blob: 59175f972543881f080edae5efbafbef032b3005 [file] [log] [blame]
/*
* Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "htt.h"
#include "hal_hw_headers.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_peer.h"
#include "dp_types.h"
#include "hal_tx.h"
#include "qdf_mem.h"
#include "qdf_nbuf.h"
#include "qdf_net_types.h"
#include <wlan_cfg.h>
#ifdef MESH_MODE_SUPPORT
#include "if_meta_hdr.h"
#endif
#include "enet.h"
#include "dp_internal.h"
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#define DP_TX_QUEUE_MASK 0x3
/* TODO Add support in TSO */
#define DP_DESC_NUM_FRAG(x) 0
/* disable TQM_BYPASS */
#define TQM_BYPASS_WAR 0
/* invalid peer id for reinject*/
#define DP_INVALID_PEER 0XFFFE
/*mapping between hal encrypt type and cdp_sec_type*/
#define MAX_CDP_SEC_TYPE 12
static const uint8_t sec_type_map[MAX_CDP_SEC_TYPE] = {
HAL_TX_ENCRYPT_TYPE_NO_CIPHER,
HAL_TX_ENCRYPT_TYPE_WEP_128,
HAL_TX_ENCRYPT_TYPE_WEP_104,
HAL_TX_ENCRYPT_TYPE_WEP_40,
HAL_TX_ENCRYPT_TYPE_TKIP_WITH_MIC,
HAL_TX_ENCRYPT_TYPE_TKIP_NO_MIC,
HAL_TX_ENCRYPT_TYPE_AES_CCMP_128,
HAL_TX_ENCRYPT_TYPE_WAPI,
HAL_TX_ENCRYPT_TYPE_AES_CCMP_256,
HAL_TX_ENCRYPT_TYPE_AES_GCMP_128,
HAL_TX_ENCRYPT_TYPE_AES_GCMP_256,
HAL_TX_ENCRYPT_TYPE_WAPI_GCM_SM4};
#ifdef WLAN_TX_PKT_CAPTURE_ENH
#include "dp_tx_capture.h"
#endif
/**
* dp_tx_get_queue() - Returns Tx queue IDs to be used for this Tx frame
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @queue: queue ids container for nbuf
*
* TX packet queue has 2 instances, software descriptors id and dma ring id
* Based on tx feature and hardware configuration queue id combination could be
* different.
* For example -
* With XPS enabled,all TX descriptor pools and dma ring are assigned per cpu id
* With no XPS,lock based resource protection, Descriptor pool ids are different
* for each vdev, dma ring id will be same as single pdev id
*
* Return: None
*/
#ifdef QCA_OL_TX_MULTIQ_SUPPORT
static inline void dp_tx_get_queue(struct dp_vdev *vdev,
qdf_nbuf_t nbuf, struct dp_tx_queue *queue)
{
uint16_t queue_offset = qdf_nbuf_get_queue_mapping(nbuf) & DP_TX_QUEUE_MASK;
queue->desc_pool_id = queue_offset;
queue->ring_id = vdev->pdev->soc->tx_ring_map[queue_offset];
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s, pool_id:%d ring_id: %d",
__func__, queue->desc_pool_id, queue->ring_id);
return;
}
#else /* QCA_OL_TX_MULTIQ_SUPPORT */
static inline void dp_tx_get_queue(struct dp_vdev *vdev,
qdf_nbuf_t nbuf, struct dp_tx_queue *queue)
{
/* get flow id */
queue->desc_pool_id = DP_TX_GET_DESC_POOL_ID(vdev);
queue->ring_id = DP_TX_GET_RING_ID(vdev);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s, pool_id:%d ring_id: %d",
__func__, queue->desc_pool_id, queue->ring_id);
return;
}
#endif
#if defined(FEATURE_TSO)
/**
* dp_tx_tso_unmap_segment() - Unmap TSO segment
*
* @soc - core txrx main context
* @seg_desc - tso segment descriptor
* @num_seg_desc - tso number segment descriptor
*/
static void dp_tx_tso_unmap_segment(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *seg_desc,
struct qdf_tso_num_seg_elem_t *num_seg_desc)
{
TSO_DEBUG("%s: Unmap the tso segment", __func__);
if (qdf_unlikely(!seg_desc)) {
DP_TRACE(ERROR, "%s %d TSO desc is NULL!",
__func__, __LINE__);
qdf_assert(0);
} else if (qdf_unlikely(!num_seg_desc)) {
DP_TRACE(ERROR, "%s %d TSO num desc is NULL!",
__func__, __LINE__);
qdf_assert(0);
} else {
bool is_last_seg;
/* no tso segment left to do dma unmap */
if (num_seg_desc->num_seg.tso_cmn_num_seg < 1)
return;
is_last_seg = (num_seg_desc->num_seg.tso_cmn_num_seg == 1) ?
true : false;
qdf_nbuf_unmap_tso_segment(soc->osdev,
seg_desc, is_last_seg);
num_seg_desc->num_seg.tso_cmn_num_seg--;
}
}
/**
* dp_tx_tso_desc_release() - Release the tso segment and tso_cmn_num_seg
* back to the freelist
*
* @soc - soc device handle
* @tx_desc - Tx software descriptor
*/
static void dp_tx_tso_desc_release(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
TSO_DEBUG("%s: Free the tso descriptor", __func__);
if (qdf_unlikely(!tx_desc->tso_desc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s %d TSO desc is NULL!",
__func__, __LINE__);
qdf_assert(0);
} else if (qdf_unlikely(!tx_desc->tso_num_desc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s %d TSO num desc is NULL!",
__func__, __LINE__);
qdf_assert(0);
} else {
struct qdf_tso_num_seg_elem_t *tso_num_desc =
(struct qdf_tso_num_seg_elem_t *)tx_desc->tso_num_desc;
/* Add the tso num segment into the free list */
if (tso_num_desc->num_seg.tso_cmn_num_seg == 0) {
dp_tso_num_seg_free(soc, tx_desc->pool_id,
tx_desc->tso_num_desc);
tx_desc->tso_num_desc = NULL;
}
/* Add the tso segment into the free list*/
dp_tx_tso_desc_free(soc,
tx_desc->pool_id, tx_desc->tso_desc);
tx_desc->tso_desc = NULL;
}
}
#else
static void dp_tx_tso_unmap_segment(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *seg_desc,
struct qdf_tso_num_seg_elem_t *num_seg_desc)
{
}
static void dp_tx_tso_desc_release(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
}
#endif
/**
* dp_tx_desc_release() - Release Tx Descriptor
* @tx_desc : Tx Descriptor
* @desc_pool_id: Descriptor Pool ID
*
* Deallocate all resources attached to Tx descriptor and free the Tx
* descriptor.
*
* Return:
*/
static void
dp_tx_desc_release(struct dp_tx_desc_s *tx_desc, uint8_t desc_pool_id)
{
struct dp_pdev *pdev = tx_desc->pdev;
struct dp_soc *soc;
uint8_t comp_status = 0;
qdf_assert(pdev);
soc = pdev->soc;
if (tx_desc->frm_type == dp_tx_frm_tso)
dp_tx_tso_desc_release(soc, tx_desc);
if (tx_desc->flags & DP_TX_DESC_FLAG_FRAG)
dp_tx_ext_desc_free(soc, tx_desc->msdu_ext_desc, desc_pool_id);
if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
dp_tx_me_free_buf(tx_desc->pdev, tx_desc->me_buffer);
qdf_atomic_dec(&pdev->num_tx_outstanding);
if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
qdf_atomic_dec(&pdev->num_tx_exception);
if (HAL_TX_COMP_RELEASE_SOURCE_TQM ==
hal_tx_comp_get_buffer_source(&tx_desc->comp))
comp_status = hal_tx_comp_get_release_reason(&tx_desc->comp,
soc->hal_soc);
else
comp_status = HAL_TX_COMP_RELEASE_REASON_FW;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"Tx Completion Release desc %d status %d outstanding %d",
tx_desc->id, comp_status,
qdf_atomic_read(&pdev->num_tx_outstanding));
dp_tx_desc_free(soc, tx_desc, desc_pool_id);
return;
}
/**
* dp_tx_htt_metadata_prepare() - Prepare HTT metadata for special frames
* @vdev: DP vdev Handle
* @nbuf: skb
*
* Prepares and fills HTT metadata in the frame pre-header for special frames
* that should be transmitted using varying transmit parameters.
* There are 2 VDEV modes that currently needs this special metadata -
* 1) Mesh Mode
* 2) DSRC Mode
*
* Return: HTT metadata size
*
*/
static uint8_t dp_tx_prepare_htt_metadata(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint32_t *meta_data)
{
struct htt_tx_msdu_desc_ext2_t *desc_ext =
(struct htt_tx_msdu_desc_ext2_t *) meta_data;
uint8_t htt_desc_size;
/* Size rounded of multiple of 8 bytes */
uint8_t htt_desc_size_aligned;
uint8_t *hdr = NULL;
/*
* Metadata - HTT MSDU Extension header
*/
htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
if (vdev->mesh_vdev) {
if (qdf_unlikely(qdf_nbuf_headroom(nbuf) <
htt_desc_size_aligned)) {
DP_STATS_INC(vdev,
tx_i.dropped.headroom_insufficient, 1);
return 0;
}
/* Fill and add HTT metaheader */
hdr = qdf_nbuf_push_head(nbuf, htt_desc_size_aligned);
if (!hdr) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Error in filling HTT metadata");
return 0;
}
qdf_mem_copy(hdr, desc_ext, htt_desc_size);
} else if (vdev->opmode == wlan_op_mode_ocb) {
/* Todo - Add support for DSRC */
}
return htt_desc_size_aligned;
}
/**
* dp_tx_prepare_tso_ext_desc() - Prepare MSDU extension descriptor for TSO
* @tso_seg: TSO segment to process
* @ext_desc: Pointer to MSDU extension descriptor
*
* Return: void
*/
#if defined(FEATURE_TSO)
static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
void *ext_desc)
{
uint8_t num_frag;
uint32_t tso_flags;
/*
* Set tso_en, tcp_flags(NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN),
* tcp_flag_mask
*
* Checksum enable flags are set in TCL descriptor and not in Extension
* Descriptor (H/W ignores checksum_en flags in MSDU ext descriptor)
*/
tso_flags = *(uint32_t *) &tso_seg->tso_flags;
hal_tx_ext_desc_set_tso_flags(ext_desc, tso_flags);
hal_tx_ext_desc_set_msdu_length(ext_desc, tso_seg->tso_flags.l2_len,
tso_seg->tso_flags.ip_len);
hal_tx_ext_desc_set_tcp_seq(ext_desc, tso_seg->tso_flags.tcp_seq_num);
hal_tx_ext_desc_set_ip_id(ext_desc, tso_seg->tso_flags.ip_id);
for (num_frag = 0; num_frag < tso_seg->num_frags; num_frag++) {
uint32_t lo = 0;
uint32_t hi = 0;
qdf_dmaaddr_to_32s(
tso_seg->tso_frags[num_frag].paddr, &lo, &hi);
hal_tx_ext_desc_set_buffer(ext_desc, num_frag, lo, hi,
tso_seg->tso_frags[num_frag].length);
}
return;
}
#else
static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
void *ext_desc)
{
return;
}
#endif
#if defined(FEATURE_TSO)
/**
* dp_tx_free_tso_seg_list() - Loop through the tso segments
* allocated and free them
*
* @soc: soc handle
* @free_seg: list of tso segments
* @msdu_info: msdu descriptor
*
* Return - void
*/
static void dp_tx_free_tso_seg_list(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *free_seg,
struct dp_tx_msdu_info_s *msdu_info)
{
struct qdf_tso_seg_elem_t *next_seg;
while (free_seg) {
next_seg = free_seg->next;
dp_tx_tso_desc_free(soc,
msdu_info->tx_queue.desc_pool_id,
free_seg);
free_seg = next_seg;
}
}
/**
* dp_tx_free_tso_num_seg_list() - Loop through the tso num segments
* allocated and free them
*
* @soc: soc handle
* @free_num_seg: list of tso number segments
* @msdu_info: msdu descriptor
* Return - void
*/
static void dp_tx_free_tso_num_seg_list(
struct dp_soc *soc,
struct qdf_tso_num_seg_elem_t *free_num_seg,
struct dp_tx_msdu_info_s *msdu_info)
{
struct qdf_tso_num_seg_elem_t *next_num_seg;
while (free_num_seg) {
next_num_seg = free_num_seg->next;
dp_tso_num_seg_free(soc,
msdu_info->tx_queue.desc_pool_id,
free_num_seg);
free_num_seg = next_num_seg;
}
}
/**
* dp_tx_unmap_tso_seg_list() - Loop through the tso segments
* do dma unmap for each segment
*
* @soc: soc handle
* @free_seg: list of tso segments
* @num_seg_desc: tso number segment descriptor
*
* Return - void
*/
static void dp_tx_unmap_tso_seg_list(
struct dp_soc *soc,
struct qdf_tso_seg_elem_t *free_seg,
struct qdf_tso_num_seg_elem_t *num_seg_desc)
{
struct qdf_tso_seg_elem_t *next_seg;
if (qdf_unlikely(!num_seg_desc)) {
DP_TRACE(ERROR, "TSO number seg desc is NULL!");
return;
}
while (free_seg) {
next_seg = free_seg->next;
dp_tx_tso_unmap_segment(soc, free_seg, num_seg_desc);
free_seg = next_seg;
}
}
/**
* dp_tx_free_remaining_tso_desc() - do dma unmap for tso segments if any,
* free the tso segments descriptor and
* tso num segments descriptor
*
* @soc: soc handle
* @msdu_info: msdu descriptor
* @tso_seg_unmap: flag to show if dma unmap is necessary
*
* Return - void
*/
static void dp_tx_free_remaining_tso_desc(struct dp_soc *soc,
struct dp_tx_msdu_info_s *msdu_info,
bool tso_seg_unmap)
{
struct qdf_tso_info_t *tso_info = &msdu_info->u.tso_info;
struct qdf_tso_seg_elem_t *free_seg = tso_info->tso_seg_list;
struct qdf_tso_num_seg_elem_t *tso_num_desc =
tso_info->tso_num_seg_list;
/* do dma unmap for each segment */
if (tso_seg_unmap)
dp_tx_unmap_tso_seg_list(soc, free_seg, tso_num_desc);
/* free all tso number segment descriptor though looks only have 1 */
dp_tx_free_tso_num_seg_list(soc, tso_num_desc, msdu_info);
/* free all tso segment descriptor */
dp_tx_free_tso_seg_list(soc, free_seg, msdu_info);
}
/**
* dp_tx_prepare_tso() - Given a jumbo msdu, prepare the TSO info
* @vdev: virtual device handle
* @msdu: network buffer
* @msdu_info: meta data associated with the msdu
*
* Return: QDF_STATUS_SUCCESS success
*/
static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
{
struct qdf_tso_seg_elem_t *tso_seg;
int num_seg = qdf_nbuf_get_tso_num_seg(msdu);
struct dp_soc *soc = vdev->pdev->soc;
struct qdf_tso_info_t *tso_info;
struct qdf_tso_num_seg_elem_t *tso_num_seg;
tso_info = &msdu_info->u.tso_info;
tso_info->curr_seg = NULL;
tso_info->tso_seg_list = NULL;
tso_info->num_segs = num_seg;
msdu_info->frm_type = dp_tx_frm_tso;
tso_info->tso_num_seg_list = NULL;
TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
while (num_seg) {
tso_seg = dp_tx_tso_desc_alloc(
soc, msdu_info->tx_queue.desc_pool_id);
if (tso_seg) {
tso_seg->next = tso_info->tso_seg_list;
tso_info->tso_seg_list = tso_seg;
num_seg--;
} else {
DP_TRACE(ERROR, "%s: Failed to alloc tso seg desc",
__func__);
dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
return QDF_STATUS_E_NOMEM;
}
}
TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
tso_num_seg = dp_tso_num_seg_alloc(soc,
msdu_info->tx_queue.desc_pool_id);
if (tso_num_seg) {
tso_num_seg->next = tso_info->tso_num_seg_list;
tso_info->tso_num_seg_list = tso_num_seg;
} else {
DP_TRACE(ERROR, "%s: Failed to alloc - Number of segs desc",
__func__);
dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
return QDF_STATUS_E_NOMEM;
}
msdu_info->num_seg =
qdf_nbuf_get_tso_info(soc->osdev, msdu, tso_info);
TSO_DEBUG(" %s: msdu_info->num_seg: %d", __func__,
msdu_info->num_seg);
if (!(msdu_info->num_seg)) {
/*
* Free allocated TSO seg desc and number seg desc,
* do unmap for segments if dma map has done.
*/
DP_TRACE(ERROR, "%s: Failed to get tso info", __func__);
dp_tx_free_remaining_tso_desc(soc, msdu_info, true);
return QDF_STATUS_E_INVAL;
}
tso_info->curr_seg = tso_info->tso_seg_list;
return QDF_STATUS_SUCCESS;
}
#else
static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
{
return QDF_STATUS_E_NOMEM;
}
#endif
/**
* dp_tx_prepare_ext_desc() - Allocate and prepare MSDU extension descriptor
* @vdev: DP Vdev handle
* @msdu_info: MSDU info to be setup in MSDU extension descriptor
* @desc_pool_id: Descriptor Pool ID
*
* Return:
*/
static
struct dp_tx_ext_desc_elem_s *dp_tx_prepare_ext_desc(struct dp_vdev *vdev,
struct dp_tx_msdu_info_s *msdu_info, uint8_t desc_pool_id)
{
uint8_t i;
uint8_t cached_ext_desc[HAL_TX_EXT_DESC_WITH_META_DATA];
struct dp_tx_seg_info_s *seg_info;
struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
struct dp_soc *soc = vdev->pdev->soc;
/* Allocate an extension descriptor */
msdu_ext_desc = dp_tx_ext_desc_alloc(soc, desc_pool_id);
qdf_mem_zero(&cached_ext_desc[0], HAL_TX_EXT_DESC_WITH_META_DATA);
if (!msdu_ext_desc) {
DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
return NULL;
}
if (msdu_info->exception_fw &&
qdf_unlikely(vdev->mesh_vdev)) {
qdf_mem_copy(&cached_ext_desc[HAL_TX_EXTENSION_DESC_LEN_BYTES],
&msdu_info->meta_data[0],
sizeof(struct htt_tx_msdu_desc_ext2_t));
qdf_atomic_inc(&vdev->pdev->num_tx_exception);
}
switch (msdu_info->frm_type) {
case dp_tx_frm_sg:
case dp_tx_frm_me:
case dp_tx_frm_raw:
seg_info = msdu_info->u.sg_info.curr_seg;
/* Update the buffer pointers in MSDU Extension Descriptor */
for (i = 0; i < seg_info->frag_cnt; i++) {
hal_tx_ext_desc_set_buffer(&cached_ext_desc[0], i,
seg_info->frags[i].paddr_lo,
seg_info->frags[i].paddr_hi,
seg_info->frags[i].len);
}
break;
case dp_tx_frm_tso:
dp_tx_prepare_tso_ext_desc(&msdu_info->u.tso_info.curr_seg->seg,
&cached_ext_desc[0]);
break;
default:
break;
}
QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
cached_ext_desc, HAL_TX_EXT_DESC_WITH_META_DATA);
hal_tx_ext_desc_sync(&cached_ext_desc[0],
msdu_ext_desc->vaddr);
return msdu_ext_desc;
}
/**
* dp_tx_trace_pkt() - Trace TX packet at DP layer
*
* @skb: skb to be traced
* @msdu_id: msdu_id of the packet
* @vdev_id: vdev_id of the packet
*
* Return: None
*/
static void dp_tx_trace_pkt(qdf_nbuf_t skb, uint16_t msdu_id,
uint8_t vdev_id)
{
QDF_NBUF_CB_TX_PACKET_TRACK(skb) = QDF_NBUF_TX_PKT_DATA_TRACK;
QDF_NBUF_CB_TX_DP_TRACE(skb) = 1;
DPTRACE(qdf_dp_trace_ptr(skb,
QDF_DP_TRACE_LI_DP_TX_PACKET_PTR_RECORD,
QDF_TRACE_DEFAULT_PDEV_ID,
qdf_nbuf_data_addr(skb),
sizeof(qdf_nbuf_data(skb)),
msdu_id, vdev_id));
qdf_dp_trace_log_pkt(vdev_id, skb, QDF_TX, QDF_TRACE_DEFAULT_PDEV_ID);
DPTRACE(qdf_dp_trace_data_pkt(skb, QDF_TRACE_DEFAULT_PDEV_ID,
QDF_DP_TRACE_LI_DP_TX_PACKET_RECORD,
msdu_id, QDF_TX));
}
#ifdef QCA_512M_CONFIG
/**
* dp_tx_pdev_pflow_control - Check if allocated tx descriptors reached max
* tx descriptor configured value
* @vdev: DP vdev handle
*
* Return: true if allocated tx descriptors reached max configured value, else
* false.
*/
static inline bool
dp_tx_pdev_pflow_control(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = vdev->pdev;
if (qdf_atomic_read(&pdev->num_tx_outstanding) >=
pdev->num_tx_allowed) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: queued packets are more than max tx, drop the frame",
__func__);
DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
return true;
}
return false;
}
#else
static inline bool
dp_tx_pdev_pflow_control(struct dp_vdev *vdev)
{
return false;
}
#endif
/**
* dp_tx_desc_prepare_single - Allocate and prepare Tx descriptor
* @vdev: DP vdev handle
* @nbuf: skb
* @desc_pool_id: Descriptor pool ID
* @meta_data: Metadata to the fw
* @tx_exc_metadata: Handle that holds exception path metadata
* Allocate and prepare Tx descriptor with msdu information.
*
* Return: Pointer to Tx Descriptor on success,
* NULL on failure
*/
static
struct dp_tx_desc_s *dp_tx_prepare_desc_single(struct dp_vdev *vdev,
qdf_nbuf_t nbuf, uint8_t desc_pool_id,
struct dp_tx_msdu_info_s *msdu_info,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
uint8_t align_pad;
uint8_t is_exception = 0;
uint8_t htt_hdr_size;
qdf_ether_header_t *eh;
struct dp_tx_desc_s *tx_desc;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
if (dp_tx_pdev_pflow_control(vdev))
return NULL;
/* Allocate software Tx descriptor */
tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
if (qdf_unlikely(!tx_desc)) {
DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
return NULL;
}
/* Flow control/Congestion Control counters */
qdf_atomic_inc(&pdev->num_tx_outstanding);
/* Initialize the SW tx descriptor */
tx_desc->nbuf = nbuf;
tx_desc->frm_type = dp_tx_frm_std;
tx_desc->tx_encap_type = (tx_exc_metadata ?
tx_exc_metadata->tx_encap_type : vdev->tx_encap_type);
tx_desc->vdev = vdev;
tx_desc->pdev = pdev;
tx_desc->msdu_ext_desc = NULL;
tx_desc->pkt_offset = 0;
dp_tx_trace_pkt(nbuf, tx_desc->id, vdev->vdev_id);
/*
* For special modes (vdev_type == ocb or mesh), data frames should be
* transmitted using varying transmit parameters (tx spec) which include
* transmit rate, power, priority, channel, channel bandwidth , nss etc.
* These are filled in HTT MSDU descriptor and sent in frame pre-header.
* These frames are sent as exception packets to firmware.
*
* HW requirement is that metadata should always point to a
* 8-byte aligned address. So we add alignment pad to start of buffer.
* HTT Metadata should be ensured to be multiple of 8-bytes,
* to get 8-byte aligned start address along with align_pad added
*
* |-----------------------------|
* | |
* |-----------------------------| <-----Buffer Pointer Address given
* | | ^ in HW descriptor (aligned)
* | HTT Metadata | |
* | | |
* | | | Packet Offset given in descriptor
* | | |
* |-----------------------------| |
* | Alignment Pad | v
* |-----------------------------| <----- Actual buffer start address
* | SKB Data | (Unaligned)
* | |
* | |
* | |
* | |
* | |
* |-----------------------------|
*/
if (qdf_unlikely((msdu_info->exception_fw)) ||
(vdev->opmode == wlan_op_mode_ocb)) {
align_pad = ((unsigned long) qdf_nbuf_data(nbuf)) & 0x7;
if (qdf_unlikely(qdf_nbuf_headroom(nbuf) < align_pad)) {
DP_STATS_INC(vdev,
tx_i.dropped.headroom_insufficient, 1);
goto failure;
}
if (qdf_nbuf_push_head(nbuf, align_pad) == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"qdf_nbuf_push_head failed");
goto failure;
}
htt_hdr_size = dp_tx_prepare_htt_metadata(vdev, nbuf,
msdu_info->meta_data);
if (htt_hdr_size == 0)
goto failure;
tx_desc->pkt_offset = align_pad + htt_hdr_size;
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
is_exception = 1;
}
if (qdf_unlikely(QDF_STATUS_SUCCESS !=
qdf_nbuf_map(soc->osdev, nbuf,
QDF_DMA_TO_DEVICE))) {
/* Handle failure */
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"qdf_nbuf_map failed");
DP_STATS_INC(vdev, tx_i.dropped.dma_error, 1);
goto failure;
}
if (qdf_unlikely(vdev->nawds_enabled)) {
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
is_exception = 1;
}
}
#if !TQM_BYPASS_WAR
if (is_exception || tx_exc_metadata)
#endif
{
/* Temporary WAR due to TQM VP issues */
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
qdf_atomic_inc(&pdev->num_tx_exception);
}
return tx_desc;
failure:
dp_tx_desc_release(tx_desc, desc_pool_id);
return NULL;
}
/**
* dp_tx_prepare_desc() - Allocate and prepare Tx descriptor for multisegment frame
* @vdev: DP vdev handle
* @nbuf: skb
* @msdu_info: Info to be setup in MSDU descriptor and MSDU extension descriptor
* @desc_pool_id : Descriptor Pool ID
*
* Allocate and prepare Tx descriptor with msdu and fragment descritor
* information. For frames wth fragments, allocate and prepare
* an MSDU extension descriptor
*
* Return: Pointer to Tx Descriptor on success,
* NULL on failure
*/
static struct dp_tx_desc_s *dp_tx_prepare_desc(struct dp_vdev *vdev,
qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info,
uint8_t desc_pool_id)
{
struct dp_tx_desc_s *tx_desc;
struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
if (dp_tx_pdev_pflow_control(vdev))
return NULL;
/* Allocate software Tx descriptor */
tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
if (!tx_desc) {
DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
return NULL;
}
/* Flow control/Congestion Control counters */
qdf_atomic_inc(&pdev->num_tx_outstanding);
/* Initialize the SW tx descriptor */
tx_desc->nbuf = nbuf;
tx_desc->frm_type = msdu_info->frm_type;
tx_desc->tx_encap_type = vdev->tx_encap_type;
tx_desc->vdev = vdev;
tx_desc->pdev = pdev;
tx_desc->pkt_offset = 0;
tx_desc->tso_desc = msdu_info->u.tso_info.curr_seg;
tx_desc->tso_num_desc = msdu_info->u.tso_info.tso_num_seg_list;
dp_tx_trace_pkt(nbuf, tx_desc->id, vdev->vdev_id);
/* Handle scattered frames - TSO/SG/ME */
/* Allocate and prepare an extension descriptor for scattered frames */
msdu_ext_desc = dp_tx_prepare_ext_desc(vdev, msdu_info, desc_pool_id);
if (!msdu_ext_desc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx Extension Descriptor Alloc Fail",
__func__);
goto failure;
}
#if TQM_BYPASS_WAR
/* Temporary WAR due to TQM VP issues */
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
qdf_atomic_inc(&pdev->num_tx_exception);
#endif
if (qdf_unlikely(msdu_info->exception_fw))
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
tx_desc->msdu_ext_desc = msdu_ext_desc;
tx_desc->flags |= DP_TX_DESC_FLAG_FRAG;
return tx_desc;
failure:
dp_tx_desc_release(tx_desc, desc_pool_id);
return NULL;
}
/**
* dp_tx_prepare_raw() - Prepare RAW packet TX
* @vdev: DP vdev handle
* @nbuf: buffer pointer
* @seg_info: Pointer to Segment info Descriptor to be prepared
* @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension
* descriptor
*
* Return:
*/
static qdf_nbuf_t dp_tx_prepare_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
{
qdf_nbuf_t curr_nbuf = NULL;
uint16_t total_len = 0;
qdf_dma_addr_t paddr;
int32_t i;
int32_t mapped_buf_num = 0;
struct dp_tx_sg_info_s *sg_info = &msdu_info->u.sg_info;
qdf_dot3_qosframe_t *qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
DP_STATS_INC_PKT(vdev, tx_i.raw.raw_pkt, 1, qdf_nbuf_len(nbuf));
/* SWAR for HW: Enable WEP bit in the AMSDU frames for RAW mode */
if (vdev->raw_mode_war &&
(qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) &&
(qos_wh->i_qos[0] & IEEE80211_QOS_AMSDU))
qos_wh->i_fc[1] |= IEEE80211_FC1_WEP;
for (curr_nbuf = nbuf, i = 0; curr_nbuf;
curr_nbuf = qdf_nbuf_next(curr_nbuf), i++) {
if (QDF_STATUS_SUCCESS != qdf_nbuf_map(vdev->osdev, curr_nbuf,
QDF_DMA_TO_DEVICE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s dma map error ", __func__);
DP_STATS_INC(vdev, tx_i.raw.dma_map_error, 1);
mapped_buf_num = i;
goto error;
}
paddr = qdf_nbuf_get_frag_paddr(curr_nbuf, 0);
seg_info->frags[i].paddr_lo = paddr;
seg_info->frags[i].paddr_hi = ((uint64_t)paddr >> 32);
seg_info->frags[i].len = qdf_nbuf_len(curr_nbuf);
seg_info->frags[i].vaddr = (void *) curr_nbuf;
total_len += qdf_nbuf_len(curr_nbuf);
}
seg_info->frag_cnt = i;
seg_info->total_len = total_len;
seg_info->next = NULL;
sg_info->curr_seg = seg_info;
msdu_info->frm_type = dp_tx_frm_raw;
msdu_info->num_seg = 1;
return nbuf;
error:
i = 0;
while (nbuf) {
curr_nbuf = nbuf;
if (i < mapped_buf_num) {
qdf_nbuf_unmap(vdev->osdev, curr_nbuf, QDF_DMA_TO_DEVICE);
i++;
}
nbuf = qdf_nbuf_next(nbuf);
qdf_nbuf_free(curr_nbuf);
}
return NULL;
}
/**
* dp_tx_hw_enqueue() - Enqueue to TCL HW for transmit
* @soc: DP Soc Handle
* @vdev: DP vdev handle
* @tx_desc: Tx Descriptor Handle
* @tid: TID from HLOS for overriding default DSCP-TID mapping
* @fw_metadata: Metadata to send to Target Firmware along with frame
* @ring_id: Ring ID of H/W ring to which we enqueue the packet
* @tx_exc_metadata: Handle that holds exception path meta data
*
* Gets the next free TCL HW DMA descriptor and sets up required parameters
* from software Tx descriptor
*
* Return:
*/
static QDF_STATUS dp_tx_hw_enqueue(struct dp_soc *soc, struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc, uint8_t tid,
uint16_t fw_metadata, uint8_t ring_id,
struct cdp_tx_exception_metadata
*tx_exc_metadata)
{
uint8_t type;
uint16_t length;
void *hal_tx_desc, *hal_tx_desc_cached;
qdf_dma_addr_t dma_addr;
uint8_t cached_desc[HAL_TX_DESC_LEN_BYTES];
enum cdp_sec_type sec_type = (tx_exc_metadata ?
tx_exc_metadata->sec_type : vdev->sec_type);
/* Return Buffer Manager ID */
uint8_t bm_id = ring_id;
void *hal_srng = soc->tcl_data_ring[ring_id].hal_srng;
hal_tx_desc_cached = (void *) cached_desc;
qdf_mem_zero(hal_tx_desc_cached, HAL_TX_DESC_LEN_BYTES);
if (tx_desc->flags & DP_TX_DESC_FLAG_FRAG) {
length = HAL_TX_EXT_DESC_WITH_META_DATA;
type = HAL_TX_BUF_TYPE_EXT_DESC;
dma_addr = tx_desc->msdu_ext_desc->paddr;
} else {
length = qdf_nbuf_len(tx_desc->nbuf) - tx_desc->pkt_offset;
type = HAL_TX_BUF_TYPE_BUFFER;
dma_addr = qdf_nbuf_mapped_paddr_get(tx_desc->nbuf);
}
hal_tx_desc_set_fw_metadata(hal_tx_desc_cached, fw_metadata);
hal_tx_desc_set_buf_addr(hal_tx_desc_cached,
dma_addr, bm_id, tx_desc->id,
type, soc->hal_soc);
if (!dp_tx_is_desc_id_valid(soc, tx_desc->id))
return QDF_STATUS_E_RESOURCES;
hal_tx_desc_set_buf_length(hal_tx_desc_cached, length);
hal_tx_desc_set_buf_offset(hal_tx_desc_cached, tx_desc->pkt_offset);
hal_tx_desc_set_encap_type(hal_tx_desc_cached, tx_desc->tx_encap_type);
hal_tx_desc_set_lmac_id(soc->hal_soc, hal_tx_desc_cached,
vdev->pdev->lmac_id);
hal_tx_desc_set_search_type(soc->hal_soc, hal_tx_desc_cached,
vdev->search_type);
hal_tx_desc_set_search_index(soc->hal_soc, hal_tx_desc_cached,
vdev->bss_ast_hash);
hal_tx_desc_set_dscp_tid_table_id(soc->hal_soc, hal_tx_desc_cached,
vdev->dscp_tid_map_id);
hal_tx_desc_set_encrypt_type(hal_tx_desc_cached,
sec_type_map[sec_type]);
dp_verbose_debug("length:%d , type = %d, dma_addr %llx, offset %d desc id %u",
length, type, (uint64_t)dma_addr,
tx_desc->pkt_offset, tx_desc->id);
if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
hal_tx_desc_set_to_fw(hal_tx_desc_cached, 1);
hal_tx_desc_set_addr_search_flags(hal_tx_desc_cached,
vdev->hal_desc_addr_search_flags);
/* verify checksum offload configuration*/
if ((wlan_cfg_get_checksum_offload(soc->wlan_cfg_ctx)) &&
((qdf_nbuf_get_tx_cksum(tx_desc->nbuf) == QDF_NBUF_TX_CKSUM_TCP_UDP)
|| qdf_nbuf_is_tso(tx_desc->nbuf))) {
hal_tx_desc_set_l3_checksum_en(hal_tx_desc_cached, 1);
hal_tx_desc_set_l4_checksum_en(hal_tx_desc_cached, 1);
}
if (tid != HTT_TX_EXT_TID_INVALID)
hal_tx_desc_set_hlos_tid(hal_tx_desc_cached, tid);
if (tx_desc->flags & DP_TX_DESC_FLAG_MESH)
hal_tx_desc_set_mesh_en(hal_tx_desc_cached, 1);
tx_desc->timestamp = qdf_ktime_to_ms(qdf_ktime_get());
/* Sync cached descriptor with HW */
hal_tx_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
if (!hal_tx_desc) {
dp_verbose_debug("TCL ring full ring_id:%d", ring_id);
DP_STATS_INC(soc, tx.tcl_ring_full[ring_id], 1);
DP_STATS_INC(vdev, tx_i.dropped.enqueue_fail, 1);
return QDF_STATUS_E_RESOURCES;
}
tx_desc->flags |= DP_TX_DESC_FLAG_QUEUED_TX;
hal_tx_desc_sync(hal_tx_desc_cached, hal_tx_desc);
DP_STATS_INC_PKT(vdev, tx_i.processed, 1, length);
return QDF_STATUS_SUCCESS;
}
/**
* dp_cce_classify() - Classify the frame based on CCE rules
* @vdev: DP vdev handle
* @nbuf: skb
*
* Classify frames based on CCE rules
* Return: bool( true if classified,
* else false)
*/
static bool dp_cce_classify(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
{
qdf_ether_header_t *eh = NULL;
uint16_t ether_type;
qdf_llc_t *llcHdr;
qdf_nbuf_t nbuf_clone = NULL;
qdf_dot3_qosframe_t *qos_wh = NULL;
/* for mesh packets don't do any classification */
if (qdf_unlikely(vdev->mesh_vdev))
return false;
if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
ether_type = eh->ether_type;
llcHdr = (qdf_llc_t *)(nbuf->data +
sizeof(qdf_ether_header_t));
} else {
qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
/* For encrypted packets don't do any classification */
if (qdf_unlikely(qos_wh->i_fc[1] & IEEE80211_FC1_WEP))
return false;
if (qdf_unlikely(qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS)) {
if (qdf_unlikely(
qos_wh->i_fc[1] & QDF_IEEE80211_FC1_TODS &&
qos_wh->i_fc[1] & QDF_IEEE80211_FC1_FROMDS)) {
ether_type = *(uint16_t *)(nbuf->data
+ QDF_IEEE80211_4ADDR_HDR_LEN
+ sizeof(qdf_llc_t)
- sizeof(ether_type));
llcHdr = (qdf_llc_t *)(nbuf->data +
QDF_IEEE80211_4ADDR_HDR_LEN);
} else {
ether_type = *(uint16_t *)(nbuf->data
+ QDF_IEEE80211_3ADDR_HDR_LEN
+ sizeof(qdf_llc_t)
- sizeof(ether_type));
llcHdr = (qdf_llc_t *)(nbuf->data +
QDF_IEEE80211_3ADDR_HDR_LEN);
}
if (qdf_unlikely(DP_FRAME_IS_SNAP(llcHdr)
&& (ether_type ==
qdf_htons(QDF_NBUF_TRAC_EAPOL_ETH_TYPE)))) {
DP_STATS_INC(vdev, tx_i.cce_classified_raw, 1);
return true;
}
}
return false;
}
if (qdf_unlikely(DP_FRAME_IS_SNAP(llcHdr))) {
ether_type = *(uint16_t *)(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
sizeof(*llcHdr));
nbuf_clone = qdf_nbuf_clone(nbuf);
if (qdf_unlikely(nbuf_clone)) {
qdf_nbuf_pull_head(nbuf_clone, sizeof(*llcHdr));
if (ether_type == htons(ETHERTYPE_VLAN)) {
qdf_nbuf_pull_head(nbuf_clone,
sizeof(qdf_net_vlanhdr_t));
}
}
} else {
if (ether_type == htons(ETHERTYPE_VLAN)) {
nbuf_clone = qdf_nbuf_clone(nbuf);
if (qdf_unlikely(nbuf_clone)) {
qdf_nbuf_pull_head(nbuf_clone,
sizeof(qdf_net_vlanhdr_t));
}
}
}
if (qdf_unlikely(nbuf_clone))
nbuf = nbuf_clone;
if (qdf_unlikely(qdf_nbuf_is_ipv4_eapol_pkt(nbuf)
|| qdf_nbuf_is_ipv4_arp_pkt(nbuf)
|| qdf_nbuf_is_ipv4_wapi_pkt(nbuf)
|| qdf_nbuf_is_ipv4_tdls_pkt(nbuf)
|| (qdf_nbuf_is_ipv4_pkt(nbuf)
&& qdf_nbuf_is_ipv4_dhcp_pkt(nbuf))
|| (qdf_nbuf_is_ipv6_pkt(nbuf) &&
qdf_nbuf_is_ipv6_dhcp_pkt(nbuf)))) {
if (qdf_unlikely(nbuf_clone))
qdf_nbuf_free(nbuf_clone);
return true;
}
if (qdf_unlikely(nbuf_clone))
qdf_nbuf_free(nbuf_clone);
return false;
}
/**
* dp_tx_get_tid() - Obtain TID to be used for this frame
* @vdev: DP vdev handle
* @nbuf: skb
*
* Extract the DSCP or PCP information from frame and map into TID value.
*
* Return: void
*/
static void dp_tx_get_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
uint8_t tos = 0, dscp_tid_override = 0;
uint8_t *hdr_ptr, *L3datap;
uint8_t is_mcast = 0;
qdf_ether_header_t *eh = NULL;
qdf_ethervlan_header_t *evh = NULL;
uint16_t ether_type;
qdf_llc_t *llcHdr;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
DP_TX_TID_OVERRIDE(msdu_info, nbuf);
if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
eh = (qdf_ether_header_t *)nbuf->data;
hdr_ptr = eh->ether_dhost;
L3datap = hdr_ptr + sizeof(qdf_ether_header_t);
} else {
qdf_dot3_qosframe_t *qos_wh =
(qdf_dot3_qosframe_t *) nbuf->data;
msdu_info->tid = qos_wh->i_fc[0] & DP_FC0_SUBTYPE_QOS ?
qos_wh->i_qos[0] & DP_QOS_TID : 0;
return;
}
is_mcast = DP_FRAME_IS_MULTICAST(hdr_ptr);
ether_type = eh->ether_type;
llcHdr = (qdf_llc_t *)(nbuf->data + sizeof(qdf_ether_header_t));
/*
* Check if packet is dot3 or eth2 type.
*/
if (DP_FRAME_IS_LLC(ether_type) && DP_FRAME_IS_SNAP(llcHdr)) {
ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
sizeof(*llcHdr));
if (ether_type == htons(ETHERTYPE_VLAN)) {
L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t) +
sizeof(*llcHdr);
ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE
+ sizeof(*llcHdr) +
sizeof(qdf_net_vlanhdr_t));
} else {
L3datap = hdr_ptr + sizeof(qdf_ether_header_t) +
sizeof(*llcHdr);
}
} else {
if (ether_type == htons(ETHERTYPE_VLAN)) {
evh = (qdf_ethervlan_header_t *) eh;
ether_type = evh->ether_type;
L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t);
}
}
/*
* Find priority from IP TOS DSCP field
*/
if (qdf_nbuf_is_ipv4_pkt(nbuf)) {
qdf_net_iphdr_t *ip = (qdf_net_iphdr_t *) L3datap;
if (qdf_nbuf_is_ipv4_dhcp_pkt(nbuf)) {
/* Only for unicast frames */
if (!is_mcast) {
/* send it on VO queue */
msdu_info->tid = DP_VO_TID;
}
} else {
/*
* IP frame: exclude ECN bits 0-1 and map DSCP bits 2-7
* from TOS byte.
*/
tos = ip->ip_tos;
dscp_tid_override = 1;
}
} else if (qdf_nbuf_is_ipv6_pkt(nbuf)) {
/* TODO
* use flowlabel
*igmpmld cases to be handled in phase 2
*/
unsigned long ver_pri_flowlabel;
unsigned long pri;
ver_pri_flowlabel = *(unsigned long *) L3datap;
pri = (ntohl(ver_pri_flowlabel) & IPV6_FLOWINFO_PRIORITY) >>
DP_IPV6_PRIORITY_SHIFT;
tos = pri;
dscp_tid_override = 1;
} else if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf))
msdu_info->tid = DP_VO_TID;
else if (qdf_nbuf_is_ipv4_arp_pkt(nbuf)) {
/* Only for unicast frames */
if (!is_mcast) {
/* send ucast arp on VO queue */
msdu_info->tid = DP_VO_TID;
}
}
/*
* Assign all MCAST packets to BE
*/
if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
if (is_mcast) {
tos = 0;
dscp_tid_override = 1;
}
}
if (dscp_tid_override == 1) {
tos = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
msdu_info->tid = pdev->dscp_tid_map[vdev->dscp_tid_map_id][tos];
}
if (msdu_info->tid >= CDP_MAX_DATA_TIDS)
msdu_info->tid = CDP_MAX_DATA_TIDS - 1;
return;
}
/**
* dp_tx_classify_tid() - Obtain TID to be used for this frame
* @vdev: DP vdev handle
* @nbuf: skb
*
* Software based TID classification is required when more than 2 DSCP-TID
* mapping tables are needed.
* Hardware supports 2 DSCP-TID mapping tables for HKv1 and 48 for HKv2.
*
* Return: void
*/
static void dp_tx_classify_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
DP_TX_TID_OVERRIDE(msdu_info, nbuf);
if (pdev->soc && vdev->dscp_tid_map_id < pdev->soc->num_hw_dscp_tid_map)
return;
/* for mesh packets don't do any classification */
if (qdf_unlikely(vdev->mesh_vdev))
return;
dp_tx_get_tid(vdev, nbuf, msdu_info);
}
#ifdef FEATURE_WLAN_TDLS
/**
* dp_tx_update_tdls_flags() - Update descriptor flags for TDLS frame
* @tx_desc: TX descriptor
*
* Return: None
*/
static void dp_tx_update_tdls_flags(struct dp_tx_desc_s *tx_desc)
{
if (tx_desc->vdev) {
if (tx_desc->vdev->is_tdls_frame) {
tx_desc->flags |= DP_TX_DESC_FLAG_TDLS_FRAME;
tx_desc->vdev->is_tdls_frame = false;
}
}
}
/**
* dp_non_std_tx_comp_free_buff() - Free the non std tx packet buffer
* @tx_desc: TX descriptor
* @vdev: datapath vdev handle
*
* Return: None
*/
static void dp_non_std_tx_comp_free_buff(struct dp_tx_desc_s *tx_desc,
struct dp_vdev *vdev)
{
struct hal_tx_completion_status ts = {0};
qdf_nbuf_t nbuf = tx_desc->nbuf;
if (qdf_unlikely(!vdev)) {
dp_err("vdev is null!");
return;
}
hal_tx_comp_get_status(&tx_desc->comp, &ts, vdev->pdev->soc->hal_soc);
if (vdev->tx_non_std_data_callback.func) {
qdf_nbuf_set_next(tx_desc->nbuf, NULL);
vdev->tx_non_std_data_callback.func(
vdev->tx_non_std_data_callback.ctxt,
nbuf, ts.status);
return;
}
}
#else
static inline void dp_tx_update_tdls_flags(struct dp_tx_desc_s *tx_desc)
{
}
static inline void dp_non_std_tx_comp_free_buff(struct dp_tx_desc_s *tx_desc,
struct dp_vdev *vdev)
{
}
#endif
/**
* dp_tx_send_msdu_single() - Setup descriptor and enqueue single MSDU to TCL
* @vdev: DP vdev handle
* @nbuf: skb
* @tid: TID from HLOS for overriding default DSCP-TID mapping
* @meta_data: Metadata to the fw
* @tx_q: Tx queue to be used for this Tx frame
* @peer_id: peer_id of the peer in case of NAWDS frames
* @tx_exc_metadata: Handle that holds exception path metadata
*
* Return: NULL on success,
* nbuf when it fails to send
*/
static qdf_nbuf_t dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc;
QDF_STATUS status;
struct dp_tx_queue *tx_q = &(msdu_info->tx_queue);
void *hal_srng = soc->tcl_data_ring[tx_q->ring_id].hal_srng;
uint16_t htt_tcl_metadata = 0;
uint8_t tid = msdu_info->tid;
struct cdp_tid_tx_stats *tid_stats = NULL;
/* Setup Tx descriptor for an MSDU, and MSDU extension descriptor */
tx_desc = dp_tx_prepare_desc_single(vdev, nbuf, tx_q->desc_pool_id,
msdu_info, tx_exc_metadata);
if (!tx_desc) {
dp_err_rl("Tx_desc prepare Fail vdev %pK queue %d",
vdev, tx_q->desc_pool_id);
dp_tx_get_tid(vdev, nbuf, msdu_info);
tid_stats = &pdev->stats.tid_stats.tid_tx_stats[msdu_info->tid];
tid_stats->swdrop_cnt[TX_DESC_ERR]++;
return nbuf;
}
if (qdf_unlikely(soc->cce_disable)) {
if (dp_cce_classify(vdev, nbuf) == true) {
DP_STATS_INC(vdev, tx_i.cce_classified, 1);
tid = DP_VO_TID;
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
}
}
dp_tx_update_tdls_flags(tx_desc);
if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s %d : HAL RING Access Failed -- %pK",
__func__, __LINE__, hal_srng);
dp_tx_get_tid(vdev, nbuf, msdu_info);
tid_stats = &pdev->stats.tid_stats.tid_tx_stats[msdu_info->tid];
tid_stats->swdrop_cnt[TX_HAL_RING_ACCESS_ERR]++;
DP_STATS_INC(vdev, tx_i.dropped.ring_full, 1);
dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
qdf_nbuf_unmap(vdev->osdev, nbuf, QDF_DMA_TO_DEVICE);
goto fail_return;
}
if (qdf_unlikely(peer_id == DP_INVALID_PEER)) {
htt_tcl_metadata = vdev->htt_tcl_metadata;
HTT_TX_TCL_METADATA_HOST_INSPECTED_SET(htt_tcl_metadata, 1);
} else if (qdf_unlikely(peer_id != HTT_INVALID_PEER)) {
HTT_TX_TCL_METADATA_TYPE_SET(htt_tcl_metadata,
HTT_TCL_METADATA_TYPE_PEER_BASED);
HTT_TX_TCL_METADATA_PEER_ID_SET(htt_tcl_metadata,
peer_id);
} else
htt_tcl_metadata = vdev->htt_tcl_metadata;
if (msdu_info->exception_fw) {
HTT_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
}
/* Enqueue the Tx MSDU descriptor to HW for transmit */
status = dp_tx_hw_enqueue(soc, vdev, tx_desc, tid,
htt_tcl_metadata, tx_q->ring_id, tx_exc_metadata);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s Tx_hw_enqueue Fail tx_desc %pK queue %d",
__func__, tx_desc, tx_q->ring_id);
dp_tx_get_tid(vdev, nbuf, msdu_info);
tid_stats = &pdev->stats.tid_stats.tid_tx_stats[msdu_info->tid];
tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
qdf_nbuf_unmap(vdev->osdev, nbuf, QDF_DMA_TO_DEVICE);
goto fail_return;
}
nbuf = NULL;
fail_return:
if (hif_pm_runtime_get(soc->hif_handle) == 0) {
hal_srng_access_end(soc->hal_soc, hal_srng);
hif_pm_runtime_put(soc->hif_handle);
} else {
hal_srng_access_end_reap(soc->hal_soc, hal_srng);
}
return nbuf;
}
/**
* dp_tx_send_msdu_multiple() - Enqueue multiple MSDUs
* @vdev: DP vdev handle
* @nbuf: skb
* @msdu_info: MSDU info to be setup in MSDU extension descriptor
*
* Prepare descriptors for multiple MSDUs (TSO segments) and enqueue to TCL
*
* Return: NULL on success,
* nbuf when it fails to send
*/
#if QDF_LOCK_STATS
static noinline
#else
static
#endif
qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
uint8_t i;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc;
bool is_cce_classified = false;
QDF_STATUS status;
uint16_t htt_tcl_metadata = 0;
struct dp_tx_queue *tx_q = &msdu_info->tx_queue;
void *hal_srng = soc->tcl_data_ring[tx_q->ring_id].hal_srng;
struct cdp_tid_tx_stats *tid_stats = NULL;
if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s %d : HAL RING Access Failed -- %pK",
__func__, __LINE__, hal_srng);
dp_tx_get_tid(vdev, nbuf, msdu_info);
tid_stats = &pdev->stats.tid_stats.tid_tx_stats[msdu_info->tid];
tid_stats->swdrop_cnt[TX_HAL_RING_ACCESS_ERR]++;
DP_STATS_INC(vdev, tx_i.dropped.ring_full, 1);
return nbuf;
}
if (qdf_unlikely(soc->cce_disable)) {
is_cce_classified = dp_cce_classify(vdev, nbuf);
if (is_cce_classified) {
DP_STATS_INC(vdev, tx_i.cce_classified, 1);
msdu_info->tid = DP_VO_TID;
}
}
if (msdu_info->frm_type == dp_tx_frm_me)
nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
i = 0;
/* Print statement to track i and num_seg */
/*
* For each segment (maps to 1 MSDU) , prepare software and hardware
* descriptors using information in msdu_info
*/
while (i < msdu_info->num_seg) {
/*
* Setup Tx descriptor for an MSDU, and MSDU extension
* descriptor
*/
tx_desc = dp_tx_prepare_desc(vdev, nbuf, msdu_info,
tx_q->desc_pool_id);
if (!tx_desc) {
if (msdu_info->frm_type == dp_tx_frm_me) {
dp_tx_me_free_buf(pdev,
(void *)(msdu_info->u.sg_info
.curr_seg->frags[0].vaddr));
}
goto done;
}
if (msdu_info->frm_type == dp_tx_frm_me) {
tx_desc->me_buffer =
msdu_info->u.sg_info.curr_seg->frags[0].vaddr;
tx_desc->flags |= DP_TX_DESC_FLAG_ME;
}
if (is_cce_classified)
tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
htt_tcl_metadata = vdev->htt_tcl_metadata;
if (msdu_info->exception_fw) {
HTT_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
}
/*
* Enqueue the Tx MSDU descriptor to HW for transmit
*/
status = dp_tx_hw_enqueue(soc, vdev, tx_desc, msdu_info->tid,
htt_tcl_metadata, tx_q->ring_id, NULL);
if (status != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s Tx_hw_enqueue Fail tx_desc %pK queue %d",
__func__, tx_desc, tx_q->ring_id);
dp_tx_get_tid(vdev, nbuf, msdu_info);
tid_stats = &pdev->stats.tid_stats.
tid_tx_stats[msdu_info->tid];
tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
dp_tx_me_free_buf(pdev, tx_desc->me_buffer);
dp_tx_desc_release(tx_desc, tx_q->desc_pool_id);
goto done;
}
/*
* TODO
* if tso_info structure can be modified to have curr_seg
* as first element, following 2 blocks of code (for TSO and SG)
* can be combined into 1
*/
/*
* For frames with multiple segments (TSO, ME), jump to next
* segment.
*/
if (msdu_info->frm_type == dp_tx_frm_tso) {
if (msdu_info->u.tso_info.curr_seg->next) {
msdu_info->u.tso_info.curr_seg =
msdu_info->u.tso_info.curr_seg->next;
/*
* If this is a jumbo nbuf, then increment the number of
* nbuf users for each additional segment of the msdu.
* This will ensure that the skb is freed only after
* receiving tx completion for all segments of an nbuf
*/
qdf_nbuf_inc_users(nbuf);
/* Check with MCL if this is needed */
/* nbuf = msdu_info->u.tso_info.curr_seg->nbuf; */
}
}
/*
* For Multicast-Unicast converted packets,
* each converted frame (for a client) is represented as
* 1 segment
*/
if ((msdu_info->frm_type == dp_tx_frm_sg) ||
(msdu_info->frm_type == dp_tx_frm_me)) {
if (msdu_info->u.sg_info.curr_seg->next) {
msdu_info->u.sg_info.curr_seg =
msdu_info->u.sg_info.curr_seg->next;
nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
}
}
i++;
}
nbuf = NULL;
done:
if (hif_pm_runtime_get(soc->hif_handle) == 0) {
hal_srng_access_end(soc->hal_soc, hal_srng);
hif_pm_runtime_put(soc->hif_handle);
} else {
hal_srng_access_end_reap(soc->hal_soc, hal_srng);
}
return nbuf;
}
/**
* dp_tx_prepare_sg()- Extract SG info from NBUF and prepare msdu_info
* for SG frames
* @vdev: DP vdev handle
* @nbuf: skb
* @seg_info: Pointer to Segment info Descriptor to be prepared
* @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
*
* Return: NULL on success,
* nbuf when it fails to send
*/
static qdf_nbuf_t dp_tx_prepare_sg(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
{
uint32_t cur_frag, nr_frags;
qdf_dma_addr_t paddr;
struct dp_tx_sg_info_s *sg_info;
sg_info = &msdu_info->u.sg_info;
nr_frags = qdf_nbuf_get_nr_frags(nbuf);
if (QDF_STATUS_SUCCESS != qdf_nbuf_map(vdev->osdev, nbuf,
QDF_DMA_TO_DEVICE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"dma map error");
DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
qdf_nbuf_free(nbuf);
return NULL;
}
paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
seg_info->frags[0].paddr_lo = paddr;
seg_info->frags[0].paddr_hi = ((uint64_t) paddr) >> 32;
seg_info->frags[0].len = qdf_nbuf_headlen(nbuf);
seg_info->frags[0].vaddr = (void *) nbuf;
for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
if (QDF_STATUS_E_FAILURE == qdf_nbuf_frag_map(vdev->osdev,
nbuf, 0, QDF_DMA_TO_DEVICE, cur_frag)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"frag dma map error");
DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
qdf_nbuf_free(nbuf);
return NULL;
}
paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
seg_info->frags[cur_frag + 1].paddr_lo = paddr;
seg_info->frags[cur_frag + 1].paddr_hi =
((uint64_t) paddr) >> 32;
seg_info->frags[cur_frag + 1].len =
qdf_nbuf_get_frag_size(nbuf, cur_frag);
}
seg_info->frag_cnt = (cur_frag + 1);
seg_info->total_len = qdf_nbuf_len(nbuf);
seg_info->next = NULL;
sg_info->curr_seg = seg_info;
msdu_info->frm_type = dp_tx_frm_sg;
msdu_info->num_seg = 1;
return nbuf;
}
#ifdef MESH_MODE_SUPPORT
/**
* dp_tx_extract_mesh_meta_data()- Extract mesh meta hdr info from nbuf
and prepare msdu_info for mesh frames.
* @vdev: DP vdev handle
* @nbuf: skb
* @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
*
* Return: NULL on failure,
* nbuf when extracted successfully
*/
static
qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
struct meta_hdr_s *mhdr;
struct htt_tx_msdu_desc_ext2_t *meta_data =
(struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
if (CB_FTYPE_MESH_TX_INFO != qdf_nbuf_get_tx_ftype(nbuf)) {
msdu_info->exception_fw = 0;
goto remove_meta_hdr;
}
msdu_info->exception_fw = 1;
qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
meta_data->host_tx_desc_pool = 1;
meta_data->update_peer_cache = 1;
meta_data->learning_frame = 1;
if (!(mhdr->flags & METAHDR_FLAG_AUTO_RATE)) {
meta_data->power = mhdr->power;
meta_data->mcs_mask = 1 << mhdr->rate_info[0].mcs;
meta_data->nss_mask = 1 << mhdr->rate_info[0].nss;
meta_data->pream_type = mhdr->rate_info[0].preamble_type;
meta_data->retry_limit = mhdr->rate_info[0].max_tries;
meta_data->dyn_bw = 1;
meta_data->valid_pwr = 1;
meta_data->valid_mcs_mask = 1;
meta_data->valid_nss_mask = 1;
meta_data->valid_preamble_type = 1;
meta_data->valid_retries = 1;
meta_data->valid_bw_info = 1;
}
if (mhdr->flags & METAHDR_FLAG_NOENCRYPT) {
meta_data->encrypt_type = 0;
meta_data->valid_encrypt_type = 1;
meta_data->learning_frame = 0;
}
meta_data->valid_key_flags = 1;
meta_data->key_flags = (mhdr->keyix & 0x3);
remove_meta_hdr:
if (qdf_nbuf_pull_head(nbuf, sizeof(struct meta_hdr_s)) == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"qdf_nbuf_pull_head failed");
qdf_nbuf_free(nbuf);
return NULL;
}
msdu_info->tid = qdf_nbuf_get_priority(nbuf);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
"%s , Meta hdr %0x %0x %0x %0x %0x %0x"
" tid %d to_fw %d",
__func__, msdu_info->meta_data[0],
msdu_info->meta_data[1],
msdu_info->meta_data[2],
msdu_info->meta_data[3],
msdu_info->meta_data[4],
msdu_info->meta_data[5],
msdu_info->tid, msdu_info->exception_fw);
return nbuf;
}
#else
static
qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
struct dp_tx_msdu_info_s *msdu_info)
{
return nbuf;
}
#endif
/**
* dp_check_exc_metadata() - Checks if parameters are valid
* @tx_exc - holds all exception path parameters
*
* Returns true when all the parameters are valid else false
*
*/
static bool dp_check_exc_metadata(struct cdp_tx_exception_metadata *tx_exc)
{
if ((tx_exc->tid > DP_MAX_TIDS && tx_exc->tid != HTT_INVALID_TID) ||
tx_exc->tx_encap_type > htt_cmn_pkt_num_types ||
tx_exc->sec_type > cdp_num_sec_types) {
return false;
}
return true;
}
/**
* dp_tx_send_exception() - Transmit a frame on a given VAP in exception path
* @vap_dev: DP vdev handle
* @nbuf: skb
* @tx_exc_metadata: Handle that holds exception path meta data
*
* Entry point for Core Tx layer (DP_TX) invoked from
* hard_start_xmit in OSIF/HDD to transmit frames through fw
*
* Return: NULL on success,
* nbuf when it fails to send
*/
qdf_nbuf_t dp_tx_send_exception(void *vap_dev, qdf_nbuf_t nbuf,
struct cdp_tx_exception_metadata *tx_exc_metadata)
{
qdf_ether_header_t *eh = NULL;
struct dp_vdev *vdev = (struct dp_vdev *) vap_dev;
struct dp_tx_msdu_info_s msdu_info;
qdf_mem_zero(&msdu_info, sizeof(msdu_info));
msdu_info.tid = tx_exc_metadata->tid;
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
dp_verbose_debug("skb %pM", nbuf->data);
DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
if (qdf_unlikely(!dp_check_exc_metadata(tx_exc_metadata))) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid parameters in exception path");
goto fail;
}
/* Basic sanity checks for unsupported packets */
/* MESH mode */
if (qdf_unlikely(vdev->mesh_vdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Mesh mode is not supported in exception path");
goto fail;
}
/* TSO or SG */
if (qdf_unlikely(qdf_nbuf_is_tso(nbuf)) ||
qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"TSO and SG are not supported in exception path");
goto fail;
}
/* RAW */
if (qdf_unlikely(tx_exc_metadata->tx_encap_type == htt_cmn_pkt_type_raw)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Raw frame is not supported in exception path");
goto fail;
}
/* Mcast enhancement*/
if (qdf_unlikely(vdev->mcast_enhancement_en > 0)) {
if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
!DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Ignoring mcast_enhancement_en which is set and sending the mcast packet to the FW");
}
}
/*
* Get HW Queue to use for this frame.
* TCL supports upto 4 DMA rings, out of which 3 rings are
* dedicated for data and 1 for command.
* "queue_id" maps to one hardware ring.
* With each ring, we also associate a unique Tx descriptor pool
* to minimize lock contention for these resources.
*/
dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
/* Single linear frame */
/*
* If nbuf is a simple linear frame, use send_single function to
* prepare direct-buffer type TCL descriptor and enqueue to TCL
* SRNG. There is no need to setup a MSDU extension descriptor.
*/
nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
tx_exc_metadata->peer_id, tx_exc_metadata);
return nbuf;
fail:
dp_verbose_debug("pkt send failed");
return nbuf;
}
/**
* dp_tx_send_mesh() - Transmit mesh frame on a given VAP
* @vap_dev: DP vdev handle
* @nbuf: skb
*
* Entry point for Core Tx layer (DP_TX) invoked from
* hard_start_xmit in OSIF/HDD
*
* Return: NULL on success,
* nbuf when it fails to send
*/
#ifdef MESH_MODE_SUPPORT
qdf_nbuf_t dp_tx_send_mesh(void *vap_dev, qdf_nbuf_t nbuf)
{
struct meta_hdr_s *mhdr;
qdf_nbuf_t nbuf_mesh = NULL;
qdf_nbuf_t nbuf_clone = NULL;
struct dp_vdev *vdev = (struct dp_vdev *) vap_dev;
uint8_t no_enc_frame = 0;
nbuf_mesh = qdf_nbuf_unshare(nbuf);
if (!nbuf_mesh) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"qdf_nbuf_unshare failed");
return nbuf;
}
nbuf = nbuf_mesh;
mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
if ((vdev->sec_type != cdp_sec_type_none) &&
(mhdr->flags & METAHDR_FLAG_NOENCRYPT))
no_enc_frame = 1;
if (mhdr->flags & METAHDR_FLAG_NOQOS)
qdf_nbuf_set_priority(nbuf, HTT_TX_EXT_TID_NON_QOS_MCAST_BCAST);
if ((mhdr->flags & METAHDR_FLAG_INFO_UPDATED) &&
!no_enc_frame) {
nbuf_clone = qdf_nbuf_clone(nbuf);
if (!nbuf_clone) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"qdf_nbuf_clone failed");
return nbuf;
}
qdf_nbuf_set_tx_ftype(nbuf_clone, CB_FTYPE_MESH_TX_INFO);
}
if (nbuf_clone) {
if (!dp_tx_send(vap_dev, nbuf_clone)) {
DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
} else {
qdf_nbuf_free(nbuf_clone);
}
}
if (no_enc_frame)
qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_MESH_TX_INFO);
else
qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_INVALID);
nbuf = dp_tx_send(vap_dev, nbuf);
if ((!nbuf) && no_enc_frame) {
DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
}
return nbuf;
}
#else
qdf_nbuf_t dp_tx_send_mesh(void *vap_dev, qdf_nbuf_t nbuf)
{
return dp_tx_send(vap_dev, nbuf);
}
#endif
/**
* dp_tx_send() - Transmit a frame on a given VAP
* @vap_dev: DP vdev handle
* @nbuf: skb
*
* Entry point for Core Tx layer (DP_TX) invoked from
* hard_start_xmit in OSIF/HDD or from dp_rx_process for intravap forwarding
* cases
*
* Return: NULL on success,
* nbuf when it fails to send
*/
qdf_nbuf_t dp_tx_send(void *vap_dev, qdf_nbuf_t nbuf)
{
qdf_ether_header_t *eh = NULL;
struct dp_tx_msdu_info_s msdu_info;
struct dp_tx_seg_info_s seg_info;
struct dp_vdev *vdev = (struct dp_vdev *) vap_dev;
uint16_t peer_id = HTT_INVALID_PEER;
qdf_nbuf_t nbuf_mesh = NULL;
qdf_mem_zero(&msdu_info, sizeof(msdu_info));
qdf_mem_zero(&seg_info, sizeof(seg_info));
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
dp_verbose_debug("skb %pM", nbuf->data);
/*
* Set Default Host TID value to invalid TID
* (TID override disabled)
*/
msdu_info.tid = HTT_TX_EXT_TID_INVALID;
DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
if (qdf_unlikely(vdev->mesh_vdev)) {
nbuf_mesh = dp_tx_extract_mesh_meta_data(vdev, nbuf,
&msdu_info);
if (!nbuf_mesh) {
dp_verbose_debug("Extracting mesh metadata failed");
return nbuf;
}
nbuf = nbuf_mesh;
}
/*
* Get HW Queue to use for this frame.
* TCL supports upto 4 DMA rings, out of which 3 rings are
* dedicated for data and 1 for command.
* "queue_id" maps to one hardware ring.
* With each ring, we also associate a unique Tx descriptor pool
* to minimize lock contention for these resources.
*/
dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
/*
* TCL H/W supports 2 DSCP-TID mapping tables.
* Table 1 - Default DSCP-TID mapping table
* Table 2 - 1 DSCP-TID override table
*
* If we need a different DSCP-TID mapping for this vap,
* call tid_classify to extract DSCP/ToS from frame and
* map to a TID and store in msdu_info. This is later used
* to fill in TCL Input descriptor (per-packet TID override).
*/
dp_tx_classify_tid(vdev, nbuf, &msdu_info);
/*
* Classify the frame and call corresponding
* "prepare" function which extracts the segment (TSO)
* and fragmentation information (for TSO , SG, ME, or Raw)
* into MSDU_INFO structure which is later used to fill
* SW and HW descriptors.
*/
if (qdf_nbuf_is_tso(nbuf)) {
dp_verbose_debug("TSO frame %pK", vdev);
DP_STATS_INC_PKT(vdev, tx_i.tso.tso_pkt, 1,
qdf_nbuf_len(nbuf));
if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
DP_STATS_INC_PKT(vdev, tx_i.tso.dropped_host, 1,
qdf_nbuf_len(nbuf));
return nbuf;
}
goto send_multiple;
}
/* SG */
if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info, &msdu_info);
if (!nbuf)
return NULL;
dp_verbose_debug("non-TSO SG frame %pK", vdev);
DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
qdf_nbuf_len(nbuf));
goto send_multiple;
}
#ifdef ATH_SUPPORT_IQUE
/* Mcast to Ucast Conversion*/
if (qdf_unlikely(vdev->mcast_enhancement_en > 0)) {
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
!DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
dp_verbose_debug("Mcast frm for ME %pK", vdev);
DP_STATS_INC_PKT(vdev,
tx_i.mcast_en.mcast_pkt, 1,
qdf_nbuf_len(nbuf));
if (dp_tx_prepare_send_me(vdev, nbuf) ==
QDF_STATUS_SUCCESS) {
return NULL;
}
}
}
#endif
/* RAW */
if (qdf_unlikely(vdev->tx_encap_type == htt_cmn_pkt_type_raw)) {
nbuf = dp_tx_prepare_raw(vdev, nbuf, &seg_info, &msdu_info);
if (!nbuf)
return NULL;
dp_verbose_debug("Raw frame %pK", vdev);
goto send_multiple;
}
/* Single linear frame */
/*
* If nbuf is a simple linear frame, use send_single function to
* prepare direct-buffer type TCL descriptor and enqueue to TCL
* SRNG. There is no need to setup a MSDU extension descriptor.
*/
nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info, peer_id, NULL);
return nbuf;
send_multiple:
nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
return nbuf;
}
/**
* dp_tx_reinject_handler() - Tx Reinject Handler
* @tx_desc: software descriptor head pointer
* @status : Tx completion status from HTT descriptor
*
* This function reinjects frames back to Target.
* Todo - Host queue needs to be added
*
* Return: none
*/
static
void dp_tx_reinject_handler(struct dp_tx_desc_s *tx_desc, uint8_t *status)
{
struct dp_vdev *vdev;
struct dp_peer *peer = NULL;
uint32_t peer_id = HTT_INVALID_PEER;
qdf_nbuf_t nbuf = tx_desc->nbuf;
qdf_nbuf_t nbuf_copy = NULL;
struct dp_tx_msdu_info_s msdu_info;
struct dp_peer *sa_peer = NULL;
struct dp_ast_entry *ast_entry = NULL;
struct dp_soc *soc = NULL;
qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
#ifdef WDS_VENDOR_EXTENSION
int is_mcast = 0, is_ucast = 0;
int num_peers_3addr = 0;
qdf_ether_header_t *eth_hdr = (qdf_ether_header_t *)(qdf_nbuf_data(nbuf));
struct ieee80211_frame_addr4 *wh = (struct ieee80211_frame_addr4 *)(qdf_nbuf_data(nbuf));
#endif
vdev = tx_desc->vdev;
soc = vdev->pdev->soc;
qdf_assert(vdev);
qdf_mem_zero(&msdu_info, sizeof(msdu_info));
dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s Tx reinject path", __func__);
DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
qdf_nbuf_len(tx_desc->nbuf));
qdf_spin_lock_bh(&(soc->ast_lock));
ast_entry = dp_peer_ast_hash_find_by_pdevid
(soc,
(uint8_t *)(eh->ether_shost),
vdev->pdev->pdev_id);
if (ast_entry)
sa_peer = ast_entry->peer;
qdf_spin_unlock_bh(&(soc->ast_lock));
#ifdef WDS_VENDOR_EXTENSION
if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
is_mcast = (IS_MULTICAST(wh->i_addr1)) ? 1 : 0;
} else {
is_mcast = (IS_MULTICAST(eth_hdr->ether_dhost)) ? 1 : 0;
}
is_ucast = !is_mcast;
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (peer->bss_peer)
continue;
/* Detect wds peers that use 3-addr framing for mcast.
* if there are any, the bss_peer is used to send the
* the mcast frame using 3-addr format. all wds enabled
* peers that use 4-addr framing for mcast frames will
* be duplicated and sent as 4-addr frames below.
*/
if (!peer->wds_enabled || !peer->wds_ecm.wds_tx_mcast_4addr) {
num_peers_3addr = 1;
break;
}
}
#endif
if (qdf_unlikely(vdev->mesh_vdev)) {
DP_TX_FREE_SINGLE_BUF(vdev->pdev->soc, tx_desc->nbuf);
} else {
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if ((peer->peer_ids[0] != HTT_INVALID_PEER) &&
#ifdef WDS_VENDOR_EXTENSION
/*
* . if 3-addr STA, then send on BSS Peer
* . if Peer WDS enabled and accept 4-addr mcast,
* send mcast on that peer only
* . if Peer WDS enabled and accept 4-addr ucast,
* send ucast on that peer only
*/
((peer->bss_peer && num_peers_3addr && is_mcast) ||
(peer->wds_enabled &&
((is_mcast && peer->wds_ecm.wds_tx_mcast_4addr) ||
(is_ucast && peer->wds_ecm.wds_tx_ucast_4addr))))) {
#else
((peer->bss_peer &&
!(vdev->osif_proxy_arp(vdev->osif_vdev, nbuf))) ||
peer->nawds_enabled)) {
#endif
peer_id = DP_INVALID_PEER;
if (peer->nawds_enabled) {
peer_id = peer->peer_ids[0];
if (sa_peer == peer) {
QDF_TRACE(
QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
" %s: multicast packet",
__func__);
DP_STATS_INC(peer,
tx.nawds_mcast_drop, 1);
continue;
}
}
nbuf_copy = qdf_nbuf_copy(nbuf);
if (!nbuf_copy) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("nbuf copy failed"));
break;
}
nbuf_copy = dp_tx_send_msdu_single(vdev,
nbuf_copy,
&msdu_info,
peer_id,
NULL);
if (nbuf_copy) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("pkt send failed"));
qdf_nbuf_free(nbuf_copy);
} else {
if (peer_id != DP_INVALID_PEER)
DP_STATS_INC_PKT(peer,
tx.nawds_mcast,
1, qdf_nbuf_len(nbuf));
}
}
}
}
if (vdev->nawds_enabled) {
peer_id = DP_INVALID_PEER;
DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
1, qdf_nbuf_len(nbuf));
nbuf = dp_tx_send_msdu_single(vdev,
nbuf,
&msdu_info,
peer_id, NULL);
if (nbuf) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_DEBUG,
FL("pkt send failed"));
qdf_nbuf_free(nbuf);
}
} else
qdf_nbuf_free(nbuf);
dp_tx_desc_release(tx_desc, tx_desc->pool_id);
}
/**
* dp_tx_inspect_handler() - Tx Inspect Handler
* @tx_desc: software descriptor head pointer
* @status : Tx completion status from HTT descriptor
*
* Handles Tx frames sent back to Host for inspection
* (ProxyARP)
*
* Return: none
*/
static void dp_tx_inspect_handler(struct dp_tx_desc_s *tx_desc, uint8_t *status)
{
struct dp_soc *soc;
struct dp_pdev *pdev = tx_desc->pdev;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx inspect path",
__func__);
qdf_assert(pdev);
soc = pdev->soc;
DP_STATS_INC_PKT(tx_desc->vdev, tx_i.inspect_pkts, 1,
qdf_nbuf_len(tx_desc->nbuf));
DP_TX_FREE_SINGLE_BUF(soc, tx_desc->nbuf);
dp_tx_desc_release(tx_desc, tx_desc->pool_id);
}
#ifdef FEATURE_PERPKT_INFO
/**
* dp_get_completion_indication_for_stack() - send completion to stack
* @soc : dp_soc handle
* @pdev: dp_pdev handle
* @peer: dp peer handle
* @ts: transmit completion status structure
* @netbuf: Buffer pointer for free
*
* This function is used for indication whether buffer needs to be
* sent to stack for freeing or not
*/
QDF_STATUS
dp_get_completion_indication_for_stack(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_peer *peer,
struct hal_tx_completion_status *ts,
qdf_nbuf_t netbuf,
uint64_t time_latency)
{
struct tx_capture_hdr *ppdu_hdr;
uint16_t peer_id = ts->peer_id;
uint32_t ppdu_id = ts->ppdu_id;
uint8_t first_msdu = ts->first_msdu;
uint8_t last_msdu = ts->last_msdu;
if (qdf_unlikely(!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->latency_capture_enable))
return QDF_STATUS_E_NOSUPPORT;
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Peer Invalid"));
return QDF_STATUS_E_INVAL;
}
if (pdev->mcopy_mode) {
if ((pdev->m_copy_id.tx_ppdu_id == ppdu_id) &&
(pdev->m_copy_id.tx_peer_id == peer_id)) {
return QDF_STATUS_E_INVAL;
}
pdev->m_copy_id.tx_ppdu_id = ppdu_id;
pdev->m_copy_id.tx_peer_id = peer_id;
}
if (!qdf_nbuf_push_head(netbuf, sizeof(struct tx_capture_hdr))) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("No headroom"));
return QDF_STATUS_E_NOMEM;
}
ppdu_hdr = (struct tx_capture_hdr *)qdf_nbuf_data(netbuf);
qdf_mem_copy(ppdu_hdr->ta, peer->vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
qdf_mem_copy(ppdu_hdr->ra, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
ppdu_hdr->ppdu_id = ppdu_id;
ppdu_hdr->peer_id = peer_id;
ppdu_hdr->first_msdu = first_msdu;
ppdu_hdr->last_msdu = last_msdu;
if (qdf_unlikely(pdev->latency_capture_enable)) {
ppdu_hdr->tsf = ts->tsf;
ppdu_hdr->time_latency = time_latency;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_send_completion_to_stack() - send completion to stack
* @soc : dp_soc handle
* @pdev: dp_pdev handle
* @peer_id: peer_id of the peer for which completion came
* @ppdu_id: ppdu_id
* @netbuf: Buffer pointer for free
*
* This function is used to send completion to stack
* to free buffer
*/
void dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev,
uint16_t peer_id, uint32_t ppdu_id,
qdf_nbuf_t netbuf)
{
dp_wdi_event_handler(WDI_EVENT_TX_DATA, soc,
netbuf, peer_id,
WDI_NO_VAL, pdev->pdev_id);
}
#else
static QDF_STATUS
dp_get_completion_indication_for_stack(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_peer *peer,
struct hal_tx_completion_status *ts,
qdf_nbuf_t netbuf,
uint64_t time_latency)
{
return QDF_STATUS_E_NOSUPPORT;
}
static void
dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev,
uint16_t peer_id, uint32_t ppdu_id, qdf_nbuf_t netbuf)
{
}
#endif
/**
* dp_tx_comp_free_buf() - Free nbuf associated with the Tx Descriptor
* @soc: Soc handle
* @desc: software Tx descriptor to be processed
*
* Return: none
*/
static inline void dp_tx_comp_free_buf(struct dp_soc *soc,
struct dp_tx_desc_s *desc)
{
struct dp_vdev *vdev = desc->vdev;
qdf_nbuf_t nbuf = desc->nbuf;
/* nbuf already freed in vdev detach path */
if (!nbuf)
return;
/* If it is TDLS mgmt, don't unmap or free the frame */
if (desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME)
return dp_non_std_tx_comp_free_buff(desc, vdev);
/* 0 : MSDU buffer, 1 : MLE */
if (desc->msdu_ext_desc) {
/* TSO free */
if (hal_tx_ext_desc_get_tso_enable(
desc->msdu_ext_desc->vaddr)) {
/* unmap eash TSO seg before free the nbuf */
dp_tx_tso_unmap_segment(soc, desc->tso_desc,
desc->tso_num_desc);
qdf_nbuf_free(nbuf);
return;
}
}
qdf_nbuf_unmap(soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
if (qdf_unlikely(!vdev)) {
qdf_nbuf_free(nbuf);
return;
}
if (qdf_likely(!vdev->mesh_vdev))
qdf_nbuf_free(nbuf);
else {
if (desc->flags & DP_TX_DESC_FLAG_TO_FW) {
qdf_nbuf_free(nbuf);
DP_STATS_INC(vdev, tx_i.mesh.completion_fw, 1);
} else
vdev->osif_tx_free_ext((nbuf));
}
}
#ifdef MESH_MODE_SUPPORT
/**
* dp_tx_comp_fill_tx_completion_stats() - Fill per packet Tx completion stats
* in mesh meta header
* @tx_desc: software descriptor head pointer
* @ts: pointer to tx completion stats
* Return: none
*/
static
void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts)
{
struct meta_hdr_s *mhdr;
qdf_nbuf_t netbuf = tx_desc->nbuf;
if (!tx_desc->msdu_ext_desc) {
if (qdf_nbuf_pull_head(netbuf, tx_desc->pkt_offset) == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"netbuf %pK offset %d",
netbuf, tx_desc->pkt_offset);
return;
}
}
if (qdf_nbuf_push_head(netbuf, sizeof(struct meta_hdr_s)) == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"netbuf %pK offset %lu", netbuf,
sizeof(struct meta_hdr_s));
return;
}
mhdr = (struct meta_hdr_s *)qdf_nbuf_data(netbuf);
mhdr->rssi = ts->ack_frame_rssi;
mhdr->channel = tx_desc->pdev->operating_channel;
}
#else
static
void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts)
{
}
#endif
/**
* dp_tx_compute_delay() - Compute and fill in all timestamps
* to pass in correct fields
*
* @vdev: pdev handle
* @tx_desc: tx descriptor
* @tid: tid value
* Return: none
*/
static void dp_tx_compute_delay(struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc, uint8_t tid)
{
int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
uint32_t sw_enqueue_delay, fwhw_transmit_delay, interframe_delay;
if (qdf_likely(!vdev->pdev->delay_stats_flag))
return;
current_timestamp = qdf_ktime_to_ms(qdf_ktime_get());
timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
timestamp_hw_enqueue = tx_desc->timestamp;
sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
fwhw_transmit_delay = (uint32_t)(current_timestamp -
timestamp_hw_enqueue);
interframe_delay = (uint32_t)(timestamp_ingress -
vdev->prev_tx_enq_tstamp);
/*
* Delay in software enqueue
*/
dp_update_delay_stats(vdev->pdev, sw_enqueue_delay, tid,
CDP_DELAY_STATS_SW_ENQ);
/*
* Delay between packet enqueued to HW and Tx completion
*/
dp_update_delay_stats(vdev->pdev, fwhw_transmit_delay, tid,
CDP_DELAY_STATS_FW_HW_TRANSMIT);
/*
* Update interframe delay stats calculated at hardstart receive point.
* Value of vdev->prev_tx_enq_tstamp will be 0 for 1st frame, so
* interframe delay will not be calculate correctly for 1st frame.
* On the other side, this will help in avoiding extra per packet check
* of !vdev->prev_tx_enq_tstamp.
*/
dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
CDP_DELAY_STATS_TX_INTERFRAME);
vdev->prev_tx_enq_tstamp = timestamp_ingress;
}
/**
* dp_tx_update_peer_stats() - Update peer stats from Tx completion indications
* @tx_desc: software descriptor head pointer
* @ts: Tx completion status
* @peer: peer handle
*
* Return: None
*/
static inline void
dp_tx_update_peer_stats(struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
struct dp_peer *peer)
{
struct dp_pdev *pdev = peer->vdev->pdev;
struct dp_soc *soc = NULL;
uint8_t mcs, pkt_type;
uint8_t tid = ts->tid;
uint32_t length;
struct cdp_tid_tx_stats *tid_stats;
if (!pdev)
return;
if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
tid = CDP_MAX_DATA_TIDS - 1;
tid_stats = &pdev->stats.tid_stats.tid_tx_stats[tid];
soc = pdev->soc;
mcs = ts->mcs;
pkt_type = ts->pkt_type;
if (ts->release_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) {
dp_err("Release source is not from TQM");
return;
}
length = qdf_nbuf_len(tx_desc->nbuf);
DP_STATS_INC_PKT(peer, tx.comp_pkt, 1, length);
if (qdf_unlikely(pdev->delay_stats_flag))
dp_tx_compute_delay(peer->vdev, tx_desc, tid);
tid_stats->complete_cnt++;
DP_STATS_INCC(peer, tx.dropped.age_out, 1,
(ts->status == HAL_TX_TQM_RR_REM_CMD_AGED));
DP_STATS_INCC_PKT(peer, tx.dropped.fw_rem, 1, length,
(ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
DP_STATS_INCC(peer, tx.dropped.fw_rem_notx, 1,
(ts->status == HAL_TX_TQM_RR_REM_CMD_NOTX));
DP_STATS_INCC(peer, tx.dropped.fw_rem_tx, 1,
(ts->status == HAL_TX_TQM_RR_REM_CMD_TX));
DP_STATS_INCC(peer, tx.dropped.fw_reason1, 1,
(ts->status == HAL_TX_TQM_RR_FW_REASON1));
DP_STATS_INCC(peer, tx.dropped.fw_reason2, 1,
(ts->status == HAL_TX_TQM_RR_FW_REASON2));
DP_STATS_INCC(peer, tx.dropped.fw_reason3, 1,
(ts->status == HAL_TX_TQM_RR_FW_REASON3));
if (ts->status != HAL_TX_TQM_RR_FRAME_ACKED) {
tid_stats->comp_fail_cnt++;
return;
}
tid_stats->success_cnt++;
DP_STATS_INCC(peer, tx.ofdma, 1, ts->ofdma);
DP_STATS_INCC(peer, tx.amsdu_cnt, 1, ts->msdu_part_of_amsdu);
DP_STATS_INCC(peer, tx.non_amsdu_cnt, 1, !ts->msdu_part_of_amsdu);
/*
* Following Rate Statistics are updated from HTT PPDU events from FW.
* Return from here if HTT PPDU events are enabled.
*/
if (!(soc->process_tx_status))
return;
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs < (MAX_MCS_11A)) && (pkt_type == DOT11_A)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs < MAX_MCS_11B) && (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs < MAX_MCS_11A) && (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs < MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
((mcs >= (MAX_MCS - 1)) && (pkt_type == DOT11_AX)));
DP_STATS_INCC(peer, tx.pkt_type[pkt_type].mcs_count[mcs], 1,
((mcs < (MAX_MCS - 1)) && (pkt_type == DOT11_AX)));
DP_STATS_INC(peer, tx.sgi_count[ts->sgi], 1);
DP_STATS_INC(peer, tx.bw[ts->bw], 1);
DP_STATS_UPD(peer, tx.last_ack_rssi, ts->ack_frame_rssi);
DP_STATS_INC(peer, tx.wme_ac_type[TID_TO_WME_AC(ts->tid)], 1);
DP_STATS_INCC(peer, tx.stbc, 1, ts->stbc);
DP_STATS_INCC(peer, tx.ldpc, 1, ts->ldpc);
DP_STATS_INCC(peer, tx.retries, 1, ts->transmit_cnt > 1);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc,
&peer->stats, ts->peer_id,
UPDATE_PEER_STATS, pdev->pdev_id);
#endif
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_tx_flow_pool_lock() - take flow pool lock
* @soc: core txrx main context
* @tx_desc: tx desc
*
* Return: None
*/
static inline
void dp_tx_flow_pool_lock(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
struct dp_tx_desc_pool_s *pool;
uint8_t desc_pool_id;
desc_pool_id = tx_desc->pool_id;
pool = &soc->tx_desc[desc_pool_id];
qdf_spin_lock_bh(&pool->flow_pool_lock);
}
/**
* dp_tx_flow_pool_unlock() - release flow pool lock
* @soc: core txrx main context
* @tx_desc: tx desc
*
* Return: None
*/
static inline
void dp_tx_flow_pool_unlock(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc)
{
struct dp_tx_desc_pool_s *pool;
uint8_t desc_pool_id;
desc_pool_id = tx_desc->pool_id;
pool = &soc->tx_desc[desc_pool_id];
qdf_spin_unlock_bh(&pool->flow_pool_lock);
}
#else
static inline
void dp_tx_flow_pool_lock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
{
}
static inline
void dp_tx_flow_pool_unlock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
{
}
#endif
/**
* dp_tx_notify_completion() - Notify tx completion for this desc
* @soc: core txrx main context
* @tx_desc: tx desc
* @netbuf: buffer
*
* Return: none
*/
static inline void dp_tx_notify_completion(struct dp_soc *soc,
struct dp_tx_desc_s *tx_desc,
qdf_nbuf_t netbuf)
{
void *osif_dev;
ol_txrx_completion_fp tx_compl_cbk = NULL;
qdf_assert(tx_desc);
dp_tx_flow_pool_lock(soc, tx_desc);
if (!tx_desc->vdev ||
!tx_desc->vdev->osif_vdev) {
dp_tx_flow_pool_unlock(soc, tx_desc);
return;
}
osif_dev = tx_desc->vdev->osif_vdev;
tx_compl_cbk = tx_desc->vdev->tx_comp;
dp_tx_flow_pool_unlock(soc, tx_desc);
if (tx_compl_cbk)
tx_compl_cbk(netbuf, osif_dev);
}
/** dp_tx_sojourn_stats_process() - Collect sojourn stats
* @pdev: pdev handle
* @tid: tid value
* @txdesc_ts: timestamp from txdesc
* @ppdu_id: ppdu id
*
* Return: none
*/
#ifdef FEATURE_PERPKT_INFO
static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
struct dp_peer *peer,
uint8_t tid,
uint64_t txdesc_ts,
uint32_t ppdu_id)
{
uint64_t delta_ms;
struct cdp_tx_sojourn_stats *sojourn_stats;
if (qdf_unlikely(pdev->enhanced_stats_en == 0))
return;
if (qdf_unlikely(tid == HTT_INVALID_TID ||
tid >= CDP_DATA_TID_MAX))
return;
if (qdf_unlikely(!pdev->sojourn_buf))
return;
sojourn_stats = (struct cdp_tx_sojourn_stats *)
qdf_nbuf_data(pdev->sojourn_buf);
sojourn_stats->cookie = (void *)peer->wlanstats_ctx;
delta_ms = qdf_ktime_to_ms(qdf_ktime_get()) -
txdesc_ts;
qdf_ewma_tx_lag_add(&peer->avg_sojourn_msdu[tid],
delta_ms);
sojourn_stats->sum_sojourn_msdu[tid] = delta_ms;
sojourn_stats->num_msdus[tid] = 1;
sojourn_stats->avg_sojourn_msdu[tid].internal =
peer->avg_sojourn_msdu[tid].internal;
dp_wdi_event_handler(WDI_EVENT_TX_SOJOURN_STAT, pdev->soc,
pdev->sojourn_buf, HTT_INVALID_PEER,
WDI_NO_VAL, pdev->pdev_id);
sojourn_stats->sum_sojourn_msdu[tid] = 0;
sojourn_stats->num_msdus[tid] = 0;
sojourn_stats->avg_sojourn_msdu[tid].internal = 0;
}
#else
static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
uint8_t tid,
uint64_t txdesc_ts,
uint32_t ppdu_id)
{
}
#endif
/**
* dp_tx_comp_process_desc() - Process tx descriptor and free associated nbuf
* @soc: DP Soc handle
* @tx_desc: software Tx descriptor
* @ts : Tx completion status from HAL/HTT descriptor
*
* Return: none
*/
static inline void
dp_tx_comp_process_desc(struct dp_soc *soc,
struct dp_tx_desc_s *desc,
struct hal_tx_completion_status *ts,
struct dp_peer *peer)
{
uint64_t time_latency = 0;
/*
* m_copy/tx_capture modes are not supported for
* scatter gather packets
*/
if (qdf_unlikely(!!desc->pdev->latency_capture_enable)) {
time_latency = (qdf_ktime_to_ms(qdf_ktime_get()) -
desc->timestamp);
}
if (!(desc->msdu_ext_desc)) {
if (QDF_STATUS_SUCCESS ==
dp_tx_add_to_comp_queue(soc, desc, ts, peer)) {
return;
}
if (QDF_STATUS_SUCCESS ==
dp_get_completion_indication_for_stack(soc,
desc->pdev,
peer, ts,
desc->nbuf,
time_latency)) {
qdf_nbuf_unmap(soc->osdev, desc->nbuf,
QDF_DMA_TO_DEVICE);
dp_send_completion_to_stack(soc,
desc->pdev,
ts->peer_id,
ts->ppdu_id,
desc->nbuf);
return;
}
}
dp_tx_comp_free_buf(soc, desc);
}
/**
* dp_tx_comp_process_tx_status() - Parse and Dump Tx completion status info
* @tx_desc: software descriptor head pointer
* @ts: Tx completion status
* @peer: peer handle
*
* Return: none
*/
static inline
void dp_tx_comp_process_tx_status(struct dp_tx_desc_s *tx_desc,
struct hal_tx_completion_status *ts,
struct dp_peer *peer)
{
uint32_t length;
qdf_ether_header_t *eh;
struct dp_soc *soc = NULL;
struct dp_vdev *vdev = tx_desc->vdev;
qdf_nbuf_t nbuf = tx_desc->nbuf;
if (!vdev || !nbuf) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"invalid tx descriptor. vdev or nbuf NULL");
goto out;
}
eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
DPTRACE(qdf_dp_trace_ptr(tx_desc->nbuf,
QDF_DP_TRACE_LI_DP_FREE_PACKET_PTR_RECORD,
QDF_TRACE_DEFAULT_PDEV_ID,
qdf_nbuf_data_addr(nbuf),
sizeof(qdf_nbuf_data(nbuf)),
tx_desc->id,
ts->status));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"-------------------- \n"
"Tx Completion Stats: \n"
"-------------------- \n"
"ack_frame_rssi = %d \n"
"first_msdu = %d \n"
"last_msdu = %d \n"
"msdu_part_of_amsdu = %d \n"
"rate_stats valid = %d \n"
"bw = %d \n"
"pkt_type = %d \n"
"stbc = %d \n"
"ldpc = %d \n"
"sgi = %d \n"
"mcs = %d \n"
"ofdma = %d \n"
"tones_in_ru = %d \n"
"tsf = %d \n"
"ppdu_id = %d \n"
"transmit_cnt = %d \n"
"tid = %d \n"
"peer_id = %d\n",
ts->ack_frame_rssi, ts->first_msdu,
ts->last_msdu, ts->msdu_part_of_amsdu,
ts->valid, ts->bw, ts->pkt_type, ts->stbc,
ts->ldpc, ts->sgi, ts->mcs, ts->ofdma,
ts->tones_in_ru, ts->tsf, ts->ppdu_id,
ts->transmit_cnt, ts->tid, ts->peer_id);
soc = vdev->pdev->soc;
/* Update SoC level stats */
DP_STATS_INCC(soc, tx.dropped_fw_removed, 1,
(ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
/* Update per-packet stats for mesh mode */
if (qdf_unlikely(vdev->mesh_vdev) &&
!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW))
dp_tx_comp_fill_tx_completion_stats(tx_desc, ts);
length = qdf_nbuf_len(nbuf);
/* Update peer level stats */
if (!peer) {
QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_DP,
"peer is null or deletion in progress");
DP_STATS_INC_PKT(soc, tx.tx_invalid_peer, 1, length);
goto out;
}
if (qdf_likely(!peer->bss_peer)) {
DP_STATS_INC_PKT(peer, tx.ucast, 1, length);
if (ts->status == HAL_TX_TQM_RR_FRAME_ACKED)
DP_STATS_INC_PKT(peer, tx.tx_success, 1, length);
} else {
if (ts->status != HAL_TX_TQM_RR_REM_CMD_REM) {
DP_STATS_INC_PKT(peer, tx.mcast, 1, length);
if ((peer->vdev->tx_encap_type ==
htt_cmn_pkt_type_ethernet) &&
QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
DP_STATS_INC_PKT(peer, tx.bcast, 1, length);
}
}
}
dp_tx_update_peer_stats(tx_desc, ts, peer);
#ifdef QCA_SUPPORT_RDK_STATS
if (soc->wlanstats_enabled)
dp_tx_sojourn_stats_process(vdev->pdev, peer, ts->tid,
tx_desc->timestamp,
ts->ppdu_id);
#endif
out:
return;
}
/**
* dp_tx_comp_process_desc_list() - Tx complete software descriptor handler
* @soc: core txrx main context
* @comp_head: software descriptor head pointer
*
* This function will process batch of descriptors reaped by dp_tx_comp_handler
* and release the software descriptors after processing is complete
*
* Return: none
*/
static void
dp_tx_comp_process_desc_list(struct dp_soc *soc,
struct dp_tx_desc_s *comp_head)
{
struct dp_tx_desc_s *desc;
struct dp_tx_desc_s *next;
struct hal_tx_completion_status ts = {0};
struct dp_peer *peer;
qdf_nbuf_t netbuf;
desc = comp_head;
while (desc) {
hal_tx_comp_get_status(&desc->comp, &ts, soc->hal_soc);
peer = dp_peer_find_by_id(soc, ts.peer_id);
dp_tx_comp_process_tx_status(desc, &ts, peer);
netbuf = desc->nbuf;
/* check tx complete notification */
if (QDF_NBUF_CB_TX_EXTRA_FRAG_FLAGS_NOTIFY_COMP(netbuf))
dp_tx_notify_completion(soc, desc, netbuf);
dp_tx_comp_process_desc(soc, desc, &ts, peer);
if (peer)
dp_peer_unref_del_find_by_id(peer);
next = desc->next;
dp_tx_desc_release(desc, desc->pool_id);
desc = next;
}
}
/**
* dp_tx_process_htt_completion() - Tx HTT Completion Indication Handler
* @tx_desc: software descriptor head pointer
* @status : Tx completion status from HTT descriptor
*
* This function will process HTT Tx indication messages from Target
*
* Return: none
*/
static
void dp_tx_process_htt_completion(struct dp_tx_desc_s *tx_desc, uint8_t *status)
{
uint8_t tx_status;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_soc *soc;
struct hal_tx_completion_status ts = {0};
uint32_t *htt_desc = (uint32_t *)status;
struct dp_peer *peer;
struct cdp_tid_tx_stats *tid_stats = NULL;
qdf_assert(tx_desc->pdev);
pdev = tx_desc->pdev;
vdev = tx_desc->vdev;
soc = pdev->soc;
if (!vdev)
return;
tx_status = HTT_TX_WBM_COMPLETION_V2_TX_STATUS_GET(htt_desc[0]);
switch (tx_status) {
case HTT_TX_FW2WBM_TX_STATUS_OK:
case HTT_TX_FW2WBM_TX_STATUS_DROP:
case HTT_TX_FW2WBM_TX_STATUS_TTL:
{
uint8_t tid;
if (HTT_TX_WBM_COMPLETION_V2_VALID_GET(htt_desc[2])) {
ts.peer_id =
HTT_TX_WBM_COMPLETION_V2_SW_PEER_ID_GET(
htt_desc[2]);
ts.tid =
HTT_TX_WBM_COMPLETION_V2_TID_NUM_GET(
htt_desc[2]);
} else {
ts.peer_id = HTT_INVALID_PEER;
ts.tid = HTT_INVALID_TID;
}
ts.ppdu_id =
HTT_TX_WBM_COMPLETION_V2_SCH_CMD_ID_GET(
htt_desc[1]);
ts.ack_frame_rssi =
HTT_TX_WBM_COMPLETION_V2_ACK_FRAME_RSSI_GET(
htt_desc[1]);
ts.first_msdu = 1;
ts.last_msdu = 1;
tid = ts.tid;
if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
tid = CDP_MAX_DATA_TIDS - 1;
tid_stats = &pdev->stats.tid_stats.tid_tx_stats[tid];
if (qdf_unlikely(pdev->delay_stats_flag))
dp_tx_compute_delay(vdev, tx_desc, tid);
tid_stats->complete_cnt++;
if (qdf_unlikely(tx_status != HTT_TX_FW2WBM_TX_STATUS_OK)) {
ts.status = HAL_TX_TQM_RR_REM_CMD_REM;
tid_stats->comp_fail_cnt++;
} else {
tid_stats->success_cnt++;
}
peer = dp_peer_find_by_id(soc, ts.peer_id);
if (qdf_likely(peer))
dp_peer_unref_del_find_by_id(peer);
dp_tx_comp_process_tx_status(tx_desc, &ts, peer);
dp_tx_comp_process_desc(soc, tx_desc, &ts, peer);
dp_tx_desc_release(tx_desc, tx_desc->pool_id);
break;
}
case HTT_TX_FW2WBM_TX_STATUS_REINJECT:
{
dp_tx_reinject_handler(tx_desc, status);
break;
}
case HTT_TX_FW2WBM_TX_STATUS_INSPECT:
{
dp_tx_inspect_handler(tx_desc, status);
break;
}
case HTT_TX_FW2WBM_TX_STATUS_MEC_NOTIFY:
{
dp_tx_mec_handler(vdev, status);
break;
}
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s Invalid HTT tx_status %d\n",
__func__, tx_status);
break;
}
}
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
static inline
bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
{
bool limit_hit = false;
struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
limit_hit =
(num_reaped >= cfg->tx_comp_loop_pkt_limit) ? true : false;
if (limit_hit)
DP_STATS_INC(soc, tx.tx_comp_loop_pkt_limit_hit, 1);
return limit_hit;
}
static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
{
return soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check;
}
#else
static inline
bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
{
return false;
}
static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
{
return false;
}
#endif
uint32_t dp_tx_comp_handler(struct dp_intr *int_ctx, struct dp_soc *soc,
void *hal_srng, uint32_t quota)
{
void *tx_comp_hal_desc;
uint8_t buffer_src;
uint8_t pool_id;
uint32_t tx_desc_id;
struct dp_tx_desc_s *tx_desc = NULL;
struct dp_tx_desc_s *head_desc = NULL;
struct dp_tx_desc_s *tail_desc = NULL;
uint32_t num_processed = 0;
uint32_t count = 0;
bool force_break = false;
DP_HIST_INIT();
more_data:
/* Re-initialize local variables to be re-used */
head_desc = NULL;
tail_desc = NULL;
if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s %d : HAL RING Access Failed -- %pK",
__func__, __LINE__, hal_srng);
return 0;
}
/* Find head descriptor from completion ring */
while (qdf_likely(tx_comp_hal_desc =
hal_srng_dst_get_next(soc->hal_soc, hal_srng))) {
buffer_src = hal_tx_comp_get_buffer_source(tx_comp_hal_desc);
/* If this buffer was not released by TQM or FW, then it is not
* Tx completion indication, assert */
if ((buffer_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) &&
(buffer_src != HAL_TX_COMP_RELEASE_SOURCE_FW)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_FATAL,
"Tx comp release_src != TQM | FW but from %d",
buffer_src);
hal_dump_comp_desc(tx_comp_hal_desc);
DP_STATS_INC(soc, tx.invalid_release_source, 1);
qdf_assert_always(0);
}
/* Get descriptor id */
tx_desc_id = hal_tx_comp_get_desc_id(tx_comp_hal_desc);
pool_id = (tx_desc_id & DP_TX_DESC_ID_POOL_MASK) >>
DP_TX_DESC_ID_POOL_OS;
/* Find Tx descriptor */
tx_desc = dp_tx_desc_find(soc, pool_id,
(tx_desc_id & DP_TX_DESC_ID_PAGE_MASK) >>
DP_TX_DESC_ID_PAGE_OS,
(tx_desc_id & DP_TX_DESC_ID_OFFSET_MASK) >>
DP_TX_DESC_ID_OFFSET_OS);
/*
* If the descriptor is already freed in vdev_detach,
* continue to next descriptor
*/
if (!tx_desc->vdev && !tx_desc->flags) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
"Descriptor freed in vdev_detach %d",
tx_desc_id);
num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
count++;
continue;
}
/*
* If the release source is FW, process the HTT status
*/
if (qdf_unlikely(buffer_src ==
HAL_TX_COMP_RELEASE_SOURCE_FW)) {
uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
hal_tx_comp_get_htt_desc(tx_comp_hal_desc,
htt_tx_status);
dp_tx_process_htt_completion(tx_desc,
htt_tx_status);
} else {
/* Pool id is not matching. Error */
if (tx_desc->pool_id != pool_id) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_FATAL,
"Tx Comp pool id %d not matched %d",
pool_id, tx_desc->pool_id);
qdf_assert_always(0);
}
if (!(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED) ||
!(tx_desc->flags & DP_TX_DESC_FLAG_QUEUED_TX)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_FATAL,
"Txdesc invalid, flgs = %x,id = %d",
tx_desc->flags, tx_desc_id);
qdf_assert_always(0);
}
/* First ring descriptor on the cycle */
if (!head_desc) {
head_desc = tx_desc;
tail_desc = tx_desc;
}
tail_desc->next = tx_desc;
tx_desc->next = NULL;
tail_desc = tx_desc;
DP_HIST_PACKET_COUNT_INC(tx_desc->pdev->pdev_id);
/* Collect hw completion contents */
hal_tx_comp_desc_sync(tx_comp_hal_desc,
&tx_desc->comp, 1);
}
num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
/*
* Processed packet count is more than given quota
* stop to processing
*/
if (num_processed >= quota) {
force_break = true;
break;
}
count++;
if (dp_tx_comp_loop_pkt_limit_hit(soc, count))
break;
}
hal_srng_access_end(soc->hal_soc, hal_srng);
/* Process the reaped descriptors */
if (head_desc)
dp_tx_comp_process_desc_list(soc, head_desc);
if (dp_tx_comp_enable_eol_data_check(soc)) {
if (!force_break &&
hal_srng_dst_peek_sync_locked(soc, hal_srng)) {
DP_STATS_INC(soc, tx.hp_oos2, 1);
if (!hif_exec_should_yield(soc->hif_handle,
int_ctx->dp_intr_id))
goto more_data;
}
}
DP_TX_HIST_STATS_PER_PDEV();
return num_processed;
}
#ifdef FEATURE_WLAN_TDLS
/**
* dp_tx_non_std() - Allow the control-path SW to send data frames
*
* @data_vdev - which vdev should transmit the tx data frames
* @tx_spec - what non-standard handling to apply to the tx data frames
* @msdu_list - NULL-terminated list of tx MSDUs
*
* Return: NULL on success,
* nbuf when it fails to send
*/
qdf_nbuf_t dp_tx_non_std(struct cdp_vdev *vdev_handle,
enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list)
{
struct dp_vdev *vdev = (struct dp_vdev *) vdev_handle;
if (tx_spec & OL_TX_SPEC_NO_FREE)
vdev->is_tdls_frame = true;
return dp_tx_send(vdev_handle, msdu_list);
}
#endif
/**
* dp_tx_vdev_attach() - attach vdev to dp tx
* @vdev: virtual device instance
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev)
{
/*
* Fill HTT TCL Metadata with Vdev ID and MAC ID
*/
HTT_TX_TCL_METADATA_TYPE_SET(vdev->htt_tcl_metadata,
HTT_TCL_METADATA_TYPE_VDEV_BASED);
HTT_TX_TCL_METADATA_VDEV_ID_SET(vdev->htt_tcl_metadata,
vdev->vdev_id);
HTT_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata,
DP_SW2HW_MACID(vdev->pdev->pdev_id));
/*
* Set HTT Extension Valid bit to 0 by default
*/
HTT_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 0);
dp_tx_vdev_update_search_flags(vdev);
return QDF_STATUS_SUCCESS;
}
#ifndef FEATURE_WDS
static inline bool dp_tx_da_search_override(struct dp_vdev *vdev)
{
return false;
}
#endif
/**
* dp_tx_vdev_update_search_flags() - Update vdev flags as per opmode
* @vdev: virtual device instance
*
* Return: void
*
*/
void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev)
{
struct dp_soc *soc = vdev->pdev->soc;
/*
* Enable both AddrY (SA based search) and AddrX (Da based search)
* for TDLS link
*
* Enable AddrY (SA based search) only for non-WDS STA and
* ProxySTA VAP (in HKv1) modes.
*
* In all other VAP modes, only DA based search should be
* enabled
*/
if (vdev->opmode == wlan_op_mode_sta &&
vdev->tdls_link_connected)
vdev->hal_desc_addr_search_flags =
(HAL_TX_DESC_ADDRX_EN | HAL_TX_DESC_ADDRY_EN);
else if ((vdev->opmode == wlan_op_mode_sta) &&
!dp_tx_da_search_override(vdev))
vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRY_EN;
else
vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRX_EN;
/* Set search type only when peer map v2 messaging is enabled
* as we will have the search index (AST hash) only when v2 is
* enabled
*/
if (soc->is_peer_map_unmap_v2 && vdev->opmode == wlan_op_mode_sta)
vdev->search_type = HAL_TX_ADDR_INDEX_SEARCH;
else
vdev->search_type = HAL_TX_ADDR_SEARCH_DEFAULT;
}
static inline bool
dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
struct dp_vdev *vdev,
struct dp_tx_desc_s *tx_desc)
{
if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
return false;
/*
* if vdev is given, then only check whether desc
* vdev match. if vdev is NULL, then check whether
* desc pdev match.
*/
return vdev ? (tx_desc->vdev == vdev) : (tx_desc->pdev == pdev);
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_tx_desc_reset_vdev() - reset vdev to NULL in TX Desc
*
* @soc: Handle to DP SoC structure
* @tx_desc: pointer of one TX desc
* @desc_pool_id: TX Desc pool id
*/
static inline void
dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
uint8_t desc_pool_id)
{
struct dp_tx_desc_pool_s *pool = &soc->tx_desc[desc_pool_id];
qdf_spin_lock_bh(&pool->flow_pool_lock);
tx_desc->vdev = NULL;
qdf_spin_unlock_bh(&pool->flow_pool_lock);
}
/**
* dp_tx_desc_flush() - release resources associated
* to TX Desc
*
* @dp_pdev: Handle to DP pdev structure
* @vdev: virtual device instance
* NULL: no specific Vdev is required and check all allcated TX desc
* on this pdev.
* Non-NULL: only check the allocated TX Desc associated to this Vdev.
*
* @force_free:
* true: flush the TX desc.
* false: only reset the Vdev in each allocated TX desc
* that associated to current Vdev.
*
* This function will go through the TX desc pool to flush
* the outstanding TX data or reset Vdev to NULL in associated TX
* Desc.
*/
static void dp_tx_desc_flush(struct dp_pdev *pdev,
struct dp_vdev *vdev,
bool force_free)
{
uint8_t i;
uint32_t j;
uint32_t num_desc, page_id, offset;
uint16_t num_desc_per_page;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc = NULL;
struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
if (!vdev && !force_free) {
dp_err("Reset TX desc vdev, Vdev param is required!");
return;
}
for (i = 0; i < MAX_TXDESC_POOLS; i++) {
tx_desc_pool = &soc->tx_desc[i];
if (!(tx_desc_pool->pool_size) ||
IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
!(tx_desc_pool->desc_pages.cacheable_pages))
continue;
num_desc = tx_desc_pool->pool_size;
num_desc_per_page =
tx_desc_pool->desc_pages.num_element_per_page;
for (j = 0; j < num_desc; j++) {
page_id = j / num_desc_per_page;
offset = j % num_desc_per_page;
if (qdf_unlikely(!(tx_desc_pool->
desc_pages.cacheable_pages)))
break;
tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
/*
* Free TX desc if force free is
* required, otherwise only reset vdev
* in this TX desc.
*/
if (force_free) {
dp_tx_comp_free_buf(soc, tx_desc);
dp_tx_desc_release(tx_desc, i);
} else {
dp_tx_desc_reset_vdev(soc, tx_desc,
i);
}
}
}
}
}
#else /* QCA_LL_TX_FLOW_CONTROL_V2! */
static inline void
dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
uint8_t desc_pool_id)
{
TX_DESC_LOCK_LOCK(&soc->tx_desc[desc_pool_id].lock);
tx_desc->vdev = NULL;
TX_DESC_LOCK_UNLOCK(&soc->tx_desc[desc_pool_id].lock);
}
static void dp_tx_desc_flush(struct dp_pdev *pdev,
struct dp_vdev *vdev,
bool force_free)
{
uint8_t i, num_pool;
uint32_t j;
uint32_t num_desc, page_id, offset;
uint16_t num_desc_per_page;
struct dp_soc *soc = pdev->soc;
struct dp_tx_desc_s *tx_desc = NULL;
struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
if (!vdev && !force_free) {
dp_err("Reset TX desc vdev, Vdev param is required!");
return;
}
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
for (i = 0; i < num_pool; i++) {
tx_desc_pool = &soc->tx_desc[i];
if (!tx_desc_pool->desc_pages.cacheable_pages)
continue;
num_desc_per_page =
tx_desc_pool->desc_pages.num_element_per_page;
for (j = 0; j < num_desc; j++) {
page_id = j / num_desc_per_page;
offset = j % num_desc_per_page;
tx_desc = dp_tx_desc_find(soc, i, page_id, offset);
if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
if (force_free) {
dp_tx_comp_free_buf(soc, tx_desc);
dp_tx_desc_release(tx_desc, i);
} else {
dp_tx_desc_reset_vdev(soc, tx_desc,
i);
}
}
}
}
}
#endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
/**
* dp_tx_vdev_detach() - detach vdev from dp tx
* @vdev: virtual device instance
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = vdev->pdev;
/* Reset TX desc associated to this Vdev as NULL */
dp_tx_desc_flush(pdev, vdev, false);
return QDF_STATUS_SUCCESS;
}
/**
* dp_tx_pdev_attach() - attach pdev to dp tx
* @pdev: physical device instance
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS dp_tx_pdev_attach(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
/* Initialize Flow control counters */
qdf_atomic_init(&pdev->num_tx_exception);
qdf_atomic_init(&pdev->num_tx_outstanding);
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
/* Initialize descriptors in TCL Ring */
hal_tx_init_data_ring(soc->hal_soc,
soc->tcl_data_ring[pdev->pdev_id].hal_srng);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_tx_pdev_detach() - detach pdev from dp tx
* @pdev: physical device instance
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS dp_tx_pdev_detach(struct dp_pdev *pdev)
{
/* flush TX outstanding data per pdev */
dp_tx_desc_flush(pdev, NULL, true);
dp_tx_me_exit(pdev);
return QDF_STATUS_SUCCESS;
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/* Pools will be allocated dynamically */
static int dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
int num_desc)
{
uint8_t i;
for (i = 0; i < num_pool; i++) {
qdf_spinlock_create(&soc->tx_desc[i].flow_pool_lock);
soc->tx_desc[i].status = FLOW_POOL_INACTIVE;
}
return 0;
}
static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
{
uint8_t i;
for (i = 0; i < num_pool; i++)
qdf_spinlock_destroy(&soc->tx_desc[i].flow_pool_lock);
}
#else /* QCA_LL_TX_FLOW_CONTROL_V2! */
static int dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
int num_desc)
{
uint8_t i;
/* Allocate software Tx descriptor pools */
for (i = 0; i < num_pool; i++) {
if (dp_tx_desc_pool_alloc(soc, i, num_desc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s Tx Desc Pool alloc %d failed %pK",
__func__, i, soc);
return ENOMEM;
}
}
return 0;
}
static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
{
uint8_t i;
for (i = 0; i < num_pool; i++) {
qdf_assert_always(!soc->tx_desc[i].num_allocated);
if (dp_tx_desc_pool_free(soc, i)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx Desc Pool Free failed", __func__);
}
}
}
#endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
#ifndef QCA_MEM_ATTACH_ON_WIFI3
/**
* dp_tso_attach_wifi3() - TSO attach handler
* @txrx_soc: Opaque Dp handle
*
* Reserve TSO descriptor buffers
*
* Return: QDF_STATUS_E_FAILURE on failure or
* QDF_STATUS_SUCCESS on success
*/
static
QDF_STATUS dp_tso_attach_wifi3(void *txrx_soc)
{
return dp_tso_soc_attach(txrx_soc);
}
/**
* dp_tso_detach_wifi3() - TSO Detach handler
* @txrx_soc: Opaque Dp handle
*
* Deallocate TSO descriptor buffers
*
* Return: QDF_STATUS_E_FAILURE on failure or
* QDF_STATUS_SUCCESS on success
*/
static
QDF_STATUS dp_tso_detach_wifi3(void *txrx_soc)
{
return dp_tso_soc_detach(txrx_soc);
}
#else
static
QDF_STATUS dp_tso_attach_wifi3(void *txrx_soc)
{
return QDF_STATUS_SUCCESS;
}
static
QDF_STATUS dp_tso_detach_wifi3(void *txrx_soc)
{
return QDF_STATUS_SUCCESS;
}
#endif
QDF_STATUS dp_tso_soc_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
uint8_t i;
uint8_t num_pool;
uint32_t num_desc;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
for (i = 0; i < num_pool; i++)
dp_tx_tso_desc_pool_free(soc, i);
dp_info("%s TSO Desc Pool %d Free descs = %d",
__func__, num_pool, num_desc);
for (i = 0; i < num_pool; i++)
dp_tx_tso_num_seg_pool_free(soc, i);
dp_info("%s TSO Num of seg Desc Pool %d Free descs = %d",
__func__, num_pool, num_desc);
return QDF_STATUS_SUCCESS;
}
/**
* dp_tso_attach() - TSO attach handler
* @txrx_soc: Opaque Dp handle
*
* Reserve TSO descriptor buffers
*
* Return: QDF_STATUS_E_FAILURE on failure or
* QDF_STATUS_SUCCESS on success
*/
QDF_STATUS dp_tso_soc_attach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
uint8_t i;
uint8_t num_pool;
uint32_t num_desc;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
for (i = 0; i < num_pool; i++) {
if (dp_tx_tso_desc_pool_alloc(soc, i, num_desc)) {
dp_err("TSO Desc Pool alloc %d failed %pK",
i, soc);
return QDF_STATUS_E_FAILURE;
}
}
dp_info("%s TSO Desc Alloc %d, descs = %d",
__func__, num_pool, num_desc);
for (i = 0; i < num_pool; i++) {
if (dp_tx_tso_num_seg_pool_alloc(soc, i, num_desc)) {
dp_err("TSO Num of seg Pool alloc %d failed %pK",
i, soc);
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_tx_soc_detach() - detach soc from dp tx
* @soc: core txrx main context
*
* This function will detach dp tx into main device context
* will free dp tx resource and initialize resources
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS dp_tx_soc_detach(struct dp_soc *soc)
{
uint8_t num_pool;
uint16_t num_desc;
uint16_t num_ext_desc;
uint8_t i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
dp_tx_flow_control_deinit(soc);
dp_tx_delete_static_pools(soc, num_pool);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx Desc Pool Free num_pool = %d, descs = %d",
__func__, num_pool, num_desc);
for (i = 0; i < num_pool; i++) {
if (dp_tx_ext_desc_pool_free(soc, i)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx Ext Desc Pool Free failed",
__func__);
return QDF_STATUS_E_RESOURCES;
}
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s MSDU Ext Desc Pool %d Free descs = %d",
__func__, num_pool, num_ext_desc);
status = dp_tso_detach_wifi3(soc);
if (status != QDF_STATUS_SUCCESS)
return status;
return QDF_STATUS_SUCCESS;
}
/**
* dp_tx_soc_attach() - attach soc to dp tx
* @soc: core txrx main context
*
* This function will attach dp tx into main device context
* will allocate dp tx resource and initialize resources
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS dp_tx_soc_attach(struct dp_soc *soc)
{
uint8_t i;
uint8_t num_pool;
uint32_t num_desc;
uint32_t num_ext_desc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
if (num_pool > MAX_TXDESC_POOLS)
goto fail;
if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
goto fail;
dp_tx_flow_control_init(soc);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s Tx Desc Alloc num_pool = %d, descs = %d",
__func__, num_pool, num_desc);
/* Allocate extension tx descriptor pools */
for (i = 0; i < num_pool; i++) {
if (dp_tx_ext_desc_pool_alloc(soc, i, num_ext_desc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"MSDU Ext Desc Pool alloc %d failed %pK",
i, soc);
goto fail;
}
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s MSDU Ext Desc Alloc %d, descs = %d",
__func__, num_pool, num_ext_desc);
status = dp_tso_attach_wifi3((void *)soc);
if (status != QDF_STATUS_SUCCESS)
goto fail;
/* Initialize descriptors in TCL Rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
hal_tx_init_data_ring(soc->hal_soc,
soc->tcl_data_ring[i].hal_srng);
}
}
/*
* todo - Add a runtime config option to enable this.
*/
/*
* Due to multiple issues on NPR EMU, enable it selectively
* only for NPR EMU, should be removed, once NPR platforms
* are stable.
*/
soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s HAL Tx init Success", __func__);
return QDF_STATUS_SUCCESS;
fail:
/* Detach will take care of freeing only allocated resources */
dp_tx_soc_detach(soc);
return QDF_STATUS_E_RESOURCES;
}
/*
* dp_tx_me_mem_free(): Function to free allocated memory in mcast enahncement
* pdev: pointer to DP PDEV structure
* seg_info_head: Pointer to the head of list
*
* return: void
*/
static void dp_tx_me_mem_free(struct dp_pdev *pdev,
struct dp_tx_seg_info_s *seg_info_head)
{
struct dp_tx_me_buf_t *mc_uc_buf;
struct dp_tx_seg_info_s *seg_info_new = NULL;
qdf_nbuf_t nbuf = NULL;
uint64_t phy_addr;
while (seg_info_head) {
nbuf = seg_info_head->nbuf;
mc_uc_buf = (struct dp_tx_me_buf_t *)
seg_info_head->frags[0].vaddr;
phy_addr = seg_info_head->frags[0].paddr_hi;
phy_addr = (phy_addr << 32) | seg_info_head->frags[0].paddr_lo;
qdf_mem_unmap_nbytes_single(pdev->soc->osdev,
phy_addr,
QDF_DMA_TO_DEVICE , QDF_MAC_ADDR_SIZE);
dp_tx_me_free_buf(pdev, mc_uc_buf);
qdf_nbuf_free(nbuf);
seg_info_new = seg_info_head;
seg_info_head = seg_info_head->next;
qdf_mem_free(seg_info_new);
}
}
/**
* dp_tx_me_send_convert_ucast(): function to convert multicast to unicast
* @vdev: DP VDEV handle
* @nbuf: Multicast nbuf
* @newmac: Table of the clients to which packets have to be sent
* @new_mac_cnt: No of clients
*
* return: no of converted packets
*/
uint16_t
dp_tx_me_send_convert_ucast(struct cdp_vdev *vdev_handle, qdf_nbuf_t nbuf,
uint8_t newmac[][QDF_MAC_ADDR_SIZE], uint8_t new_mac_cnt)
{
struct dp_vdev *vdev = (struct dp_vdev *) vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
qdf_ether_header_t *eh;
uint8_t *data;
uint16_t len;
/* reference to frame dst addr */
uint8_t *dstmac;
/* copy of original frame src addr */
uint8_t srcmac[QDF_MAC_ADDR_SIZE];
/* local index into newmac */
uint8_t new_mac_idx = 0;
struct dp_tx_me_buf_t *mc_uc_buf;
qdf_nbuf_t nbuf_clone;
struct dp_tx_msdu_info_s msdu_info;
struct dp_tx_seg_info_s *seg_info_head = NULL;
struct dp_tx_seg_info_s *seg_info_tail = NULL;
struct dp_tx_seg_info_s *seg_info_new;
qdf_dma_addr_t paddr_data;
qdf_dma_addr_t paddr_mcbuf = 0;
uint8_t empty_entry_mac[QDF_MAC_ADDR_SIZE] = {0};
QDF_STATUS status;
qdf_mem_zero(&msdu_info, sizeof(msdu_info));
dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
eh = (qdf_ether_header_t *)nbuf;
qdf_mem_copy(srcmac, eh->ether_shost, QDF_MAC_ADDR_SIZE);
len = qdf_nbuf_len(nbuf);
data = qdf_nbuf_data(nbuf);
status = qdf_nbuf_map(vdev->osdev, nbuf,
QDF_DMA_TO_DEVICE);
if (status) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Mapping failure Error:%d", status);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error, 1);
qdf_nbuf_free(nbuf);
return 1;
}
paddr_data = qdf_nbuf_mapped_paddr_get(nbuf) + QDF_MAC_ADDR_SIZE;
for (new_mac_idx = 0; new_mac_idx < new_mac_cnt; new_mac_idx++) {
dstmac = newmac[new_mac_idx];
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"added mac addr (%pM)", dstmac);
/* Check for NULL Mac Address */
if (!qdf_mem_cmp(dstmac, empty_entry_mac, QDF_MAC_ADDR_SIZE))
continue;
/* frame to self mac. skip */
if (!qdf_mem_cmp(dstmac, srcmac, QDF_MAC_ADDR_SIZE))
continue;
/*
* TODO: optimize to avoid malloc in per-packet path
* For eg. seg_pool can be made part of vdev structure
*/
seg_info_new = qdf_mem_malloc(sizeof(*seg_info_new));
if (!seg_info_new) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"alloc failed");
DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc, 1);
goto fail_seg_alloc;
}
mc_uc_buf = dp_tx_me_alloc_buf(pdev);
if (!mc_uc_buf)
goto fail_buf_alloc;
/*
* TODO: Check if we need to clone the nbuf
* Or can we just use the reference for all cases
*/
if (new_mac_idx < (new_mac_cnt - 1)) {
nbuf_clone = qdf_nbuf_clone((qdf_nbuf_t)nbuf);
if (!nbuf_clone) {
DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail, 1);
goto fail_clone;
}
} else {
/*
* Update the ref
* to account for frame sent without cloning
*/
qdf_nbuf_ref(nbuf);
nbuf_clone = nbuf;
}
qdf_mem_copy(mc_uc_buf->data, dstmac, QDF_MAC_ADDR_SIZE);
status = qdf_mem_map_nbytes_single(vdev->osdev, mc_uc_buf->data,
QDF_DMA_TO_DEVICE, QDF_MAC_ADDR_SIZE,
&paddr_mcbuf);
if (status) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Mapping failure Error:%d", status);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error, 1);
goto fail_map;
}
seg_info_new->frags[0].vaddr = (uint8_t *)mc_uc_buf;
seg_info_new->frags[0].paddr_lo = (uint32_t) paddr_mcbuf;
seg_info_new->frags[0].paddr_hi =
(uint16_t)((uint64_t)paddr_mcbuf >> 32);
seg_info_new->frags[0].len = QDF_MAC_ADDR_SIZE;
/*preparing data fragment*/
seg_info_new->frags[1].vaddr =
qdf_nbuf_data(nbuf) + QDF_MAC_ADDR_SIZE;
seg_info_new->frags[1].paddr_lo = (uint32_t)paddr_data;
seg_info_new->frags[1].paddr_hi =
(uint16_t)(((uint64_t)paddr_data) >> 32);
seg_info_new->frags[1].len = len - QDF_MAC_ADDR_SIZE;
seg_info_new->nbuf = nbuf_clone;
seg_info_new->frag_cnt = 2;
seg_info_new->total_len = len;
seg_info_new->next = NULL;
if (!seg_info_head)
seg_info_head = seg_info_new;
else
seg_info_tail->next = seg_info_new;
seg_info_tail = seg_info_new;
}
if (!seg_info_head) {
goto free_return;
}
msdu_info.u.sg_info.curr_seg = seg_info_head;
msdu_info.num_seg = new_mac_cnt;
msdu_info.frm_type = dp_tx_frm_me;
msdu_info.tid = HTT_INVALID_TID;
if (qdf_unlikely(vdev->mcast_enhancement_en > 0) &&
qdf_unlikely(pdev->hmmc_tid_override_en))
msdu_info.tid = pdev->hmmc_tid;
DP_STATS_INC(vdev, tx_i.mcast_en.ucast, new_mac_cnt);
dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
while (seg_info_head->next) {
seg_info_new = seg_info_head;
seg_info_head = seg_info_head->next;
qdf_mem_free(seg_info_new);
}
qdf_mem_free(seg_info_head);
qdf_nbuf_unmap(pdev->soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
qdf_nbuf_free(nbuf);
return new_mac_cnt;
fail_map:
qdf_nbuf_free(nbuf_clone);
fail_clone:
dp_tx_me_free_buf(pdev, mc_uc_buf);
fail_buf_alloc:
qdf_mem_free(seg_info_new);
fail_seg_alloc:
dp_tx_me_mem_free(pdev, seg_info_head);
free_return:
qdf_nbuf_unmap(pdev->soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
qdf_nbuf_free(nbuf);
return 1;
}