blob: 3653a8d9973d4002c0760afe9777905ce49035f4 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* DOC: contains scan north bound interface definitions
*/
#include <scheduler_api.h>
#include <wlan_scan_ucfg_api.h>
#include <wlan_objmgr_global_obj.h>
#include <wlan_objmgr_cmn.h>
#include <wlan_serialization_api.h>
#include <wlan_scan_tgt_api.h>
#include <wlan_scan_utils_api.h>
#include <wlan_reg_ucfg_api.h>
#include <wlan_reg_services_api.h>
#include <wlan_utility.h>
#include "../../core/src/wlan_scan_main.h"
#include "../../core/src/wlan_scan_manager.h"
#include "../../core/src/wlan_scan_cache_db.h"
#ifdef WLAN_POWER_MANAGEMENT_OFFLOAD
#include <wlan_pmo_obj_mgmt_api.h>
#endif
#ifdef WLAN_POLICY_MGR_ENABLE
#include <wlan_dfs_utils_api.h>
#include <wlan_policy_mgr_api.h>
#endif
#include "cfg_ucfg_api.h"
QDF_STATUS ucfg_scan_register_bcn_cb(struct wlan_objmgr_psoc *psoc,
update_beacon_cb cb, enum scan_cb_type type)
{
return scm_scan_register_bcn_cb(psoc, cb, type);
}
qdf_list_t *ucfg_scan_get_result(struct wlan_objmgr_pdev *pdev,
struct scan_filter *filter)
{
return scm_get_scan_result(pdev, filter);
}
QDF_STATUS ucfg_scan_db_iterate(struct wlan_objmgr_pdev *pdev,
scan_iterator_func func, void *arg)
{
return scm_iterate_scan_db(pdev, func, arg);
}
QDF_STATUS ucfg_scan_purge_results(qdf_list_t *scan_list)
{
return scm_purge_scan_results(scan_list);
}
QDF_STATUS ucfg_scan_flush_results(struct wlan_objmgr_pdev *pdev,
struct scan_filter *filter)
{
return scm_flush_results(pdev, filter);
}
void ucfg_scan_filter_valid_channel(struct wlan_objmgr_pdev *pdev,
uint8_t *chan_list, uint32_t num_chan)
{
scm_filter_valid_channel(pdev, chan_list, num_chan);
}
QDF_STATUS ucfg_scan_init(void)
{
QDF_STATUS status;
status = wlan_objmgr_register_psoc_create_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_psoc_created_notification, NULL);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("Failed to register psoc create handler");
goto fail_create_psoc;
}
status = wlan_objmgr_register_psoc_destroy_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_psoc_destroyed_notification, NULL);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("Failed to create psoc delete handler");
goto fail_psoc_destroy;
}
scm_debug("scan psoc create and delete handler registered with objmgr");
status = wlan_objmgr_register_vdev_create_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_vdev_created_notification, NULL);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("Failed to register vdev create handler");
goto fail_pdev_create;
}
status = wlan_objmgr_register_vdev_destroy_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_vdev_destroyed_notification, NULL);
if (QDF_IS_STATUS_SUCCESS(status)) {
scm_debug("scan vdev create and delete handler registered with objmgr");
return QDF_STATUS_SUCCESS;
}
scm_err("Failed to destroy vdev delete handler");
wlan_objmgr_unregister_vdev_create_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_vdev_created_notification, NULL);
fail_pdev_create:
wlan_objmgr_unregister_psoc_destroy_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_psoc_destroyed_notification, NULL);
fail_psoc_destroy:
wlan_objmgr_unregister_psoc_create_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_psoc_created_notification, NULL);
fail_create_psoc:
return status;
}
QDF_STATUS ucfg_scan_deinit(void)
{
QDF_STATUS status;
status = wlan_objmgr_unregister_psoc_create_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_psoc_created_notification, NULL);
if (status != QDF_STATUS_SUCCESS)
scm_err("Failed to unregister psoc create handler");
status = wlan_objmgr_unregister_psoc_destroy_handler(
WLAN_UMAC_COMP_SCAN,
wlan_scan_psoc_destroyed_notification, NULL);
if (status != QDF_STATUS_SUCCESS)
scm_err("Failed to unregister psoc delete handler");
status = wlan_objmgr_unregister_vdev_create_handler(WLAN_UMAC_COMP_SCAN,
wlan_scan_vdev_created_notification, NULL);
if (status != QDF_STATUS_SUCCESS)
scm_err("Failed to unregister vdev create handler");
status = wlan_objmgr_unregister_vdev_destroy_handler(
WLAN_UMAC_COMP_SCAN,
wlan_scan_vdev_destroyed_notification, NULL);
if (status != QDF_STATUS_SUCCESS)
scm_err("Failed to unregister vdev delete handler");
return status;
}
#ifdef FEATURE_WLAN_SCAN_PNO
QDF_STATUS ucfg_scan_pno_start(struct wlan_objmgr_vdev *vdev,
struct pno_scan_req_params *req)
{
struct scan_vdev_obj *scan_vdev_obj;
QDF_STATUS status;
scan_vdev_obj = wlan_get_vdev_scan_obj(vdev);
if (!scan_vdev_obj) {
scm_err("null scan_vdev_obj");
return QDF_STATUS_E_INVAL;
}
if (scan_vdev_obj->pno_in_progress) {
scm_err("pno already in progress");
return QDF_STATUS_E_ALREADY;
}
status = tgt_scan_pno_start(vdev, req);
if (QDF_IS_STATUS_ERROR(status))
scm_err("pno start failed");
else
scan_vdev_obj->pno_in_progress = true;
return status;
}
QDF_STATUS ucfg_scan_pno_stop(struct wlan_objmgr_vdev *vdev)
{
struct scan_vdev_obj *scan_vdev_obj;
QDF_STATUS status;
scan_vdev_obj = wlan_get_vdev_scan_obj(vdev);
if (!scan_vdev_obj) {
scm_err("null scan_vdev_obj");
return QDF_STATUS_E_INVAL;
}
if (!scan_vdev_obj->pno_in_progress) {
scm_err("pno already stopped");
return QDF_STATUS_E_ALREADY;
}
status = tgt_scan_pno_stop(vdev, wlan_vdev_get_id(vdev));
if (QDF_IS_STATUS_ERROR(status))
scm_err("pno start failed");
else
scan_vdev_obj->pno_in_progress = false;
return status;
}
bool ucfg_scan_get_pno_in_progress(struct wlan_objmgr_vdev *vdev)
{
struct scan_vdev_obj *scan_vdev_obj;
scan_vdev_obj = wlan_get_vdev_scan_obj(vdev);
if (!scan_vdev_obj) {
scm_err("null scan_vdev_obj");
return false;
}
return scan_vdev_obj->pno_in_progress;
}
bool ucfg_scan_get_pno_match(struct wlan_objmgr_vdev *vdev)
{
struct scan_vdev_obj *scan_vdev_obj;
scan_vdev_obj = wlan_get_vdev_scan_obj(vdev);
if (!scan_vdev_obj) {
scm_err("null scan_vdev_obj");
return false;
}
return scan_vdev_obj->pno_match_evt_received;
}
static QDF_STATUS
wlan_pno_global_init(struct pno_def_config *pno_def)
{
struct nlo_mawc_params *mawc_cfg;
qdf_wake_lock_create(&pno_def->pno_wake_lock, "wlan_pno_wl");
mawc_cfg = &pno_def->mawc_params;
pno_def->channel_prediction = SCAN_PNO_CHANNEL_PREDICTION;
pno_def->top_k_num_of_channels = SCAN_TOP_K_NUM_OF_CHANNELS;
pno_def->stationary_thresh = SCAN_STATIONARY_THRESHOLD;
pno_def->channel_prediction_full_scan =
SCAN_CHANNEL_PREDICTION_FULL_SCAN_MS;
pno_def->adaptive_dwell_mode = SCAN_ADAPTIVE_PNOSCAN_DWELL_MODE;
mawc_cfg->enable = SCAN_MAWC_NLO_ENABLED;
mawc_cfg->exp_backoff_ratio = SCAN_MAWC_NLO_EXP_BACKOFF_RATIO;
mawc_cfg->init_scan_interval = SCAN_MAWC_NLO_INIT_SCAN_INTERVAL;
mawc_cfg->max_scan_interval = SCAN_MAWC_NLO_MAX_SCAN_INTERVAL;
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
wlan_pno_global_deinit(struct pno_def_config *pno_def)
{
qdf_wake_lock_destroy(&pno_def->pno_wake_lock);
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_POLICY_MGR_ENABLE
/*
* ucfg_scan_update_pno_dwell_time() - update active and passive dwell time
* depending on active concurrency modes
* @vdev: vdev object pointer
* @req: scan request
*
* Return: void
*/
static void ucfg_scan_update_pno_dwell_time(struct wlan_objmgr_vdev *vdev,
struct pno_scan_req_params *req, struct scan_default_params *scan_def)
{
bool sap_or_p2p_present;
struct wlan_objmgr_psoc *psoc;
psoc = wlan_vdev_get_psoc(vdev);
if (!psoc)
return;
sap_or_p2p_present = policy_mgr_mode_specific_connection_count(
psoc, PM_SAP_MODE, NULL) ||
policy_mgr_mode_specific_connection_count(
psoc, PM_P2P_GO_MODE, NULL) ||
policy_mgr_mode_specific_connection_count(
psoc, PM_P2P_CLIENT_MODE, NULL);
if (sap_or_p2p_present) {
req->active_dwell_time = scan_def->conc_active_dwell;
req->passive_dwell_time = scan_def->conc_passive_dwell;
}
}
#else
static inline void ucfg_scan_update_pno_dwell_time(struct wlan_objmgr_vdev *vdev,
struct pno_scan_req_params *req, struct scan_default_params *scan_def){}
#endif
QDF_STATUS
ucfg_scan_get_pno_def_params(struct wlan_objmgr_vdev *vdev,
struct pno_scan_req_params *req)
{
struct scan_default_params *scan_def;
struct wlan_scan_obj *scan;
struct pno_def_config *pno_def;
if (!vdev || !req) {
scm_err("vdev: 0x%pK, req: 0x%pK",
vdev, req);
return QDF_STATUS_E_INVAL;
}
scan = wlan_vdev_get_scan_obj(vdev);
if (!scan) {
scm_err("scan is NULL");
return QDF_STATUS_E_INVAL;
}
scan_def = wlan_vdev_get_def_scan_params(vdev);
if (!scan_def) {
scm_err("wlan_vdev_get_def_scan_params returned NULL");
return QDF_STATUS_E_NULL_VALUE;
}
pno_def = &scan->pno_cfg;
req->active_dwell_time = scan_def->active_dwell;
req->passive_dwell_time = scan_def->passive_dwell;
/*
* Update active and passive dwell time depending
* upon the present active concurrency mode
*/
ucfg_scan_update_pno_dwell_time(vdev, req, scan_def);
req->adaptive_dwell_mode = pno_def->adaptive_dwell_mode;
req->pno_channel_prediction = pno_def->channel_prediction;
req->top_k_num_of_channels = pno_def->top_k_num_of_channels;
req->stationary_thresh = pno_def->stationary_thresh;
req->channel_prediction_full_scan =
pno_def->channel_prediction_full_scan;
req->mawc_params.vdev_id = wlan_vdev_get_id(vdev);
qdf_mem_copy(&req->mawc_params, &pno_def->mawc_params,
sizeof(req->mawc_params));
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS ucfg_scan_update_pno_config(struct pno_def_config *pno,
struct pno_user_cfg *pno_cfg)
{
pno->channel_prediction = pno_cfg->channel_prediction;
pno->top_k_num_of_channels = pno_cfg->top_k_num_of_channels;
pno->stationary_thresh = pno_cfg->stationary_thresh;
pno->adaptive_dwell_mode = pno_cfg->adaptive_dwell_mode;
pno->channel_prediction_full_scan =
pno_cfg->channel_prediction_full_scan;
qdf_mem_copy(&pno->mawc_params, &pno_cfg->mawc_params,
sizeof(pno->mawc_params));
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
ucfg_scan_register_pno_cb(struct wlan_objmgr_psoc *psoc,
scan_event_handler event_cb, void *arg)
{
struct wlan_scan_obj *scan;
if (!psoc) {
scm_err("null psoc");
return QDF_STATUS_E_INVAL;
}
scan = wlan_psoc_get_scan_obj(psoc);
qdf_spin_lock_bh(&scan->lock);
scan->pno_cfg.pno_cb.func = event_cb;
scan->pno_cfg.pno_cb.arg = arg;
qdf_spin_unlock_bh(&scan->lock);
scm_debug("event_cb: 0x%pK, arg: 0x%pK", event_cb, arg);
return QDF_STATUS_SUCCESS;
}
#else
static inline QDF_STATUS
wlan_pno_global_init(struct pno_def_config *pno_def)
{
return QDF_STATUS_SUCCESS;
}
static inline QDF_STATUS
wlan_pno_global_deinit(struct pno_def_config *pno_def)
{
return QDF_STATUS_SUCCESS;
}
static inline QDF_STATUS
ucfg_scan_update_pno_config(struct pno_def_config *pno,
struct pno_user_cfg *pno_cfg)
{
return QDF_STATUS_SUCCESS;
}
#endif
#ifdef WLAN_POLICY_MGR_ENABLE
/**
* ucfg_scan_update_dbs_scan_ctrl_ext_flag() - update dbs scan ctrl flags
* @req: pointer to scan request
*
* This function sets scan_ctrl_flags_ext value depending on the type of
* scan and the channel lists.
*
* Non-DBS scan is requested if any of the below case is met:
* 1. HW is DBS incapable
* 2. Directed scan
* 3. Channel list has only few channels
* 4. Channel list has single band channels
* 5. A high accuracy scan request is sent by kernel.
*
* DBS scan is enabled for these conditions:
* 1. A low power or low span scan request is sent by kernel.
* For remaining cases DBS is enabled by default.
* Return: void
*/
static void
ucfg_scan_update_dbs_scan_ctrl_ext_flag(struct scan_start_request *req)
{
uint32_t num_chan;
struct wlan_objmgr_psoc *psoc;
uint32_t scan_dbs_policy = SCAN_DBS_POLICY_DEFAULT;
uint32_t conn_cnt;
psoc = wlan_vdev_get_psoc(req->vdev);
if ((DISABLE_DBS_CXN_AND_SCAN ==
wlan_objmgr_psoc_get_dual_mac_disable(psoc)) ||
(ENABLE_DBS_CXN_AND_DISABLE_DBS_SCAN ==
wlan_objmgr_psoc_get_dual_mac_disable(psoc)))
goto end;
if (req->scan_req.scan_policy_high_accuracy)
goto end;
if ((req->scan_req.scan_policy_low_power) ||
(req->scan_req.scan_policy_low_span)) {
scan_dbs_policy = SCAN_DBS_POLICY_IGNORE_DUTY;
goto end;
}
conn_cnt = policy_mgr_get_connection_count(psoc);
if (conn_cnt > 0) {
scm_debug("%d active connections, go for DBS scan",
conn_cnt);
scan_dbs_policy = SCAN_DBS_POLICY_DEFAULT;
goto end;
}
if (req->scan_req.num_ssids) {
scm_debug("directed SSID");
goto end;
}
if (req->scan_req.num_bssid) {
scm_debug("directed BSSID");
goto end;
}
num_chan = req->scan_req.chan_list.num_chan;
/* num_chan=0 means all channels */
if (!num_chan)
scan_dbs_policy = SCAN_DBS_POLICY_DEFAULT;
if (num_chan < SCAN_MIN_CHAN_DBS_SCAN_THRESHOLD)
goto end;
while (num_chan > 1) {
if (!WLAN_REG_IS_SAME_BAND_CHANNELS(
req->scan_req.chan_list.chan[0].freq,
req->scan_req.chan_list.chan[num_chan-1].freq)) {
scan_dbs_policy = SCAN_DBS_POLICY_DEFAULT;
break;
}
num_chan--;
}
end:
req->scan_req.scan_ctrl_flags_ext |=
((scan_dbs_policy << SCAN_FLAG_EXT_DBS_SCAN_POLICY_BIT)
& SCAN_FLAG_EXT_DBS_SCAN_POLICY_MASK);
scm_debug("scan_ctrl_flags_ext: 0x%x",
req->scan_req.scan_ctrl_flags_ext);
}
/**
* ucfg_update_passive_dwell_time() - update dwell passive time
* @vdev: vdev object
* @req: scan request
*
* Return: None
*/
static void
ucfg_update_passive_dwell_time(struct wlan_objmgr_vdev *vdev,
struct scan_start_request *req)
{
struct wlan_objmgr_psoc *psoc;
psoc = wlan_vdev_get_psoc(vdev);
if (!psoc)
return;
if (policy_mgr_is_sta_connected_2g(psoc) &&
!policy_mgr_is_hw_dbs_capable(psoc) &&
ucfg_scan_get_bt_activity(psoc))
req->scan_req.dwell_time_passive =
PASSIVE_DWELL_TIME_BT_A2DP_ENABLED;
}
static const struct probe_time_dwell_time
scan_probe_time_dwell_time_map[SCAN_DWELL_TIME_PROBE_TIME_MAP_SIZE] = {
{28, 11}, /* 0 SSID */
{28, 20}, /* 1 SSID */
{28, 20}, /* 2 SSID */
{28, 20}, /* 3 SSID */
{28, 20}, /* 4 SSID */
{28, 20}, /* 5 SSID */
{28, 20}, /* 6 SSID */
{28, 11}, /* 7 SSID */
{28, 11}, /* 8 SSID */
{28, 11}, /* 9 SSID */
{28, 8} /* 10 SSID */
};
/**
* ucfg_scan_get_burst_duration() - get burst duration depending on max chan
* and miracast.
* @max_ch_time: max channel time
* @miracast_enabled: if miracast is enabled
*
* Return: burst_duration
*/
static inline
int ucfg_scan_get_burst_duration(int max_ch_time,
bool miracast_enabled)
{
int burst_duration = 0;
if (miracast_enabled) {
/*
* When miracast is running, burst
* duration needs to be minimum to avoid
* any stutter or glitch in miracast
* during station scan
*/
if (max_ch_time <= SCAN_GO_MIN_ACTIVE_SCAN_BURST_DURATION)
burst_duration = max_ch_time;
else
burst_duration = SCAN_GO_MIN_ACTIVE_SCAN_BURST_DURATION;
} else {
/*
* If miracast is not running, accommodate max
* stations to make the scans faster
*/
burst_duration = SCAN_BURST_SCAN_MAX_NUM_OFFCHANNELS *
max_ch_time;
if (burst_duration > SCAN_GO_MAX_ACTIVE_SCAN_BURST_DURATION) {
uint8_t channels = SCAN_P2P_SCAN_MAX_BURST_DURATION /
max_ch_time;
if (channels)
burst_duration = channels * max_ch_time;
else
burst_duration =
SCAN_GO_MAX_ACTIVE_SCAN_BURST_DURATION;
}
}
return burst_duration;
}
/**
* ucfg_scan_req_update_params() - update scan req params depending on
* concurrent mode present.
* @vdev: vdev object pointer
* @req: scan request
* @scan_obj: scan object
*
* Return: void
*/
static void ucfg_scan_req_update_concurrency_params(
struct wlan_objmgr_vdev *vdev, struct scan_start_request *req,
struct wlan_scan_obj *scan_obj)
{
bool ap_present, go_present, sta_active, p2p_cli_present, ndi_present;
struct wlan_objmgr_psoc *psoc;
psoc = wlan_vdev_get_psoc(vdev);
if (!psoc)
return;
ap_present = policy_mgr_mode_specific_connection_count(
psoc, PM_SAP_MODE, NULL);
go_present = policy_mgr_mode_specific_connection_count(
psoc, PM_P2P_GO_MODE, NULL);
p2p_cli_present = policy_mgr_mode_specific_connection_count(
psoc, PM_P2P_CLIENT_MODE, NULL);
sta_active = policy_mgr_mode_specific_connection_count(
psoc, PM_STA_MODE, NULL);
ndi_present = policy_mgr_mode_specific_connection_count(
psoc, PM_NDI_MODE, NULL);
if (policy_mgr_get_connection_count(psoc)) {
if (req->scan_req.scan_f_passive)
req->scan_req.dwell_time_passive =
scan_obj->scan_def.conc_passive_dwell;
else
req->scan_req.dwell_time_active =
scan_obj->scan_def.conc_active_dwell;
req->scan_req.max_rest_time =
scan_obj->scan_def.conc_max_rest_time;
req->scan_req.min_rest_time =
scan_obj->scan_def.conc_min_rest_time;
req->scan_req.idle_time = scan_obj->scan_def.conc_idle_time;
}
/*
* If AP is active set min rest time same as max rest time, so that
* firmware spends more time on home channel which will increase the
* probability of sending beacon at TBTT
*/
if (ap_present || go_present)
req->scan_req.min_rest_time = req->scan_req.max_rest_time;
if (req->scan_req.p2p_scan_type == SCAN_NON_P2P_DEFAULT) {
/*
* Decide burst_duration and dwell_time_active based on
* what type of devices are active.
*/
do {
if (ap_present && go_present && sta_active) {
if (req->scan_req.dwell_time_active <=
SCAN_3PORT_CONC_SCAN_MAX_BURST_DURATION)
req->scan_req.burst_duration =
req->scan_req.dwell_time_active;
else
req->scan_req.burst_duration =
SCAN_3PORT_CONC_SCAN_MAX_BURST_DURATION;
break;
}
if (scan_obj->miracast_enabled &&
policy_mgr_is_mcc_in_24G(psoc))
req->scan_req.max_rest_time =
scan_obj->scan_def.sta_miracast_mcc_rest_time;
if (go_present) {
/*
* Background scan while GO is sending beacons.
* Every off-channel transition has overhead of
* 2 beacon intervals for NOA. Maximize number
* of channels in every transition by using
* burst scan.
*/
req->scan_req.burst_duration =
ucfg_scan_get_burst_duration(
req->scan_req.dwell_time_active,
scan_obj->miracast_enabled);
break;
}
if ((sta_active || p2p_cli_present) &&
!req->scan_req.burst_duration) {
/* Typical background scan.
* Disable burst scan for now.
*/
req->scan_req.burst_duration = 0;
break;
}
if (ndi_present) {
req->scan_req.burst_duration =
ucfg_scan_get_burst_duration(
req->scan_req.dwell_time_active,
scan_obj->miracast_enabled);
break;
}
} while (0);
if (ap_present) {
uint8_t ssid_num;
ssid_num = req->scan_req.num_ssids *
req->scan_req.num_bssid;
req->scan_req.repeat_probe_time =
scan_probe_time_dwell_time_map[
QDF_MIN(ssid_num,
SCAN_DWELL_TIME_PROBE_TIME_MAP_SIZE
- 1)].probe_time;
req->scan_req.n_probes =
(req->scan_req.repeat_probe_time > 0) ?
req->scan_req.dwell_time_active /
req->scan_req.repeat_probe_time : 0;
}
}
if (ap_present) {
uint8_t ap_chan;
struct wlan_objmgr_pdev *pdev = wlan_vdev_get_pdev(vdev);
ap_chan = policy_mgr_get_channel(psoc, PM_SAP_MODE, NULL);
/*
* P2P/STA scan while SoftAP is sending beacons.
* Max duration of CTS2self is 32 ms, which limits the
* dwell time. If DBS is supported and if SAP is on 2G channel
* then keep passive dwell time default.
*/
req->scan_req.dwell_time_active =
QDF_MIN(req->scan_req.dwell_time_active,
(SCAN_CTS_DURATION_MS_MAX -
SCAN_ROAM_SCAN_CHANNEL_SWITCH_TIME));
if (!policy_mgr_is_hw_dbs_capable(psoc) ||
(policy_mgr_is_hw_dbs_capable(psoc) &&
WLAN_CHAN_IS_5GHZ(ap_chan))) {
req->scan_req.dwell_time_passive =
req->scan_req.dwell_time_active;
}
req->scan_req.burst_duration = 0;
if (utils_is_dfs_ch(pdev, ap_chan))
req->scan_req.burst_duration =
SCAN_BURST_SCAN_MAX_NUM_OFFCHANNELS *
req->scan_req.dwell_time_active;
}
}
#else
static inline void ucfg_scan_req_update_concurrency_params(
struct wlan_objmgr_vdev *vdev, struct scan_start_request *req,
struct wlan_scan_obj *scan_obj)
{
}
static inline void
ucfg_update_passive_dwell_time(struct wlan_objmgr_vdev *vdev,
struct scan_start_request *req) {}
static inline void
ucfg_scan_update_dbs_scan_ctrl_ext_flag(
struct scan_start_request *req) {}
#endif
QDF_STATUS
ucfg_scan_set_custom_scan_chan_list(struct wlan_objmgr_pdev *pdev,
struct chan_list *chan_list)
{
uint8_t pdev_id;
struct wlan_scan_obj *scan_obj;
if (!pdev || !chan_list) {
scm_warn("pdev: 0x%pK, chan_list: 0x%pK", pdev, chan_list);
return QDF_STATUS_E_NULL_VALUE;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
scan_obj = wlan_pdev_get_scan_obj(pdev);
qdf_mem_copy(&scan_obj->pdev_info[pdev_id].custom_chan_list,
chan_list, sizeof(*chan_list));
return QDF_STATUS_SUCCESS;
}
/**
* ucfg_scan_req_update_params() - update scan req params depending on modes
* and scan type.
* @vdev: vdev object pointer
* @req: scan request
* @scan_obj: scan object
*
* Return: void
*/
static void
ucfg_scan_req_update_params(struct wlan_objmgr_vdev *vdev,
struct scan_start_request *req, struct wlan_scan_obj *scan_obj)
{
struct chan_list *custom_chan_list;
struct wlan_objmgr_pdev *pdev;
uint8_t pdev_id;
/* Ensure correct number of probes are sent on active channel */
if (!req->scan_req.repeat_probe_time)
req->scan_req.repeat_probe_time =
req->scan_req.dwell_time_active / SCAN_NPROBES_DEFAULT;
if (req->scan_req.scan_f_passive)
req->scan_req.scan_ctrl_flags_ext |=
SCAN_FLAG_EXT_FILTER_PUBLIC_ACTION_FRAME;
if (!req->scan_req.n_probes)
req->scan_req.n_probes = (req->scan_req.repeat_probe_time > 0) ?
req->scan_req.dwell_time_active /
req->scan_req.repeat_probe_time : 0;
if (req->scan_req.p2p_scan_type == SCAN_NON_P2P_DEFAULT) {
req->scan_req.scan_f_cck_rates = true;
if (!req->scan_req.num_ssids)
req->scan_req.scan_f_bcast_probe = true;
req->scan_req.scan_f_add_ds_ie_in_probe = true;
req->scan_req.scan_f_filter_prb_req = true;
req->scan_req.scan_f_add_tpc_ie_in_probe = true;
} else {
req->scan_req.adaptive_dwell_time_mode = SCAN_DWELL_MODE_STATIC;
if (req->scan_req.p2p_scan_type == SCAN_P2P_LISTEN) {
req->scan_req.repeat_probe_time = 0;
} else {
req->scan_req.scan_f_filter_prb_req = true;
if (!req->scan_req.num_ssids)
req->scan_req.scan_f_bcast_probe = true;
req->scan_req.dwell_time_active +=
P2P_SEARCH_DWELL_TIME_INC;
/*
* 3 channels with default max dwell time 40 ms.
* Cap limit will be set by
* P2P_SCAN_MAX_BURST_DURATION. Burst duration
* should be such that no channel is scanned less
* than the dwell time in normal scenarios.
*/
if (req->scan_req.chan_list.num_chan ==
WLAN_P2P_SOCIAL_CHANNELS &&
!scan_obj->miracast_enabled)
req->scan_req.repeat_probe_time =
req->scan_req.dwell_time_active / 5;
else
req->scan_req.repeat_probe_time =
req->scan_req.dwell_time_active / 3;
req->scan_req.burst_duration =
BURST_SCAN_MAX_NUM_OFFCHANNELS *
req->scan_req.dwell_time_active;
if (req->scan_req.burst_duration >
P2P_SCAN_MAX_BURST_DURATION) {
uint8_t channels =
P2P_SCAN_MAX_BURST_DURATION /
req->scan_req.dwell_time_active;
if (channels)
req->scan_req.burst_duration =
channels *
req->scan_req.dwell_time_active;
else
req->scan_req.burst_duration =
P2P_SCAN_MAX_BURST_DURATION;
}
req->scan_req.scan_ev_bss_chan = false;
}
}
if (!req->scan_req.scan_f_passive)
ucfg_update_passive_dwell_time(vdev, req);
ucfg_scan_update_dbs_scan_ctrl_ext_flag(req);
/*
* No need to update conncurrency parmas if req is passive scan on
* single channel ie ROC, Preauth etc
*/
if (!(req->scan_req.scan_f_passive &&
req->scan_req.chan_list.num_chan == 1))
ucfg_scan_req_update_concurrency_params(vdev, req, scan_obj);
/* Set wide band flag if enabled. This will cause
* phymode TLV being sent to FW.
*/
pdev = wlan_vdev_get_pdev(vdev);
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
if (ucfg_scan_get_wide_band_scan(pdev))
req->scan_req.scan_f_wide_band = true;
else
req->scan_req.scan_f_wide_band = false;
/* Overwrite scan channles with custom scan channel
* list if configured.
*/
custom_chan_list = &scan_obj->pdev_info[pdev_id].custom_chan_list;
if (custom_chan_list->num_chan)
qdf_mem_copy(&req->scan_req.chan_list, custom_chan_list,
sizeof(struct chan_list));
else if (req->scan_req.scan_f_wide_band &&
!req->scan_req.chan_list.num_chan)
ucfg_scan_init_chanlist_params(req, 0, NULL, NULL);
scm_debug("dwell time: active %d, passive %d, repeat_probe_time %d "
"n_probes %d flags_ext %x, wide_bw_scan: %d",
req->scan_req.dwell_time_active,
req->scan_req.dwell_time_passive,
req->scan_req.repeat_probe_time, req->scan_req.n_probes,
req->scan_req.scan_ctrl_flags_ext,
req->scan_req.scan_f_wide_band);
}
QDF_STATUS
ucfg_scan_start(struct scan_start_request *req)
{
struct scheduler_msg msg = {0};
QDF_STATUS status;
struct wlan_scan_obj *scan_obj;
struct wlan_objmgr_pdev *pdev;
uint8_t idx;
if (!req || !req->vdev) {
scm_err("req or vdev within req is NULL");
if (req)
scm_scan_free_scan_request_mem(req);
return QDF_STATUS_E_NULL_VALUE;
}
pdev = wlan_vdev_get_pdev(req->vdev);
if (!pdev) {
scm_err("Failed to get pdev object");
scm_scan_free_scan_request_mem(req);
return QDF_STATUS_E_NULL_VALUE;
}
scan_obj = wlan_pdev_get_scan_obj(pdev);
if (!scan_obj) {
scm_err("Failed to get scan object");
scm_scan_free_scan_request_mem(req);
return QDF_STATUS_E_NULL_VALUE;
}
if (!scan_obj->enable_scan) {
scm_err("scan disabled, rejecting the scan req");
scm_scan_free_scan_request_mem(req);
return QDF_STATUS_E_AGAIN;
}
scm_debug("reqid: %d, scanid: %d, vdevid: %d",
req->scan_req.scan_req_id, req->scan_req.scan_id,
req->scan_req.vdev_id);
ucfg_scan_req_update_params(req->vdev, req, scan_obj);
/* Try to get vdev reference. Return if reference could
* not be taken. Reference will be released once scan
* request handling completes along with free of @req.
*/
status = wlan_objmgr_vdev_try_get_ref(req->vdev, WLAN_SCAN_ID);
if (QDF_IS_STATUS_ERROR(status)) {
scm_info("unable to get reference");
scm_scan_free_scan_request_mem(req);
return status;
}
scm_info("request to scan %d channels",
req->scan_req.chan_list.num_chan);
for (idx = 0; idx < req->scan_req.chan_list.num_chan; idx++)
scm_debug("chan[%d]: freq:%d, phymode:%d", idx,
req->scan_req.chan_list.chan[idx].freq,
req->scan_req.chan_list.chan[idx].phymode);
msg.bodyptr = req;
msg.callback = scm_scan_start_req;
msg.flush_callback = scm_scan_start_flush_callback;
status = scheduler_post_msg(QDF_MODULE_ID_OS_IF, &msg);
if (QDF_IS_STATUS_ERROR(status)) {
wlan_objmgr_vdev_release_ref(req->vdev, WLAN_SCAN_ID);
scm_err("failed to post to QDF_MODULE_ID_OS_IF");
scm_scan_free_scan_request_mem(req);
}
return status;
}
QDF_STATUS ucfg_scan_set_enable(struct wlan_objmgr_psoc *psoc, bool enable)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return QDF_STATUS_E_NULL_VALUE;
}
scan_obj->enable_scan = enable;
scm_debug("set enable_scan to %d", scan_obj->enable_scan);
return QDF_STATUS_SUCCESS;
}
bool ucfg_scan_get_enable(struct wlan_objmgr_psoc *psoc)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return false;
}
return scan_obj->enable_scan;
}
QDF_STATUS ucfg_scan_set_miracast(
struct wlan_objmgr_psoc *psoc, bool enable)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return QDF_STATUS_E_NULL_VALUE;
}
scan_obj->miracast_enabled = enable;
scm_debug("set miracast_enable to %d", scan_obj->miracast_enabled);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
ucfg_scan_set_wide_band_scan(struct wlan_objmgr_pdev *pdev, bool enable)
{
uint8_t pdev_id;
struct wlan_scan_obj *scan_obj;
if (!pdev) {
scm_warn("null vdev");
return QDF_STATUS_E_NULL_VALUE;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
scan_obj = wlan_pdev_get_scan_obj(pdev);
scm_debug("set wide_band_scan to %d", enable);
scan_obj->pdev_info[pdev_id].wide_band_scan = enable;
return QDF_STATUS_SUCCESS;
}
bool ucfg_scan_get_wide_band_scan(struct wlan_objmgr_pdev *pdev)
{
uint8_t pdev_id;
struct wlan_scan_obj *scan_obj;
if (!pdev) {
scm_warn("null vdev");
return QDF_STATUS_E_NULL_VALUE;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
scan_obj = wlan_pdev_get_scan_obj(pdev);
return scan_obj->pdev_info[pdev_id].wide_band_scan;
}
#ifdef WLAN_DFS_CHAN_HIDDEN_SSID
QDF_STATUS
ucfg_scan_config_hidden_ssid_for_bssid(struct wlan_objmgr_pdev *pdev,
uint8_t *bssid, struct wlan_ssid *ssid)
{
uint8_t pdev_id;
struct wlan_scan_obj *scan_obj;
if (!pdev) {
scm_warn("null vdev");
return QDF_STATUS_E_NULL_VALUE;
}
pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
scan_obj = wlan_pdev_get_scan_obj(pdev);
scm_debug("Configure bsssid:%pM ssid:%.*s",
bssid, ssid->length, ssid->ssid);
qdf_mem_copy(scan_obj->pdev_info[pdev_id].conf_bssid,
bssid, QDF_MAC_ADDR_SIZE);
scan_obj->pdev_info[pdev_id].conf_ssid.length = ssid->length;
qdf_mem_copy(scan_obj->pdev_info[pdev_id].conf_ssid.ssid,
ssid->ssid,
scan_obj->pdev_info[pdev_id].conf_ssid.length);
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_DFS_CHAN_HIDDEN_SSID */
QDF_STATUS
ucfg_scan_cancel(struct scan_cancel_request *req)
{
struct scheduler_msg msg = {0};
QDF_STATUS status;
if (!req || !req->vdev) {
scm_err("req or vdev within req is NULL");
if (req)
qdf_mem_free(req);
return QDF_STATUS_E_NULL_VALUE;
}
scm_debug("reqid: %d, scanid: %d, vdevid: %d, type: %d",
req->cancel_req.requester, req->cancel_req.scan_id,
req->cancel_req.vdev_id, req->cancel_req.req_type);
status = wlan_objmgr_vdev_try_get_ref(req->vdev, WLAN_SCAN_ID);
if (QDF_IS_STATUS_ERROR(status)) {
scm_info("Failed to get vdev ref; status:%d", status);
goto req_free;
}
msg.bodyptr = req;
msg.callback = scm_scan_cancel_req;
msg.flush_callback = scm_scan_cancel_flush_callback;
status = scheduler_post_msg(QDF_MODULE_ID_OS_IF, &msg);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("failed to post to QDF_MODULE_ID_OS_IF");
goto vdev_put;
}
return QDF_STATUS_SUCCESS;
vdev_put:
wlan_objmgr_vdev_release_ref(req->vdev, WLAN_SCAN_ID);
req_free:
qdf_mem_free(req);
return status;
}
QDF_STATUS
ucfg_scan_cancel_sync(struct scan_cancel_request *req)
{
QDF_STATUS status;
bool cancel_vdev = false, cancel_pdev = false;
struct wlan_objmgr_vdev *vdev;
struct wlan_objmgr_pdev *pdev;
uint32_t max_wait_iterations = SCM_CANCEL_SCAN_WAIT_ITERATION;
qdf_event_t cancel_scan_event;
if (!req || !req->vdev) {
scm_err("req or vdev within req is NULL");
if (req)
qdf_mem_free(req);
return QDF_STATUS_E_NULL_VALUE;
}
if (req->cancel_req.req_type ==
WLAN_SCAN_CANCEL_PDEV_ALL)
cancel_pdev = true;
else if (req->cancel_req.req_type ==
WLAN_SCAN_CANCEL_VDEV_ALL)
cancel_vdev = true;
vdev = req->vdev;
status = ucfg_scan_cancel(req);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("failed to post to QDF_MODULE_ID_OS_IF");
return status;
}
/*
* If cancel req is to cancel all scan of pdev or vdev
* wait until all scan of pdev or vdev get cancelled
*/
qdf_event_create(&cancel_scan_event);
qdf_event_reset(&cancel_scan_event);
if (cancel_pdev) {
pdev = wlan_vdev_get_pdev(vdev);
while ((ucfg_scan_get_pdev_status(pdev) !=
SCAN_NOT_IN_PROGRESS) && max_wait_iterations) {
scm_debug("wait for all pdev scan to get complete");
qdf_wait_single_event(&cancel_scan_event,
qdf_system_msecs_to_ticks(
SCM_CANCEL_SCAN_WAIT_TIME));
max_wait_iterations--;
}
} else if (cancel_vdev) {
while ((ucfg_scan_get_vdev_status(vdev) !=
SCAN_NOT_IN_PROGRESS) && max_wait_iterations) {
scm_debug("wait for all vdev scan to get complete");
qdf_wait_single_event(&cancel_scan_event,
qdf_system_msecs_to_ticks(
SCM_CANCEL_SCAN_WAIT_TIME));
max_wait_iterations--;
}
}
qdf_event_destroy(&cancel_scan_event);
if (!max_wait_iterations) {
scm_err("Failed to wait for scans to get complete");
return QDF_STATUS_E_TIMEOUT;
}
return status;
}
wlan_scan_requester
ucfg_scan_register_requester(struct wlan_objmgr_psoc *psoc,
uint8_t *name, scan_event_handler event_cb, void *arg)
{
int i, j;
struct wlan_scan_obj *scan;
struct scan_requester_info *requesters;
wlan_scan_requester requester = {0};
if (!psoc) {
scm_err("null psoc");
return 0;
}
scan = wlan_psoc_get_scan_obj(psoc);
requesters = scan->requesters;
qdf_spin_lock_bh(&scan->lock);
for (i = 0; i < WLAN_MAX_REQUESTORS; ++i) {
if (requesters[i].requester == 0) {
requesters[i].requester =
WLAN_SCAN_REQUESTER_ID_PREFIX | i;
j = 0;
while (name[j] && (j < (WLAN_MAX_MODULE_NAME - 1))) {
requesters[i].module[j] = name[j];
++j;
}
requesters[i].module[j] = 0;
requesters[i].ev_handler.func = event_cb;
requesters[i].ev_handler.arg = arg;
requester = requesters[i].requester;
break;
}
}
qdf_spin_unlock_bh(&scan->lock);
scm_debug("module: %s, event_cb: 0x%pK, arg: 0x%pK, reqid: %d",
name, event_cb, arg, requester);
return requester;
}
void
ucfg_scan_unregister_requester(struct wlan_objmgr_psoc *psoc,
wlan_scan_requester requester)
{
int idx = requester & WLAN_SCAN_REQUESTER_ID_MASK;
struct wlan_scan_obj *scan;
struct scan_requester_info *requesters;
if (idx >= WLAN_MAX_REQUESTORS) {
scm_err("requester id invalid");
return;
}
if (!psoc) {
scm_err("null psoc");
return;
}
scan = wlan_psoc_get_scan_obj(psoc);
requesters = scan->requesters;
scm_debug("reqid: %d", requester);
qdf_spin_lock_bh(&scan->lock);
requesters[idx].requester = 0;
requesters[idx].module[0] = 0;
requesters[idx].ev_handler.func = NULL;
requesters[idx].ev_handler.arg = NULL;
qdf_spin_unlock_bh(&scan->lock);
}
uint8_t*
ucfg_get_scan_requester_name(struct wlan_objmgr_psoc *psoc,
wlan_scan_requester requester)
{
int idx = requester & WLAN_SCAN_REQUESTER_ID_MASK;
struct wlan_scan_obj *scan;
struct scan_requester_info *requesters;
if (!psoc) {
scm_err("null psoc");
return "null";
}
scan = wlan_psoc_get_scan_obj(psoc);
requesters = scan->requesters;
if ((idx < WLAN_MAX_REQUESTORS) &&
(requesters[idx].requester == requester)) {
return requesters[idx].module;
}
return (uint8_t *)"unknown";
}
wlan_scan_id
ucfg_scan_get_scan_id(struct wlan_objmgr_psoc *psoc)
{
wlan_scan_id id;
struct wlan_scan_obj *scan;
if (!psoc) {
QDF_ASSERT(0);
scm_err("null psoc");
return 0;
}
scan = wlan_psoc_get_scan_obj(psoc);
id = qdf_atomic_inc_return(&scan->scan_ids);
id = id & WLAN_SCAN_ID_MASK;
/* Mark this scan request as triggered by host
* by setting WLAN_HOST_SCAN_REQ_ID_PREFIX flag.
*/
id = id | WLAN_HOST_SCAN_REQ_ID_PREFIX;
scm_debug("scan_id: 0x%x", id);
return id;
}
static QDF_STATUS
scm_add_scan_event_handler(struct pdev_scan_ev_handler *pdev_ev_handler,
scan_event_handler event_cb, void *arg)
{
struct cb_handler *cb_handler;
uint32_t handler_cnt = pdev_ev_handler->handler_cnt;
/* Assign next available slot to this registration request */
cb_handler = &(pdev_ev_handler->cb_handlers[handler_cnt]);
cb_handler->func = event_cb;
cb_handler->arg = arg;
pdev_ev_handler->handler_cnt++;
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
ucfg_scan_register_event_handler(struct wlan_objmgr_pdev *pdev,
scan_event_handler event_cb, void *arg)
{
uint32_t idx;
struct wlan_scan_obj *scan;
struct pdev_scan_ev_handler *pdev_ev_handler;
struct cb_handler *cb_handler;
/* scan event handler call back can't be NULL */
if (!pdev || !event_cb) {
scm_err("pdev: %pK, event_cb: %pK", pdev, event_cb);
return QDF_STATUS_E_NULL_VALUE;
}
scm_debug("pdev: %pK, event_cb: %pK, arg: %pK\n", pdev, event_cb, arg);
scan = wlan_pdev_get_scan_obj(pdev);
pdev_ev_handler = wlan_pdev_get_pdev_scan_ev_handlers(pdev);
cb_handler = &(pdev_ev_handler->cb_handlers[0]);
qdf_spin_lock_bh(&scan->lock);
/* Ensure its not a duplicate registration request */
for (idx = 0; idx < MAX_SCAN_EVENT_HANDLERS_PER_PDEV;
idx++, cb_handler++) {
if ((cb_handler->func == event_cb) &&
(cb_handler->arg == arg)) {
qdf_spin_unlock_bh(&scan->lock);
scm_warn("func: %pK, arg: %pK already exists",
event_cb, arg);
return QDF_STATUS_SUCCESS;
}
}
QDF_ASSERT(pdev_ev_handler->handler_cnt <
MAX_SCAN_EVENT_HANDLERS_PER_PDEV);
if (pdev_ev_handler->handler_cnt >= MAX_SCAN_EVENT_HANDLERS_PER_PDEV) {
qdf_spin_unlock_bh(&scan->lock);
scm_warn("No more registrations possible");
return QDF_STATUS_E_NOMEM;
}
scm_add_scan_event_handler(pdev_ev_handler, event_cb, arg);
qdf_spin_unlock_bh(&scan->lock);
scm_debug("event_cb: 0x%pK, arg: 0x%pK", event_cb, arg);
return QDF_STATUS_SUCCESS;
}
void wlan_scan_cfg_get_passive_dwelltime(struct wlan_objmgr_psoc *psoc,
uint32_t *dwell_time)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return;
}
*dwell_time = scan_obj->scan_def.passive_dwell;
}
void wlan_scan_cfg_set_passive_dwelltime(struct wlan_objmgr_psoc *psoc,
uint32_t dwell_time)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return;
}
scan_obj->scan_def.passive_dwell = dwell_time;
}
void wlan_scan_cfg_get_active_dwelltime(struct wlan_objmgr_psoc *psoc,
uint32_t *dwell_time)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return;
}
*dwell_time = scan_obj->scan_def.active_dwell;
}
void wlan_scan_cfg_set_active_dwelltime(struct wlan_objmgr_psoc *psoc,
uint32_t dwell_time)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return;
}
scan_obj->scan_def.active_dwell = dwell_time;
}
static QDF_STATUS
wlan_scan_global_init(struct wlan_objmgr_psoc *psoc,
struct wlan_scan_obj *scan_obj)
{
scan_obj->enable_scan = true;
scan_obj->drop_bcn_on_chan_mismatch = true;
scan_obj->disable_timeout = false;
scan_obj->scan_def.active_dwell =
cfg_get(psoc, CFG_ACTIVE_MAX_CHANNEL_TIME);
scan_obj->scan_def.passive_dwell =
cfg_get(psoc, CFG_PASSIVE_MAX_CHANNEL_TIME);
scan_obj->scan_def.max_rest_time = SCAN_MAX_REST_TIME;
scan_obj->scan_def.sta_miracast_mcc_rest_time =
SCAN_STA_MIRACAST_MCC_REST_TIME;
scan_obj->scan_def.min_rest_time = SCAN_MIN_REST_TIME;
scan_obj->scan_def.conc_active_dwell = SCAN_CONC_ACTIVE_DWELL_TIME;
scan_obj->scan_def.conc_passive_dwell = SCAN_CONC_PASSIVE_DWELL_TIME;
scan_obj->scan_def.conc_max_rest_time = SCAN_CONC_MAX_REST_TIME;
scan_obj->scan_def.conc_min_rest_time = SCAN_CONC_MIN_REST_TIME;
scan_obj->scan_def.conc_idle_time = SCAN_CONC_IDLE_TIME;
scan_obj->scan_def.repeat_probe_time =
cfg_get(psoc, CFG_SCAN_PROBE_REPEAT_TIME);
scan_obj->scan_def.probe_spacing_time = SCAN_PROBE_SPACING_TIME;
scan_obj->scan_def.probe_delay = SCAN_PROBE_DELAY;
scan_obj->scan_def.burst_duration = SCAN_BURST_DURATION;
scan_obj->scan_def.max_scan_time = SCAN_MAX_SCAN_TIME;
scan_obj->scan_def.num_probes = cfg_get(psoc, CFG_SCAN_NUM_PROBES);
scan_obj->scan_def.scan_cache_aging_time = SCAN_CACHE_AGING_TIME;
scan_obj->scan_def.max_bss_per_pdev = SCAN_MAX_BSS_PDEV;
scan_obj->scan_def.scan_priority = SCAN_PRIORITY;
scan_obj->scan_def.idle_time = SCAN_NETWORK_IDLE_TIMEOUT;
scan_obj->scan_def.adaptive_dwell_time_mode =
cfg_get(psoc, CFG_ADAPTIVE_SCAN_DWELL_MODE);
scan_obj->scan_def.is_bssid_hint_priority =
cfg_get(psoc, CFG_IS_BSSID_HINT_PRIORITY);
/* scan contrl flags */
scan_obj->scan_def.scan_f_passive = true;
scan_obj->scan_def.scan_f_ofdm_rates = true;
scan_obj->scan_def.scan_f_2ghz = true;
scan_obj->scan_def.scan_f_5ghz = true;
scan_obj->scan_def.scan_f_chan_stat_evnt = SCAN_CHAN_STATS_EVENT_ENAB;
/* scan event flags */
scan_obj->scan_def.scan_ev_started = true;
scan_obj->scan_def.scan_ev_completed = true;
scan_obj->scan_def.scan_ev_bss_chan = true;
scan_obj->scan_def.scan_ev_foreign_chan = true;
scan_obj->scan_def.scan_ev_foreign_chn_exit = true;
scan_obj->scan_def.scan_ev_dequeued = true;
scan_obj->scan_def.scan_ev_preempted = true;
scan_obj->scan_def.scan_ev_start_failed = true;
scan_obj->scan_def.scan_ev_restarted = true;
/* init scan id seed */
qdf_atomic_init(&scan_obj->scan_ids);
return wlan_pno_global_init(&scan_obj->pno_cfg);
}
static QDF_STATUS
scm_remove_scan_event_handler(struct pdev_scan_ev_handler *pdev_ev_handler,
struct cb_handler *entry)
{
struct cb_handler *last_entry;
uint32_t handler_cnt = pdev_ev_handler->handler_cnt;
/* Replace event handler being deleted
* with the last one in the list.
*/
last_entry = &(pdev_ev_handler->cb_handlers[handler_cnt - 1]);
entry->func = last_entry->func;
entry->arg = last_entry->arg;
/* Clear our last entry */
last_entry->func = NULL;
last_entry->arg = NULL;
pdev_ev_handler->handler_cnt--;
return QDF_STATUS_SUCCESS;
}
void
ucfg_scan_unregister_event_handler(struct wlan_objmgr_pdev *pdev,
scan_event_handler event_cb, void *arg)
{
uint8_t found = false;
uint32_t idx;
uint32_t handler_cnt;
struct wlan_scan_obj *scan;
struct cb_handler *cb_handler;
struct pdev_scan_ev_handler *pdev_ev_handler;
scm_debug("pdev: %pK, event_cb: 0x%pK, arg: 0x%pK", pdev, event_cb,
arg);
if (!pdev) {
scm_err("null pdev");
return;
}
scan = wlan_pdev_get_scan_obj(pdev);
pdev_ev_handler = wlan_pdev_get_pdev_scan_ev_handlers(pdev);
cb_handler = &(pdev_ev_handler->cb_handlers[0]);
qdf_spin_lock_bh(&scan->lock);
handler_cnt = pdev_ev_handler->handler_cnt;
if (!handler_cnt) {
qdf_spin_unlock_bh(&scan->lock);
scm_info("No event handlers registered");
return;
}
for (idx = 0; idx < MAX_SCAN_EVENT_HANDLERS_PER_PDEV;
idx++, cb_handler++) {
if ((cb_handler->func == event_cb) &&
(cb_handler->arg == arg)) {
/* Event handler found, remove it
* from event handler list.
*/
found = true;
scm_remove_scan_event_handler(pdev_ev_handler,
cb_handler);
handler_cnt--;
break;
}
}
qdf_spin_unlock_bh(&scan->lock);
scm_debug("event handler %s, remaining handlers: %d",
(found ? "removed" : "not found"), handler_cnt);
}
QDF_STATUS
ucfg_scan_init_default_params(struct wlan_objmgr_vdev *vdev,
struct scan_start_request *req)
{
struct scan_default_params *def;
if (!vdev | !req) {
scm_err("vdev: 0x%pK, req: 0x%pK", vdev, req);
return QDF_STATUS_E_INVAL;
}
def = wlan_vdev_get_def_scan_params(vdev);
if (!def) {
scm_err("wlan_vdev_get_def_scan_params returned NULL");
return QDF_STATUS_E_NULL_VALUE;
}
/* Zero out everything and explicitly set fields as required */
qdf_mem_zero(req, sizeof(*req));
req->vdev = vdev;
req->scan_req.vdev_id = wlan_vdev_get_id(vdev);
req->scan_req.p2p_scan_type = SCAN_NON_P2P_DEFAULT;
req->scan_req.scan_priority = def->scan_priority;
req->scan_req.dwell_time_active = def->active_dwell;
req->scan_req.dwell_time_passive = def->passive_dwell;
req->scan_req.min_rest_time = def->min_rest_time;
req->scan_req.max_rest_time = def->max_rest_time;
req->scan_req.repeat_probe_time = def->repeat_probe_time;
req->scan_req.probe_spacing_time = def->probe_spacing_time;
req->scan_req.idle_time = def->idle_time;
req->scan_req.max_scan_time = def->max_scan_time;
req->scan_req.probe_delay = def->probe_delay;
req->scan_req.burst_duration = def->burst_duration;
req->scan_req.n_probes = def->num_probes;
req->scan_req.adaptive_dwell_time_mode =
def->adaptive_dwell_time_mode;
req->scan_req.scan_flags = def->scan_flags;
req->scan_req.scan_events = def->scan_events;
req->scan_req.scan_random.randomize = def->enable_mac_spoofing;
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
ucfg_scan_init_ssid_params(struct scan_start_request *req,
uint32_t num_ssid, struct wlan_ssid *ssid_list)
{
uint32_t max_ssid = sizeof(req->scan_req.ssid) /
sizeof(req->scan_req.ssid[0]);
if (!req) {
scm_err("null request");
return QDF_STATUS_E_NULL_VALUE;
}
if (!num_ssid) {
/* empty channel list provided */
req->scan_req.num_ssids = 0;
qdf_mem_zero(&req->scan_req.ssid[0],
sizeof(req->scan_req.ssid));
return QDF_STATUS_SUCCESS;
}
if (!ssid_list) {
scm_err("null ssid_list while num_ssid: %d", num_ssid);
return QDF_STATUS_E_NULL_VALUE;
}
if (num_ssid > max_ssid) {
/* got a big list. alert and continue */
scm_warn("overflow: received %d, max supported : %d",
num_ssid, max_ssid);
return QDF_STATUS_E_E2BIG;
}
if (max_ssid > num_ssid)
max_ssid = num_ssid;
req->scan_req.num_ssids = max_ssid;
qdf_mem_copy(&req->scan_req.ssid[0], ssid_list,
(req->scan_req.num_ssids * sizeof(req->scan_req.ssid[0])));
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
ucfg_scan_init_bssid_params(struct scan_start_request *req,
uint32_t num_bssid, struct qdf_mac_addr *bssid_list)
{
uint32_t max_bssid = sizeof(req->scan_req.bssid_list) /
sizeof(req->scan_req.bssid_list[0]);
if (!req) {
scm_err("null request");
return QDF_STATUS_E_NULL_VALUE;
}
if (!num_bssid) {
/* empty channel list provided */
req->scan_req.num_bssid = 0;
qdf_mem_zero(&req->scan_req.bssid_list[0],
sizeof(req->scan_req.bssid_list));
return QDF_STATUS_SUCCESS;
}
if (!bssid_list) {
scm_err("null bssid_list while num_bssid: %d", num_bssid);
return QDF_STATUS_E_NULL_VALUE;
}
if (num_bssid > max_bssid) {
/* got a big list. alert and continue */
scm_warn("overflow: received %d, max supported : %d",
num_bssid, max_bssid);
return QDF_STATUS_E_E2BIG;
}
if (max_bssid > num_bssid)
max_bssid = num_bssid;
req->scan_req.num_bssid = max_bssid;
qdf_mem_copy(&req->scan_req.bssid_list[0], bssid_list,
req->scan_req.num_bssid * sizeof(req->scan_req.bssid_list[0]));
return QDF_STATUS_SUCCESS;
}
/**
* is_chan_enabled_for_scan() - helper API to check if a frequency
* is allowed to scan.
* @reg_chan: regulatory_channel object
* @low_2g: lower 2.4 GHz frequency thresold
* @high_2g: upper 2.4 GHz frequency thresold
* @low_5g: lower 5 GHz frequency thresold
* @high_5g: upper 5 GHz frequency thresold
*
* Return: true if scan is allowed. false otherwise.
*/
static bool
is_chan_enabled_for_scan(struct regulatory_channel *reg_chan,
uint32_t low_2g, uint32_t high_2g, uint32_t low_5g,
uint32_t high_5g)
{
if (reg_chan->state == CHANNEL_STATE_DISABLE)
return false;
if (reg_chan->nol_chan)
return false;
/* 2 GHz channel */
if ((util_scan_scm_chan_to_band(reg_chan->chan_num) ==
WLAN_BAND_2_4_GHZ) &&
((reg_chan->center_freq < low_2g) ||
(reg_chan->center_freq > high_2g)))
return false;
else if ((reg_chan->center_freq < low_5g) ||
(reg_chan->center_freq > high_5g))
return false;
return true;
}
QDF_STATUS
ucfg_scan_init_chanlist_params(struct scan_start_request *req,
uint32_t num_chans, uint32_t *chan_list, uint32_t *phymode)
{
uint32_t idx;
QDF_STATUS status;
struct regulatory_channel *reg_chan_list = NULL;
uint32_t low_2g, high_2g, low_5g, high_5g;
struct wlan_objmgr_pdev *pdev = NULL;
uint32_t *scan_freqs = NULL;
uint32_t max_chans = sizeof(req->scan_req.chan_list.chan) /
sizeof(req->scan_req.chan_list.chan[0]);
if (!req) {
scm_err("null request");
return QDF_STATUS_E_NULL_VALUE;
}
if (req->vdev)
pdev = wlan_vdev_get_pdev(req->vdev);
/*
* If 0 channels are provided for scan and
* wide band scan is enabled, scan all 20 mhz
* available channels. This is required as FW
* scans all channel/phy mode combinations
* provided in scan channel list if 0 chans are
* provided in scan request causing scan to take
* too much time to complete.
*/
if (pdev && !num_chans && ucfg_scan_get_wide_band_scan(pdev)) {
reg_chan_list = qdf_mem_malloc_atomic(NUM_CHANNELS *
sizeof(struct regulatory_channel));
if (!reg_chan_list) {
scm_err("Couldn't allocate reg_chan_list memory");
status = QDF_STATUS_E_NOMEM;
goto end;
}
scan_freqs =
qdf_mem_malloc_atomic(sizeof(uint32_t) * max_chans);
if (!scan_freqs) {
scm_err("Couldn't allocate scan_freqs memory");
status = QDF_STATUS_E_NOMEM;
goto end;
}
status = ucfg_reg_get_current_chan_list(pdev, reg_chan_list);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("Couldn't get current chan list");
goto end;
}
status = wlan_reg_get_freq_range(pdev, &low_2g,
&high_2g, &low_5g, &high_5g);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("Couldn't get frequency range");
goto end;
}
for (idx = 0, num_chans = 0;
(idx < NUM_CHANNELS && num_chans < max_chans); idx++)
if (is_chan_enabled_for_scan(&reg_chan_list[idx],
low_2g, high_2g, low_5g, high_5g))
scan_freqs[num_chans++] =
reg_chan_list[idx].center_freq;
chan_list = scan_freqs;
}
if (!num_chans) {
/* empty channel list provided */
qdf_mem_zero(&req->scan_req.chan_list,
sizeof(req->scan_req.chan_list));
req->scan_req.chan_list.num_chan = 0;
status = QDF_STATUS_SUCCESS;
goto end;
}
if (!chan_list) {
scm_err("null chan_list while num_chans: %d", num_chans);
status = QDF_STATUS_E_NULL_VALUE;
goto end;
}
if (num_chans > max_chans) {
/* got a big list. alert and fail */
scm_warn("overflow: received %d, max supported : %d",
num_chans, max_chans);
status = QDF_STATUS_E_E2BIG;
goto end;
}
req->scan_req.chan_list.num_chan = num_chans;
for (idx = 0; idx < num_chans; idx++) {
req->scan_req.chan_list.chan[idx].freq =
(chan_list[idx] > WLAN_24_GHZ_BASE_FREQ) ?
chan_list[idx] :
wlan_reg_chan_to_freq(pdev, chan_list[idx]);
if (phymode)
req->scan_req.chan_list.chan[idx].phymode =
phymode[idx];
else if (req->scan_req.chan_list.chan[idx].freq <=
WLAN_CHAN_15_FREQ)
req->scan_req.chan_list.chan[idx].phymode =
SCAN_PHY_MODE_11G;
else
req->scan_req.chan_list.chan[idx].phymode =
SCAN_PHY_MODE_11A;
scm_debug("chan[%d]: freq:%d, phymode:%d", idx,
req->scan_req.chan_list.chan[idx].freq,
req->scan_req.chan_list.chan[idx].phymode);
}
end:
if (scan_freqs)
qdf_mem_free(scan_freqs);
return QDF_STATUS_SUCCESS;
}
static inline enum scm_scan_status
get_scan_status_from_serialization_status(
enum wlan_serialization_cmd_status status)
{
enum scm_scan_status scan_status;
switch (status) {
case WLAN_SER_CMD_IN_PENDING_LIST:
scan_status = SCAN_IS_PENDING;
break;
case WLAN_SER_CMD_IN_ACTIVE_LIST:
scan_status = SCAN_IS_ACTIVE;
break;
case WLAN_SER_CMDS_IN_ALL_LISTS:
scan_status = SCAN_IS_ACTIVE_AND_PENDING;
break;
case WLAN_SER_CMD_NOT_FOUND:
scan_status = SCAN_NOT_IN_PROGRESS;
break;
default:
scm_warn("invalid serialization status %d", status);
QDF_ASSERT(0);
scan_status = SCAN_NOT_IN_PROGRESS;
break;
}
return scan_status;
}
enum scm_scan_status
ucfg_scan_get_vdev_status(struct wlan_objmgr_vdev *vdev)
{
enum wlan_serialization_cmd_status status;
if (!vdev) {
scm_err("null vdev");
return SCAN_NOT_IN_PROGRESS;
}
status = wlan_serialization_vdev_scan_status(vdev);
return get_scan_status_from_serialization_status(status);
}
enum scm_scan_status
ucfg_scan_get_pdev_status(struct wlan_objmgr_pdev *pdev)
{
enum wlan_serialization_cmd_status status;
if (!pdev) {
scm_err("null pdev");
return SCAN_NOT_IN_PROGRESS;
}
status = wlan_serialization_pdev_scan_status(pdev);
return get_scan_status_from_serialization_status(status);
}
static void
ucfg_scan_register_unregister_bcn_cb(struct wlan_objmgr_psoc *psoc,
bool enable)
{
QDF_STATUS status;
struct mgmt_txrx_mgmt_frame_cb_info cb_info[2];
cb_info[0].frm_type = MGMT_PROBE_RESP;
cb_info[0].mgmt_rx_cb = tgt_scan_bcn_probe_rx_callback;
cb_info[1].frm_type = MGMT_BEACON;
cb_info[1].mgmt_rx_cb = tgt_scan_bcn_probe_rx_callback;
if (enable)
status = wlan_mgmt_txrx_register_rx_cb(psoc,
WLAN_UMAC_COMP_SCAN, cb_info, 2);
else
status = wlan_mgmt_txrx_deregister_rx_cb(psoc,
WLAN_UMAC_COMP_SCAN, cb_info, 2);
if (status != QDF_STATUS_SUCCESS)
scm_err("%s the Handle with MGMT TXRX layer has failed",
enable ? "Registering" : "Deregistering");
}
static void ucfg_scan_assign_rssi_category(struct scan_default_params *params,
int32_t best_ap_rssi, uint32_t cat_offset)
{
int i;
scm_debug("best AP RSSI:%d, cat offset: %d", best_ap_rssi, cat_offset);
if (cat_offset)
for (i = 0; i < SCM_NUM_RSSI_CAT; i++) {
params->rssi_cat[SCM_NUM_RSSI_CAT - i - 1] =
(best_ap_rssi -
params->select_5ghz_margin -
(int)(i * cat_offset));
params->bss_prefer_val[i] = i;
}
}
QDF_STATUS ucfg_scan_update_user_config(struct wlan_objmgr_psoc *psoc,
struct scan_user_cfg *scan_cfg)
{
struct wlan_scan_obj *scan_obj;
struct scan_default_params *scan_def;
if (!psoc) {
scm_err("null psoc");
return QDF_STATUS_E_FAILURE;
}
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (scan_obj == NULL) {
scm_err("Failed to get scan object");
return QDF_STATUS_E_FAILURE;
}
scan_def = &scan_obj->scan_def;
scan_def->passive_dwell = scan_cfg->passive_dwell;
scan_def->conc_active_dwell = scan_cfg->conc_active_dwell;
scan_def->conc_passive_dwell = scan_cfg->conc_passive_dwell;
scan_def->conc_max_rest_time = scan_cfg->conc_max_rest_time;
scan_def->conc_min_rest_time = scan_cfg->conc_min_rest_time;
scan_def->conc_idle_time = scan_cfg->conc_idle_time;
scan_def->scan_cache_aging_time = scan_cfg->scan_cache_aging_time;
scan_def->prefer_5ghz = scan_cfg->prefer_5ghz;
scan_def->select_5ghz_margin = scan_cfg->select_5ghz_margin;
scan_def->scan_f_chan_stat_evnt = scan_cfg->is_snr_monitoring_enabled;
scan_obj->ie_whitelist = scan_cfg->ie_whitelist;
scan_def->enable_mac_spoofing = scan_cfg->enable_mac_spoofing;
scan_def->sta_miracast_mcc_rest_time =
scan_cfg->sta_miracast_mcc_rest_time;
ucfg_scan_assign_rssi_category(scan_def,
scan_cfg->scan_bucket_threshold,
scan_cfg->rssi_cat_gap);
ucfg_scan_update_pno_config(&scan_obj->pno_cfg,
&scan_cfg->pno_cfg);
qdf_mem_copy(&scan_def->score_config, &scan_cfg->score_config,
sizeof(struct scoring_config));
scm_validate_scoring_config(&scan_def->score_config);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS ucfg_scan_update_roam_params(struct wlan_objmgr_psoc *psoc,
struct roam_filter_params *roam_params)
{
struct scan_default_params *scan_def;
if (!psoc) {
scm_err("null psoc");
return QDF_STATUS_E_FAILURE;
}
scan_def = wlan_scan_psoc_get_def_params(psoc);
if (!scan_def) {
scm_err("Failed to get scan object");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_copy(&scan_def->roam_params, roam_params,
sizeof(struct roam_filter_params));
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_POWER_MANAGEMENT_OFFLOAD
static QDF_STATUS
ucfg_scan_cancel_pdev_scan(struct wlan_objmgr_pdev *pdev)
{
struct scan_cancel_request *req;
QDF_STATUS status;
struct wlan_objmgr_vdev *vdev;
req = qdf_mem_malloc_atomic(sizeof(*req));
if (!req) {
scm_err("Failed to allocate memory");
return QDF_STATUS_E_NOMEM;
}
vdev = wlan_objmgr_get_vdev_by_id_from_pdev(pdev, 0, WLAN_OSIF_ID);
if (!vdev) {
scm_err("Failed to get vdev");
return QDF_STATUS_E_INVAL;
}
req->vdev = vdev;
req->cancel_req.scan_id = INVAL_SCAN_ID;
req->cancel_req.pdev_id = wlan_objmgr_pdev_get_pdev_id(pdev);
req->cancel_req.vdev_id = INVAL_VDEV_ID;
req->cancel_req.req_type = WLAN_SCAN_CANCEL_PDEV_ALL;
status = ucfg_scan_cancel_sync(req);
if (QDF_IS_STATUS_ERROR(status))
scm_err("Cancel scan request failed");
wlan_objmgr_vdev_release_ref(vdev, WLAN_OSIF_ID);
return status;
}
static QDF_STATUS
ucfg_scan_suspend_handler(struct wlan_objmgr_psoc *psoc, void *arg)
{
struct wlan_objmgr_pdev *pdev = NULL;
QDF_STATUS status = QDF_STATUS_SUCCESS;
int i;
/* Check all pdev */
for (i = 0; i < WLAN_UMAC_MAX_PDEVS; i++) {
pdev = wlan_objmgr_get_pdev_by_id(psoc, i, WLAN_SCAN_ID);
if (!pdev)
continue;
if (ucfg_scan_get_pdev_status(pdev) !=
SCAN_NOT_IN_PROGRESS)
status = ucfg_scan_cancel_pdev_scan(pdev);
wlan_objmgr_pdev_release_ref(pdev, WLAN_SCAN_ID);
if (QDF_IS_STATUS_ERROR(status)) {
scm_err("failed to cancel scan for pdev_id %d", i);
return status;
}
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS
ucfg_scan_resume_handler(struct wlan_objmgr_psoc *psoc, void *arg)
{
return QDF_STATUS_SUCCESS;
}
static inline void
ucfg_scan_register_pmo_handler(void)
{
pmo_register_suspend_handler(WLAN_UMAC_COMP_SCAN,
ucfg_scan_suspend_handler, NULL);
pmo_register_resume_handler(WLAN_UMAC_COMP_SCAN,
ucfg_scan_resume_handler, NULL);
}
static inline void
ucfg_scan_unregister_pmo_handler(void)
{
pmo_unregister_suspend_handler(WLAN_UMAC_COMP_SCAN,
ucfg_scan_suspend_handler);
pmo_unregister_resume_handler(WLAN_UMAC_COMP_SCAN,
ucfg_scan_resume_handler);
}
#else
static inline void
ucfg_scan_register_pmo_handler(void)
{
}
static inline void
ucfg_scan_unregister_pmo_handler(void)
{
}
#endif
QDF_STATUS
ucfg_scan_psoc_open(struct wlan_objmgr_psoc *psoc)
{
struct wlan_scan_obj *scan_obj;
scm_debug("psoc open: 0x%pK", psoc);
if (!psoc) {
scm_err("null psoc");
return QDF_STATUS_E_FAILURE;
}
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (scan_obj == NULL) {
scm_err("Failed to get scan object");
return QDF_STATUS_E_FAILURE;
}
/* Initialize the scan Globals */
wlan_scan_global_init(psoc, scan_obj);
qdf_spinlock_create(&scan_obj->lock);
ucfg_scan_register_pmo_handler();
scm_db_init(psoc);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
ucfg_scan_psoc_close(struct wlan_objmgr_psoc *psoc)
{
struct wlan_scan_obj *scan_obj;
scm_debug("psoc close: 0x%pK", psoc);
if (!psoc) {
scm_err("null psoc");
return QDF_STATUS_E_FAILURE;
}
scm_db_deinit(psoc);
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (scan_obj == NULL) {
scm_err("Failed to get scan object");
return QDF_STATUS_E_FAILURE;
}
ucfg_scan_unregister_pmo_handler();
qdf_spinlock_destroy(&scan_obj->lock);
wlan_pno_global_deinit(&scan_obj->pno_cfg);
return QDF_STATUS_SUCCESS;
}
static bool scm_serialization_scan_rules_cb(
union wlan_serialization_rules_info *comp_info,
uint8_t comp_id)
{
switch (comp_id) {
case WLAN_UMAC_COMP_TDLS:
if (comp_info->scan_info.is_tdls_in_progress) {
scm_debug("Cancel scan. Tdls in progress");
return false;
}
break;
case WLAN_UMAC_COMP_DFS:
if (comp_info->scan_info.is_cac_in_progress) {
scm_debug("Cancel scan. CAC in progress");
return false;
}
break;
default:
scm_debug("not handled comp_id %d", comp_id);
break;
}
return true;
}
QDF_STATUS
ucfg_scan_psoc_enable(struct wlan_objmgr_psoc *psoc)
{
QDF_STATUS status;
scm_debug("psoc enable: 0x%pK", psoc);
if (!psoc) {
scm_err("null psoc");
return QDF_STATUS_E_FAILURE;
}
/* Subscribe for scan events from lmac layesr */
status = tgt_scan_register_ev_handler(psoc);
QDF_ASSERT(status == QDF_STATUS_SUCCESS);
if (wlan_reg_11d_original_enabled_on_host(psoc))
scm_11d_cc_db_init(psoc);
ucfg_scan_register_unregister_bcn_cb(psoc, true);
status = wlan_serialization_register_apply_rules_cb(psoc,
WLAN_SER_CMD_SCAN,
scm_serialization_scan_rules_cb);
QDF_ASSERT(status == QDF_STATUS_SUCCESS);
return status;
}
QDF_STATUS
ucfg_scan_psoc_disable(struct wlan_objmgr_psoc *psoc)
{
QDF_STATUS status;
scm_debug("psoc disable: 0x%pK", psoc);
if (!psoc) {
scm_err("null psoc");
return QDF_STATUS_E_FAILURE;
}
/* Unsubscribe for scan events from lmac layesr */
status = tgt_scan_unregister_ev_handler(psoc);
QDF_ASSERT(status == QDF_STATUS_SUCCESS);
ucfg_scan_register_unregister_bcn_cb(psoc, false);
if (wlan_reg_11d_original_enabled_on_host(psoc))
scm_11d_cc_db_deinit(psoc);
return status;
}
uint32_t
ucfg_scan_get_max_active_scans(struct wlan_objmgr_psoc *psoc)
{
struct scan_default_params *scan_params = NULL;
if (!psoc) {
scm_err("null psoc");
return 0;
}
scan_params = wlan_scan_psoc_get_def_params(psoc);
if (!scan_params) {
scm_err("Failed to get scan object");
return 0;
}
return scan_params->max_active_scans_allowed;
}
bool ucfg_copy_ie_whitelist_attrs(struct wlan_objmgr_psoc *psoc,
struct probe_req_whitelist_attr *ie_whitelist)
{
struct wlan_scan_obj *scan_obj = NULL;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj)
return false;
qdf_mem_copy(ie_whitelist, &scan_obj->ie_whitelist,
sizeof(*ie_whitelist));
return true;
}
bool ucfg_ie_whitelist_enabled(struct wlan_objmgr_psoc *psoc,
struct wlan_objmgr_vdev *vdev)
{
struct wlan_scan_obj *scan_obj = NULL;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj)
return false;
if ((wlan_vdev_mlme_get_opmode(vdev) != QDF_STA_MODE) ||
wlan_vdev_is_connected(vdev))
return false;
if (!scan_obj->ie_whitelist.white_list)
return false;
return true;
}
void ucfg_scan_set_bt_activity(struct wlan_objmgr_psoc *psoc,
bool bt_a2dp_active)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return;
}
scan_obj->bt_a2dp_enabled = bt_a2dp_active;
}
bool ucfg_scan_get_bt_activity(struct wlan_objmgr_psoc *psoc)
{
struct wlan_scan_obj *scan_obj;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object");
return false;
}
return scan_obj->bt_a2dp_enabled;
}
void ucfg_scan_set_vdev_del_in_progress(struct wlan_objmgr_vdev *vdev)
{
struct scan_vdev_obj *scan_vdev_obj;
if (!vdev) {
scm_err("invalid vdev");
return;
}
scan_vdev_obj = wlan_get_vdev_scan_obj(vdev);
if (!scan_vdev_obj) {
scm_err("null scan_vdev_obj");
return;
}
scan_vdev_obj->is_vdev_delete_in_progress = true;
}
void ucfg_scan_clear_vdev_del_in_progress(struct wlan_objmgr_vdev *vdev)
{
struct scan_vdev_obj *scan_vdev_obj;
if (!vdev) {
scm_err("invalid vdev");
return;
}
scan_vdev_obj = wlan_get_vdev_scan_obj(vdev);
if (!scan_vdev_obj) {
scm_err("null scan_vdev_obj");
return;
}
scan_vdev_obj->is_vdev_delete_in_progress = false;
}
QDF_STATUS
ucfg_scan_set_global_config(struct wlan_objmgr_psoc *psoc,
enum scan_config config, uint32_t val)
{
struct wlan_scan_obj *scan_obj;
QDF_STATUS status = QDF_STATUS_SUCCESS;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj) {
scm_err("Failed to get scan object config:%d, val:%d",
config, val);
return QDF_STATUS_E_INVAL;
}
switch (config) {
case SCAN_CFG_DISABLE_SCAN_COMMAND_TIMEOUT:
scan_obj->disable_timeout = !!val;
break;
case SCAN_CFG_DROP_BCN_ON_CHANNEL_MISMATCH:
scan_obj->drop_bcn_on_chan_mismatch = !!val;
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
QDF_STATUS ucfg_scan_update_mlme_by_bssinfo(struct wlan_objmgr_pdev *pdev,
struct bss_info *bss_info, struct mlme_info *mlme)
{
QDF_STATUS status;
status = scm_scan_update_mlme_by_bssinfo(pdev, bss_info, mlme);
return status;
}
QDF_STATUS
ucfg_scan_get_global_config(struct wlan_objmgr_psoc *psoc,
enum scan_config config, uint32_t *val)
{
struct wlan_scan_obj *scan_obj;
QDF_STATUS status = QDF_STATUS_SUCCESS;
scan_obj = wlan_psoc_get_scan_obj(psoc);
if (!scan_obj || !val) {
scm_err("scan object:%pK config:%d, val:0x%pK",
scan_obj, config, val);
return QDF_STATUS_E_INVAL;
}
switch (config) {
case SCAN_CFG_DISABLE_SCAN_COMMAND_TIMEOUT:
*val = scan_obj->disable_timeout;
break;
case SCAN_CFG_DROP_BCN_ON_CHANNEL_MISMATCH:
*val = scan_obj->drop_bcn_on_chan_mismatch;
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}