp_host_reo_dest_ring reo_dest;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer);
pdev = vdev->pdev;
soc = pdev->soc;
peer->last_assoc_rcvd = 0;
peer->last_disassoc_rcvd = 0;
peer->last_deauth_rcvd = 0;
/*
* hash based steering is disabled for Radios which are offloaded
* to NSS
*/
if (!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx))
hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("hash based steering for pdev: %d is %d\n"),
pdev->pdev_id, hash_based);
/*
* Below line of code will ensure the proper reo_dest ring is chosen
* for cases where toeplitz hash cannot be generated (ex: non TCP/UDP)
*/
reo_dest = pdev->reo_dest;
if (soc->cdp_soc.ol_ops->peer_set_default_routing) {
/* TODO: Check the destination ring number to be passed to FW */
soc->cdp_soc.ol_ops->peer_set_default_routing(
pdev->ctrl_pdev, peer->mac_addr.raw,
peer->vdev->vdev_id, hash_based, reo_dest);
}
dp_peer_rx_init(pdev, peer);
return;
}
/*
* dp_set_vdev_tx_encap_type() - set the encap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_tx_encap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tx_encap_type = val;
}
/*
* dp_set_vdev_rx_decap_type() - set the decap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_rx_decap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->rx_decap_type = val;
}
/*
* dp_set_pdev_reo_dest() - set the reo destination ring for this pdev
* @pdev_handle: physical device object
* @val: reo destination ring index (1 - 4)
*
* Return: void
*/
static void dp_set_pdev_reo_dest(struct cdp_pdev *pdev_handle,
enum cdp_host_reo_dest_ring val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
pdev->reo_dest = val;
}
/*
* dp_get_pdev_reo_dest() - get the reo destination for this pdev
* @pdev_handle: physical device object
*
* Return: reo destination ring index
*/
static enum cdp_host_reo_dest_ring
dp_get_pdev_reo_dest(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
return pdev->reo_dest;
else
return cdp_host_reo_dest_ring_unknown;
}
#ifdef QCA_SUPPORT_SON
static void dp_son_peer_authorize(struct dp_peer *peer)
{
struct dp_soc *soc;
soc = peer->vdev->pdev->soc;
peer->peer_bs_inact_flag = 0;
peer->peer_bs_inact = soc->pdev_bs_inact_reload;
return;
}
#else
static void dp_son_peer_authorize(struct dp_peer *peer)
{
return;
}
#endif
/*
* dp_set_filter_neighbour_peers() - set filter neighbour peers for smart mesh
* @pdev_handle: device object
* @val: value to be set
*
* Return: void
*/
static int dp_set_filter_neighbour_peers(struct cdp_pdev *pdev_handle,
uint32_t val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
/* Enable/Disable smart mesh filtering. This flag will be checked
* during rx processing to check if packets are from NAC clients.
*/
pdev->filter_neighbour_peers = val;
return 0;
}
/*
* dp_update_filter_neighbour_peers() - set neighbour peers(nac clients)
* address for smart mesh filtering
* @pdev_handle: device object
* @cmd: Add/Del command
* @macaddr: nac client mac address
*
* Return: void
*/
static int dp_update_filter_neighbour_peers(struct cdp_pdev *pdev_handle,
uint32_t cmd, uint8_t *macaddr)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_neighbour_peer *peer = NULL;
if (!macaddr)
goto fail0;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == DP_NAC_PARAM_ADD) {
peer = (struct dp_neighbour_peer *) qdf_mem_malloc(
sizeof(*peer));
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP neighbour peer node memory allocation failed"));
goto fail0;
}
qdf_mem_copy(&peer->neighbour_peers_macaddr.raw[0],
macaddr, DP_MAC_ADDR_LEN);
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
/* add this neighbour peer into the list */
TAILQ_INSERT_TAIL(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return 1;
} else if (cmd == DP_NAC_PARAM_DEL) {
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (!qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
macaddr, DP_MAC_ADDR_LEN)) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
break;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return 1;
}
fail0:
return 0;
}
/*
* dp_get_sec_type() - Get the security type
* @peer: Datapath peer handle
* @sec_idx: Security id (mcast, ucast)
*
* return sec_type: Security type
*/
static int dp_get_sec_type(struct cdp_peer *peer, uint8_t sec_idx)
{
struct dp_peer *dpeer = (struct dp_peer *)peer;
return dpeer->security[sec_idx].sec_type;
}
/*
* dp_peer_authorize() - authorize txrx peer
* @peer_handle: Datapath peer handle
* @authorize
*
*/
static void dp_peer_authorize(struct cdp_peer *peer_handle, uint32_t authorize)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_soc *soc;
if (peer != NULL) {
soc = peer->vdev->pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_son_peer_authorize(peer);
peer->authorize = authorize ? 1 : 0;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
#ifdef QCA_SUPPORT_SON
/*
* dp_txrx_update_inact_threshold() - Update inact timer threshold
* @pdev_handle: Device handle
* @new_threshold : updated threshold value
*
*/
static void
dp_txrx_update_inact_threshold(struct cdp_pdev *pdev_handle,
u_int16_t new_threshold)
{
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_soc *soc = pdev->soc;
u_int16_t old_threshold = soc->pdev_bs_inact_reload;
if (old_threshold == new_threshold)
return;
soc->pdev_bs_inact_reload = new_threshold;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->opmode != wlan_op_mode_ap)
continue;
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer->authorize)
continue;
if (old_threshold - peer->peer_bs_inact >=
new_threshold) {
dp_mark_peer_inact((void *)peer, true);
peer->peer_bs_inact = 0;
} else {
peer->peer_bs_inact = new_threshold -
(old_threshold - peer->peer_bs_inact);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
/**
* dp_txrx_reset_inact_count(): Reset inact count
* @pdev_handle - device handle
*
* Return: void
*/
static void
dp_txrx_reset_inact_count(struct cdp_pdev *pdev_handle)
{
struct dp_vdev *vdev = NULL;
struct dp_peer *peer = NULL;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_soc *soc = pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->opmode != wlan_op_mode_ap)
continue;
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer->authorize)
continue;
peer->peer_bs_inact = soc->pdev_bs_inact_reload;
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
/**
* dp_set_inact_params(): set inactivity params
* @pdev_handle - device handle
* @inact_check_interval - inactivity interval
* @inact_normal - Inactivity normal
* @inact_overload - Inactivity overload
*
* Return: bool
*/
bool dp_set_inact_params(struct cdp_pdev *pdev_handle,
u_int16_t inact_check_interval,
u_int16_t inact_normal, u_int16_t inact_overload)
{
struct dp_soc *soc;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (!pdev)
return false;
soc = pdev->soc;
if (!soc)
return false;
soc->pdev_bs_inact_interval = inact_check_interval;
soc->pdev_bs_inact_normal = inact_normal;
soc->pdev_bs_inact_overload = inact_overload;
dp_txrx_update_inact_threshold((struct cdp_pdev *)pdev,
soc->pdev_bs_inact_normal);
return true;
}
/**
* dp_start_inact_timer(): Inactivity timer start
* @pdev_handle - device handle
* @enable - Inactivity timer start/stop
*
* Return: bool
*/
bool dp_start_inact_timer(struct cdp_pdev *pdev_handle, bool enable)
{
struct dp_soc *soc;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (!pdev)
return false;
soc = pdev->soc;
if (!soc)
return false;
if (enable) {
dp_txrx_reset_inact_count((struct cdp_pdev *)pdev);
qdf_timer_mod(&soc->pdev_bs_inact_timer,
soc->pdev_bs_inact_interval * 1000);
} else {
qdf_timer_stop(&soc->pdev_bs_inact_timer);
}
return true;
}
/**
* dp_set_overload(): Set inactivity overload
* @pdev_handle - device handle
* @overload - overload status
*
* Return: void
*/
void dp_set_overload(struct cdp_pdev *pdev_handle, bool overload)
{
struct dp_soc *soc;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (!pdev)
return;
soc = pdev->soc;
if (!soc)
return;
dp_txrx_update_inact_threshold((struct cdp_pdev *)pdev,
overload ? soc->pdev_bs_inact_overload :
soc->pdev_bs_inact_normal);
}
/**
* dp_peer_is_inact(): check whether peer is inactive
* @peer_handle - datapath peer handle
*
* Return: bool
*/
bool dp_peer_is_inact(void *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
if (!peer)
return false;
return peer->peer_bs_inact_flag == 1;
}
/**
* dp_init_inact_timer: initialize the inact timer
* @soc - SOC handle
*
* Return: void
*/
void dp_init_inact_timer(struct dp_soc *soc)
{
qdf_timer_init(soc->osdev, &soc->pdev_bs_inact_timer,
dp_txrx_peer_find_inact_timeout_handler,
(void *)soc, QDF_TIMER_TYPE_WAKE_APPS);
}
#else
bool dp_set_inact_params(struct cdp_pdev *pdev, u_int16_t inact_check_interval,
u_int16_t inact_normal, u_int16_t inact_overload)
{
return false;
}
bool dp_start_inact_timer(struct cdp_pdev *pdev, bool enable)
{
return false;
}
void dp_set_overload(struct cdp_pdev *pdev, bool overload)
{
return;
}
void dp_init_inact_timer(struct dp_soc *soc)
{
return;
}
bool dp_peer_is_inact(void *peer)
{
return false;
}
#endif
/*
* dp_peer_unref_delete() - unref and delete peer
* @peer_handle: Datapath peer handle
*
*/
void dp_peer_unref_delete(void *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_peer *bss_peer = NULL;
struct dp_vdev *vdev = peer->vdev;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *tmppeer;
int found = 0;
uint16_t peer_id;
uint16_t vdev_id;
/*
* Hold the lock all the way from checking if the peer ref count
* is zero until the peer references are removed from the hash
* table and vdev list (if the peer ref count is zero).
* This protects against a new HL tx operation starting to use the
* peer object just after this function concludes it's done being used.
* Furthermore, the lock needs to be held while checking whether the
* vdev's list of peers is empty, to make sure that list is not modified
* concurrently with the empty check.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer %pK ref_cnt(before decrement): %d\n", __func__,
peer, qdf_atomic_read(&peer->ref_cnt));
if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
peer_id = peer->peer_ids[0];
vdev_id = vdev->vdev_id;
/*
* Make sure that the reference to the peer in
* peer object map is removed
*/
if (peer_id != HTT_INVALID_PEER)
soc->peer_id_to_obj_map[peer_id] = NULL;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
"Deleting peer %pK (%pM)", peer, peer->mac_addr.raw);
/* remove the reference to the peer from the hash table */
dp_peer_find_hash_remove(soc, peer);
qdf_spin_lock_bh(&soc->ast_lock);
if (peer->self_ast_entry) {
dp_peer_del_ast(soc, peer->self_ast_entry);
peer->self_ast_entry = NULL;
}
qdf_spin_unlock_bh(&soc->ast_lock);
TAILQ_FOREACH(tmppeer, &peer->vdev->peer_list, peer_list_elem) {
if (tmppeer == peer) {
found = 1;
break;
}
}
if (found) {
TAILQ_REMOVE(&peer->vdev->peer_list, peer,
peer_list_elem);
} else {
/*Ignoring the remove operation as peer not found*/
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
"peer %pK not found in vdev (%pK)->peer_list:%pK",
peer, vdev, &peer->vdev->peer_list);
}
/* cleanup the peer data */
dp_peer_cleanup(vdev, peer);
/* check whether the parent vdev has no peers left */
if (TAILQ_EMPTY(&vdev->peer_list)) {
/*
* Now that there are no references to the peer, we can
* release the peer reference lock.
*/
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/*
* Check if the parent vdev was waiting for its peers
* to be deleted, in order for it to be deleted too.
*/
if (vdev->delete.pending) {
ol_txrx_vdev_delete_cb vdev_delete_cb =
vdev->delete.callback;
void *vdev_delete_context =
vdev->delete.context;
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO_HIGH,
FL("deleting vdev object %pK (%pM)"
" - its last peer is done"),
vdev, vdev->mac_addr.raw);
/* all peers are gone, go ahead and delete it */
dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
FLOW_TYPE_VDEV,
vdev_id);
dp_tx_vdev_detach(vdev);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO_HIGH,
FL("deleting vdev object %pK (%pM)"),
vdev, vdev->mac_addr.raw);
qdf_mem_free(vdev);
vdev = NULL;
if (vdev_delete_cb)
vdev_delete_cb(vdev_delete_context);
}
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
if (vdev) {
if (vdev->vap_bss_peer == peer) {
vdev->vap_bss_peer = NULL;
}
}
if (soc->cdp_soc.ol_ops->peer_unref_delete) {
soc->cdp_soc.ol_ops->peer_unref_delete(pdev->ctrl_pdev,
vdev_id, peer->mac_addr.raw);
}
if (!vdev || !vdev->vap_bss_peer) {
goto free_peer;
}
#ifdef notyet
qdf_mempool_free(soc->osdev, soc->mempool_ol_ath_peer, peer);
#else
bss_peer = vdev->vap_bss_peer;
DP_UPDATE_STATS(bss_peer, peer);
free_peer:
qdf_mem_free(peer);
#endif
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
/*
* dp_peer_detach_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
* @bitmap: bitmap indicating special handling of request.
*
*/
static void dp_peer_delete_wifi3(void *peer_handle, uint32_t bitmap)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
/* redirect the peer's rx delivery function to point to a
* discard func
*/
peer->rx_opt_proc = dp_rx_discard;
peer->ctrl_peer = NULL;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("peer %pK (%pM)"), peer, peer->mac_addr.raw);
dp_local_peer_id_free(peer->vdev->pdev, peer);
qdf_spinlock_destroy(&peer->peer_info_lock);
/*
* Remove the reference added during peer_attach.
* The peer will still be left allocated until the
* PEER_UNMAP message arrives to remove the other
* reference, added by the PEER_MAP message.
*/
dp_peer_unref_delete(peer_handle);
}
/*
* dp_get_vdev_mac_addr_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static uint8 *dp_get_vdev_mac_addr_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
return vdev->mac_addr.raw;
}
/*
* dp_vdev_set_wds() - Enable per packet stats
* @vdev_handle: DP VDEV handle
* @val: value
*
* Return: none
*/
static int dp_vdev_set_wds(void *vdev_handle, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->wds_enabled = val;
return 0;
}
/*
* dp_get_vdev_from_vdev_id_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static struct cdp_vdev *dp_get_vdev_from_vdev_id_wifi3(struct cdp_pdev *dev,
uint8_t vdev_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
struct dp_vdev *vdev = NULL;
if (qdf_unlikely(!pdev))
return NULL;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->vdev_id == vdev_id)
break;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
return (struct cdp_vdev *)vdev;
}
static int dp_get_opmode(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
return vdev->opmode;
}
static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
struct dp_pdev *pdev = vdev->pdev;
return (struct cdp_cfg *)pdev->wlan_cfg_ctx;
}
/**
* dp_reset_monitor_mode() - Disable monitor mode
* @pdev_handle: Datapath PDEV handle
*
* Return: 0 on success, not 0 on failure
*/
static int dp_reset_monitor_mode(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc = pdev->soc;
uint8_t pdev_id;
int mac_id;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
qdf_spin_lock_bh(&pdev->mon_lock);
qdf_mem_set(&(htt_tlv_filter), sizeof(htt_tlv_filter), 0x0);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF, RX_BUFFER_SIZE, &htt_tlv_filter);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
pdev->monitor_vdev = NULL;
qdf_spin_unlock_bh(&pdev->mon_lock);
return 0;
}
/**
* dp_set_nac() - set peer_nac
* @peer_handle: Datapath PEER handle
*
* Return: void
*/
static void dp_set_nac(struct cdp_peer *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->nac = 1;
}
/**
* dp_get_tx_pending() - read pending tx
* @pdev_handle: Datapath PDEV handle
*
* Return: outstanding tx
*/
static int dp_get_tx_pending(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return qdf_atomic_read(&pdev->num_tx_outstanding);
}
/**
* dp_get_peer_mac_from_peer_id() - get peer mac
* @pdev_handle: Datapath PDEV handle
* @peer_id: Peer ID
* @peer_mac: MAC addr of PEER
*
* Return: void
*/
static void dp_get_peer_mac_from_peer_id(struct cdp_pdev *pdev_handle,
uint32_t peer_id, uint8_t *peer_mac)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_peer *peer;
if (pdev && peer_mac) {
peer = dp_peer_find_by_id(pdev->soc, (uint16_t)peer_id);
if (peer && peer->mac_addr.raw) {
qdf_mem_copy(peer_mac, peer->mac_addr.raw,
DP_MAC_ADDR_LEN);
}
}
}
/**
* dp_vdev_set_monitor_mode() - Set DP VDEV to monitor mode
* @vdev_handle: Datapath VDEV handle
* @smart_monitor: Flag to denote if its smart monitor mode
*
* Return: 0 on success, not 0 on failure
*/
static int dp_vdev_set_monitor_mode(struct cdp_vdev *vdev_handle,
uint8_t smart_monitor)
{
/* Many monitor VAPs can exists in a system but only one can be up at
* anytime
*/
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc;
uint8_t pdev_id;
int mac_id;
qdf_assert(vdev);
pdev = vdev->pdev;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK\n",
pdev, pdev_id, soc, vdev);
/*Check if current pdev's monitor_vdev exists */
if (pdev->monitor_vdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"vdev=%pK\n", vdev);
qdf_assert(vdev);
}
pdev->monitor_vdev = vdev;
/* If smart monitor mode, do not configure monitor ring */
if (smart_monitor)
return QDF_STATUS_SUCCESS;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"MODE[%x] FP[%02x|%02x|%02x] MO[%02x|%02x|%02x]\n",
pdev->mon_filter_mode, pdev->fp_mgmt_filter,
pdev->fp_ctrl_filter, pdev->fp_data_filter,
pdev->mo_mgmt_filter, pdev->mo_ctrl_filter,
pdev->mo_data_filter);
qdf_mem_set(&(htt_tlv_filter), sizeof(htt_tlv_filter), 0x0);
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_fp =
(pdev->mon_filter_mode & MON_FILTER_PASS) ? 1 : 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo =
(pdev->mon_filter_mode & MON_FILTER_OTHER) ? 1 : 0;
htt_tlv_filter.fp_mgmt_filter = pdev->fp_mgmt_filter;
htt_tlv_filter.fp_ctrl_filter = pdev->fp_ctrl_filter;
htt_tlv_filter.fp_data_filter = pdev->fp_data_filter;
htt_tlv_filter.mo_mgmt_filter = pdev->mo_mgmt_filter;
htt_tlv_filter.mo_ctrl_filter = pdev->mo_ctrl_filter;
htt_tlv_filter.mo_data_filter = pdev->mo_data_filter;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF, RX_BUFFER_SIZE, &htt_tlv_filter);
}
qdf_mem_set(&(htt_tlv_filter), sizeof(htt_tlv_filter), 0x0);
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
if (pdev->mcopy_mode) {
htt_tlv_filter.packet_header = 1;
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_set_advance_monitor_filter() - Set DP PDEV monitor filter
* @pdev_handle: Datapath PDEV handle
* @filter_val: Flag to select Filter for monitor mode
* Return: 0 on success, not 0 on failure
*/
static int dp_pdev_set_advance_monitor_filter(struct cdp_pdev *pdev_handle,
struct cdp_monitor_filter *filter_val)
{
/* Many monitor VAPs can exists in a system but only one can be up at
* anytime
*/
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_vdev *vdev = pdev->monitor_vdev;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc;
uint8_t pdev_id;
int mac_id;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK\n",
pdev, pdev_id, soc, vdev);
/*Check if current pdev's monitor_vdev exists */
if (!pdev->monitor_vdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"vdev=%pK\n", vdev);
qdf_assert(vdev);
}
/* update filter mode, type in pdev structure */
pdev->mon_filter_mode = filter_val->mode;
pdev->fp_mgmt_filter = filter_val->fp_mgmt;
pdev->fp_ctrl_filter = filter_val->fp_ctrl;
pdev->fp_data_filter = filter_val->fp_data;
pdev->mo_mgmt_filter = filter_val->mo_mgmt;
pdev->mo_ctrl_filter = filter_val->mo_ctrl;
pdev->mo_data_filter = filter_val->mo_data;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"MODE[%x] FP[%02x|%02x|%02x] MO[%02x|%02x|%02x]\n",
pdev->mon_filter_mode, pdev->fp_mgmt_filter,
pdev->fp_ctrl_filter, pdev->fp_data_filter,
pdev->mo_mgmt_filter, pdev->mo_ctrl_filter,
pdev->mo_data_filter);
qdf_mem_set(&(htt_tlv_filter), sizeof(htt_tlv_filter), 0x0);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF, RX_BUFFER_SIZE, &htt_tlv_filter);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_fp =
(pdev->mon_filter_mode & MON_FILTER_PASS) ? 1 : 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo =
(pdev->mon_filter_mode & MON_FILTER_OTHER) ? 1 : 0;
htt_tlv_filter.fp_mgmt_filter = pdev->fp_mgmt_filter;
htt_tlv_filter.fp_ctrl_filter = pdev->fp_ctrl_filter;
htt_tlv_filter.fp_data_filter = pdev->fp_data_filter;
htt_tlv_filter.mo_mgmt_filter = pdev->mo_mgmt_filter;
htt_tlv_filter.mo_ctrl_filter = pdev->mo_ctrl_filter;
htt_tlv_filter.mo_data_filter = pdev->mo_data_filter;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF, RX_BUFFER_SIZE, &htt_tlv_filter);
}
qdf_mem_set(&(htt_tlv_filter), sizeof(htt_tlv_filter), 0x0);
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
if (pdev->mcopy_mode) {
htt_tlv_filter.packet_header = 1;
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_get_pdev_id_frm_pdev() - get pdev_id
* @pdev_handle: Datapath PDEV handle
*
* Return: pdev_id
*/
static
uint8_t dp_get_pdev_id_frm_pdev(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return pdev->pdev_id;
}
/**
* dp_vdev_get_filter_ucast_data() - get DP VDEV monitor ucast filter
* @vdev_handle: Datapath VDEV handle
* Return: true on ucast filter flag set
*/
static bool dp_vdev_get_filter_ucast_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_data_filter & FILTER_DATA_UCAST) ||
(pdev->mo_data_filter & FILTER_DATA_UCAST))
return true;
return false;
}
/**
* dp_vdev_get_filter_mcast_data() - get DP VDEV monitor mcast filter
* @vdev_handle: Datapath VDEV handle
* Return: true on mcast filter flag set
*/
static bool dp_vdev_get_filter_mcast_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_data_filter & FILTER_DATA_MCAST) ||
(pdev->mo_data_filter & FILTER_DATA_MCAST))
return true;
return false;
}
/**
* dp_vdev_get_filter_non_data() - get DP VDEV monitor non_data filter
* @vdev_handle: Datapath VDEV handle
* Return: true on non data filter flag set
*/
static bool dp_vdev_get_filter_non_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_mgmt_filter & FILTER_MGMT_ALL) ||
(pdev->mo_mgmt_filter & FILTER_MGMT_ALL)) {
if ((pdev->fp_ctrl_filter & FILTER_CTRL_ALL) ||
(pdev->mo_ctrl_filter & FILTER_CTRL_ALL)) {
return true;
}
}
return false;
}
#ifdef MESH_MODE_SUPPORT
void dp_peer_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_vdev = val;
}
/*
* dp_peer_set_mesh_rx_filter() - to set the mesh rx filter
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: void
*/
void dp_peer_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_rx_filter = val;
}
#endif
/*
* dp_aggregate_pdev_ctrl_frames_stats()- function to agreegate peer stats
* Current scope is bar received count
*
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
#define STATS_PROC_TIMEOUT (HZ/1000)
static void
dp_aggregate_pdev_ctrl_frames_stats(struct dp_pdev *pdev)
{
struct dp_vdev *vdev;
struct dp_peer *peer;
uint32_t waitcnt;
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP Invalid Peer refernce"));
return;
}
if (peer->delete_in_progress) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP Peer deletion in progress"));
continue;
}
qdf_atomic_inc(&peer->ref_cnt);
waitcnt = 0;
dp_peer_rxtid_stats(peer, dp_rx_bar_stats_cb, pdev);
while (!(qdf_atomic_read(&(pdev->stats_cmd_complete)))
&& waitcnt < 10) {
schedule_timeout_interruptible(
STATS_PROC_TIMEOUT);
waitcnt++;
}
qdf_atomic_set(&(pdev->stats_cmd_complete), 0);
dp_peer_unref_delete(peer);
}
}
}
/**
* dp_rx_bar_stats_cb(): BAR received stats callback
* @soc: SOC handle
* @cb_ctxt: Call back context
* @reo_status: Reo status
*
* return: void
*/
void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_pdev *pdev = (struct dp_pdev *)cb_ctxt;
struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
DP_TRACE_STATS(FATAL, "REO stats failure %d \n",
queue_status->header.status);
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
return;
}
pdev->stats.rx.bar_recv_cnt += queue_status->bar_rcvd_cnt;
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
}
/**
* dp_aggregate_vdev_stats(): Consolidate stats at VDEV level
* @vdev: DP VDEV handle
*
* return: void
*/
void dp_aggregate_vdev_stats(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
struct dp_soc *soc = vdev->pdev->soc;
qdf_mem_set(&(vdev->stats.tx), sizeof(vdev->stats.tx), 0x0);
qdf_mem_set(&(vdev->stats.rx), sizeof(vdev->stats.rx), 0x0);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem)
DP_UPDATE_STATS(vdev, peer);
if (soc->cdp_soc.ol_ops->update_dp_stats)
soc->cdp_soc.ol_ops->update_dp_stats(vdev->pdev->ctrl_pdev,
&vdev->stats, (uint16_t) vdev->vdev_id,
UPDATE_VDEV_STATS);
}
/**
* dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
* @pdev: DP PDEV handle
*
* return: void
*/
static inline void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
struct dp_soc *soc = pdev->soc;
qdf_mem_set(&(pdev->stats.tx), sizeof(pdev->stats.tx), 0x0);
qdf_mem_set(&(pdev->stats.rx), sizeof(pdev->stats.rx), 0x0);
qdf_mem_set(&(pdev->stats.tx_i), sizeof(pdev->stats.tx_i), 0x0);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
dp_aggregate_vdev_stats(vdev);
DP_UPDATE_STATS(pdev, vdev);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.nawds_mcast);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.rcvd);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.processed);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.reinject_pkts);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.inspect_pkts);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.raw.raw_pkt);
DP_STATS_AGGR(pdev, vdev, tx_i.raw.dma_map_error);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.tso.tso_pkt);
DP_STATS_AGGR(pdev, vdev, tx_i.tso.dropped_host.num);
DP_STATS_AGGR(pdev, vdev, tx_i.tso.dropped_target);
DP_STATS_AGGR(pdev, vdev, tx_i.sg.dropped_host.num);
DP_STATS_AGGR(pdev, vdev, tx_i.sg.dropped_target);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.sg.sg_pkt);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.mcast_en.mcast_pkt);
DP_STATS_AGGR(pdev, vdev,
tx_i.mcast_en.dropped_map_error);
DP_STATS_AGGR(pdev, vdev,
tx_i.mcast_en.dropped_self_mac);
DP_STATS_AGGR(pdev, vdev,
tx_i.mcast_en.dropped_send_fail);
DP_STATS_AGGR(pdev, vdev, tx_i.mcast_en.ucast);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.dma_error);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.ring_full);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.enqueue_fail);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.desc_na.num);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.res_full);
DP_STATS_AGGR(pdev, vdev, tx_i.cce_classified);
DP_STATS_AGGR(pdev, vdev, tx_i.cce_classified_raw);
DP_STATS_AGGR(pdev, vdev, tx_i.mesh.exception_fw);
DP_STATS_AGGR(pdev, vdev, tx_i.mesh.completion_fw);
pdev->stats.tx_i.dropped.dropped_pkt.num =
pdev->stats.tx_i.dropped.dma_error +
pdev->stats.tx_i.dropped.ring_full +
pdev->stats.tx_i.dropped.enqueue_fail +
pdev->stats.tx_i.dropped.desc_na.num +
pdev->stats.tx_i.dropped.res_full;
pdev->stats.tx.last_ack_rssi =
vdev->stats.tx.last_ack_rssi;
pdev->stats.tx_i.tso.num_seg =
vdev->stats.tx_i.tso.num_seg;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
if (soc->cdp_soc.ol_ops->update_dp_stats)
soc->cdp_soc.ol_ops->update_dp_stats(pdev->ctrl_pdev,
&pdev->stats, pdev->pdev_id, UPDATE_PDEV_STATS);
}
/**
* dp_vdev_getstats() - get vdev packet level stats
* @vdev_handle: Datapath VDEV handle
* @stats: cdp network device stats structure
*
* Return: void
*/
static void dp_vdev_getstats(void *vdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
dp_aggregate_vdev_stats(vdev);
}
/**
* dp_pdev_getstats() - get pdev packet level stats
* @pdev_handle: Datapath PDEV handle
* @stats: cdp network device stats structure
*
* Return: void
*/
static void dp_pdev_getstats(void *pdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
stats->tx_packets = pdev->stats.tx_i.rcvd.num;
stats->tx_bytes = pdev->stats.tx_i.rcvd.bytes;
stats->tx_errors = pdev->stats.tx.tx_failed +
pdev->stats.tx_i.dropped.dropped_pkt.num;
stats->tx_dropped = stats->tx_errors;
stats->rx_packets = pdev->stats.rx.unicast.num +
pdev->stats.rx.multicast.num +
pdev->stats.rx.bcast.num;
stats->rx_bytes = pdev->stats.rx.unicast.bytes +
pdev->stats.rx.multicast.bytes +
pdev->stats.rx.bcast.bytes;
}
/**
* dp_get_device_stats() - get interface level packet stats
* @handle: device handle
* @stats: cdp network device stats structure
* @type: device type pdev/vdev
*
* Return: void
*/
static void dp_get_device_stats(void *handle,
struct cdp_dev_stats *stats, uint8_t type)
{
switch (type) {
case UPDATE_VDEV_STATS:
dp_vdev_getstats(handle, stats);
break;
case UPDATE_PDEV_STATS:
dp_pdev_getstats(handle, stats);
break;
default:
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"apstats cannot be updated for this input "
"type %d\n", type);
break;
}
}
/**
* dp_print_pdev_tx_stats(): Print Pdev level TX stats
* @pdev: DP_PDEV Handle
*
* Return:void
*/
static inline void
dp_print_pdev_tx_stats(struct dp_pdev *pdev)
{
uint8_t index = 0;
DP_PRINT_STATS("PDEV Tx Stats:\n");
DP_PRINT_STATS("Received From Stack:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.rcvd.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.rcvd.bytes);
DP_PRINT_STATS("Processed:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.processed.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.processed.bytes);
DP_PRINT_STATS("Total Completions:");
DP_PRINT_STATS(" Packets = %u",
pdev->stats.tx.comp_pkt.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx.comp_pkt.bytes);
DP_PRINT_STATS("Successful Completions:");
DP_PRINT_STATS(" Packets = %u",
pdev->stats.tx.tx_success.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx.tx_success.bytes);
DP_PRINT_STATS("Dropped:");
DP_PRINT_STATS(" Total = %d",
pdev->stats.tx_i.dropped.dropped_pkt.num);
DP_PRINT_STATS(" Dma_map_error = %d",
pdev->stats.tx_i.dropped.dma_error);
DP_PRINT_STATS(" Ring Full = %d",
pdev->stats.tx_i.dropped.ring_full);
DP_PRINT_STATS(" Descriptor Not available = %d",
pdev->stats.tx_i.dropped.desc_na.num);
DP_PRINT_STATS(" HW enqueue failed= %d",
pdev->stats.tx_i.dropped.enqueue_fail);
DP_PRINT_STATS(" Resources Full = %d",
pdev->stats.tx_i.dropped.res_full);
DP_PRINT_STATS(" FW removed = %d",
pdev->stats.tx.dropped.fw_rem);
DP_PRINT_STATS(" FW removed transmitted = %d",
pdev->stats.tx.dropped.fw_rem_tx);
DP_PRINT_STATS(" FW removed untransmitted = %d",
pdev->stats.tx.dropped.fw_rem_notx);
DP_PRINT_STATS(" FW removed untransmitted fw_reason1 = %d",
pdev->stats.tx.dropped.fw_reason1);
DP_PRINT_STATS(" FW removed untransmitted fw_reason2 = %d",
pdev->stats.tx.dropped.fw_reason2);
DP_PRINT_STATS(" FW removed untransmitted fw_reason3 = %d",
pdev->stats.tx.dropped.fw_reason3);
DP_PRINT_STATS(" Aged Out from msdu/mpdu queues = %d",
pdev->stats.tx.dropped.age_out);
DP_PRINT_STATS(" Multicast:");
DP_PRINT_STATS(" Packets: %u",
pdev->stats.tx.mcast.num);
DP_PRINT_STATS(" Bytes: %llu",
pdev->stats.tx.mcast.bytes);
DP_PRINT_STATS("Scatter Gather:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.sg.sg_pkt.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.sg.sg_pkt.bytes);
DP_PRINT_STATS(" Dropped By Host = %d",
pdev->stats.tx_i.sg.dropped_host.num);
DP_PRINT_STATS(" Dropped By Target = %d",
pdev->stats.tx_i.sg.dropped_target);
DP_PRINT_STATS("TSO:");
DP_PRINT_STATS(" Number of Segments = %d",
pdev->stats.tx_i.tso.num_seg);
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.tso.tso_pkt.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.tso.tso_pkt.bytes);
DP_PRINT_STATS(" Dropped By Host = %d",
pdev->stats.tx_i.tso.dropped_host.num);
DP_PRINT_STATS("Mcast Enhancement:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.mcast_en.mcast_pkt.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.mcast_en.mcast_pkt.bytes);
DP_PRINT_STATS(" Dropped: Map Errors = %d",
pdev->stats.tx_i.mcast_en.dropped_map_error);
DP_PRINT_STATS(" Dropped: Self Mac = %d",
pdev->stats.tx_i.mcast_en.dropped_self_mac);
DP_PRINT_STATS(" Dropped: Send Fail = %d",
pdev->stats.tx_i.mcast_en.dropped_send_fail);
DP_PRINT_STATS(" Unicast sent = %d",
pdev->stats.tx_i.mcast_en.ucast);
DP_PRINT_STATS("Raw:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.raw.raw_pkt.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.raw.raw_pkt.bytes);
DP_PRINT_STATS(" DMA map error = %d",
pdev->stats.tx_i.raw.dma_map_error);
DP_PRINT_STATS("Reinjected:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.reinject_pkts.num);
DP_PRINT_STATS(" Bytes = %llu\n",
pdev->stats.tx_i.reinject_pkts.bytes);
DP_PRINT_STATS("Inspected:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.inspect_pkts.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.inspect_pkts.bytes);
DP_PRINT_STATS("Nawds Multicast:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.tx_i.nawds_mcast.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.tx_i.nawds_mcast.bytes);
DP_PRINT_STATS("CCE Classified:");
DP_PRINT_STATS(" CCE Classified Packets: %u",
pdev->stats.tx_i.cce_classified);
DP_PRINT_STATS(" RAW CCE Classified Packets: %u",
pdev->stats.tx_i.cce_classified_raw);
DP_PRINT_STATS("Mesh stats:");
DP_PRINT_STATS(" frames to firmware: %u",
pdev->stats.tx_i.mesh.exception_fw);
DP_PRINT_STATS(" completions from fw: %u",
pdev->stats.tx_i.mesh.completion_fw);
DP_PRINT_STATS("PPDU stats counter");
for (index = 0; index < CDP_PPDU_STATS_MAX_TAG; index++) {
DP_PRINT_STATS(" Tag[%d] = %llu", index,
pdev->stats.ppdu_stats_counter[index]);
}
}
/**
* dp_print_pdev_rx_stats(): Print Pdev level RX stats
* @pdev: DP_PDEV Handle
*
* Return: void
*/
static inline void
dp_print_pdev_rx_stats(struct dp_pdev *pdev)
{
DP_PRINT_STATS("PDEV Rx Stats:\n");
DP_PRINT_STATS("Received From HW (Per Rx Ring):");
DP_PRINT_STATS(" Packets = %d %d %d %d",
pdev->stats.rx.rcvd_reo[0].num,
pdev->stats.rx.rcvd_reo[1].num,
pdev->stats.rx.rcvd_reo[2].num,
pdev->stats.rx.rcvd_reo[3].num);
DP_PRINT_STATS(" Bytes = %llu %llu %llu %llu",
pdev->stats.rx.rcvd_reo[0].bytes,
pdev->stats.rx.rcvd_reo[1].bytes,
pdev->stats.rx.rcvd_reo[2].bytes,
pdev->stats.rx.rcvd_reo[3].bytes);
DP_PRINT_STATS("Replenished:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.replenish.pkts.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.replenish.pkts.bytes);
DP_PRINT_STATS(" Buffers Added To Freelist = %d",
pdev->stats.buf_freelist);
DP_PRINT_STATS(" Low threshold intr = %d",
pdev->stats.replenish.low_thresh_intrs);
DP_PRINT_STATS("Dropped:");
DP_PRINT_STATS(" msdu_not_done = %d",
pdev->stats.dropped.msdu_not_done);
DP_PRINT_STATS(" mon_rx_drop = %d",
pdev->stats.dropped.mon_rx_drop);
DP_PRINT_STATS("Sent To Stack:");
DP_PRINT_STATS(" Packets = %d",
pdev->stats.rx.to_stack.num);
DP_PRINT_STATS(" Bytes = %llu",
pdev->stats.rx.to_stack.bytes);
DP_PRINT_STATS("Multicast/Broadcast:");
DP_PRINT_STATS(" Packets = %d",
(pdev->stats.rx.multicast.num +
pdev->stats.rx.bcast.num));
DP_PRINT_STATS(" Bytes = %llu",
(pdev->stats.rx.multicast.bytes +
pdev->stats.rx.bcast.bytes));
DP_PRINT_STATS("Errors:");
DP_PRINT_STATS(" Rxdma Ring Un-inititalized = %d",
pdev->stats.replenish.rxdma_err);
DP_PRINT_STATS(" Desc Alloc Failed: = %d",
pdev->stats.err.desc_alloc_fail);
DP_PRINT_STATS(" IP checksum error = %d",
pdev->stats.err.ip_csum_err);
DP_PRINT_STATS(" TCP/UDP checksum error = %d",
pdev->stats.err.tcp_udp_csum_err);
/* Get bar_recv_cnt */
dp_aggregate_pdev_ctrl_frames_stats(pdev);
DP_PRINT_STATS("BAR Received Count: = %d",
pdev->stats.rx.bar_recv_cnt);
}
/**
* dp_print_pdev_rx_mon_stats(): Print Pdev level RX monitor stats
* @pdev: DP_PDEV Handle
*
* Return: void
*/
static inline void
dp_print_pdev_rx_mon_stats(struct dp_pdev *pdev)
{
struct cdp_pdev_mon_stats *rx_mon_stats;
rx_mon_stats = &pdev->rx_mon_stats;
DP_PRINT_STATS("PDEV Rx Monitor Stats:\n");
dp_rx_mon_print_dbg_ppdu_stats(rx_mon_stats);
DP_PRINT_STATS("status_ppdu_done_cnt = %d",
rx_mon_stats->status_ppdu_done);
DP_PRINT_STATS("dest_ppdu_done_cnt = %d",
rx_mon_stats->dest_ppdu_done);
DP_PRINT_STATS("dest_mpdu_done_cnt = %d",
rx_mon_stats->dest_mpdu_done);
DP_PRINT_STATS("dest_mpdu_drop_cnt = %d",
rx_mon_stats->dest_mpdu_drop);
}
/**
* dp_print_soc_tx_stats(): Print SOC level stats
* @soc DP_SOC Handle
*
* Return: void
*/
static inline void
dp_print_soc_tx_stats(struct dp_soc *soc)
{
uint8_t desc_pool_id;
soc->stats.tx.desc_in_use = 0;
DP_PRINT_STATS("SOC Tx Stats:\n");
for (desc_pool_id = 0;
desc_pool_id < wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
desc_pool_id++)
soc->stats.tx.desc_in_use +=
soc->tx_desc[desc_pool_id].num_allocated;
DP_PRINT_STATS("Tx Descriptors In Use = %d",
soc->stats.tx.desc_in_use);
DP_PRINT_STATS("Invalid peer:");
DP_PRINT_STATS(" Packets = %d",
soc->stats.tx.tx_invalid_peer.num);
DP_PRINT_STATS(" Bytes = %llu",
soc->stats.tx.tx_invalid_peer.bytes);
DP_PRINT_STATS("Packets dropped due to TCL ring full = %d %d %d",
soc->stats.tx.tcl_ring_full[0],
soc->stats.tx.tcl_ring_full[1],
soc->stats.tx.tcl_ring_full[2]);
}
/**
* dp_print_soc_rx_stats: Print SOC level Rx stats
* @soc: DP_SOC Handle
*
* Return:void
*/
static inline void
dp_print_soc_rx_stats(struct dp_soc *soc)
{
uint32_t i;
char reo_error[DP_REO_ERR_LENGTH];
char rxdma_error[DP_RXDMA_ERR_LENGTH];
uint8_t index = 0;
DP_PRINT_STATS("SOC Rx Stats:\n");
DP_PRINT_STATS("Errors:\n");
DP_PRINT_STATS("Rx Decrypt Errors = %d",
(soc->stats.rx.err.rxdma_error[HAL_RXDMA_ERR_DECRYPT] +
soc->stats.rx.err.rxdma_error[HAL_RXDMA_ERR_TKIP_MIC]));
DP_PRINT_STATS("Invalid RBM = %d",
soc->stats.rx.err.invalid_rbm);
DP_PRINT_STATS("Invalid Vdev = %d",
soc->stats.rx.err.invalid_vdev);
DP_PRINT_STATS("Invalid Pdev = %d",
soc->stats.rx.err.invalid_pdev);
DP_PRINT_STATS("Invalid Peer = %d",
soc->stats.rx.err.rx_invalid_peer.num);
DP_PRINT_STATS("HAL Ring Access Fail = %d",
soc->stats.rx.err.hal_ring_access_fail);
for (i = 0; i < HAL_RXDMA_ERR_MAX; i++) {
index += qdf_snprint(&rxdma_error[index],
DP_RXDMA_ERR_LENGTH - index,
" %d", soc->stats.rx.err.rxdma_error[i]);
}
DP_PRINT_STATS("RXDMA Error (0-31):%s",
rxdma_error);
index = 0;
for (i = 0; i < HAL_REO_ERR_MAX; i++) {
index += qdf_snprint(&reo_error[index],
DP_REO_ERR_LENGTH - index,
" %d", soc->stats.rx.err.reo_error[i]);
}
DP_PRINT_STATS("REO Error(0-14):%s",
reo_error);
}
/**
* dp_print_ring_stat_from_hal(): Print hal level ring stats
* @soc: DP_SOC handle
* @srng: DP_SRNG handle
* @ring_name: SRNG name
*
* Return: void
*/
static inline void
dp_print_ring_stat_from_hal(struct dp_soc *soc, struct dp_srng *srng,
char *ring_name)
{
uint32_t tailp;
uint32_t headp;
if (srng->hal_srng != NULL) {
hal_api_get_tphp(soc->hal_soc, srng->hal_srng, &tailp, &headp);
DP_PRINT_STATS("%s : Head pointer = %d Tail Pointer = %d\n",
ring_name, headp, tailp);
}
}
/**
* dp_print_ring_stats(): Print tail and head pointer
* @pdev: DP_PDEV handle
*
* Return:void
*/
static inline void
dp_print_ring_stats(struct dp_pdev *pdev)
{
uint32_t i;
char ring_name[STR_MAXLEN + 1];
int mac_id;
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->reo_exception_ring,
"Reo Exception Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->reo_reinject_ring,
"Reo Inject Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->reo_cmd_ring,
"Reo Command Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->reo_status_ring,
"Reo Status Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->rx_rel_ring,
"Rx Release ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->tcl_cmd_ring,
"Tcl command Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->tcl_status_ring,
"Tcl Status Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->wbm_desc_rel_ring,
"Wbm Desc Rel Ring");
for (i = 0; i < MAX_REO_DEST_RINGS; i++) {
snprintf(ring_name, STR_MAXLEN, "Reo Dest Ring %d", i);
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->reo_dest_ring[i],
ring_name);
}
for (i = 0; i < pdev->soc->num_tcl_data_rings; i++) {
snprintf(ring_name, STR_MAXLEN, "Tcl Data Ring %d", i);
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->tcl_data_ring[i],
ring_name);
}
for (i = 0; i < MAX_TCL_DATA_RINGS; i++) {
snprintf(ring_name, STR_MAXLEN, "Tx Comp Ring %d", i);
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->soc->tx_comp_ring[i],
ring_name);
}
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rx_refill_buf_ring,
"Rx Refill Buf Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rx_refill_buf_ring2,
"Second Rx Refill Buf Ring");
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rxdma_mon_buf_ring[mac_id],
"Rxdma Mon Buf Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rxdma_mon_dst_ring[mac_id],
"Rxdma Mon Dst Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rxdma_mon_status_ring[mac_id],
"Rxdma Mon Status Ring");
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rxdma_mon_desc_ring[mac_id],
"Rxdma mon desc Ring");
}
for (i = 0; i < NUM_RXDMA_RINGS_PER_PDEV; i++) {
snprintf(ring_name, STR_MAXLEN, "Rxdma err dst ring %d", i);
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rxdma_err_dst_ring[i],
ring_name);
}
for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
snprintf(ring_name, STR_MAXLEN, "Rx mac buf ring %d", i);
dp_print_ring_stat_from_hal(pdev->soc,
&pdev->rx_mac_buf_ring[i],
ring_name);
}
}
/**
* dp_txrx_host_stats_clr(): Reinitialize the txrx stats
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_txrx_host_stats_clr(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
struct dp_soc *soc = (struct dp_soc *)vdev->pdev->soc;
DP_STATS_CLR(vdev->pdev);
DP_STATS_CLR(vdev->pdev->soc);
DP_STATS_CLR(vdev);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer)
return;
DP_STATS_CLR(peer);
if (soc->cdp_soc.ol_ops->update_dp_stats) {
soc->cdp_soc.ol_ops->update_dp_stats(
vdev->pdev->ctrl_pdev,
&peer->stats,
peer->peer_ids[0],
UPDATE_PEER_STATS);
}
}
if (soc->cdp_soc.ol_ops->update_dp_stats)
soc->cdp_soc.ol_ops->update_dp_stats(vdev->pdev->ctrl_pdev,
&vdev->stats, (uint16_t)vdev->vdev_id,
UPDATE_VDEV_STATS);
}
/**
* dp_print_rx_rates(): Print Rx rate stats
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_print_rx_rates(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
uint8_t i, mcs, pkt_type;
uint8_t index = 0;
char nss[DP_NSS_LENGTH];
DP_PRINT_STATS("Rx Rate Info:\n");
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (mcs = 0; mcs < MAX_MCS; mcs++) {
if (!dp_rate_string[pkt_type][mcs].valid)
continue;
DP_PRINT_STATS(" %s = %d",
dp_rate_string[pkt_type][mcs].mcs_type,
pdev->stats.rx.pkt_type[pkt_type].
mcs_count[mcs]);
}
DP_PRINT_STATS("\n");
}
index = 0;
for (i = 0; i < SS_COUNT; i++) {
index += qdf_snprint(&nss[index], DP_NSS_LENGTH - index,
" %d", pdev->stats.rx.nss[i]);
}
DP_PRINT_STATS("NSS(1-8) = %s",
nss);
DP_PRINT_STATS("SGI ="
" 0.8us %d,"
" 0.4us %d,"
" 1.6us %d,"
" 3.2us %d,",
pdev->stats.rx.sgi_count[0],
pdev->stats.rx.sgi_count[1],
pdev->stats.rx.sgi_count[2],
pdev->stats.rx.sgi_count[3]);
DP_PRINT_STATS("BW Counts = 20MHZ %d, 40MHZ %d, 80MHZ %d, 160MHZ %d",
pdev->stats.rx.bw[0], pdev->stats.rx.bw[1],
pdev->stats.rx.bw[2], pdev->stats.rx.bw[3]);
DP_PRINT_STATS("Reception Type ="
" SU: %d,"
" MU_MIMO:%d,"
" MU_OFDMA:%d,"
" MU_OFDMA_MIMO:%d\n",
pdev->stats.rx.reception_type[0],
pdev->stats.rx.reception_type[1],
pdev->stats.rx.reception_type[2],
pdev->stats.rx.reception_type[3]);
DP_PRINT_STATS("Aggregation:\n");
DP_PRINT_STATS("Number of Msdu's Part of Ampdus = %d",
pdev->stats.rx.ampdu_cnt);
DP_PRINT_STATS("Number of Msdu's With No Mpdu Level Aggregation : %d",
pdev->stats.rx.non_ampdu_cnt);
DP_PRINT_STATS("Number of Msdu's Part of Amsdu: %d",
pdev->stats.rx.amsdu_cnt);
DP_PRINT_STATS("Number of Msdu's With No Msdu Level Aggregation: %d",
pdev->stats.rx.non_amsdu_cnt);
}
/**
* dp_print_tx_rates(): Print tx rates
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_print_tx_rates(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
uint8_t mcs, pkt_type;
uint8_t index;
char nss[DP_NSS_LENGTH];
int nss_index;
DP_PRINT_STATS("Tx Rate Info:\n");
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (mcs = 0; mcs < MAX_MCS; mcs++) {
if (!dp_rate_string[pkt_type][mcs].valid)
continue;
DP_PRINT_STATS(" %s = %d",
dp_rate_string[pkt_type][mcs].mcs_type,
pdev->stats.tx.pkt_type[pkt_type].
mcs_count[mcs]);
}
DP_PRINT_STATS("\n");
}
DP_PRINT_STATS("SGI ="
" 0.8us %d"
" 0.4us %d"
" 1.6us %d"
" 3.2us %d",
pdev->stats.tx.sgi_count[0],
pdev->stats.tx.sgi_count[1],
pdev->stats.tx.sgi_count[2],
pdev->stats.tx.sgi_count[3]);
DP_PRINT_STATS("BW Counts = 20MHZ %d, 40MHZ %d, 80MHZ %d, 160MHZ %d",
pdev->stats.tx.bw[0], pdev->stats.tx.bw[1],
pdev->stats.tx.bw[2], pdev->stats.tx.bw[3]);
index = 0;
for (nss_index = 0; nss_index < SS_COUNT; nss_index++) {
index += qdf_snprint(&nss[index], DP_NSS_LENGTH - index,
" %d", pdev->stats.tx.nss[nss_index]);
}
DP_PRINT_STATS("NSS(1-8) = %s", nss);
DP_PRINT_STATS("OFDMA = %d", pdev->stats.tx.ofdma);
DP_PRINT_STATS("STBC = %d", pdev->stats.tx.stbc);
DP_PRINT_STATS("LDPC = %d", pdev->stats.tx.ldpc);
DP_PRINT_STATS("Retries = %d", pdev->stats.tx.retries);
DP_PRINT_STATS("Last ack rssi = %d\n", pdev->stats.tx.last_ack_rssi);
DP_PRINT_STATS("Aggregation:\n");
DP_PRINT_STATS("Number of Msdu's Part of Amsdu = %d",
pdev->stats.tx.amsdu_cnt);
DP_PRINT_STATS("Number of Msdu's With No Msdu Level Aggregation = %d",
pdev->stats.tx.non_amsdu_cnt);
}
/**
* dp_print_peer_stats():print peer stats
* @peer: DP_PEER handle
*
* return void
*/
static inline void dp_print_peer_stats(struct dp_peer *peer)
{
uint8_t i, mcs, pkt_type;
uint32_t index;
char nss[DP_NSS_LENGTH];
DP_PRINT_STATS("Node Tx Stats:\n");
DP_PRINT_STATS("Total Packet Completions = %d",
peer->stats.tx.comp_pkt.num);
DP_PRINT_STATS("Total Bytes Completions = %llu",
peer->stats.tx.comp_pkt.bytes);
DP_PRINT_STATS("Success Packets = %d",
peer->stats.tx.tx_success.num);
DP_PRINT_STATS("Success Bytes = %llu",
peer->stats.tx.tx_success.bytes);
DP_PRINT_STATS("Unicast Success Packets = %d",
peer->stats.tx.ucast.num);
DP_PRINT_STATS("Unicast Success Bytes = %llu",
peer->stats.tx.ucast.bytes);
DP_PRINT_STATS("Multicast Success Packets = %d",
peer->stats.tx.mcast.num);
DP_PRINT_STATS("Multicast Success Bytes = %llu",
peer->stats.tx.mcast.bytes);
DP_PRINT_STATS("Broadcast Success Packets = %d",
peer->stats.tx.bcast.num);
DP_PRINT_STATS("Broadcast Success Bytes = %llu",
peer->stats.tx.bcast.bytes);
DP_PRINT_STATS("Packets Failed = %d",
peer->stats.tx.tx_failed);
DP_PRINT_STATS("Packets In OFDMA = %d",
peer->stats.tx.ofdma);
DP_PRINT_STATS("Packets In STBC = %d",
peer->stats.tx.stbc);
DP_PRINT_STATS("Packets In LDPC = %d",
peer->stats.tx.ldpc);
DP_PRINT_STATS("Packet Retries = %d",
peer->stats.tx.retries);
DP_PRINT_STATS("MSDU's Part of AMSDU = %d",
peer->stats.tx.amsdu_cnt);
DP_PRINT_STATS("Last Packet RSSI = %d",
peer->stats.tx.last_ack_rssi);
DP_PRINT_STATS("Dropped At FW: Removed = %d",
peer->stats.tx.dropped.fw_rem);
DP_PRINT_STATS("Dropped At FW: Removed transmitted = %d",
peer->stats.tx.dropped.fw_rem_tx);
DP_PRINT_STATS("Dropped At FW: Removed Untransmitted = %d",
peer->stats.tx.dropped.fw_rem_notx);
DP_PRINT_STATS("Dropped : Age Out = %d",
peer->stats.tx.dropped.age_out);
DP_PRINT_STATS("NAWDS : ");
DP_PRINT_STATS(" Nawds multicast Drop Tx Packet = %d",
peer->stats.tx.nawds_mcast_drop);
DP_PRINT_STATS(" Nawds multicast Tx Packet Count = %d",
peer->stats.tx.nawds_mcast.num);
DP_PRINT_STATS(" Nawds multicast Tx Packet Bytes = %llu",
peer->stats.tx.nawds_mcast.bytes);
DP_PRINT_STATS("Rate Info:");
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (mcs = 0; mcs < MAX_MCS; mcs++) {
if (!dp_rate_string[pkt_type][mcs].valid)
continue;
DP_PRINT_STATS(" %s = %d",
dp_rate_string[pkt_type][mcs].mcs_type,
peer->stats.tx.pkt_type[pkt_type].
mcs_count[mcs]);
}
DP_PRINT_STATS("\n");
}
DP_PRINT_STATS("SGI = "
" 0.8us %d"
" 0.4us %d"
" 1.6us %d"
" 3.2us %d",
peer->stats.tx.sgi_count[0],
peer->stats.tx.sgi_count[1],
peer->stats.tx.sgi_count[2],
peer->stats.tx.sgi_count[3]);
DP_PRINT_STATS("Excess Retries per AC ");
DP_PRINT_STATS(" Best effort = %d",
peer->stats.tx.excess_retries_per_ac[0]);
DP_PRINT_STATS(" Background= %d",
peer->stats.tx.excess_retries_per_ac[1]);
DP_PRINT_STATS(" Video = %d",
peer->stats.tx.excess_retries_per_ac[2]);
DP_PRINT_STATS(" Voice = %d",
peer->stats.tx.excess_retries_per_ac[3]);
DP_PRINT_STATS("BW Counts = 20MHZ %d 40MHZ %d 80MHZ %d 160MHZ %d\n",
peer->stats.tx.bw[2], peer->stats.tx.bw[3],
peer->stats.tx.bw[4], peer->stats.tx.bw[5]);
index = 0;
for (i = 0; i < SS_COUNT; i++) {
index += qdf_snprint(&nss[index], DP_NSS_LENGTH - index,
" %d", peer->stats.tx.nss[i]);
}
DP_PRINT_STATS("NSS(1-8) = %s",
nss);
DP_PRINT_STATS("Aggregation:");
DP_PRINT_STATS(" Number of Msdu's Part of Amsdu = %d",
peer->stats.tx.amsdu_cnt);
DP_PRINT_STATS(" Number of Msdu's With No Msdu Level Aggregation = %d\n",
peer->stats.tx.non_amsdu_cnt);
DP_PRINT_STATS("Node Rx Stats:");
DP_PRINT_STATS("Packets Sent To Stack = %d",
peer->stats.rx.to_stack.num);
DP_PRINT_STATS("Bytes Sent To Stack = %llu",
peer->stats.rx.to_stack.bytes);
for (i = 0; i < CDP_MAX_RX_RINGS; i++) {
DP_PRINT_STATS("Ring Id = %d", i);
DP_PRINT_STATS(" Packets Received = %d",
peer->stats.rx.rcvd_reo[i].num);
DP_PRINT_STATS(" Bytes Received = %llu",
peer->stats.rx.rcvd_reo[i].bytes);
}
DP_PRINT_STATS("Multicast Packets Received = %d",
peer->stats.rx.multicast.num);
DP_PRINT_STATS("Multicast Bytes Received = %llu",
peer->stats.rx.multicast.bytes);
DP_PRINT_STATS("Broadcast Packets Received = %d",
peer->stats.rx.bcast.num);
DP_PRINT_STATS("Broadcast Bytes Received = %llu",
peer->stats.rx.bcast.bytes);
DP_PRINT_STATS("Intra BSS Packets Received = %d",
peer->stats.rx.intra_bss.pkts.num);
DP_PRINT_STATS("Intra BSS Bytes Received = %llu",
peer->stats.rx.intra_bss.pkts.bytes);
DP_PRINT_STATS("Raw Packets Received = %d",
peer->stats.rx.raw.num);
DP_PRINT_STATS("Raw Bytes Received = %llu",
peer->stats.rx.raw.bytes);
DP_PRINT_STATS("Errors: MIC Errors = %d",
peer->stats.rx.err.mic_err);
DP_PRINT_STATS("Erros: Decryption Errors = %d",
peer->stats.rx.err.decrypt_err);
DP_PRINT_STATS("Msdu's Received As Part of Ampdu = %d",
peer->stats.rx.non_ampdu_cnt);
DP_PRINT_STATS("Msdu's Recived As Ampdu = %d",
peer->stats.rx.ampdu_cnt);
DP_PRINT_STATS("Msdu's Received Not Part of Amsdu's = %d",
peer->stats.rx.non_amsdu_cnt);
DP_PRINT_STATS("MSDUs Received As Part of Amsdu = %d",
peer->stats.rx.amsdu_cnt);
DP_PRINT_STATS("NAWDS : ");
DP_PRINT_STATS(" Nawds multicast Drop Rx Packet = %d",
peer->stats.rx.nawds_mcast_drop);
DP_PRINT_STATS("SGI ="
" 0.8us %d"
" 0.4us %d"
" 1.6us %d"
" 3.2us %d",
peer->stats.rx.sgi_count[0],
peer->stats.rx.sgi_count[1],
peer->stats.rx.sgi_count[2],
peer->stats.rx.sgi_count[3]);
DP_PRINT_STATS("BW Counts = 20MHZ %d 40MHZ %d 80MHZ %d 160MHZ %d",
peer->stats.rx.bw[0], peer->stats.rx.bw[1],
peer->stats.rx.bw[2], peer->stats.rx.bw[3]);
DP_PRINT_STATS("Reception Type ="
" SU %d,"
" MU_MIMO %d,"
" MU_OFDMA %d,"
" MU_OFDMA_MIMO %d",
peer->stats.rx.reception_type[0],
peer->stats.rx.reception_type[1],
peer->stats.rx.reception_type[2],
peer->stats.rx.reception_type[3]);
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (mcs = 0; mcs < MAX_MCS; mcs++) {
if (!dp_rate_string[pkt_type][mcs].valid)
continue;
DP_PRINT_STATS(" %s = %d",
dp_rate_string[pkt_type][mcs].mcs_type,
peer->stats.rx.pkt_type[pkt_type].
mcs_count[mcs]);
}
DP_PRINT_STATS("\n");
}
index = 0;
for (i = 0; i < SS_COUNT; i++) {
index += qdf_snprint(&nss[index], DP_NSS_LENGTH - index,
" %d", peer->stats.rx.nss[i]);
}
DP_PRINT_STATS("NSS(1-8) = %s",
nss);
DP_PRINT_STATS("Aggregation:");
DP_PRINT_STATS(" Msdu's Part of Ampdu = %d",
peer->stats.rx.ampdu_cnt);
DP_PRINT_STATS(" Msdu's With No Mpdu Level Aggregation = %d",
peer->stats.rx.non_ampdu_cnt);
DP_PRINT_STATS(" Msdu's Part of Amsdu = %d",
peer->stats.rx.amsdu_cnt);
DP_PRINT_STATS(" Msdu's With No Msdu Level Aggregation = %d",
peer->stats.rx.non_amsdu_cnt);
}
/**
* dp_print_host_stats()- Function to print the stats aggregated at host
* @vdev_handle: DP_VDEV handle
* @type: host stats type
*
* Available Stat types
* TXRX_CLEAR_STATS : Clear the stats
* TXRX_RX_RATE_STATS: Print Rx Rate Info
* TXRX_TX_RATE_STATS: Print Tx Rate Info
* TXRX_TX_HOST_STATS: Print Tx Stats
* TXRX_RX_HOST_STATS: Print Rx Stats
* TXRX_AST_STATS: Print AST Stats
* TXRX_SRNG_PTR_STATS: Print SRNG ring pointer stats
*
* Return: 0 on success, print error message in case of failure
*/
static int
dp_print_host_stats(struct cdp_vdev *vdev_handle, enum cdp_host_txrx_stats type)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
dp_aggregate_pdev_stats(pdev);
switch (type) {
case TXRX_CLEAR_STATS:
dp_txrx_host_stats_clr(vdev);
break;
case TXRX_RX_RATE_STATS:
dp_print_rx_rates(vdev);
break;
case TXRX_TX_RATE_STATS:
dp_print_tx_rates(vdev);
break;
case TXRX_TX_HOST_STATS:
dp_print_pdev_tx_stats(pdev);
dp_print_soc_tx_stats(pdev->soc);
break;
case TXRX_RX_HOST_STATS:
dp_print_pdev_rx_stats(pdev);
dp_print_soc_rx_stats(pdev->soc);
break;
case TXRX_AST_STATS:
dp_print_ast_stats(pdev->soc);
dp_print_peer_table(vdev);
break;
case TXRX_SRNG_PTR_STATS:
dp_print_ring_stats(pdev);
break;
case TXRX_RX_MON_STATS:
dp_print_pdev_rx_mon_stats(pdev);
break;
default:
DP_TRACE(FATAL, "Wrong Input For TxRx Host Stats");
break;
}
return 0;
}
/*
* dp_get_host_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
*
* Return: void
*/
static void
dp_get_host_peer_stats(struct cdp_pdev *pdev_handle, char *mac_addr)
{
struct dp_peer *peer;
uint8_t local_id;
peer = (struct dp_peer *)dp_find_peer_by_addr(pdev_handle, mac_addr,
&local_id);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid peer\n", __func__);
return;
}
dp_print_peer_stats(peer);
dp_peer_rxtid_stats(peer, dp_rx_tid_stats_cb, NULL);
return;
}
/*
* dp_ppdu_ring_reset()- Reset PPDU Stats ring
* @pdev: DP_PDEV handle
*
* Return: void
*/
static void
dp_ppdu_ring_reset(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter;
int mac_id;
qdf_mem_set(&(htt_tlv_filter), sizeof(htt_tlv_filter), 0x0);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(pdev->soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
}
/*
* dp_ppdu_ring_cfg()- Configure PPDU Stats ring
* @pdev: DP_PDEV handle
*
* Return: void
*/
static void
dp_ppdu_ring_cfg(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
int mac_id;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
if (pdev->mcopy_mode) {
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.enable_mo = 1;
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(pdev->soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
}
/*
*dp_set_bpr_enable() - API to enable/disable bpr feature
*@pdev_handle: DP_PDEV handle.
*@val: Provided value.
*
*Return: void
*/
static void
dp_set_bpr_enable(struct cdp_pdev *pdev_handle, int val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
switch (val) {
case CDP_BPR_DISABLE:
pdev->bpr_enable = CDP_BPR_DISABLE;
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS,
pdev->pdev_id);
}
break;
case CDP_BPR_ENABLE:
pdev->bpr_enable = CDP_BPR_ENABLE;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable &&
!pdev->mcopy_mode && !pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
} else if (pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_PKTLOG,
pdev->pdev_id);
}
break;
default:
break;
}
}
/*
* dp_config_debug_sniffer()- API to enable/disable debug sniffer
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: void
*/
static void
dp_config_debug_sniffer(struct cdp_pdev *pdev_handle, int val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
switch (val) {
case 0:
pdev->tx_sniffer_enable = 0;
pdev->mcopy_mode = 0;
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
dp_ppdu_ring_reset(pdev);
} else if (pdev->enhanced_stats_en) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
}
break;
case 1:
pdev->tx_sniffer_enable = 1;
pdev->mcopy_mode = 0;
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
break;
case 2:
pdev->mcopy_mode = 1;
pdev->tx_sniffer_enable = 0;
dp_ppdu_ring_cfg(pdev);
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid value\n");
break;
}
}
/*
* dp_enable_enhanced_stats()- API to enable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_enable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->enhanced_stats_en = 1;
if (!pdev->mcopy_mode)
dp_ppdu_ring_cfg(pdev);
if (!pdev->pktlog_ppdu_stats && !pdev->tx_sniffer_enable && !pdev->mcopy_mode)
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
}
/*
* dp_disable_enhanced_stats()- API to disable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_disable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->enhanced_stats_en = 0;
if (!pdev->pktlog_ppdu_stats && !pdev->tx_sniffer_enable && !pdev->mcopy_mode)
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
if (!pdev->mcopy_mode)
dp_ppdu_ring_reset(pdev);
}
/*
* dp_get_fw_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
* @cap: Type of htt stats requested
*
* Currently Supporting only MAC ID based requests Only
* 1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
* 2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
* 3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
*
* Return: void
*/
static void
dp_get_fw_peer_stats(struct cdp_pdev *pdev_handle, uint8_t *mac_addr,
uint32_t cap)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
int i;
uint32_t config_param0 = 0;
uint32_t config_param1 = 0;
uint32_t config_param2 = 0;
uint32_t config_param3 = 0;
HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
config_param0 |= (1 << (cap + 1));
for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
config_param1 |= (1 << i);
}
config_param2 |= (mac_addr[0] & 0x000000ff);
config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
config_param3 |= (mac_addr[4] & 0x000000ff);
config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1, config_param2,
config_param3, 0, 0, 0);
}
/* This struct definition will be removed from here
* once it get added in FW headers*/
struct httstats_cmd_req {
uint32_t config_param0;
uint32_t config_param1;
uint32_t config_param2;
uint32_t config_param3;
int cookie;
u_int8_t stats_id;
};
/*
* dp_get_htt_stats: function to process the httstas request
* @pdev_handle: DP pdev handle
* @data: pointer to request data
* @data_len: length for request data
*
* return: void
*/
static void
dp_get_htt_stats(struct cdp_pdev *pdev_handle, void *data, uint32_t data_len)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
req->config_param0, req->config_param1,
req->config_param2, req->config_param3,
req->cookie, 0, 0);
}
/*
* dp_set_pdev_param: function to set parameters in pdev
* @pdev_handle: DP pdev handle
* @param: parameter type to be set
* @val: value of parameter to be set
*
* return: void
*/
static void dp_set_pdev_param(struct cdp_pdev *pdev_handle,
enum cdp_pdev_param_type param, uint8_t val)
{
switch (param) {
case CDP_CONFIG_DEBUG_SNIFFER:
dp_config_debug_sniffer(pdev_handle, val);
break;
case CDP_CONFIG_BPR_ENABLE:
dp_set_bpr_enable(pdev_handle, val);
break;
default:
break;
}
}
/*
* dp_set_vdev_param: function to set parameters in vdev
* @param: parameter type to be set
* @val: value of parameter to be set
*
* return: void
*/
static void dp_set_vdev_param(struct cdp_vdev *vdev_handle,
enum cdp_vdev_param_type param, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
switch (param) {
case CDP_ENABLE_WDS:
vdev->wds_enabled = val;
break;
case CDP_ENABLE_NAWDS:
vdev->nawds_enabled = val;
break;
case CDP_ENABLE_MCAST_EN:
vdev->mcast_enhancement_en = val;
break;
case CDP_ENABLE_PROXYSTA:
vdev->proxysta_vdev = val;
break;
case CDP_UPDATE_TDLS_FLAGS:
vdev->tdls_link_connected = val;
break;
case CDP_CFG_WDS_AGING_TIMER:
if (val == 0)
qdf_timer_stop(&vdev->pdev->soc->wds_aging_timer);
else if (val != vdev->wds_aging_timer_val)
qdf_timer_mod(&vdev->pdev->soc->wds_aging_timer, val);
vdev->wds_aging_timer_val = val;
break;
case CDP_ENABLE_AP_BRIDGE:
if (wlan_op_mode_sta != vdev->opmode)
vdev->ap_bridge_enabled = val;
else
vdev->ap_bridge_enabled = false;
break;
case CDP_ENABLE_CIPHER:
vdev->sec_type = val;
break;
case CDP_ENABLE_QWRAP_ISOLATION:
vdev->isolation_vdev = val;
break;
default:
break;
}
dp_tx_vdev_update_search_flags(vdev);
}
/**
* dp_peer_set_nawds: set nawds bit in peer
* @peer_handle: pointer to peer
* @value: enable/disable nawds
*
* return: void
*/
static void dp_peer_set_nawds(struct cdp_peer *peer_handle, uint8_t value)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->nawds_enabled = value;
}
/*
* dp_set_vdev_dscp_tid_map_wifi3(): Update Map ID selected for particular vdev
* @vdev_handle: DP_VDEV handle
* @map_id:ID of map that needs to be updated
*
* Return: void
*/
static void dp_set_vdev_dscp_tid_map_wifi3(struct cdp_vdev *vdev_handle,
uint8_t map_id)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->dscp_tid_map_id = map_id;
return;
}
/*
* dp_txrx_stats_publish(): publish pdev stats into a buffer
* @pdev_handle: DP_PDEV handle
* @buf: to hold pdev_stats
*
* Return: int
*/
static int
dp_txrx_stats_publish(struct cdp_pdev *pdev_handle, void *buf)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct cdp_pdev_stats *buffer = (struct cdp_pdev_stats *) buf;
struct cdp_txrx_stats_req req = {0,};
dp_aggregate_pdev_stats(pdev);
req.stats = HTT_DBG_EXT_STATS_PDEV_TX;
req.cookie_val = 1;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
req.stats = HTT_DBG_EXT_STATS_PDEV_RX;
req.cookie_val = 1;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
qdf_mem_copy(buffer, &pdev->stats, sizeof(pdev->stats));
return TXRX_STATS_LEVEL;
}
/**
* dp_set_pdev_dscp_tid_map_wifi3(): update dscp tid map in pdev
* @pdev: DP_PDEV handle
* @map_id: ID of map that needs to be updated
* @tos: index value in map
* @tid: tid value passed by the user
*
* Return: void
*/
static void dp_set_pdev_dscp_tid_map_wifi3(struct cdp_pdev *pdev_handle,
uint8_t map_id, uint8_t tos, uint8_t tid)
{
uint8_t dscp;
struct dp_pdev *pdev = (struct dp_pdev *) pdev_handle;
dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
pdev->dscp_tid_map[map_id][dscp] = tid;
if (map_id < HAL_MAX_HW_DSCP_TID_MAPS)
hal_tx_update_dscp_tid(pdev->soc->hal_soc, tid,
map_id, dscp);
return;
}
/**
* dp_fw_stats_process(): Process TxRX FW stats request
* @vdev_handle: DP VDEV handle
* @req: stats request
*
* return: int
*/
static int dp_fw_stats_process(struct cdp_vdev *vdev_handle,
struct cdp_txrx_stats_req *req)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = NULL;
uint32_t stats = req->stats;
uint8_t mac_id = req->mac_id;
if (!vdev) {
DP_TRACE(NONE, "VDEV not found");
return 1;
}
pdev = vdev->pdev;
/*
* For HTT_DBG_EXT_STATS_RESET command, FW need to config
* from param0 to param3 according to below rule:
*
* PARAM:
* - config_param0 : start_offset (stats type)
* - config_param1 : stats bmask from start offset
* - config_param2 : stats bmask from start offset + 32
* - config_param3 : stats bmask from start offset + 64
*/
if (req->stats == CDP_TXRX_STATS_0) {
req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
req->param1 = 0xFFFFFFFF;
req->param2 = 0xFFFFFFFF;
req->param3 = 0xFFFFFFFF;
}
return dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
req->param1, req->param2, req->param3,
0, 0, mac_id);
}
/**
* dp_txrx_stats_request - function to map to firmware and host stats
* @vdev: virtual handle
* @req: stats request
*
* Return: integer
*/
static int dp_txrx_stats_request(struct cdp_vdev *vdev,
struct cdp_txrx_stats_req *req)
{
int host_stats;
int fw_stats;
enum cdp_stats stats;
if (!vdev || !req) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid vdev/req instance");
return 0;
}
stats = req->stats;
if (stats >= CDP_TXRX_MAX_STATS)
return 0;
/*
* DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
* has to be updated if new FW HTT stats added
*/
if (stats > CDP_TXRX_STATS_HTT_MAX)
stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
fw_stats = dp_stats_mapping_table[stats][STATS_FW];
host_stats = dp_stats_mapping_table[stats][STATS_HOST];
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"stats: %u fw_stats_type: %d host_stats_type: %d",
stats, fw_stats, host_stats);
if (fw_stats != TXRX_FW_STATS_INVALID) {
/* update request with FW stats type */
req->stats = fw_stats;
return dp_fw_stats_process(vdev, req);
}
if ((host_stats != TXRX_HOST_STATS_INVALID) &&
(host_stats <= TXRX_HOST_STATS_MAX))
return dp_print_host_stats(vdev, host_stats);
else
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"Wrong Input for TxRx Stats");
return 0;
}
/*
* dp_print_napi_stats(): NAPI stats
* @soc - soc handle
*/
static void dp_print_napi_stats(struct dp_soc *soc)
{
hif_print_napi_stats(soc->hif_handle);
}
/*
* dp_print_per_ring_stats(): Packet count per ring
* @soc - soc handle
*/
static void dp_print_per_ring_stats(struct dp_soc *soc)
{
uint8_t ring;
uint16_t core;
uint64_t total_packets;
DP_TRACE(FATAL, "Reo packets per ring:");
for (ring = 0; ring < MAX_REO_DEST_RINGS; ring++) {
total_packets = 0;
DP_TRACE(FATAL, "Packets on ring %u:", ring);
for (core = 0; core < NR_CPUS; core++) {
DP_TRACE(FATAL, "Packets arriving on core %u: %llu",
core, soc->stats.rx.ring_packets[core][ring]);
total_packets += soc->stats.rx.ring_packets[core][ring];
}
DP_TRACE(FATAL, "Total packets on ring %u: %llu",
ring, total_packets);
}
}
/*
* dp_txrx_path_stats() - Function to display dump stats
* @soc - soc handle
*
* return: none
*/
static void dp_txrx_path_stats(struct dp_soc *soc)
{
uint8_t error_code;
uint8_t loop_pdev;
struct dp_pdev *pdev;
uint8_t i;
for (loop_pdev = 0; loop_pdev < soc->pdev_count; loop_pdev++) {
pdev = soc->pdev_list[loop_pdev];
dp_aggregate_pdev_stats(pdev);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Tx path Statistics:");
DP_TRACE(FATAL, "from stack: %u msdus (%llu bytes)",
pdev->stats.tx_i.rcvd.num,
pdev->stats.tx_i.rcvd.bytes);
DP_TRACE(FATAL, "processed from host: %u msdus (%llu bytes)",
pdev->stats.tx_i.processed.num,
pdev->stats.tx_i.processed.bytes);
DP_TRACE(FATAL, "successfully transmitted: %u msdus (%llu bytes)",
pdev->stats.tx.tx_success.num,
pdev->stats.tx.tx_success.bytes);
DP_TRACE(FATAL, "Dropped in host:");
DP_TRACE(FATAL, "Total packets dropped: %u,",
pdev->stats.tx_i.dropped.dropped_pkt.num);
DP_TRACE(FATAL, "Descriptor not available: %u",
pdev->stats.tx_i.dropped.desc_na.num);
DP_TRACE(FATAL, "Ring full: %u",
pdev->stats.tx_i.dropped.ring_full);
DP_TRACE(FATAL, "Enqueue fail: %u",
pdev->stats.tx_i.dropped.enqueue_fail);
DP_TRACE(FATAL, "DMA Error: %u",
pdev->stats.tx_i.dropped.dma_error);
DP_TRACE(FATAL, "Dropped in hardware:");
DP_TRACE(FATAL, "total packets dropped: %u",
pdev->stats.tx.tx_failed);
DP_TRACE(FATAL, "mpdu age out: %u",
pdev->stats.tx.dropped.age_out);
DP_TRACE(FATAL, "firmware removed: %u",
pdev->stats.tx.dropped.fw_rem);
DP_TRACE(FATAL, "firmware removed tx: %u",
pdev->stats.tx.dropped.fw_rem_tx);
DP_TRACE(FATAL, "firmware removed notx %u",
pdev->stats.tx.dropped.fw_rem_notx);
DP_TRACE(FATAL, "peer_invalid: %u",
pdev->soc->stats.tx.tx_invalid_peer.num);
DP_TRACE(FATAL, "Tx packets sent per interrupt:");
DP_TRACE(FATAL, "Single Packet: %u",
pdev->stats.tx_comp_histogram.pkts_1);
DP_TRACE(FATAL, "2-20 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_2_20);
DP_TRACE(FATAL, "21-40 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_21_40);
DP_TRACE(FATAL, "41-60 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_41_60);
DP_TRACE(FATAL, "61-80 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_61_80);
DP_TRACE(FATAL, "81-100 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_81_100);
DP_TRACE(FATAL, "101-200 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_101_200);
DP_TRACE(FATAL, " 201+ Packets: %u",
pdev->stats.tx_comp_histogram.pkts_201_plus);
DP_TRACE(FATAL, "Rx path statistics");
DP_TRACE(FATAL, "delivered %u msdus ( %llu bytes),",
pdev->stats.rx.to_stack.num,
pdev->stats.rx.to_stack.bytes);
for (i = 0; i < CDP_MAX_RX_RINGS; i++)
DP_TRACE(FATAL, "received on reo[%d] %u msdus ( %llu bytes),",
i, pdev->stats.rx.rcvd_reo[i].num,
pdev->stats.rx.rcvd_reo[i].bytes);
DP_TRACE(FATAL, "intra-bss packets %u msdus ( %llu bytes),",
pdev->stats.rx.intra_bss.pkts.num,
pdev->stats.rx.intra_bss.pkts.bytes);
DP_TRACE(FATAL, "intra-bss fails %u msdus ( %llu bytes),",
pdev->stats.rx.intra_bss.fail.num,
pdev->stats.rx.intra_bss.fail.bytes);
DP_TRACE(FATAL, "raw packets %u msdus ( %llu bytes),",
pdev->stats.rx.raw.num,
pdev->stats.rx.raw.bytes);
DP_TRACE(FATAL, "dropped: error %u msdus",
pdev->stats.rx.err.mic_err);
DP_TRACE(FATAL, "peer invalid %u",
pdev->soc->stats.rx.err.rx_invalid_peer.num);
DP_TRACE(FATAL, "Reo Statistics");
DP_TRACE(FATAL, "rbm error: %u msdus",
pdev->soc->stats.rx.err.invalid_rbm);
DP_TRACE(FATAL, "hal ring access fail: %u msdus",
pdev->soc->stats.rx.err.hal_ring_access_fail);
for (error_code = 0; error_code < HAL_REO_ERR_MAX;
error_code++) {
if (!pdev->soc->stats.rx.err.reo_error[error_code])
continue;
DP_TRACE(FATAL, "Reo error number (%u): %u msdus",
error_code,
pdev->soc->stats.rx.err.reo_error[error_code]);
}
for (error_code = 0; error_code < HAL_RXDMA_ERR_MAX;
error_code++) {
if (!pdev->soc->stats.rx.err.rxdma_error[error_code])
continue;
DP_TRACE(FATAL, "Rxdma error number (%u): %u msdus",
error_code,
pdev->soc->stats.rx.err
.rxdma_error[error_code]);
}
DP_TRACE(FATAL, "Rx packets reaped per interrupt:");
DP_TRACE(FATAL, "Single Packet: %u",
pdev->stats.rx_ind_histogram.pkts_1);
DP_TRACE(FATAL, "2-20 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_2_20);
DP_TRACE(FATAL, "21-40 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_21_40);
DP_TRACE(FATAL, "41-60 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_41_60);
DP_TRACE(FATAL, "61-80 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_61_80);
DP_TRACE(FATAL, "81-100 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_81_100);
DP_TRACE(FATAL, "101-200 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_101_200);
DP_TRACE(FATAL, " 201+ Packets: %u",
pdev->stats.rx_ind_histogram.pkts_201_plus);
DP_TRACE_STATS(ERROR, "%s: tso_enable: %u lro_enable: %u rx_hash: %u napi_enable: %u",
__func__,
pdev->soc->wlan_cfg_ctx->tso_enabled,
pdev->soc->wlan_cfg_ctx->lro_enabled,
pdev->soc->wlan_cfg_ctx->rx_hash,
pdev->soc->wlan_cfg_ctx->napi_enabled);
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
DP_TRACE_STATS(ERROR, "%s: Tx flow stop queue: %u tx flow start queue offset: %u",
__func__,
pdev->soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold,
pdev->soc->wlan_cfg_ctx->tx_flow_start_queue_offset);
#endif
}
}
/*
* dp_txrx_dump_stats() - Dump statistics
* @value - Statistics option
*/
static QDF_STATUS dp_txrx_dump_stats(void *psoc, uint16_t value,
enum qdf_stats_verbosity_level level)
{
struct dp_soc *soc =
(struct dp_soc *)psoc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: soc is NULL", __func__);
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_PATH_STATS:
dp_txrx_path_stats(soc);
break;
case CDP_RX_RING_STATS:
dp_print_per_ring_stats(soc);
break;
case CDP_TXRX_TSO_STATS:
/* TODO: NOT IMPLEMENTED */
break;
case CDP_DUMP_TX_FLOW_POOL_INFO:
cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
break;
case CDP_DP_NAPI_STATS:
dp_print_napi_stats(soc);
break;
case CDP_TXRX_DESC_STATS:
/* TODO: NOT IMPLEMENTED */
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_update_flow_control_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: void
*/
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
params->tx_flow_stop_queue_threshold;
soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
params->tx_flow_start_queue_offset;
}
#else
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
}
#endif
/**
* dp_update_config_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: status
*/
static
QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
struct cdp_config_params *params)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
if (!(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid handle", __func__);
return QDF_STATUS_E_INVAL;
}
soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
params->tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
dp_update_flow_control_parameters(soc, params);
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_set_wds_rx_policy() - API to store datapath
* config parameters
* @vdev_handle - datapath vdev handle
* @cfg: ini parameter handle
*
* Return: status
*/
#ifdef WDS_VENDOR_EXTENSION
void
dp_txrx_set_wds_rx_policy(
struct cdp_vdev *vdev_handle,
u_int32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_peer *peer;
if (vdev->opmode == wlan_op_mode_ap) {
/* for ap, set it on bss_peer */
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (peer->bss_peer) {
peer->wds_ecm.wds_rx_filter = 1;
peer->wds_ecm.wds_rx_ucast_4addr = (val & WDS_POLICY_RX_UCAST_4ADDR) ? 1:0;
peer->wds_ecm.wds_rx_mcast_4addr = (val & WDS_POLICY_RX_MCAST_4ADDR) ? 1:0;
break;
}
}
} else if (vdev->opmode == wlan_op_mode_sta) {
peer = TAILQ_FIRST(&vdev->peer_list);
peer->wds_ecm.wds_rx_filter = 1;
peer->wds_ecm.wds_rx_ucast_4addr = (val & WDS_POLICY_RX_UCAST_4ADDR) ? 1:0;
peer->wds_ecm.wds_rx_mcast_4addr = (val & WDS_POLICY_RX_MCAST_4ADDR) ? 1:0;
}
}
/**
* dp_txrx_peer_wds_tx_policy_update() - API to set tx wds policy
*
* @peer_handle - datapath peer handle
* @wds_tx_ucast: policy for unicast transmission
* @wds_tx_mcast: policy for multicast transmission
*
* Return: void
*/
void
dp_txrx_peer_wds_tx_policy_update(struct cdp_peer *peer_handle,
int wds_tx_ucast, int wds_tx_mcast)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
if (wds_tx_ucast || wds_tx_mcast) {
peer->wds_enabled = 1;
peer->wds_ecm.wds_tx_ucast_4addr = wds_tx_ucast;
peer->wds_ecm.wds_tx_mcast_4addr = wds_tx_mcast;
} else {
peer->wds_enabled = 0;
peer->wds_ecm.wds_tx_ucast_4addr = 0;
peer->wds_ecm.wds_tx_mcast_4addr = 0;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("Policy Update set to :\
peer->wds_enabled %d\
peer->wds_ecm.wds_tx_ucast_4addr %d\
peer->wds_ecm.wds_tx_mcast_4addr %d\n"),
peer->wds_enabled, peer->wds_ecm.wds_tx_ucast_4addr,
peer->wds_ecm.wds_tx_mcast_4addr);
return;
}
#endif
static struct cdp_wds_ops dp_ops_wds = {
.vdev_set_wds = dp_vdev_set_wds,
#ifdef WDS_VENDOR_EXTENSION
.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
#endif
};
/*
* dp_txrx_data_tx_cb_set(): set the callback for non standard tx
* @vdev_handle - datapath vdev handle
* @callback - callback function
* @ctxt: callback context
*
*/
static void
dp_txrx_data_tx_cb_set(struct cdp_vdev *vdev_handle,
ol_txrx_data_tx_cb callback, void *ctxt)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tx_non_std_data_callback.func = callback;
vdev->tx_non_std_data_callback.ctxt = ctxt;
}
/**
* dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
* @pdev_hdl: datapath pdev handle
*
* Return: opaque pointer to dp txrx handle
*/
static void *dp_pdev_get_dp_txrx_handle(struct cdp_pdev *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
return pdev->dp_txrx_handle;
}
/**
* dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
* @pdev_hdl: datapath pdev handle
* @dp_txrx_hdl: opaque pointer for dp_txrx_handle
*
* Return: void
*/
static void
dp_pdev_set_dp_txrx_handle(struct cdp_pdev *pdev_hdl, void *dp_txrx_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
pdev->dp_txrx_handle = dp_txrx_hdl;
}
/**
* dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
* @soc_handle: datapath soc handle
*
* Return: opaque pointer to external dp (non-core DP)
*/
static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->external_txrx_handle;
}
/**
* dp_soc_set_dp_txrx_handle() - set external dp handle in soc
* @soc_handle: datapath soc handle
* @txrx_handle: opaque pointer to external dp (non-core DP)
*
* Return: void
*/
static void
dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->external_txrx_handle = txrx_handle;
}
#ifdef FEATURE_AST
static void dp_peer_teardown_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_vdev *vdev = (struct dp_vdev *) vdev_hdl;
struct dp_peer *peer = (struct dp_peer *) peer_hdl;
struct dp_soc *soc = (struct dp_soc *) vdev->pdev->soc;
/*
* For BSS peer, new peer is not created on alloc_node if the
* peer with same address already exists , instead refcnt is
* increased for existing peer. Correspondingly in delete path,
* only refcnt is decreased; and peer is only deleted , when all
* references are deleted. So delete_in_progress should not be set
* for bss_peer, unless only 2 reference remains (peer map reference
* and peer hash table reference).
*/
if (peer->bss_peer && (qdf_atomic_read(&peer->ref_cnt) > 2)) {
return;
}
peer->delete_in_progress = true;
dp_peer_delete_ast_entries(soc, peer);
}
#endif
#ifdef ATH_SUPPORT_NAC_RSSI
static QDF_STATUS dp_config_for_nac_rssi(struct cdp_vdev *vdev_handle,
enum cdp_nac_param_cmd cmd, char *bssid, char *client_macaddr,
uint8_t chan_num)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
struct dp_soc *soc = (struct dp_soc *) vdev->pdev->soc;
pdev->nac_rssi_filtering = 1;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == CDP_NAC_PARAM_ADD) {
qdf_mem_copy(vdev->cdp_nac_rssi.client_mac,
client_macaddr, DP_MAC_ADDR_LEN);
vdev->cdp_nac_rssi_enabled = 1;
} else if (cmd == CDP_NAC_PARAM_DEL) {
if (!qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
client_macaddr, DP_MAC_ADDR_LEN)) {
/* delete this peer from the list */
qdf_mem_zero(vdev->cdp_nac_rssi.client_mac,
DP_MAC_ADDR_LEN);
}
vdev->cdp_nac_rssi_enabled = 0;
}
if (soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi)
soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi
((void *)vdev->pdev->ctrl_pdev,
vdev->vdev_id, cmd, bssid);
return QDF_STATUS_SUCCESS;
}
#endif
static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t *soc_hdl,
uint32_t max_peers)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
soc->max_peers = max_peers;
qdf_print ("%s max_peers %u\n", __func__, max_peers);
if (dp_peer_find_attach(soc))
return QDF_STATUS_E_FAILURE;
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_set_ctrl_pdev() - set ctrl pdev handle in dp pdev
* @dp_pdev: dp pdev handle
* @ctrl_pdev: UMAC ctrl pdev handle
*
* Return: void
*/
static void dp_pdev_set_ctrl_pdev(struct cdp_pdev *dp_pdev,
struct cdp_ctrl_objmgr_pdev *ctrl_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)dp_pdev;
pdev->ctrl_pdev = ctrl_pdev;
}
static struct cdp_cmn_ops dp_ops_cmn = {
.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
.txrx_vdev_attach = dp_vdev_attach_wifi3,
.txrx_vdev_detach = dp_vdev_detach_wifi3,
.txrx_pdev_attach = dp_pdev_attach_wifi3,
.txrx_pdev_detach = dp_pdev_detach_wifi3,
.txrx_peer_create = dp_peer_create_wifi3,
.txrx_peer_setup = dp_peer_setup_wifi3,
#ifdef FEATURE_AST
.txrx_peer_teardown = dp_peer_teardown_wifi3,
#else
.txrx_peer_teardown = NULL,
#endif
.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
.txrx_peer_del_ast = dp_peer_del_ast_wifi3,
.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
.txrx_peer_ast_hash_find = dp_peer_ast_hash_find_wifi3,
.txrx_peer_ast_get_pdev_id = dp_peer_ast_get_pdev_id_wifi3,
.txrx_peer_ast_get_next_hop = dp_peer_ast_get_next_hop_wifi3,
.txrx_peer_ast_set_type = dp_peer_ast_set_type_wifi3,
.txrx_peer_delete = dp_peer_delete_wifi3,
.txrx_vdev_register = dp_vdev_register_wifi3,
.txrx_soc_detach = dp_soc_detach_wifi3,
.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
.txrx_get_vdev_from_vdev_id = dp_get_vdev_from_vdev_id_wifi3,
.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
.txrx_ath_getstats = dp_get_device_stats,
.addba_requestprocess = dp_addba_requestprocess_wifi3,
.addba_responsesetup = dp_addba_responsesetup_wifi3,
.delba_process = dp_delba_process_wifi3,
.set_addba_response = dp_set_addba_response,
.get_peer_mac_addr_frm_id = dp_get_peer_mac_addr_frm_id,
.flush_cache_rx_queue = NULL,
/* TODO: get API's for dscp-tid need to be added*/
.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
.txrx_stats_request = dp_txrx_stats_request,
.txrx_set_monitor_mode = dp_vdev_set_monitor_mode,
.txrx_get_pdev_id_frm_pdev = dp_get_pdev_id_frm_pdev,
.txrx_set_nac = dp_set_nac,
.txrx_get_tx_pending = dp_get_tx_pending,
.txrx_set_pdev_tx_capture = dp_config_debug_sniffer,
.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
.display_stats = dp_txrx_dump_stats,
.txrx_soc_set_nss_cfg = dp_soc_set_nss_cfg_wifi3,
.txrx_soc_get_nss_cfg = dp_soc_get_nss_cfg_wifi3,
.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
.txrx_intr_detach = dp_soc_interrupt_detach,
.set_pn_check = dp_set_pn_check_wifi3,
.update_config_parameters = dp_update_config_parameters,
/* TODO: Add other functions */
.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
.tx_send = dp_tx_send,
.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
.txrx_pdev_set_ctrl_pdev = dp_pdev_set_ctrl_pdev,
};
static struct cdp_ctrl_ops dp_ops_ctrl = {
.txrx_peer_authorize = dp_peer_authorize,
#ifdef QCA_SUPPORT_SON
.txrx_set_inact_params = dp_set_inact_params,
.txrx_start_inact_timer = dp_start_inact_timer,
.txrx_set_overload = dp_set_overload,
.txrx_peer_is_inact = dp_peer_is_inact,
.txrx_mark_peer_inact = dp_mark_peer_inact,
#endif
.txrx_set_vdev_rx_decap_type = dp_set_vdev_rx_decap_type,
.txrx_set_tx_encap_type = dp_set_vdev_tx_encap_type,
#ifdef MESH_MODE_SUPPORT
.txrx_set_mesh_mode = dp_peer_set_mesh_mode,
.txrx_set_mesh_rx_filter = dp_peer_set_mesh_rx_filter,
#endif
.txrx_set_vdev_param = dp_set_vdev_param,
.txrx_peer_set_nawds = dp_peer_set_nawds,
.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
.txrx_set_filter_neighbour_peers = dp_set_filter_neighbour_peers,
.txrx_update_filter_neighbour_peers =
dp_update_filter_neighbour_peers,
.txrx_get_sec_type = dp_get_sec_type,
/* TODO: Add other functions */
.txrx_wdi_event_sub = dp_wdi_event_sub,
.txrx_wdi_event_unsub = dp_wdi_event_unsub,
#ifdef WDI_EVENT_ENABLE
.txrx_get_pldev = dp_get_pldev,
#endif
.txrx_set_pdev_param = dp_set_pdev_param,
#ifdef ATH_SUPPORT_NAC_RSSI
.txrx_vdev_config_for_nac_rssi = dp_config_for_nac_rssi,
#endif
.set_key = dp_set_michael_key,
};
static struct cdp_me_ops dp_ops_me = {
#ifdef ATH_SUPPORT_IQUE
.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
.tx_me_free_descriptor = dp_tx_me_free_descriptor,
.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
#endif
};
static struct cdp_mon_ops dp_ops_mon = {
.txrx_monitor_set_filter_ucast_data = NULL,
.txrx_monitor_set_filter_mcast_data = NULL,
.txrx_monitor_set_filter_non_data = NULL,
.txrx_monitor_get_filter_ucast_data = dp_vdev_get_filter_ucast_data,
.txrx_monitor_get_filter_mcast_data = dp_vdev_get_filter_mcast_data,
.txrx_monitor_get_filter_non_data = dp_vdev_get_filter_non_data,
.txrx_reset_monitor_mode = dp_reset_monitor_mode,
/* Added support for HK advance filter */
.txrx_set_advance_monitor_filter = dp_pdev_set_advance_monitor_filter,
};
static struct cdp_host_stats_ops dp_ops_host_stats = {
.txrx_per_peer_stats = dp_get_host_peer_stats,
.get_fw_peer_stats = dp_get_fw_peer_stats,
.get_htt_stats = dp_get_htt_stats,
.txrx_enable_enhanced_stats = dp_enable_enhanced_stats,
.txrx_disable_enhanced_stats = dp_disable_enhanced_stats,
.txrx_stats_publish = dp_txrx_stats_publish,
/* TODO */
};
static struct cdp_raw_ops dp_ops_raw = {
/* TODO */
};
#ifdef CONFIG_WIN
static struct cdp_pflow_ops dp_ops_pflow = {
/* TODO */
};
#endif /* CONFIG_WIN */
#ifdef FEATURE_RUNTIME_PM
/**
* dp_runtime_suspend() - ensure DP is ready to runtime suspend
* @opaque_pdev: DP pdev context
*
* DP is ready to runtime suspend if there are no pending TX packets.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_suspend(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
/* Call DP TX flow control API to check if there is any
pending packets */
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
return QDF_STATUS_SUCCESS;
}
/**
* dp_runtime_resume() - ensure DP is ready to runtime resume
* @opaque_pdev: DP pdev context
*
* Resume DP for runtime PM.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_resume(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
void *hal_srng;
int i;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
for (i = 0; i < MAX_TCL_DATA_RINGS; i++) {
hal_srng = soc->tcl_data_ring[i].hal_srng;
if (hal_srng) {
/* We actually only need to acquire the lock */
hal_srng_access_start(soc->hal_soc, hal_srng);
/* Update SRC ring head pointer for HW to send
all pending packets */
hal_srng_access_end(soc->hal_soc, hal_srng);
}
}
return QDF_STATUS_SUCCESS;
}
#endif /* FEATURE_RUNTIME_PM */
static QDF_STATUS dp_bus_suspend(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_bus_resume(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
return QDF_STATUS_SUCCESS;
}
#ifndef CONFIG_WIN
static struct cdp_misc_ops dp_ops_misc = {
.tx_non_std = dp_tx_non_std,
.get_opmode = dp_get_opmode,
#ifdef FEATURE_RUNTIME_PM
.runtime_suspend = dp_runtime_suspend,
.runtime_resume = dp_runtime_resume,
#endif /* FEATURE_RUNTIME_PM */
.pkt_log_init = dp_pkt_log_init,
.pkt_log_con_service = dp_pkt_log_con_service,
};
static struct cdp_flowctl_ops dp_ops_flowctl = {
/* WIFI 3.0 DP implement as required. */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
.flow_pool_map_handler = dp_tx_flow_pool_map,
.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
.register_pause_cb = dp_txrx_register_pause_cb,
.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
#endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
};
static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#ifdef IPA_OFFLOAD
static struct cdp_ipa_ops dp_ops_ipa = {
.ipa_get_resource = dp_ipa_get_resource,
.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
.ipa_op_response = dp_ipa_op_response,
.ipa_register_op_cb = dp_ipa_register_op_cb,
.ipa_get_stat = dp_ipa_get_stat,
.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
.ipa_enable_autonomy = dp_ipa_enable_autonomy,
.ipa_disable_autonomy = dp_ipa_disable_autonomy,
.ipa_setup = dp_ipa_setup,
.ipa_cleanup = dp_ipa_cleanup,
.ipa_setup_iface = dp_ipa_setup_iface,
.ipa_cleanup_iface = dp_ipa_cleanup_iface,
.ipa_enable_pipes = dp_ipa_enable_pipes,
.ipa_disable_pipes = dp_ipa_disable_pipes,
.ipa_set_perf_level = dp_ipa_set_perf_level
};
#endif
static struct cdp_bus_ops dp_ops_bus = {
.bus_suspend = dp_bus_suspend,
.bus_resume = dp_bus_resume
};
static struct cdp_ocb_ops dp_ops_ocb = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_throttle_ops dp_ops_throttle = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_mob_stats_ops dp_ops_mob_stats = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_cfg_ops dp_ops_cfg = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
/*
* dp_wrapper_peer_get_ref_by_addr - wrapper function to get to peer
* @dev: physical device instance
* @peer_mac_addr: peer mac address
* @local_id: local id for the peer
* @debug_id: to track enum peer access
* Return: peer instance pointer
*/
static inline void *
dp_wrapper_peer_get_ref_by_addr(struct cdp_pdev *dev, u8 *peer_mac_addr,
u8 *local_id,
enum peer_debug_id_type debug_id)
{
/*
* Currently this function does not implement the "get ref"
* functionality and is mapped to dp_find_peer_by_addr which does not
* increment the peer ref count. So the peer state is uncertain after
* calling this API. The functionality needs to be implemented.
* Accordingly the corresponding release_ref function is NULL.
*/
return dp_find_peer_by_addr(dev, peer_mac_addr, local_id);
}
static struct cdp_peer_ops dp_ops_peer = {
.register_peer = dp_register_peer,
.clear_peer = dp_clear_peer,
.find_peer_by_addr = dp_find_peer_by_addr,
.find_peer_by_addr_and_vdev = dp_find_peer_by_addr_and_vdev,
.peer_get_ref_by_addr = dp_wrapper_peer_get_ref_by_addr,
.peer_release_ref = NULL,
.local_peer_id = dp_local_peer_id,
.peer_find_by_local_id = dp_peer_find_by_local_id,
.peer_state_update = dp_peer_state_update,
.get_vdevid = dp_get_vdevid,
.get_vdev_by_sta_id = dp_get_vdev_by_sta_id,
.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
.get_vdev_for_peer = dp_get_vdev_for_peer,
.get_peer_state = dp_get_peer_state,
.get_last_mgmt_timestamp = dp_get_last_mgmt_timestamp,
.update_last_mgmt_timestamp = dp_update_last_mgmt_timestamp,
};
#endif
static struct cdp_ops dp_txrx_ops = {
.cmn_drv_ops = &dp_ops_cmn,
.ctrl_ops = &dp_ops_ctrl,
.me_ops = &dp_ops_me,
.mon_ops = &dp_ops_mon,
.host_stats_ops = &dp_ops_host_stats,
.wds_ops = &dp_ops_wds,
.raw_ops = &dp_ops_raw,
#ifdef CONFIG_WIN
.pflow_ops = &dp_ops_pflow,
#endif /* CONFIG_WIN */
#ifndef CONFIG_WIN
.misc_ops = &dp_ops_misc,
.cfg_ops = &dp_ops_cfg,
.flowctl_ops = &dp_ops_flowctl,
.l_flowctl_ops = &dp_ops_l_flowctl,
#ifdef IPA_OFFLOAD
.ipa_ops = &dp_ops_ipa,
#endif
.bus_ops = &dp_ops_bus,
.ocb_ops = &dp_ops_ocb,
.peer_ops = &dp_ops_peer,
.throttle_ops = &dp_ops_throttle,
.mob_stats_ops = &dp_ops_mob_stats,
#endif
};
/*
* dp_soc_set_txrx_ring_map()
* @dp_soc: DP handler for soc
*
* Return: Void
*/
static void dp_soc_set_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_DEFAULT_MAP][i];
}
}
/*
* dp_soc_attach_wifi3() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
*
* Return: DP SOC handle on success, NULL on failure
*/
/*
* Local prototype added to temporarily address warning caused by
* -Wmissing-prototypes. A more correct solution, namely to expose
* a prototype in an appropriate header file, will come later.
*/
void *dp_soc_attach_wifi3(void *ctrl_psoc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops);
void *dp_soc_attach_wifi3(void *ctrl_psoc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops)
{
struct dp_soc *soc = qdf_mem_malloc(sizeof(*soc));
int target_type;
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP SOC memory allocation failed"));
goto fail0;
}
soc->cdp_soc.ops = &dp_txrx_ops;
soc->cdp_soc.ol_ops = ol_ops;
soc->ctrl_psoc = ctrl_psoc;
soc->osdev = qdf_osdev;
soc->hif_handle = hif_handle;
soc->hal_soc = hif_get_hal_handle(hif_handle);
soc->htt_handle = htt_soc_attach(soc, ctrl_psoc, htc_handle,
soc->hal_soc, qdf_osdev);
if (!soc->htt_handle) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("HTT attach failed"));
goto fail1;
}
soc->wlan_cfg_ctx = wlan_cfg_soc_attach();
if (!soc->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("wlan_cfg_soc_attach failed"));
goto fail2;
}
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6290:
#ifdef QCA_WIFI_QCA6390
case TARGET_TYPE_QCA6390:
#endif
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
break;
case TARGET_TYPE_QCA8074:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
break;
default:
qdf_print("%s: Unknown tgt type %d\n", __func__, target_type);
qdf_assert_always(0);
break;
}
wlan_cfg_set_rx_hash(soc->wlan_cfg_ctx, rx_hash);
soc->cce_disable = false;
if (soc->cdp_soc.ol_ops->get_dp_cfg_param) {
int ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_MAX_PEER_ID);
if (ret != -EINVAL) {
wlan_cfg_set_max_peer_id(soc->wlan_cfg_ctx, ret);
}
ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_CCE_DISABLE);
if (ret == 1)
soc->cce_disable = true;
}
qdf_spinlock_create(&soc->peer_ref_mutex);
qdf_spinlock_create(&soc->reo_desc_freelist_lock);
qdf_list_create(&soc->reo_desc_freelist, REO_DESC_FREELIST_SIZE);
/* fill the tx/rx cpu ring map*/
dp_soc_set_txrx_ring_map(soc);
qdf_spinlock_create(&soc->htt_stats.lock);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
/*Initialize inactivity timer for wifison */
dp_init_inact_timer(soc);
return (void *)soc;
fail2:
htt_soc_detach(soc->htt_handle);
fail1:
qdf_mem_free(soc);
fail0:
return NULL;
}
/*
* dp_get_pdev_for_mac_id() - Return pdev for mac_id
*
* @soc: handle to DP soc
* @mac_id: MAC id
*
* Return: Return pdev corresponding to MAC
*/
void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
{
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
return soc->pdev_list[mac_id];
/* Typically for MCL as there only 1 PDEV*/
return soc->pdev_list[0];
}
/*
* dp_is_hw_dbs_enable() - Procedure to check if DBS is supported
* @soc: DP SoC context
* @max_mac_rings: No of MAC rings
*
* Return: None
*/
static
void dp_is_hw_dbs_enable(struct dp_soc *soc,
int *max_mac_rings)
{
bool dbs_enable = false;
if (soc->cdp_soc.ol_ops->is_hw_dbs_2x2_capable)
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable(soc->ctrl_psoc);
*max_mac_rings = (dbs_enable)?(*max_mac_rings):1;
}
/*
* dp_set_pktlog_wifi3() - attach txrx vdev
* @pdev: Datapath PDEV handle
* @event: which event's notifications are being subscribed to
* @enable: WDI event subscribe or not. (True or False)
*
* Return: Success, NULL on failure
*/
#ifdef WDI_EVENT_ENABLE
int dp_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
bool enable)
{
struct dp_soc *soc = pdev->soc;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
int max_mac_rings = wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
uint8_t mac_id = 0;
dp_is_hw_dbs_enable(soc, &max_mac_rings);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
FL("Max_mac_rings %d \n"),
max_mac_rings);
if (enable) {
switch (event) {
case WDI_EVENT_RX_DESC:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_FULL) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_FULL;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_LITE) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_LITE;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE_PKTLOG_LITE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(
mac_id, pdev->pdev_id);
pdev->pktlog_ppdu_stats = true;
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_TXLITE_STATS_BITMASK_CFG,
mac_for_pdev);
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
} else {
switch (event) {
case WDI_EVENT_RX_DESC:
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_stop(&soc->mon_reap_timer);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
/* To disable HTT_H2T_MSG_TYPE_PPDU_STATS_CFG in FW
* passing value 0. Once these macros will define in htt
* header file will use proper macros
*/
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
pdev->pktlog_ppdu_stats = false;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0,
mac_for_pdev);
} else if (pdev->tx_sniffer_enable || pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_SNIFFER,
mac_for_pdev);
} else if (pdev->enhanced_stats_en) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS,
mac_for_pdev);
}
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
}
return 0;
}
#endif