blob: fbe14d959f6301ff60531e2496ee3cf86993dbe8 [file] [log] [blame]
/*
* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include <qdf_net_types.h>
#include <qdf_lro.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_htt.h"
#include "dp_types.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_rx.h"
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#include "cdp_txrx_cmn_struct.h"
#include <qdf_util.h>
#include "dp_peer.h"
#include "dp_rx_mon.h"
#include "htt_stats.h"
#include "qdf_mem.h" /* qdf_mem_malloc,free */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
#include "cdp_txrx_flow_ctrl_v2.h"
#else
static inline void
cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
{
return;
}
#endif
#include <ol_cfg.h>
#include "dp_ipa.h"
#define DP_INTR_POLL_TIMER_MS 10
#define DP_WDS_AGING_TIMER_DEFAULT_MS 6000
#define DP_MCS_LENGTH (6*MAX_MCS)
#define DP_NSS_LENGTH (6*SS_COUNT)
#define DP_RXDMA_ERR_LENGTH (6*MAX_RXDMA_ERRORS)
#define DP_REO_ERR_LENGTH (6*REO_ERROR_TYPE_MAX)
#define DP_CURR_FW_STATS_AVAIL 19
#define DP_HTT_DBG_EXT_STATS_MAX 256
#ifdef IPA_OFFLOAD
/* Exclude IPA rings from the interrupt context */
#define TX_RING_MASK_VAL 0x7
#define RX_RING_MASK_VAL 0x7
#else
#define TX_RING_MASK_VAL 0xF
#define RX_RING_MASK_VAL 0xF
#endif
/**
* default_dscp_tid_map - Default DSCP-TID mapping
*
* DSCP TID AC
* 000000 0 WME_AC_BE
* 001000 1 WME_AC_BK
* 010000 1 WME_AC_BK
* 011000 0 WME_AC_BE
* 100000 5 WME_AC_VI
* 101000 5 WME_AC_VI
* 110000 6 WME_AC_VO
* 111000 6 WME_AC_VO
*/
static uint8_t default_dscp_tid_map[DSCP_TID_MAP_MAX] = {
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6,
};
/**
* @brief Cpu ring map types
*/
enum dp_cpu_ring_map_types {
DP_DEFAULT_MAP,
DP_NSS_FIRST_RADIO_OFFLOADED_MAP,
DP_NSS_SECOND_RADIO_OFFLOADED_MAP,
DP_NSS_ALL_RADIO_OFFLOADED_MAP,
DP_CPU_RING_MAP_MAX
};
/**
* @brief Cpu to tx ring map
*/
static uint8_t dp_cpu_ring_map[DP_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS] = {
{0x0, 0x1, 0x2, 0x0},
{0x1, 0x2, 0x1, 0x2},
{0x0, 0x2, 0x0, 0x2},
{0x2, 0x2, 0x2, 0x2}
};
/**
* @brief Select the type of statistics
*/
enum dp_stats_type {
STATS_FW = 0,
STATS_HOST = 1,
STATS_TYPE_MAX = 2,
};
/**
* @brief General Firmware statistics options
*
*/
enum dp_fw_stats {
TXRX_FW_STATS_INVALID = -1,
};
/**
* @brief Firmware and Host statistics
* currently supported
*/
const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
/* Last ENUM for HTT FW STATS */
{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
};
/**
* dp_srng_find_ring_in_mask() - find which ext_group a ring belongs
* @ring_num: ring num of the ring being queried
* @grp_mask: the grp_mask array for the ring type in question.
*
* The grp_mask array is indexed by group number and the bit fields correspond
* to ring numbers. We are finding which interrupt group a ring belongs to.
*
* Return: the index in the grp_mask array with the ring number.
* -QDF_STATUS_E_NOENT if no entry is found
*/
static int dp_srng_find_ring_in_mask(int ring_num, int *grp_mask)
{
int ext_group_num;
int mask = 1 << ring_num;
for (ext_group_num = 0; ext_group_num < WLAN_CFG_INT_NUM_CONTEXTS;
ext_group_num++) {
if (mask & grp_mask[ext_group_num])
return ext_group_num;
}
return -QDF_STATUS_E_NOENT;
}
static int dp_srng_calculate_msi_group(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
int *grp_mask;
switch (ring_type) {
case WBM2SW_RELEASE:
/* dp_tx_comp_handler - soc->tx_comp_ring */
if (ring_num < 3)
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* dp_rx_wbm_err_process - soc->rx_rel_ring */
else if (ring_num == 3) {
/* sw treats this as a separate ring type */
grp_mask = &soc->wlan_cfg_ctx->
int_rx_wbm_rel_ring_mask[0];
ring_num = 0;
} else {
qdf_assert(0);
return -QDF_STATUS_E_NOENT;
}
break;
case REO_EXCEPTION:
/* dp_rx_err_process - &soc->reo_exception_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
break;
case REO_DST:
/* dp_rx_process - soc->reo_dest_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
break;
case REO_STATUS:
/* dp_reo_status_ring_handler - soc->reo_status_ring */
grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
break;
/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
case RXDMA_MONITOR_STATUS:
/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
case RXDMA_MONITOR_DST:
/* dp_mon_process */
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
break;
case RXDMA_MONITOR_BUF:
case RXDMA_BUF:
/* TODO: support low_thresh interrupt */
return -QDF_STATUS_E_NOENT;
break;
case TCL_DATA:
case TCL_CMD:
case REO_CMD:
case SW2WBM_RELEASE:
case WBM_IDLE_LINK:
/* normally empty SW_TO_HW rings */
return -QDF_STATUS_E_NOENT;
break;
case TCL_STATUS:
case REO_REINJECT:
case RXDMA_DST:
/* misc unused rings */
return -QDF_STATUS_E_NOENT;
break;
case CE_SRC:
case CE_DST:
case CE_DST_STATUS:
/* CE_rings - currently handled by hif */
default:
return -QDF_STATUS_E_NOENT;
break;
}
return dp_srng_find_ring_in_mask(ring_num, grp_mask);
}
static void dp_srng_msi_setup(struct dp_soc *soc, struct hal_srng_params
*ring_params, int ring_type, int ring_num)
{
int msi_group_number;
int msi_data_count;
int ret;
uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret)
return;
msi_group_number = dp_srng_calculate_msi_group(soc, ring_type,
ring_num);
if (msi_group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of an ext_group; ring_type: %d,ring_num %d"),
ring_type, ring_num);
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
return;
}
if (msi_group_number > msi_data_count) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
FL("2 msi_groups will share an msi; msi_group_num %d"),
msi_group_number);
QDF_ASSERT(0);
}
pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
ring_params->msi_addr = addr_low;
ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
ring_params->msi_data = (msi_group_number % msi_data_count)
+ msi_data_start;
ring_params->flags |= HAL_SRNG_MSI_INTR;
}
/**
* dp_setup_srng - Internal function to setup SRNG rings used by data path
*/
static int dp_srng_setup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num, int mac_id, uint32_t num_entries)
{
void *hal_soc = soc->hal_soc;
uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
/* TODO: See if we should get align size from hal */
uint32_t ring_base_align = 8;
struct hal_srng_params ring_params;
uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
/* TODO: Currently hal layer takes care of endianness related settings.
* See if these settings need to passed from DP layer
*/
ring_params.flags = 0;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("Ring type: %d, num:%d"), ring_type, ring_num);
num_entries = (num_entries > max_entries) ? max_entries : num_entries;
srng->hal_srng = NULL;
srng->alloc_size = (num_entries * entry_size) + ring_base_align - 1;
srng->base_vaddr_unaligned = qdf_mem_alloc_consistent(
soc->osdev, soc->osdev->dev, srng->alloc_size,
&(srng->base_paddr_unaligned));
if (!srng->base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("alloc failed - ring_type: %d, ring_num %d"),
ring_type, ring_num);
return QDF_STATUS_E_NOMEM;
}
ring_params.ring_base_vaddr = srng->base_vaddr_unaligned +
((unsigned long)srng->base_vaddr_unaligned % ring_base_align);
ring_params.ring_base_paddr = srng->base_paddr_unaligned +
((unsigned long)(ring_params.ring_base_vaddr) -
(unsigned long)srng->base_vaddr_unaligned);
ring_params.num_entries = num_entries;
if (soc->intr_mode == DP_INTR_MSI) {
dp_srng_msi_setup(soc, &ring_params, ring_type, ring_num);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Using MSI for ring_type: %d, ring_num %d"),
ring_type, ring_num);
} else {
ring_params.msi_data = 0;
ring_params.msi_addr = 0;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Skipping MSI for ring_type: %d, ring_num %d"),
ring_type, ring_num);
}
/*
* Setup interrupt timer and batch counter thresholds for
* interrupt mitigation based on ring type
*/
if (ring_type == REO_DST) {
ring_params.intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params.intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE && (ring_num < 3)) {
ring_params.intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
ring_params.intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
} else {
ring_params.intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params.intr_batch_cntr_thres_entries =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
}
/* Enable low threshold interrupts for rx buffer rings (regular and
* monitor buffer rings.
* TODO: See if this is required for any other ring
*/
if ((ring_type == RXDMA_BUF) || (ring_type == RXDMA_MONITOR_BUF)) {
/* TODO: Setting low threshold to 1/8th of ring size
* see if this needs to be configurable
*/
ring_params.low_threshold = num_entries >> 3;
ring_params.flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
ring_params.intr_timer_thres_us = 0x1000;
}
srng->hal_srng = hal_srng_setup(hal_soc, ring_type, ring_num,
mac_id, &ring_params);
return 0;
}
/**
* dp_srng_cleanup - Internal function to cleanup SRNG rings used by data path
* Any buffers allocated and attached to ring entries are expected to be freed
* before calling this function.
*/
static void dp_srng_cleanup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!srng->hal_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d not setup"),
ring_type, ring_num);
return;
}
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
#ifdef IPA_OFFLOAD
/**
* dp_tx_ipa_uc_detach - Free autonomy TX resources
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Free allocated TX buffers with WBM SRNG
*
* Return: none
*/
static void dp_tx_ipa_uc_detach(struct dp_soc *soc, struct dp_pdev *pdev)
{
int idx;
for (idx = 0; idx < soc->ipa_uc_tx_rsc.alloc_tx_buf_cnt; idx++) {
if (soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr[idx])
qdf_mem_free(soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr[idx]);
}
qdf_mem_free(soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr);
soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr = NULL;
}
/**
* dp_rx_ipa_uc_detach - free autonomy RX resources
* @soc: data path instance
* @pdev: core txrx pdev context
*
* This function will detach DP RX into main device context
* will free DP Rx resources.
*
* Return: none
*/
static void dp_rx_ipa_uc_detach(struct dp_soc *soc, struct dp_pdev *pdev)
{
}
static int dp_ipa_uc_detach(struct dp_soc *soc, struct dp_pdev *pdev)
{
/* TX resource detach */
dp_tx_ipa_uc_detach(soc, pdev);
/* RX resource detach */
dp_rx_ipa_uc_detach(soc, pdev);
dp_srng_cleanup(soc, &pdev->ipa_rx_refill_buf_ring, RXDMA_BUF, 2);
return QDF_STATUS_SUCCESS; /* success */
}
/* Hard coded config parameters until dp_ops_cfg.cfg_attach implemented */
#define CFG_IPA_UC_TX_BUF_SIZE_DEFAULT (2048)
/**
* dp_tx_ipa_uc_attach - Allocate autonomy TX resources
* @soc: data path instance
* @pdev: Physical device handle
*
* Allocate TX buffer from non-cacheable memory
* Attache allocated TX buffers with WBM SRNG
*
* Return: int
*/
static int dp_tx_ipa_uc_attach(struct dp_soc *soc, struct dp_pdev *pdev)
{
uint32_t tx_buffer_count;
uint32_t ring_base_align = 8;
void *buffer_vaddr_unaligned;
void *buffer_vaddr;
qdf_dma_addr_t buffer_paddr_unaligned;
qdf_dma_addr_t buffer_paddr;
void *wbm_srng = soc->tx_comp_ring[IPA_TX_COMP_RING_IDX].hal_srng;
uint32_t paddr_lo;
uint32_t paddr_hi;
void *ring_entry;
int ring_size = ((struct hal_srng *)wbm_srng)->ring_size;
int retval = QDF_STATUS_SUCCESS;
/*
* Uncomment when dp_ops_cfg.cfg_attach is implemented
* unsigned int uc_tx_buf_sz =
* dp_cfg_ipa_uc_tx_buf_size(pdev->osif_pdev);
*/
unsigned int uc_tx_buf_sz = CFG_IPA_UC_TX_BUF_SIZE_DEFAULT;
unsigned int alloc_size = uc_tx_buf_sz + ring_base_align - 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"requested %d buffers to be posted to wbm ring",
ring_size);
soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr = qdf_mem_malloc(ring_size *
sizeof(*soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr));
if (!soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: IPA WBM Ring mem_info alloc fail", __func__);
return -ENOMEM;
}
hal_srng_access_start(soc->hal_soc, wbm_srng);
/* Allocate TX buffers as many as possible */
for (tx_buffer_count = 0;
tx_buffer_count < ring_size; tx_buffer_count++) {
ring_entry = hal_srng_src_get_next(soc->hal_soc, wbm_srng);
if (!ring_entry) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Failed to get WBM ring entry\n");
goto fail;
}
buffer_vaddr_unaligned = qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev, alloc_size, &buffer_paddr_unaligned);
if (!buffer_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"IPA WDI TX buffer alloc fail %d allocated\n",
tx_buffer_count);
break;
}
buffer_vaddr = buffer_vaddr_unaligned +
((unsigned long)buffer_vaddr_unaligned %
ring_base_align);
buffer_paddr = buffer_paddr_unaligned +
((unsigned long)(buffer_vaddr) -
(unsigned long)buffer_vaddr_unaligned);
paddr_lo = ((u64)buffer_paddr & 0x00000000ffffffff);
paddr_hi = ((u64)buffer_paddr & 0x0000001f00000000) >> 32;
HAL_WBM_PADDR_LO_SET(ring_entry, paddr_lo);
HAL_WBM_PADDR_HI_SET(ring_entry, paddr_hi);
soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr[tx_buffer_count] =
buffer_vaddr;
}
hal_srng_access_end(soc->hal_soc, wbm_srng);
soc->ipa_uc_tx_rsc.alloc_tx_buf_cnt = tx_buffer_count;
return retval;
fail:
qdf_mem_free(soc->ipa_uc_tx_rsc.tx_buf_pool_vaddr);
return retval;
}
/**
* dp_rx_ipa_uc_attach - Allocate autonomy RX resources
* @soc: data path instance
* @pdev: core txrx pdev context
*
* This function will attach a DP RX instance into the main
* device (SOC) context.
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
static int dp_rx_ipa_uc_attach(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static int dp_ipa_uc_attach(struct dp_soc *soc, struct dp_pdev *pdev)
{
int error;
/* TX resource attach */
error = dp_tx_ipa_uc_attach(soc, pdev);
if (error) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP IPA UC TX attach fail code %d\n", error);
return error;
}
/* RX resource attach */
error = dp_rx_ipa_uc_attach(soc, pdev);
if (error) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP IPA UC RX attach fail code %d\n", error);
dp_tx_ipa_uc_detach(soc, pdev);
return error;
}
return QDF_STATUS_SUCCESS; /* success */
}
#else
static int dp_ipa_uc_detach(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static int dp_ipa_uc_attach(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/* TODO: Need this interface from HIF */
void *hif_get_hal_handle(void *hif_handle);
/*
* dp_service_srngs() - Top level interrupt handler for DP Ring interrupts
* @dp_ctx: DP SOC handle
* @budget: Number of frames/descriptors that can be processed in one shot
*
* Return: remaining budget/quota for the soc device
*/
static uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_soc *soc = int_ctx->soc;
int ring = 0;
uint32_t work_done = 0;
uint32_t budget = dp_budget;
uint8_t tx_mask = int_ctx->tx_ring_mask;
uint8_t rx_mask = int_ctx->rx_ring_mask;
uint8_t rx_err_mask = int_ctx->rx_err_ring_mask;
uint8_t rx_wbm_rel_mask = int_ctx->rx_wbm_rel_ring_mask;
uint8_t reo_status_mask = int_ctx->reo_status_ring_mask;
/* Process Tx completion interrupts first to return back buffers */
if (tx_mask) {
for (ring = 0; ring < soc->num_tcl_data_rings; ring++) {
if (tx_mask & (1 << ring)) {
work_done =
dp_tx_comp_handler(soc, ring, budget);
budget -= work_done;
if (work_done)
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
"tx mask 0x%x ring %d,"
"budget %d",
tx_mask, ring, budget);
if (budget <= 0)
goto budget_done;
}
}
}
/* Process REO Exception ring interrupt */
if (rx_err_mask) {
work_done = dp_rx_err_process(soc,
soc->reo_exception_ring.hal_srng, budget);
budget -= work_done;
if (work_done)
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"REO Exception Ring: work_done %d budget %d",
work_done, budget);
if (budget <= 0) {
goto budget_done;
}
}
/* Process Rx WBM release ring interrupt */
if (rx_wbm_rel_mask) {
work_done = dp_rx_wbm_err_process(soc,
soc->rx_rel_ring.hal_srng, budget);
budget -= work_done;
if (work_done)
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"WBM Release Ring: work_done %d budget %d",
work_done, budget);
if (budget <= 0) {
goto budget_done;
}
}
/* Process Rx interrupts */
if (rx_mask) {
for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
if (rx_mask & (1 << ring)) {
work_done =
dp_rx_process(int_ctx,
soc->reo_dest_ring[ring].hal_srng,
budget);
budget -= work_done;
if (work_done)
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
"rx mask 0x%x ring %d,"
"budget %d",
tx_mask, ring, budget);
if (budget <= 0)
goto budget_done;
}
}
}
if (reo_status_mask)
dp_reo_status_ring_handler(soc);
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_PDEV_CNT; ring++) {
if (soc->pdev_list[ring] == NULL)
continue;
if (int_ctx->rx_mon_ring_mask & (1 << ring)) {
work_done =
dp_mon_process(soc, ring, budget);
budget -= work_done;
}
if (int_ctx->rxdma2host_ring_mask & (1 << ring)) {
work_done =
dp_rxdma_err_process(soc, ring, budget);
budget -= work_done;
}
}
qdf_lro_flush(int_ctx->lro_ctx);
budget_done:
return dp_budget - budget;
}
#ifdef DP_INTR_POLL_BASED
/* dp_interrupt_timer()- timer poll for interrupts
*
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_interrupt_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *) arg;
int i;
if (qdf_atomic_read(&soc->cmn_init_done)) {
for (i = 0;
i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
dp_service_srngs(&soc->intr_ctx[i], 0xffff);
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
}
/*
* dp_soc_interrupt_attach_poll() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach_poll(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
soc->intr_mode = DP_INTR_POLL;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask = TX_RING_MASK_VAL;
soc->intr_ctx[i].rx_ring_mask = RX_RING_MASK_VAL;
soc->intr_ctx[i].rx_mon_ring_mask = 0x1;
soc->intr_ctx[i].rx_err_ring_mask = 0x1;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0x1;
soc->intr_ctx[i].reo_status_ring_mask = 0x1;
soc->intr_ctx[i].rxdma2host_ring_mask = 0x1;
soc->intr_ctx[i].soc = soc;
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
qdf_timer_init(soc->osdev, &soc->int_timer,
dp_interrupt_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
return QDF_STATUS_SUCCESS;
}
#ifdef CONFIG_MCL
extern int con_mode_monitor;
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc);
/*
* dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Call the appropriate attach function based on the mode of operation.
* This is a WAR for enabling monitor mode.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
if (con_mode_monitor == QDF_GLOBAL_MONITOR_MODE) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Attach interrupts in Poll mode"));
return dp_soc_interrupt_attach_poll(txrx_soc);
} else {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Attach interrupts in MSI mode"));
return dp_soc_interrupt_attach(txrx_soc);
}
}
#else
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
return dp_soc_interrupt_attach_poll(txrx_soc);
}
#endif
#endif
static void dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r)
{
int j;
int num_irq = 0;
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(wbm2host_tx_completions_ring1 - j);
}
if (rx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(reo2host_destination_ring1 - j);
}
if (rx_mon_mask & (1 << j)) {
irq_id_map[num_irq++] =
(ppdu_end_interrupts_mac1 - j);
}
if (rx_wbm_rel_ring_mask & (1 << j))
irq_id_map[num_irq++] = wbm2host_rx_release;
if (rx_err_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_exception;
if (reo_status_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_status;
}
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r,
int msi_vector_count, int msi_vector_start)
{
int tx_mask = wlan_cfg_get_tx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask = wlan_cfg_get_rx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
unsigned int vector =
(intr_ctx_num % msi_vector_count) + msi_vector_start;
int num_irq = 0;
soc->intr_mode = DP_INTR_MSI;
if (tx_mask | rx_mask | rx_mon_mask | rx_err_ring_mask |
rx_wbm_rel_ring_mask | reo_status_ring_mask)
irq_id_map[num_irq++] =
pld_get_msi_irq(soc->osdev->dev, vector);
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
int *irq_id_map, int *num_irq)
{
int msi_vector_count, ret;
uint32_t msi_base_data, msi_vector_start;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return dp_soc_interrupt_map_calculate_integrated(soc,
intr_ctx_num, irq_id_map, num_irq);
else
dp_soc_interrupt_map_calculate_msi(soc,
intr_ctx_num, irq_id_map, num_irq,
msi_vector_count, msi_vector_start);
}
/*
* dp_soc_interrupt_attach() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i = 0;
int num_irq = 0;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
int ret = 0;
/* Map of IRQ ids registered with one interrupt context */
int irq_id_map[HIF_MAX_GRP_IRQ];
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i);
int rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
int rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
int reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
int rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask = tx_mask;
soc->intr_ctx[i].rx_ring_mask = rx_mask;
soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask;
soc->intr_ctx[i].rx_err_ring_mask = rx_err_ring_mask;
soc->intr_ctx[i].rxdma2host_ring_mask = rxdma2host_ring_mask;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = rx_wbm_rel_ring_mask;
soc->intr_ctx[i].reo_status_ring_mask = reo_status_ring_mask;
soc->intr_ctx[i].soc = soc;
num_irq = 0;
dp_soc_interrupt_map_calculate(soc, i, &irq_id_map[0],
&num_irq);
ret = hif_register_ext_group(soc->hif_handle,
num_irq, irq_id_map, dp_service_srngs,
&soc->intr_ctx[i], "dp_intr",
HIF_EXEC_NAPI_TYPE);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("failed, ret = %d"), ret);
return QDF_STATUS_E_FAILURE;
}
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
hif_configure_ext_group_interrupts(soc->hif_handle);
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
* @txrx_soc: DP SOC handle
*
* Return: void
*/
static void dp_soc_interrupt_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
if (soc->intr_mode == DP_INTR_POLL) {
qdf_timer_stop(&soc->int_timer);
qdf_timer_free(&soc->int_timer);
}
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0;
soc->intr_ctx[i].rx_ring_mask = 0;
soc->intr_ctx[i].rx_mon_ring_mask = 0;
soc->intr_ctx[i].rx_err_ring_mask = 0;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0;
soc->intr_ctx[i].reo_status_ring_mask = 0;
qdf_lro_deinit(soc->intr_ctx[i].lro_ctx);
}
}
#define AVG_MAX_MPDUS_PER_TID 128
#define AVG_TIDS_PER_CLIENT 2
#define AVG_FLOWS_PER_TID 2
#define AVG_MSDUS_PER_FLOW 128
#define AVG_MSDUS_PER_MPDU 4
/*
* Allocate and setup link descriptor pool that will be used by HW for
* various link and queue descriptors and managed by WBM
*/
static int dp_hw_link_desc_pool_setup(struct dp_soc *soc)
{
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
int link_desc_align = hal_get_link_desc_align(soc->hal_soc);
uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx);
uint32_t num_mpdus_per_link_desc =
hal_num_mpdus_per_link_desc(soc->hal_soc);
uint32_t num_msdus_per_link_desc =
hal_num_msdus_per_link_desc(soc->hal_soc);
uint32_t num_mpdu_links_per_queue_desc =
hal_num_mpdu_links_per_queue_desc(soc->hal_soc);
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t total_link_descs, total_mem_size;
uint32_t num_mpdu_link_descs, num_mpdu_queue_descs;
uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs;
uint32_t num_link_desc_banks;
uint32_t last_bank_size = 0;
uint32_t entry_size, num_entries;
int i;
uint32_t desc_id = 0;
/* Only Tx queue descriptors are allocated from common link descriptor
* pool Rx queue descriptors are not included in this because (REO queue
* extension descriptors) they are expected to be allocated contiguously
* with REO queue descriptors
*/
num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc;
num_mpdu_queue_descs = num_mpdu_link_descs /
num_mpdu_links_per_queue_desc;
num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) /
num_msdus_per_link_desc;
num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6;
num_entries = num_mpdu_link_descs + num_mpdu_queue_descs +
num_tx_msdu_link_descs + num_rx_msdu_link_descs;
/* Round up to power of 2 */
total_link_descs = 1;
while (total_link_descs < num_entries)
total_link_descs <<= 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_link_descs: %u, link_desc_size: %d"),
total_link_descs, link_desc_size);
total_mem_size = total_link_descs * link_desc_size;
total_mem_size += link_desc_align;
if (total_mem_size <= max_alloc_size) {
num_link_desc_banks = 0;
last_bank_size = total_mem_size;
} else {
num_link_desc_banks = (total_mem_size) /
(max_alloc_size - link_desc_align);
last_bank_size = total_mem_size %
(max_alloc_size - link_desc_align);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_mem_size: %d, num_link_desc_banks: %u"),
total_mem_size, num_link_desc_banks);
for (i = 0; i < num_link_desc_banks; i++) {
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev, soc->osdev->dev,
max_alloc_size,
&(soc->link_desc_banks[i].base_paddr_unaligned));
soc->link_desc_banks[i].size = max_alloc_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
if (!soc->link_desc_banks[i].base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link descriptor memory alloc failed"));
goto fail;
}
}
if (last_bank_size) {
/* Allocate last bank in case total memory required is not exact
* multiple of max_alloc_size
*/
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev, soc->osdev->dev,
last_bank_size,
&(soc->link_desc_banks[i].base_paddr_unaligned));
soc->link_desc_banks[i].size = last_bank_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)
(soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr =
(unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
}
/* Allocate and setup link descriptor idle list for HW internal use */
entry_size = hal_srng_get_entrysize(soc->hal_soc, WBM_IDLE_LINK);
total_mem_size = entry_size * total_link_descs;
if (total_mem_size <= max_alloc_size) {
void *desc;
if (dp_srng_setup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0, 0, total_link_descs)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link desc idle ring setup failed"));
goto fail;
}
hal_srng_access_start_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_entries = (soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_entries && (desc = hal_srng_src_get_next(
soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng))) {
hal_set_link_desc_addr(desc,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_entries--;
desc_id++;
paddr += link_desc_size;
}
}
hal_srng_access_end_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
} else {
uint32_t num_scatter_bufs;
uint32_t num_entries_per_buf;
uint32_t rem_entries;
uint8_t *scatter_buf_ptr;
uint16_t scatter_buf_num;
soc->wbm_idle_scatter_buf_size =
hal_idle_list_scatter_buf_size(soc->hal_soc);
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc, soc->wbm_idle_scatter_buf_size);
num_scatter_bufs = (total_mem_size /
soc->wbm_idle_scatter_buf_size) + (total_mem_size %
soc->wbm_idle_scatter_buf_size) ? 1 : 0;
for (i = 0; i < num_scatter_bufs; i++) {
soc->wbm_idle_scatter_buf_base_vaddr[i] =
qdf_mem_alloc_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
&(soc->wbm_idle_scatter_buf_base_paddr[i]));
if (soc->wbm_idle_scatter_buf_base_vaddr[i] == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Scatter list memory alloc failed"));
goto fail;
}
}
/* Populate idle list scatter buffers with link descriptor
* pointers
*/
scatter_buf_num = 0;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
rem_entries = num_entries_per_buf;
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_link_descs =
(soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_link_descs) {
hal_set_link_desc_addr((void *)scatter_buf_ptr,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_link_descs--;
desc_id++;
paddr += link_desc_size;
if (rem_entries) {
rem_entries--;
scatter_buf_ptr += link_desc_size;
} else {
rem_entries = num_entries_per_buf;
scatter_buf_num++;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num]);
}
}
}
/* Setup link descriptor idle list in HW */
hal_setup_link_idle_list(soc->hal_soc,
soc->wbm_idle_scatter_buf_base_paddr,
soc->wbm_idle_scatter_buf_base_vaddr,
num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
(uint32_t)(scatter_buf_ptr -
(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num])));
}
return 0;
fail:
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc->hal_soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
}
}
return QDF_STATUS_E_FAILURE;
}
#ifdef notused
/*
* Free link descriptor pool that was setup HW
*/
static void dp_hw_link_desc_pool_cleanup(struct dp_soc *soc)
{
int i;
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc->hal_soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
}
}
}
#endif /* notused */
/* TODO: Following should be configurable */
#define WBM_RELEASE_RING_SIZE 64
#define TCL_CMD_RING_SIZE 32
#define TCL_STATUS_RING_SIZE 32
#if defined(QCA_WIFI_QCA6290)
#define REO_DST_RING_SIZE 1024
#else
#define REO_DST_RING_SIZE 2048
#endif
#define REO_REINJECT_RING_SIZE 32
#define RX_RELEASE_RING_SIZE 1024
#define REO_EXCEPTION_RING_SIZE 128
#define REO_CMD_RING_SIZE 32
#define REO_STATUS_RING_SIZE 32
#define RXDMA_BUF_RING_SIZE 1024
#define RXDMA_REFILL_RING_SIZE 2048
#define RXDMA_MONITOR_BUF_RING_SIZE 1024
#define RXDMA_MONITOR_DST_RING_SIZE 1024
#define RXDMA_MONITOR_STATUS_RING_SIZE 1024
#define RXDMA_MONITOR_DESC_RING_SIZE 1024
#define RXDMA_ERR_DST_RING_SIZE 1024
/*
* dp_wds_aging_timer_fn() - Timer callback function for WDS aging
* @soc: Datapath SOC handle
*
* This is a timer function used to age out stale WDS nodes from
* AST table
*/
#ifdef FEATURE_WDS
static void dp_wds_aging_timer_fn(void *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase) {
/*
* Do not expire static ast entries
*/
if (ase->is_static)
continue;
if (ase->is_active) {
ase->is_active = FALSE;
continue;
}
soc->cdp_soc.ol_ops->peer_del_wds_entry(
pdev->osif_pdev,
ase->mac_addr.raw);
dp_peer_del_ast(soc, ase);
}
}
}
}
qdf_spin_unlock_bh(&soc->ast_lock);
if (qdf_atomic_read(&soc->cmn_init_done))
qdf_timer_mod(&soc->wds_aging_timer, DP_WDS_AGING_TIMER_DEFAULT_MS);
}
/*
* dp_soc_wds_attach() - Setup WDS timer and AST table
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_soc_wds_attach(struct dp_soc *soc)
{
qdf_spinlock_create(&soc->ast_lock);
qdf_timer_init(soc->osdev, &soc->wds_aging_timer,
dp_wds_aging_timer_fn, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
qdf_timer_mod(&soc->wds_aging_timer, DP_WDS_AGING_TIMER_DEFAULT_MS);
}
/*
* dp_soc_wds_detach() - Detach WDS data structures and timers
* @txrx_soc: DP SOC handle
*
* Return: None
*/
static void dp_soc_wds_detach(struct dp_soc *soc)
{
qdf_timer_stop(&soc->wds_aging_timer);
qdf_timer_free(&soc->wds_aging_timer);
qdf_spinlock_destroy(&soc->ast_lock);
}
#else
static void dp_soc_wds_attach(struct dp_soc *soc)
{
}
static void dp_soc_wds_detach(struct dp_soc *soc)
{
}
#endif
/*
* dp_soc_reset_ring_map() - Reset cpu ring map
* @soc: Datapath soc handler
*
* This api resets the default cpu ring map
*/
static void dp_soc_reset_cpu_ring_map(struct dp_soc *soc)
{
uint8_t i;
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
if (nss_config == 1) {
/*
* Setting Tx ring map for one nss offloaded radio
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_FIRST_RADIO_OFFLOADED_MAP][i];
} else if (nss_config == 2) {
/*
* Setting Tx ring for two nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_SECOND_RADIO_OFFLOADED_MAP][i];
} else {
/*
* Setting Tx ring map for all nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_ALL_RADIO_OFFLOADED_MAP][i];
}
}
}
/*
* dp_soc_cmn_setup() - Common SoC level initializion
* @soc: Datapath SOC handle
*
* This is an internal function used to setup common SOC data structures,
* to be called from PDEV attach after receiving HW mode capabilities from FW
*/
static int dp_soc_cmn_setup(struct dp_soc *soc)
{
int i;
struct hal_reo_params reo_params;
int tx_ring_size;
int tx_comp_ring_size;
if (qdf_atomic_read(&soc->cmn_init_done))
return 0;
if (dp_peer_find_attach(soc))
goto fail0;
if (dp_hw_link_desc_pool_setup(soc))
goto fail1;
/* Setup SRNG rings */
/* Common rings */
if (dp_srng_setup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0,
WBM_RELEASE_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for wbm_desc_rel_ring"));
goto fail1;
}
soc->num_tcl_data_rings = 0;
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
soc->num_tcl_data_rings =
wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
tx_comp_ring_size =
wlan_cfg_tx_comp_ring_size(soc->wlan_cfg_ctx);
tx_ring_size =
wlan_cfg_tx_ring_size(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_srng_setup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i, 0, tx_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring[%d]"), i);
goto fail1;
}
/*
* TBD: Set IPA WBM ring size with ini IPA UC tx buffer
* count
*/
if (dp_srng_setup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i, 0, tx_comp_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring[%d]"), i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_tcl_data_rings = 0;
}
if (dp_tx_soc_attach(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_soc_attach failed"));
goto fail1;
}
/* TCL command and status rings */
if (dp_srng_setup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0, 0,
TCL_CMD_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_cmd_ring"));
goto fail1;
}
if (dp_srng_setup(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0,
TCL_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_status_ring"));
goto fail1;
}
/* TBD: call dp_tx_init to setup Tx SW descriptors and MSDU extension
* descriptors
*/
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("num_reo_dest_rings %d\n"), soc->num_reo_dest_rings);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[i], REO_DST,
i, 0, REO_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_dest_ring[%d]"), i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_reo_dest_rings = 0;
}
/* TBD: call dp_rx_init to setup Rx SW descriptors */
/* REO reinjection ring */
if (dp_srng_setup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0,
REO_REINJECT_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_reinject_ring"));
goto fail1;
}
/* Rx release ring */
if (dp_srng_setup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3, 0,
RX_RELEASE_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rx_rel_ring"));
goto fail1;
}
/* Rx exception ring */
if (dp_srng_setup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0,
MAX_REO_DEST_RINGS, REO_EXCEPTION_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_exception_ring"));
goto fail1;
}
/* REO command and status rings */
if (dp_srng_setup(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0,
REO_CMD_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_cmd_ring"));
goto fail1;
}
hal_reo_init_cmd_ring(soc->hal_soc, soc->reo_cmd_ring.hal_srng);
TAILQ_INIT(&soc->rx.reo_cmd_list);
qdf_spinlock_create(&soc->rx.reo_cmd_lock);
if (dp_srng_setup(soc, &soc->reo_status_ring, REO_STATUS, 0, 0,
REO_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_status_ring"));
goto fail1;
}
dp_soc_wds_attach(soc);
/* Reset the cpu ring map if radio is NSS offloaded */
if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx)) {
dp_soc_reset_cpu_ring_map(soc);
}
/* Setup HW REO */
qdf_mem_zero(&reo_params, sizeof(reo_params));
if (wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx))
reo_params.rx_hash_enabled = true;
hal_reo_setup(soc->hal_soc, &reo_params);
qdf_atomic_set(&soc->cmn_init_done, 1);
qdf_nbuf_queue_init(&soc->htt_stats_msg);
return 0;
fail1:
/*
* Cleanup will be done as part of soc_detach, which will
* be called on pdev attach failure
*/
fail0:
return QDF_STATUS_E_FAILURE;
}
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force);
static void dp_lro_hash_setup(struct dp_soc *soc)
{
struct cdp_lro_hash_config lro_hash;
if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("LRO disabled RX hash disabled"));
return;
}
qdf_mem_zero(&lro_hash, sizeof(lro_hash));
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx)) {
lro_hash.lro_enable = 1;
lro_hash.tcp_flag = QDF_TCPHDR_ACK;
lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("enabled"));
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"lro_hash: lro_enable: 0x%x"
"lro_hash: tcp_flag 0x%x tcp_flag_mask 0x%x",
lro_hash.lro_enable, lro_hash.tcp_flag,
lro_hash.tcp_flag_mask);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("lro_hash: toeplitz_hash_ipv4:"));
qdf_trace_hex_dump(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
(void *)lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("lro_hash: toeplitz_hash_ipv6:"));
qdf_trace_hex_dump(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
(void *)lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
if (soc->cdp_soc.ol_ops->lro_hash_config)
(void)soc->cdp_soc.ol_ops->lro_hash_config
(soc->osif_soc, &lro_hash);
}
/*
* dp_rxdma_ring_setup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: 0 - success, > 0 - failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
int i;
for (i = 0; i < max_mac_rings; i++) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: pdev_id %d mac_id %d\n",
__func__, pdev->pdev_id, i);
if (dp_srng_setup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1, i, RXDMA_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("failed rx mac ring setup"));
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#else
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_dscp_tid_map_setup(): Initialize the dscp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_dscp_tid_map_setup(struct dp_pdev *pdev)
{
uint8_t map_id;
for (map_id = 0; map_id < DP_MAX_TID_MAPS; map_id++) {
qdf_mem_copy(pdev->dscp_tid_map[map_id], default_dscp_tid_map,
sizeof(default_dscp_tid_map));
}
for (map_id = 0; map_id < HAL_MAX_HW_DSCP_TID_MAPS; map_id++) {
hal_tx_set_dscp_tid_map(pdev->soc->hal_soc,
pdev->dscp_tid_map[map_id],
map_id);
}
}
/*
* dp_reset_intr_mask() - reset interrupt mask
* @dp_soc - DP Soc handle
* @dp_pdev - DP pdev handle
*
* Return: Return void
*/
static inline
void dp_soc_reset_intr_mask(struct dp_soc *soc, struct dp_pdev *pdev)
{
/*
* We will set the interrupt mask to zero for NSS offloaded radio
*/
wlan_cfg_set_tx_ring_mask(soc->wlan_cfg_ctx, pdev->pdev_id, 0x0);
wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, pdev->pdev_id, 0x0);
wlan_cfg_set_rxdma2host_ring_mask(soc->wlan_cfg_ctx, pdev->pdev_id, 0x0);
}
/*
* dp_ipa_ring_resource_setup() - setup IPA ring resources
* @soc: data path SoC handle
*
* Return: none
*/
#ifdef IPA_OFFLOAD
static inline int dp_ipa_ring_resource_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
void *hal_srng;
struct hal_srng_params srng_params;
qdf_dma_addr_t hp_addr, tp_addr;
/* IPA TCL_DATA Ring - HAL_SRNG_SW2TCL4 */
hal_srng = soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX].hal_srng;
hal_get_srng_params(soc->hal_soc, hal_srng, &srng_params);
soc->ipa_uc_tx_rsc.ipa_tcl_ring_base_paddr =
srng_params.ring_base_paddr;
soc->ipa_uc_tx_rsc.ipa_tcl_ring_base_vaddr =
srng_params.ring_base_vaddr;
soc->ipa_uc_tx_rsc.ipa_tcl_ring_size =
srng_params.num_entries * srng_params.entry_size;
hp_addr = hal_srng_get_hp_addr(soc->hal_soc, hal_srng);
soc->ipa_uc_tx_rsc.ipa_tcl_hp_paddr = hp_addr;
/* IPA TX COMP Ring - HAL_SRNG_WBM2SW3_RELEASE */
hal_srng = soc->tx_comp_ring[IPA_TX_COMP_RING_IDX].hal_srng;
hal_get_srng_params(soc->hal_soc, hal_srng, &srng_params);
soc->ipa_uc_tx_rsc.ipa_wbm_ring_base_paddr =
srng_params.ring_base_paddr;
soc->ipa_uc_tx_rsc.ipa_wbm_ring_base_vaddr =
srng_params.ring_base_vaddr;
soc->ipa_uc_tx_rsc.ipa_wbm_ring_size =
srng_params.num_entries * srng_params.entry_size;
tp_addr = hal_srng_get_tp_addr(soc->hal_soc, hal_srng);
soc->ipa_uc_tx_rsc.ipa_wbm_tp_paddr = tp_addr;
/* IPA REO_DEST Ring - HAL_SRNG_REO2SW4 */
hal_srng = soc->reo_dest_ring[IPA_REO_DEST_RING_IDX].hal_srng;
hal_get_srng_params(soc->hal_soc, hal_srng, &srng_params);
soc->ipa_uc_rx_rsc.ipa_reo_ring_base_paddr =
srng_params.ring_base_paddr;
soc->ipa_uc_rx_rsc.ipa_reo_ring_base_vaddr =
srng_params.ring_base_vaddr;
soc->ipa_uc_rx_rsc.ipa_reo_ring_size =
srng_params.num_entries * srng_params.entry_size;
tp_addr = hal_srng_get_tp_addr(soc->hal_soc, hal_srng);
soc->ipa_uc_rx_rsc.ipa_reo_tp_paddr = tp_addr;
/* IPA RX_REFILL_BUF Ring - ipa_rx_refill_buf_ring */
if (dp_srng_setup(soc, &pdev->ipa_rx_refill_buf_ring, RXDMA_BUF, 2,
pdev->pdev_id, RXDMA_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_srng_setup failed IPA rx refill ring\n",
__func__);
return -EFAULT;
}
hal_srng = pdev->ipa_rx_refill_buf_ring.hal_srng;
hal_get_srng_params(soc->hal_soc, hal_srng, &srng_params);
soc->ipa_uc_rx_rsc.ipa_rx_refill_buf_ring_base_paddr =
srng_params.ring_base_paddr;
soc->ipa_uc_rx_rsc.ipa_rx_refill_buf_ring_base_vaddr =
srng_params.ring_base_vaddr;
soc->ipa_uc_rx_rsc.ipa_rx_refill_buf_ring_size =
srng_params.num_entries * srng_params.entry_size;
hp_addr = hal_srng_get_hp_addr(soc->hal_soc, hal_srng);
soc->ipa_uc_rx_rsc.ipa_rx_refill_buf_hp_paddr = hp_addr;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: ring_base_paddr:%p, ring_base_vaddr:%p"
"_entries:%d, hp_addr:%p\n",
__func__,
(void *)srng_params.ring_base_paddr,
(void *)srng_params.ring_base_vaddr,
srng_params.num_entries,
(void *)hp_addr);
return 0;
}
#else
static inline int dp_ipa_ring_resource_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return 0;
}
#endif
/*
* dp_pdev_attach_wifi3() - attach txrx pdev
* @osif_pdev: Opaque PDEV handle from OSIF/HDD
* @txrx_soc: Datapath SOC handle
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @pdev_id: PDEV ID
*
* Return: DP PDEV handle on success, NULL on failure
*/
static struct cdp_pdev *dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
struct cdp_cfg *ctrl_pdev,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, uint8_t pdev_id)
{
int tx_ring_size;
int tx_comp_ring_size;
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = qdf_mem_malloc(sizeof(*pdev));
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV memory allocation failed"));
goto fail0;
}
pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach();
if (!pdev->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("pdev cfg_attach failed"));
qdf_mem_free(pdev);
goto fail0;
}
/*
* set nss pdev config based on soc config
*/
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx) & (1 << pdev_id)));
pdev->soc = soc;
pdev->osif_pdev = ctrl_pdev;
pdev->pdev_id = pdev_id;
soc->pdev_list[pdev_id] = pdev;
soc->pdev_count++;
TAILQ_INIT(&pdev->vdev_list);
pdev->vdev_count = 0;
qdf_spinlock_create(&pdev->tx_mutex);
qdf_spinlock_create(&pdev->neighbour_peer_mutex);
TAILQ_INIT(&pdev->neighbour_peers_list);
if (dp_soc_cmn_setup(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_soc_cmn_setup failed"));
goto fail1;
}
/* Setup per PDEV TCL rings if configured */
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
tx_ring_size =
wlan_cfg_tx_ring_size(soc->wlan_cfg_ctx);
tx_comp_ring_size =
wlan_cfg_tx_comp_ring_size(soc->wlan_cfg_ctx);
if (dp_srng_setup(soc, &soc->tcl_data_ring[pdev_id], TCL_DATA,
pdev_id, pdev_id, tx_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring"));
goto fail1;
}
if (dp_srng_setup(soc, &soc->tx_comp_ring[pdev_id],
WBM2SW_RELEASE, pdev_id, pdev_id, tx_comp_ring_size)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring"));
goto fail1;
}
soc->num_tcl_data_rings++;
}
/* Tx specific init */
if (dp_tx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_pdev_attach failed"));
goto fail1;
}
/* Setup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[pdev_id], REO_DST,
pdev_id, pdev_id, REO_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_dest_ringn"));
goto fail1;
}
soc->num_reo_dest_rings++;
}
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0, pdev_id,
RXDMA_REFILL_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed rx refill ring"));
goto fail1;
}
if (dp_rxdma_ring_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("RXDMA ring config failed"));
goto fail1;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_buf_ring, RXDMA_MONITOR_BUF, 0,
pdev_id, RXDMA_MONITOR_BUF_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rxdma_mon_buf_ring"));
goto fail1;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_dst_ring, RXDMA_MONITOR_DST, 0,
pdev_id, RXDMA_MONITOR_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rxdma_mon_dst_ring"));
goto fail1;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_status_ring,
RXDMA_MONITOR_STATUS, 0, pdev_id,
RXDMA_MONITOR_STATUS_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rxdma_mon_status_ring"));
goto fail1;
}
if (dp_srng_setup(soc, &pdev->rxdma_mon_desc_ring,
RXDMA_MONITOR_DESC, 0, pdev_id, RXDMA_MONITOR_DESC_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_srng_setup failed for rxdma_mon_desc_ring\n");
goto fail1;
}
if (dp_srng_setup(soc, &pdev->rxdma_err_dst_ring, RXDMA_DST, 0,
pdev_id, RXDMA_ERR_DST_RING_SIZE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rxdma_mon_dst_ring"));
goto fail1;
}
if (dp_ipa_ring_resource_setup(soc, pdev))
goto fail1;
if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: dp_ipa_uc_attach failed\n", __func__);
goto fail1;
}
/* Rx specific init */
if (dp_rx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_rx_pdev_attach failed "));
goto fail0;
}
DP_STATS_INIT(pdev);
#ifndef CONFIG_WIN
/* MCL */
dp_local_peer_id_pool_init(pdev);
#endif
dp_dscp_tid_map_setup(pdev);
/* Rx monitor mode specific init */
if (dp_rx_pdev_mon_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_rx_pdev_attach failed\n");
goto fail1;
}
if (dp_wdi_event_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_wdi_evet_attach failed\n");
goto fail1;
}
/* set the reo destination during initialization */
pdev->reo_dest = pdev->pdev_id + 1;
/*
* reset the interrupt mask for offloaded radio
*/
if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
dp_soc_reset_intr_mask(soc, pdev);
}
return (struct cdp_pdev *)pdev;
fail1:
dp_pdev_detach_wifi3((struct cdp_pdev *)pdev, 0);
fail0:
return NULL;
}
/*
* dp_rxdma_ring_cleanup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: void
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
int max_mac_rings =
wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx);
int i;
max_mac_rings = max_mac_rings < MAX_RX_MAC_RINGS ?
max_mac_rings : MAX_RX_MAC_RINGS;
for (i = 0; i < MAX_RX_MAC_RINGS; i++)
dp_srng_cleanup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1);
}
#else
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
/*
* dp_neighbour_peers_detach() - Detach neighbour peers(nac clients)
* @pdev: device object
*
* Return: void
*/
static void dp_neighbour_peers_detach(struct dp_pdev *pdev)
{
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
}
qdf_spinlock_destroy(&pdev->neighbour_peer_mutex);
}
/*
* dp_pdev_detach_wifi3() - detach txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force detach
*
*/
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
dp_wdi_event_detach(pdev);
dp_tx_pdev_detach(pdev);
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[pdev->pdev_id],
TCL_DATA, pdev->pdev_id);
dp_srng_cleanup(soc, &soc->tx_comp_ring[pdev->pdev_id],
WBM2SW_RELEASE, pdev->pdev_id);
}
dp_rx_pdev_detach(pdev);
dp_rx_pdev_mon_detach(pdev);
dp_neighbour_peers_detach(pdev);
qdf_spinlock_destroy(&pdev->tx_mutex);
dp_ipa_uc_detach(soc, pdev);
/* Cleanup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->reo_dest_ring[pdev->pdev_id],
REO_DST, pdev->pdev_id);
}
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0);
dp_rxdma_ring_cleanup(soc, pdev);
dp_srng_cleanup(soc, &pdev->rxdma_mon_buf_ring, RXDMA_MONITOR_BUF, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_dst_ring, RXDMA_MONITOR_DST, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_status_ring,
RXDMA_MONITOR_STATUS, 0);
dp_srng_cleanup(soc, &pdev->rxdma_mon_desc_ring,
RXDMA_MONITOR_DESC, 0);
dp_srng_cleanup(soc, &pdev->rxdma_err_dst_ring, RXDMA_DST, 0);
soc->pdev_list[pdev->pdev_id] = NULL;
soc->pdev_count--;
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
qdf_mem_free(pdev);
}
/*
* dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
* @soc: DP SOC handle
*/
static inline void dp_reo_desc_freelist_destroy(struct dp_soc *soc)
{
struct reo_desc_list_node *desc;
struct dp_rx_tid *rx_tid;
qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
while (qdf_list_remove_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) {
rx_tid = &desc->rx_tid;
qdf_mem_unmap_nbytes_single(soc->osdev,
rx_tid->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
rx_tid->hw_qdesc_alloc_size);
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
qdf_list_destroy(&soc->reo_desc_freelist);
qdf_spinlock_destroy(&soc->reo_desc_freelist_lock);
}
/*
* dp_soc_detach_wifi3() - Detach txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*/
static void dp_soc_detach_wifi3(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
qdf_atomic_set(&soc->cmn_init_done, 0);
qdf_flush_work(0, &soc->htt_stats_work);
qdf_disable_work(0, &soc->htt_stats_work);
for (i = 0; i < MAX_PDEV_CNT; i++) {
if (soc->pdev_list[i])
dp_pdev_detach_wifi3(
(struct cdp_pdev *)soc->pdev_list[i], 1);
}
dp_peer_find_detach(soc);
/* TBD: Call Tx and Rx cleanup functions to free buffers and
* SW descriptors
*/
/* Free the ring memories */
/* Common rings */
dp_srng_cleanup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
dp_tx_soc_detach(soc);
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i);
dp_srng_cleanup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i);
}
}
/* TCL command and status rings */
dp_srng_cleanup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0);
dp_srng_cleanup(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
dp_srng_cleanup(soc, &soc->reo_dest_ring[i],
REO_DST, i);
}
}
/* REO reinjection ring */
dp_srng_cleanup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
dp_srng_cleanup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
dp_srng_cleanup(soc, &soc->reo_cmd_ring, REO_CMD, 0);
dp_srng_cleanup(soc, &soc->reo_status_ring, REO_STATUS, 0);
qdf_spinlock_destroy(&soc->peer_ref_mutex);
htt_soc_detach(soc->htt_handle);
dp_reo_cmdlist_destroy(soc);
qdf_spinlock_destroy(&soc->rx.reo_cmd_lock);
dp_reo_desc_freelist_destroy(soc);
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
dp_soc_wds_detach(soc);
qdf_mem_free(soc);
}
/*
* dp_setup_ipa_rx_refill_buf_ring() - setup IPA RX Refill buffer ring
* @soc: data path SoC handle
* @pdev: physical device handle
*
* Return: void
*/
#ifdef IPA_OFFLOAD
static inline void dp_config_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
htt_srng_setup(soc->htt_handle, 0,
pdev->ipa_rx_refill_buf_ring.hal_srng, RXDMA_BUF);
}
#else
static inline void dp_config_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
/*
* dp_rxdma_ring_config() - configure the RX DMA rings
*
* This function is used to configure the MAC rings.
* On MCL host provides buffers in Host2FW ring
* FW refills (copies) buffers to the ring and updates
* ring_idx in register
*
* @soc: data path SoC handle
*
* Return: void
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static void dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
int mac_id = 0;
int j;
bool dbs_enable = 0;
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring.hal_srng,
RXDMA_BUF);
dp_config_ipa_rx_refill_buf_ring(soc, pdev);
if (soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable) {
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable(soc->psoc);
}
if (dbs_enable) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS enabled max_mac_rings %d\n"),
max_mac_rings);
} else {
max_mac_rings = 1;
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS disabled, max_mac_rings %d\n"),
max_mac_rings);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("pdev_id %d max_mac_rings %d\n"),
pdev->pdev_id, max_mac_rings);
for (j = 0; j < max_mac_rings; j++) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("mac_id %d\n"), mac_id);
htt_srng_setup(soc->htt_handle, mac_id,
pdev->rx_mac_buf_ring[j]
.hal_srng,
RXDMA_BUF);
mac_id++;
}
/* Configure monitor mode rings */
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_buf_ring.hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_dst_ring.hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_status_ring.hal_srng,
RXDMA_MONITOR_STATUS);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_desc_ring.hal_srng,
RXDMA_MONITOR_DESC);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_err_dst_ring.hal_srng,
RXDMA_DST);
}
}
}
#else
static void dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
htt_srng_setup(soc->htt_handle, i,
pdev->rx_refill_buf_ring.hal_srng, RXDMA_BUF);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_buf_ring.hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_dst_ring.hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_status_ring.hal_srng,
RXDMA_MONITOR_STATUS);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_mon_desc_ring.hal_srng,
RXDMA_MONITOR_DESC);
htt_srng_setup(soc->htt_handle, i,
pdev->rxdma_err_dst_ring.hal_srng,
RXDMA_DST);
}
}
}
#endif
/*
* dp_soc_attach_target_wifi3() - SOC initialization in the target
* @txrx_soc: Datapath SOC handle
*/
static int dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
htt_soc_attach_target(soc->htt_handle);
dp_rxdma_ring_config(soc);
DP_STATS_INIT(soc);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats_work, htt_t2h_stats_handler, soc);
return 0;
}
/*
* dp_soc_get_nss_cfg_wifi3() - SOC get nss config
* @txrx_soc: Datapath SOC handle
*/
static int dp_soc_get_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
return wlan_cfg_get_dp_soc_nss_cfg(dsoc->wlan_cfg_ctx);
}
/*
* dp_soc_set_nss_cfg_wifi3() - SOC set nss config
* @txrx_soc: Datapath SOC handle
* @nss_cfg: nss config
*/
static void dp_soc_set_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc, int config)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
wlan_cfg_set_dp_soc_nss_cfg(dsoc->wlan_cfg_ctx, config);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("nss-wifi<0> nss config is enabled"));
}
/*
* dp_vdev_attach_wifi3() - attach txrx vdev
* @txrx_pdev: Datapath PDEV handle
* @vdev_mac_addr: MAC address of the virtual interface
* @vdev_id: VDEV Id
* @wlan_op_mode: VDEV operating mode
*
* Return: DP VDEV handle on success, NULL on failure
*/
static struct cdp_vdev *dp_vdev_attach_wifi3(struct cdp_pdev *txrx_pdev,
uint8_t *vdev_mac_addr, uint8_t vdev_id, enum wlan_op_mode op_mode)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev = qdf_mem_malloc(sizeof(*vdev));
int tx_ring_size;
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP VDEV memory allocation failed"));
goto fail0;
}
vdev->pdev = pdev;
vdev->vdev_id = vdev_id;
vdev->opmode = op_mode;
vdev->osdev = soc->osdev;
vdev->osif_rx = NULL;
vdev->osif_rsim_rx_decap = NULL;
vdev->osif_rx_mon = NULL;
vdev->osif_tx_free_ext = NULL;
vdev->osif_vdev = NULL;
vdev->delete.pending = 0;
vdev->safemode = 0;
vdev->drop_unenc = 1;
#ifdef notyet
vdev->filters_num = 0;
#endif
qdf_mem_copy(
&vdev->mac_addr.raw[0], vdev_mac_addr, OL_TXRX_MAC_ADDR_LEN);
vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->dscp_tid_map_id = 0;
vdev->mcast_enhancement_en = 0;
tx_ring_size = wlan_cfg_tx_ring_size(soc->wlan_cfg_ctx);
/* TODO: Initialize default HTT meta data that will be used in
* TCL descriptors for packets transmitted from this VDEV
*/
TAILQ_INIT(&vdev->peer_list);
/* add this vdev into the pdev's list */
TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
pdev->vdev_count++;
dp_tx_vdev_attach(vdev);
if (QDF_STATUS_SUCCESS != dp_tx_flow_pool_map_handler(pdev, vdev_id,
FLOW_TYPE_VDEV, vdev_id, tx_ring_size))
goto fail1;
if ((soc->intr_mode == DP_INTR_POLL) &&
wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
if (pdev->vdev_count == 1)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
dp_lro_hash_setup(soc);
/* LRO */
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
wlan_op_mode_sta == vdev->opmode)
vdev->lro_enable = true;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"LRO: vdev_id %d lro_enable %d", vdev_id, vdev->lro_enable);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Created vdev %p (%pM)", vdev, vdev->mac_addr.raw);
DP_STATS_INIT(vdev);
return (struct cdp_vdev *)vdev;
fail1:
dp_tx_vdev_detach(vdev);
qdf_mem_free(vdev);
fail0:
return NULL;
}
/**
* dp_vdev_register_wifi3() - Register VDEV operations from osif layer
* @vdev: Datapath VDEV handle
* @osif_vdev: OSIF vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: DP VDEV handle on success, NULL on failure
*/
static void dp_vdev_register_wifi3(struct cdp_vdev *vdev_handle,
void *osif_vdev,
struct ol_txrx_ops *txrx_ops)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->osif_vdev = osif_vdev;
vdev->osif_rx = txrx_ops->rx.rx;
vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
vdev->osif_rx_mon = txrx_ops->rx.mon;
vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
#ifdef notyet
#if ATH_SUPPORT_WAPI
vdev->osif_check_wai = txrx_ops->rx.wai_check;
#endif
#endif
#ifdef UMAC_SUPPORT_PROXY_ARP
vdev->osif_proxy_arp = txrx_ops->proxy_arp;
#endif
vdev->me_convert = txrx_ops->me_convert;
/* TODO: Enable the following once Tx code is integrated */
txrx_ops->tx.tx = dp_tx_send;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"DP Vdev Register success");
}
/*
* dp_vdev_detach_wifi3() - Detach txrx vdev
* @txrx_vdev: Datapath VDEV handle
* @callback: Callback OL_IF on completion of detach
* @cb_context: Callback context
*
*/
static void dp_vdev_detach_wifi3(struct cdp_vdev *vdev_handle,
ol_txrx_vdev_delete_cb callback, void *cb_context)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
/* preconditions */
qdf_assert(vdev);
/* remove the vdev from its parent pdev's list */
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
/*
* Use peer_ref_mutex while accessing peer_list, in case
* a peer is in the process of being removed from the list.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
/* check that the vdev has no peers allocated */
if (!TAILQ_EMPTY(&vdev->peer_list)) {
/* debug print - will be removed later */
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
FL("not deleting vdev object %p (%pM)"
"until deletion finishes for all its peers"),
vdev, vdev->mac_addr.raw);
/* indicate that the vdev needs to be deleted */
vdev->delete.pending = 1;
vdev->delete.callback = callback;
vdev->delete.context = cb_context;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return;
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
dp_tx_flow_pool_unmap_handler(pdev, vdev->vdev_id, FLOW_TYPE_VDEV,
vdev->vdev_id);
dp_tx_vdev_detach(vdev);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("deleting vdev object %p (%pM)"), vdev, vdev->mac_addr.raw);
qdf_mem_free(vdev);
if (callback)
callback(cb_context);
}
/*
* dp_peer_create_wifi3() - attach txrx peer
* @txrx_vdev: Datapath VDEV handle
* @peer_mac_addr: Peer MAC address
*
* Return: DP peeer handle on success, NULL on failure
*/
static void *dp_peer_create_wifi3(struct cdp_vdev *vdev_handle,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
int i;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer_mac_addr);
pdev = vdev->pdev;
soc = pdev->soc;
#ifdef notyet
peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
soc->mempool_ol_ath_peer);
#else
peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
#endif
if (!peer)
return NULL; /* failure */
qdf_mem_zero(peer, sizeof(struct dp_peer));
TAILQ_INIT(&peer->ast_entry_list);
dp_peer_add_ast(soc, peer, peer_mac_addr, 1);
qdf_spinlock_create(&peer->peer_info_lock);
/* store provided params */
peer->vdev = vdev;
qdf_mem_copy(
&peer->mac_addr.raw[0], peer_mac_addr, OL_TXRX_MAC_ADDR_LEN);
/* TODO: See of rx_opt_proc is really required */
peer->rx_opt_proc = soc->rx_opt_proc;
/* initialize the peer_id */
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
peer->peer_ids[i] = HTT_INVALID_PEER;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_atomic_init(&peer->ref_cnt);
/* keep one reference for attach */
qdf_atomic_inc(&peer->ref_cnt);
/* add this peer into the vdev's list */
TAILQ_INSERT_TAIL(&vdev->peer_list, peer, peer_list_elem);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/* TODO: See if hash based search is required */
dp_peer_find_hash_add(soc, peer);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
"vdev %p created peer %p (%pM) ref_cnt: %d",
vdev, peer, peer->mac_addr.raw,
qdf_atomic_read(&peer->ref_cnt));
/*
* For every peer MAp message search and set if bss_peer
*/
if (memcmp(peer->mac_addr.raw, vdev->mac_addr.raw, 6) == 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
"vdev bss_peer!!!!");
peer->bss_peer = 1;
vdev->vap_bss_peer = peer;
}
#ifndef CONFIG_WIN
dp_local_peer_id_alloc(pdev, peer);
#endif
DP_STATS_INIT(peer);
return (void *)peer;
}
/*
* dp_peer_setup_wifi3() - initialize the peer
* @vdev_hdl: virtual device object
* @peer: Peer object
*
* Return: void
*/
static void dp_peer_setup_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_pdev *pdev;
struct dp_soc *soc;
bool hash_based = 0;
enum cdp_host_reo_dest_ring reo_dest;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer);
pdev = vdev->pdev;
soc = pdev->soc;
dp_peer_rx_init(pdev, peer);
peer->last_assoc_rcvd = 0;
peer->last_disassoc_rcvd = 0;
peer->last_deauth_rcvd = 0;
hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("hash based steering %d\n"), hash_based);
if (!hash_based)
reo_dest = pdev->reo_dest;
else
reo_dest = 1;
if (soc->cdp_soc.ol_ops->peer_set_default_routing) {
/* TODO: Check the destination ring number to be passed to FW */
soc->cdp_soc.ol_ops->peer_set_default_routing(
pdev->osif_pdev, peer->mac_addr.raw,
peer->vdev->vdev_id, hash_based, reo_dest);
}
return;
}
/*
* dp_set_vdev_tx_encap_type() - set the encap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_tx_encap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tx_encap_type = val;
}
/*
* dp_set_vdev_rx_decap_type() - set the decap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_rx_decap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->rx_decap_type = val;
}
/*
* dp_set_pdev_reo_dest() - set the reo destination ring for this pdev
* @pdev_handle: physical device object
* @val: reo destination ring index (1 - 4)
*
* Return: void
*/
static void dp_set_pdev_reo_dest(struct cdp_pdev *pdev_handle,
enum cdp_host_reo_dest_ring val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
pdev->reo_dest = val;
}
/*
* dp_get_pdev_reo_dest() - get the reo destination for this pdev
* @pdev_handle: physical device object
*
* Return: reo destination ring index
*/
static enum cdp_host_reo_dest_ring
dp_get_pdev_reo_dest(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
return pdev->reo_dest;
else
return cdp_host_reo_dest_ring_unknown;
}
#ifdef QCA_SUPPORT_SON
static void dp_son_peer_authorize(struct dp_peer *peer)
{
struct dp_soc *soc;
soc = peer->vdev->pdev->soc;
peer->peer_bs_inact_flag = 0;
peer->peer_bs_inact = soc->pdev_bs_inact_reload;
return;
}
#else
static void dp_son_peer_authorize(struct dp_peer *peer)
{
return;
}
#endif
/*
* dp_set_filter_neighbour_peers() - set filter neighbour peers for smart mesh
* @pdev_handle: device object
* @val: value to be set
*
* Return: void
*/
static int dp_set_filter_neighbour_peers(struct cdp_pdev *pdev_handle,
uint32_t val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
/* Enable/Disable smart mesh filtering. This flag will be checked
* during rx processing to check if packets are from NAC clients.
*/
pdev->filter_neighbour_peers = val;
return 0;
}
/*
* dp_update_filter_neighbour_peers() - set neighbour peers(nac clients)
* address for smart mesh filtering
* @pdev_handle: device object
* @cmd: Add/Del command
* @macaddr: nac client mac address
*
* Return: void
*/
static int dp_update_filter_neighbour_peers(struct cdp_pdev *pdev_handle,
uint32_t cmd, uint8_t *macaddr)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_neighbour_peer *peer = NULL;
if (!macaddr)
goto fail0;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == DP_NAC_PARAM_ADD) {
peer = (struct dp_neighbour_peer *) qdf_mem_malloc(
sizeof(*peer));
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP neighbour peer node memory allocation failed"));
goto fail0;
}
qdf_mem_copy(&peer->neighbour_peers_macaddr.raw[0],
macaddr, DP_MAC_ADDR_LEN);
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
/* add this neighbour peer into the list */
TAILQ_INSERT_TAIL(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return 1;
} else if (cmd == DP_NAC_PARAM_DEL) {
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (!qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
macaddr, DP_MAC_ADDR_LEN)) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
break;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return 1;
}
fail0:
return 0;
}
/*
* dp_peer_authorize() - authorize txrx peer
* @peer_handle: Datapath peer handle
* @authorize
*
*/
static void dp_peer_authorize(struct cdp_peer *peer_handle, uint32_t authorize)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_soc *soc;
if (peer != NULL) {
soc = peer->vdev->pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_son_peer_authorize(peer);
peer->authorize = authorize ? 1 : 0;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
/*
* dp_peer_unref_delete() - unref and delete peer
* @peer_handle: Datapath peer handle
*
*/
void dp_peer_unref_delete(void *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_vdev *vdev = peer->vdev;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *tmppeer;
int found = 0;
uint16_t peer_id;
/*
* Hold the lock all the way from checking if the peer ref count
* is zero until the peer references are removed from the hash
* table and vdev list (if the peer ref count is zero).
* This protects against a new HL tx operation starting to use the
* peer object just after this function concludes it's done being used.
* Furthermore, the lock needs to be held while checking whether the
* vdev's list of peers is empty, to make sure that list is not modified
* concurrently with the empty check.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: peer %p ref_cnt(before decrement): %d\n", __func__,
peer, qdf_atomic_read(&peer->ref_cnt));
if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
peer_id = peer->peer_ids[0];
/*
* Make sure that the reference to the peer in
* peer object map is removed
*/
if (peer_id != HTT_INVALID_PEER)
soc->peer_id_to_obj_map[peer_id] = NULL;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
"Deleting peer %p (%pM)", peer, peer->mac_addr.raw);
/* remove the reference to the peer from the hash table */
dp_peer_find_hash_remove(soc, peer);
TAILQ_FOREACH(tmppeer, &peer->vdev->peer_list, peer_list_elem) {
if (tmppeer == peer) {
found = 1;
break;
}
}
if (found) {
TAILQ_REMOVE(&peer->vdev->peer_list, peer,
peer_list_elem);
} else {
/*Ignoring the remove operation as peer not found*/
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
"peer %p not found in vdev (%p)->peer_list:%p",
peer, vdev, &peer->vdev->peer_list);
}
/* cleanup the peer data */
dp_peer_cleanup(vdev, peer);
/* check whether the parent vdev has no peers left */
if (TAILQ_EMPTY(&vdev->peer_list)) {
/*
* Now that there are no references to the peer, we can
* release the peer reference lock.
*/
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/*
* Check if the parent vdev was waiting for its peers
* to be deleted, in order for it to be deleted too.
*/
if (vdev->delete.pending) {
ol_txrx_vdev_delete_cb vdev_delete_cb =
vdev->delete.callback;
void *vdev_delete_context =
vdev->delete.context;
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO_HIGH,
FL("deleting vdev object %p (%pM)"
" - its last peer is done"),
vdev, vdev->mac_addr.raw);
/* all peers are gone, go ahead and delete it */
qdf_mem_free(vdev);
if (vdev_delete_cb)
vdev_delete_cb(vdev_delete_context);
}
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#ifdef notyet
qdf_mempool_free(soc->osdev, soc->mempool_ol_ath_peer, peer);
#else
qdf_mem_free(peer);
#endif
if (soc->cdp_soc.ol_ops->peer_unref_delete) {
soc->cdp_soc.ol_ops->peer_unref_delete(pdev->osif_pdev,
vdev->vdev_id, peer->mac_addr.raw);
}
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
/*
* dp_peer_detach_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static void dp_peer_delete_wifi3(void *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
/* redirect the peer's rx delivery function to point to a
* discard func
*/
peer->rx_opt_proc = dp_rx_discard;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("peer %p (%pM)"), peer, peer->mac_addr.raw);
#ifndef CONFIG_WIN
dp_local_peer_id_free(peer->vdev->pdev, peer);
#endif
qdf_spinlock_destroy(&peer->peer_info_lock);
/*
* Remove the reference added during peer_attach.
* The peer will still be left allocated until the
* PEER_UNMAP message arrives to remove the other
* reference, added by the PEER_MAP message.
*/
dp_peer_unref_delete(peer_handle);
}
/*
* dp_get_vdev_mac_addr_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static uint8 *dp_get_vdev_mac_addr_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
return vdev->mac_addr.raw;
}
/*
* dp_vdev_set_wds() - Enable per packet stats
* @vdev_handle: DP VDEV handle
* @val: value
*
* Return: none
*/
static int dp_vdev_set_wds(void *vdev_handle, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->wds_enabled = val;
return 0;
}
/*
* dp_get_vdev_from_vdev_id_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static struct cdp_vdev *dp_get_vdev_from_vdev_id_wifi3(struct cdp_pdev *dev,
uint8_t vdev_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
struct dp_vdev *vdev = NULL;
if (qdf_unlikely(!pdev))
return NULL;
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->vdev_id == vdev_id)
break;
}
return (struct cdp_vdev *)vdev;
}
static int dp_get_opmode(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
return vdev->opmode;
}
static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
struct dp_pdev *pdev = vdev->pdev;
return (struct cdp_cfg *)pdev->wlan_cfg_ctx;
}
/**
* dp_vdev_set_monitor_mode() - Set DP VDEV to monitor mode
* @vdev_handle: Datapath VDEV handle
* @smart_monitor: Flag to denote if its smart monitor mode
*
* Return: 0 on success, not 0 on failure
*/
static int dp_vdev_set_monitor_mode(struct cdp_vdev *vdev_handle,
uint8_t smart_monitor)
{
/* Many monitor VAPs can exists in a system but only one can be up at
* anytime
*/
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc;
uint8_t pdev_id;
qdf_assert(vdev);
pdev = vdev->pdev;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%p, pdev_id=%d, soc=%p vdev=%p\n",
pdev, pdev_id, soc, vdev);
/*Check if current pdev's monitor_vdev exists */
if (pdev->monitor_vdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"vdev=%p\n", vdev);
qdf_assert(vdev);
}
pdev->monitor_vdev = vdev;
/* If smart monitor mode, do not configure monitor ring */
if (smart_monitor)
return QDF_STATUS_SUCCESS;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
htt_h2t_rx_ring_cfg(soc->htt_handle, pdev_id,
pdev->rxdma_mon_buf_ring.hal_srng,
RXDMA_MONITOR_BUF, RX_BUFFER_SIZE, &htt_tlv_filter);
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
htt_h2t_rx_ring_cfg(soc->htt_handle, pdev_id,
pdev->rxdma_mon_status_ring.hal_srng, RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE, &htt_tlv_filter);
return QDF_STATUS_SUCCESS;
}
#ifdef MESH_MODE_SUPPORT
void dp_peer_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_vdev = val;
}
/*
* dp_peer_set_mesh_rx_filter() - to set the mesh rx filter
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: void
*/
void dp_peer_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_rx_filter = val;
}
#endif
/**
* dp_aggregate_vdev_stats(): Consolidate stats at VDEV level
* @vdev: DP VDEV handle
*
* return: void
*/
void dp_aggregate_vdev_stats(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
int i;
qdf_mem_set(&(vdev->stats.tx), sizeof(vdev->stats.tx), 0x0);
qdf_mem_set(&(vdev->stats.rx), sizeof(vdev->stats.rx), 0x0);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer)
return;
for (i = 0; i <= MAX_MCS; i++) {
DP_STATS_AGGR(vdev, peer, tx.pkt_type[0].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, tx.pkt_type[1].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, tx.pkt_type[2].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, tx.pkt_type[3].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, tx.pkt_type[4].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, rx.pkt_type[0].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, rx.pkt_type[1].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, rx.pkt_type[2].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, rx.pkt_type[3].mcs_count[i]);
DP_STATS_AGGR(vdev, peer, rx.pkt_type[4].mcs_count[i]);
}
for (i = 0; i < SUPPORTED_BW; i++) {
DP_STATS_AGGR(vdev, peer, tx.bw[i]);
DP_STATS_AGGR(vdev, peer, rx.bw[i]);
}
for (i = 0; i < SS_COUNT; i++)
DP_STATS_AGGR(vdev, peer, rx.nss[i]);
for (i = 0; i < WME_AC_MAX; i++) {
DP_STATS_AGGR(vdev, peer, tx.wme_ac_type[i]);
DP_STATS_AGGR(vdev, peer, rx.wme_ac_type[i]);
DP_STATS_AGGR(vdev, peer, tx.excess_retries_ac[i]);
}
for (i = 0; i < MAX_MCS + 1; i++) {
DP_STATS_AGGR(vdev, peer, tx.sgi_count[i]);
DP_STATS_AGGR(vdev, peer, rx.sgi_count[i]);
}
DP_STATS_AGGR_PKT(vdev, peer, tx.comp_pkt);
DP_STATS_AGGR_PKT(vdev, peer, tx.ucast);
DP_STATS_AGGR_PKT(vdev, peer, tx.mcast);
DP_STATS_AGGR_PKT(vdev, peer, tx.tx_success);
DP_STATS_AGGR(vdev, peer, tx.tx_failed);
DP_STATS_AGGR(vdev, peer, tx.ofdma);
DP_STATS_AGGR(vdev, peer, tx.stbc);
DP_STATS_AGGR(vdev, peer, tx.ldpc);
DP_STATS_AGGR(vdev, peer, tx.retries);
DP_STATS_AGGR(vdev, peer, tx.non_amsdu_cnt);
DP_STATS_AGGR(vdev, peer, tx.amsdu_cnt);
DP_STATS_AGGR(vdev, peer, tx.dropped.fw_discard);
DP_STATS_AGGR(vdev, peer, tx.dropped.fw_discard_retired);
DP_STATS_AGGR(vdev, peer, tx.dropped.mpdu_age_out);
DP_STATS_AGGR(vdev, peer, tx.dropped.fw_discard_reason1);
DP_STATS_AGGR(vdev, peer, tx.dropped.fw_discard_reason2);
DP_STATS_AGGR(vdev, peer, tx.dropped.fw_discard_reason3);
DP_STATS_AGGR(vdev, peer, rx.err.mic_err);
DP_STATS_AGGR(vdev, peer, rx.err.decrypt_err);
DP_STATS_AGGR(vdev, peer, rx.non_ampdu_cnt);
DP_STATS_AGGR(vdev, peer, rx.ampdu_cnt);
DP_STATS_AGGR(vdev, peer, rx.non_amsdu_cnt);
DP_STATS_AGGR(vdev, peer, rx.amsdu_cnt);
DP_STATS_AGGR_PKT(vdev, peer, rx.to_stack);
for (i = 0; i < CDP_MAX_RX_RINGS; i++)
DP_STATS_AGGR_PKT(vdev, peer, rx.rcvd_reo[i]);
peer->stats.rx.unicast.num = peer->stats.rx.to_stack.num -
peer->stats.rx.multicast.num;
peer->stats.rx.unicast.bytes = peer->stats.rx.to_stack.bytes -
peer->stats.rx.multicast.bytes;
DP_STATS_AGGR_PKT(vdev, peer, rx.unicast);
DP_STATS_AGGR_PKT(vdev, peer, rx.multicast);
DP_STATS_AGGR_PKT(vdev, peer, rx.wds);
DP_STATS_AGGR_PKT(vdev, peer, rx.raw);
DP_STATS_AGGR_PKT(vdev, peer, rx.intra_bss.pkts);
DP_STATS_AGGR_PKT(vdev, peer, rx.intra_bss.fail);
vdev->stats.tx.last_ack_rssi =
peer->stats.tx.last_ack_rssi;
}
}
/**
* dp_aggregate_pdev_stats(): Consolidate stats at PDEV level
* @pdev: DP PDEV handle
*
* return: void
*/
static inline void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
uint8_t i;
qdf_mem_set(&(pdev->stats.tx), sizeof(pdev->stats.tx), 0x0);
qdf_mem_set(&(pdev->stats.rx), sizeof(pdev->stats.rx), 0x0);
qdf_mem_set(&(pdev->stats.tx_i), sizeof(pdev->stats.tx_i), 0x0);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (!vdev)
return;
dp_aggregate_vdev_stats(vdev);
for (i = 0; i <= MAX_MCS; i++) {
DP_STATS_AGGR(pdev, vdev, tx.pkt_type[0].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, tx.pkt_type[1].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, tx.pkt_type[2].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, tx.pkt_type[3].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, tx.pkt_type[4].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, rx.pkt_type[0].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, rx.pkt_type[1].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, rx.pkt_type[2].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, rx.pkt_type[3].mcs_count[i]);
DP_STATS_AGGR(pdev, vdev, rx.pkt_type[4].mcs_count[i]);
}
for (i = 0; i < SUPPORTED_BW; i++) {
DP_STATS_AGGR(pdev, vdev, tx.bw[i]);
DP_STATS_AGGR(pdev, vdev, rx.bw[i]);
}
for (i = 0; i < SS_COUNT; i++)
DP_STATS_AGGR(pdev, vdev, rx.nss[i]);
for (i = 0; i < WME_AC_MAX; i++) {
DP_STATS_AGGR(pdev, vdev, tx.wme_ac_type[i]);
DP_STATS_AGGR(pdev, vdev, rx.wme_ac_type[i]);
DP_STATS_AGGR(pdev, vdev,
tx.excess_retries_ac[i]);
}
for (i = 0; i < MAX_MCS + 1; i++) {
DP_STATS_AGGR(pdev, vdev, tx.sgi_count[i]);
DP_STATS_AGGR(pdev, vdev, rx.sgi_count[i]);
}
DP_STATS_AGGR_PKT(pdev, vdev, tx.comp_pkt);
DP_STATS_AGGR_PKT(pdev, vdev, tx.ucast);
DP_STATS_AGGR_PKT(pdev, vdev, tx.mcast);
DP_STATS_AGGR_PKT(pdev, vdev, tx.tx_success);
DP_STATS_AGGR(pdev, vdev, tx.tx_failed);
DP_STATS_AGGR(pdev, vdev, tx.ofdma);
DP_STATS_AGGR(pdev, vdev, tx.stbc);
DP_STATS_AGGR(pdev, vdev, tx.ldpc);
DP_STATS_AGGR(pdev, vdev, tx.retries);
DP_STATS_AGGR(pdev, vdev, tx.non_amsdu_cnt);
DP_STATS_AGGR(pdev, vdev, tx.amsdu_cnt);
DP_STATS_AGGR(pdev, vdev, tx.dropped.fw_discard);
DP_STATS_AGGR(pdev, vdev,
tx.dropped.fw_discard_retired);
DP_STATS_AGGR(pdev, vdev, tx.dropped.mpdu_age_out);
DP_STATS_AGGR(pdev, vdev,
tx.dropped.fw_discard_reason1);
DP_STATS_AGGR(pdev, vdev,
tx.dropped.fw_discard_reason2);
DP_STATS_AGGR(pdev, vdev,
tx.dropped.fw_discard_reason3);
DP_STATS_AGGR(pdev, vdev, rx.err.mic_err);
DP_STATS_AGGR(pdev, vdev, rx.err.decrypt_err);
DP_STATS_AGGR(pdev, vdev, rx.non_ampdu_cnt);
DP_STATS_AGGR(pdev, vdev, rx.ampdu_cnt);
DP_STATS_AGGR(pdev, vdev, rx.non_amsdu_cnt);
DP_STATS_AGGR(pdev, vdev, rx.amsdu_cnt);
DP_STATS_AGGR_PKT(pdev, vdev, rx.to_stack);
DP_STATS_AGGR_PKT(pdev, vdev, rx.rcvd_reo[0]);
DP_STATS_AGGR_PKT(pdev, vdev, rx.rcvd_reo[1]);
DP_STATS_AGGR_PKT(pdev, vdev, rx.rcvd_reo[2]);
DP_STATS_AGGR_PKT(pdev, vdev, rx.rcvd_reo[3]);
DP_STATS_AGGR_PKT(pdev, vdev, rx.unicast);
DP_STATS_AGGR_PKT(pdev, vdev, rx.multicast);
DP_STATS_AGGR_PKT(pdev, vdev, rx.wds);
DP_STATS_AGGR_PKT(pdev, vdev, rx.intra_bss.pkts);
DP_STATS_AGGR_PKT(pdev, vdev, rx.intra_bss.fail);
DP_STATS_AGGR_PKT(pdev, vdev, rx.raw);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.rcvd);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.processed);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.reinject_pkts);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.inspect_pkts);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.raw.raw_pkt);
DP_STATS_AGGR(pdev, vdev, tx_i.raw.dma_map_error);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.tso.tso_pkt);
DP_STATS_AGGR(pdev, vdev, tx_i.tso.dropped_host);
DP_STATS_AGGR(pdev, vdev, tx_i.tso.dropped_target);
DP_STATS_AGGR(pdev, vdev, tx_i.sg.dropped_host);
DP_STATS_AGGR(pdev, vdev, tx_i.sg.dropped_target);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.sg.sg_pkt);
DP_STATS_AGGR_PKT(pdev, vdev, tx_i.mcast_en.mcast_pkt);
DP_STATS_AGGR(pdev, vdev,
tx_i.mcast_en.dropped_map_error);
DP_STATS_AGGR(pdev, vdev,
tx_i.mcast_en.dropped_self_mac);
DP_STATS_AGGR(pdev, vdev,
tx_i.mcast_en.dropped_send_fail);
DP_STATS_AGGR(pdev, vdev, tx_i.mcast_en.ucast);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.dma_error);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.ring_full);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.enqueue_fail);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.desc_na);
DP_STATS_AGGR(pdev, vdev, tx_i.dropped.res_full);
pdev->stats.tx_i.dropped.dropped_pkt.num =
pdev->stats.tx_i.dropped.dma_error +
pdev->stats.tx_i.dropped.ring_full +
pdev->stats.tx_i.dropped.enqueue_fail +
pdev->stats.tx_i.dropped.desc_na +
pdev->stats.tx_i.dropped.res_full;
pdev->stats.tx.last_ack_rssi =
vdev->stats.tx.last_ack_rssi;
pdev->stats.tx_i.tso.num_seg =
vdev->stats.tx_i.tso.num_seg;
}
}
/**
* dp_print_pdev_tx_stats(): Print Pdev level TX stats
* @pdev: DP_PDEV Handle
*
* Return:void
*/
static inline void
dp_print_pdev_tx_stats(struct dp_pdev *pdev)
{
DP_TRACE_STATS(FATAL, "WLAN Tx Stats:\n");
DP_TRACE_STATS(FATAL, "Received From Stack:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.rcvd.num);
DP_TRACE_STATS(FATAL, "Bytes = %d\n",
pdev->stats.tx_i.rcvd.bytes);
DP_TRACE_STATS(FATAL, "Processed:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.processed.num);
DP_TRACE_STATS(FATAL, "Bytes = %d\n",
pdev->stats.tx_i.processed.bytes);
DP_TRACE_STATS(FATAL, "Completions:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx.comp_pkt.num);
DP_TRACE_STATS(FATAL, "Bytes = %d\n",
pdev->stats.tx.comp_pkt.bytes);
DP_TRACE_STATS(FATAL, "Dropped:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.dropped.dropped_pkt.num);
DP_TRACE_STATS(FATAL, "Dma_map_error = %d",
pdev->stats.tx_i.dropped.dma_error);
DP_TRACE_STATS(FATAL, "Ring Full = %d",
pdev->stats.tx_i.dropped.ring_full);
DP_TRACE_STATS(FATAL, "Descriptor Not available = %d",
pdev->stats.tx_i.dropped.desc_na);
DP_TRACE_STATS(FATAL, "HW enqueue failed= %d",
pdev->stats.tx_i.dropped.enqueue_fail);
DP_TRACE_STATS(FATAL, "Resources Full = %d",
pdev->stats.tx_i.dropped.res_full);
DP_TRACE_STATS(FATAL, "Fw Discard = %d",
pdev->stats.tx.dropped.fw_discard);
DP_TRACE_STATS(FATAL, "Fw Discard Retired = %d",
pdev->stats.tx.dropped.fw_discard_retired);
DP_TRACE_STATS(FATAL, "Firmware Discard Untransmitted = %d",
pdev->stats.tx.dropped.fw_discard_untransmitted);
DP_TRACE_STATS(FATAL, "Mpdu Age Out = %d",
pdev->stats.tx.dropped.mpdu_age_out);
DP_TRACE_STATS(FATAL, "Firmware Discard Reason1 = %d",
pdev->stats.tx.dropped.fw_discard_reason1);
DP_TRACE_STATS(FATAL, "Firmware Discard Reason2 = %d",
pdev->stats.tx.dropped.fw_discard_reason2);
DP_TRACE_STATS(FATAL, "Firmware Discard Reason3 = %d\n",
pdev->stats.tx.dropped.fw_discard_reason3);
DP_TRACE_STATS(FATAL, "Scatter Gather:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.sg.sg_pkt.num);
DP_TRACE_STATS(FATAL, "Bytes = %d",
pdev->stats.tx_i.sg.sg_pkt.bytes);
DP_TRACE_STATS(FATAL, "Dropped By Host = %d",
pdev->stats.tx_i.sg.dropped_host);
DP_TRACE_STATS(FATAL, "Dropped By Target = %d\n",
pdev->stats.tx_i.sg.dropped_target);
DP_TRACE_STATS(FATAL, "Tso:\n");
DP_TRACE_STATS(FATAL, "Number of Segments = %d",
pdev->stats.tx_i.tso.num_seg);
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.tso.tso_pkt.num);
DP_TRACE_STATS(FATAL, "Bytes = %d",
pdev->stats.tx_i.tso.tso_pkt.bytes);
DP_TRACE_STATS(FATAL, "Dropped By Host = %d\n",
pdev->stats.tx_i.tso.dropped_host);
DP_TRACE_STATS(FATAL, "Mcast Enhancement:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.mcast_en.mcast_pkt.num);
DP_TRACE_STATS(FATAL, "Bytes = %d",
pdev->stats.tx_i.mcast_en.mcast_pkt.bytes);
DP_TRACE_STATS(FATAL, "Dropped: Map Errors = %d",
pdev->stats.tx_i.mcast_en.dropped_map_error);
DP_TRACE_STATS(FATAL, "Dropped: Self Mac = %d",
pdev->stats.tx_i.mcast_en.dropped_self_mac);
DP_TRACE_STATS(FATAL, "Dropped: Send Fail = %d",
pdev->stats.tx_i.mcast_en.dropped_send_fail);
DP_TRACE_STATS(FATAL, "Unicast sent = %d\n",
pdev->stats.tx_i.mcast_en.ucast);
DP_TRACE_STATS(FATAL, "Raw:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.raw.raw_pkt.num);
DP_TRACE_STATS(FATAL, "Bytes = %d",
pdev->stats.tx_i.raw.raw_pkt.bytes);
DP_TRACE_STATS(FATAL, "DMA map error = %d\n",
pdev->stats.tx_i.raw.dma_map_error);
DP_TRACE_STATS(FATAL, "Reinjected:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.reinject_pkts.num);
DP_TRACE_STATS(FATAL, "Bytes = %d\n",
pdev->stats.tx_i.reinject_pkts.bytes);
DP_TRACE_STATS(FATAL, "Inspected:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.tx_i.inspect_pkts.num);
DP_TRACE_STATS(FATAL, "Bytes = %d\n",
pdev->stats.tx_i.inspect_pkts.bytes);
}
/**
* dp_print_pdev_rx_stats(): Print Pdev level RX stats
* @pdev: DP_PDEV Handle
*
* Return: void
*/
static inline void
dp_print_pdev_rx_stats(struct dp_pdev *pdev)
{
DP_TRACE_STATS(FATAL, "WLAN Rx Stats:\n");
DP_TRACE_STATS(FATAL, "Received From HW (Per Rx Ring):\n");
DP_TRACE_STATS(FATAL, "Packets = %d %d %d %d",
pdev->stats.rx.rcvd_reo[0].num,
pdev->stats.rx.rcvd_reo[1].num,
pdev->stats.rx.rcvd_reo[2].num,
pdev->stats.rx.rcvd_reo[3].num);
DP_TRACE_STATS(FATAL, "Bytes = %d %d %d %d\n",
pdev->stats.rx.rcvd_reo[0].bytes,
pdev->stats.rx.rcvd_reo[1].bytes,
pdev->stats.rx.rcvd_reo[2].bytes,
pdev->stats.rx.rcvd_reo[3].bytes);
DP_TRACE_STATS(FATAL, "Replenished:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.replenish.pkts.num);
DP_TRACE_STATS(FATAL, "Bytes = %d",
pdev->stats.replenish.pkts.bytes);
DP_TRACE_STATS(FATAL, "Buffers Added To Freelist = %d\n",
pdev->stats.buf_freelist);
DP_TRACE_STATS(FATAL, "Dropped:\n");
DP_TRACE_STATS(FATAL, "Total Packets With Msdu Not Done = %d\n",
pdev->stats.dropped.msdu_not_done);
DP_TRACE_STATS(FATAL, "Sent To Stack:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.rx.to_stack.num);
DP_TRACE_STATS(FATAL, "Bytes = %d\n",
pdev->stats.rx.to_stack.bytes);
DP_TRACE_STATS(FATAL, "Multicast/Broadcast:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
pdev->stats.rx.multicast.num);
DP_TRACE_STATS(FATAL, "Bytes = %d\n",
pdev->stats.rx.multicast.bytes);
DP_TRACE_STATS(FATAL, "Errors:\n");
DP_TRACE_STATS(FATAL, "Rxdma Ring Un-inititalized = %d",
pdev->stats.replenish.rxdma_err);
DP_TRACE_STATS(FATAL, "Desc Alloc Failed: = %d",
pdev->stats.err.desc_alloc_fail);
}
/**
* dp_print_soc_tx_stats(): Print SOC level stats
* @soc DP_SOC Handle
*
* Return: void
*/
static inline void
dp_print_soc_tx_stats(struct dp_soc *soc)
{
DP_TRACE_STATS(FATAL, "SOC Tx Stats:\n");
DP_TRACE_STATS(FATAL, "Tx Descriptors In Use = %d",
soc->stats.tx.desc_in_use);
DP_TRACE_STATS(FATAL, "Invalid peer:\n");
DP_TRACE_STATS(FATAL, "Packets = %d",
soc->stats.tx.tx_invalid_peer.num);
DP_TRACE_STATS(FATAL, "Bytes = %d",
soc->stats.tx.tx_invalid_peer.bytes);
DP_TRACE_STATS(FATAL, "Packets dropped due to TCL ring full = %d %d %d",
soc->stats.tx.tcl_ring_full[0],
soc->stats.tx.tcl_ring_full[1],
soc->stats.tx.tcl_ring_full[2]);
}
/**
* dp_print_soc_rx_stats: Print SOC level Rx stats
* @soc: DP_SOC Handle
*
* Return:void
*/
static inline void
dp_print_soc_rx_stats(struct dp_soc *soc)
{
uint32_t i;
char reo_error[DP_REO_ERR_LENGTH];
char rxdma_error[DP_RXDMA_ERR_LENGTH];
uint8_t index = 0;
DP_TRACE_STATS(FATAL, "SOC Rx Stats:\n");
DP_TRACE_STATS(FATAL, "Errors:\n");
DP_TRACE_STATS(FATAL, "Rx Decrypt Errors = %d",
(soc->stats.rx.err.rxdma_error[HAL_RXDMA_ERR_DECRYPT] +
soc->stats.rx.err.rxdma_error[HAL_RXDMA_ERR_TKIP_MIC]));
DP_TRACE_STATS(FATAL, "Invalid RBM = %d",
soc->stats.rx.err.invalid_rbm);
DP_TRACE_STATS(FATAL, "Invalid Vdev = %d",
soc->stats.rx.err.invalid_vdev);
DP_TRACE_STATS(FATAL, "Invalid Pdev = %d",
soc->stats.rx.err.invalid_pdev);
DP_TRACE_STATS(FATAL, "Invalid Peer = %d",
soc->stats.rx.err.rx_invalid_peer.num);
DP_TRACE_STATS(FATAL, "HAL Ring Access Fail = %d",
soc->stats.rx.err.hal_ring_access_fail);
for (i = 0; i < MAX_RXDMA_ERRORS; i++) {
index += qdf_snprint(&rxdma_error[index],
DP_RXDMA_ERR_LENGTH - index,
" %d", soc->stats.rx.err.rxdma_error[i]);
}
DP_TRACE_STATS(FATAL, "RXDMA Error (0-31):%s",
rxdma_error);
index = 0;
for (i = 0; i < REO_ERROR_TYPE_MAX; i++) {
index += qdf_snprint(&reo_error[index],
DP_REO_ERR_LENGTH - index,
" %d", soc->stats.rx.err.reo_error[i]);
}
DP_TRACE_STATS(FATAL, "REO Error(0-14):%s",
reo_error);
}
/**
* dp_txrx_host_stats_clr(): Reinitialize the txrx stats
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_txrx_host_stats_clr(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
DP_STATS_CLR(vdev->pdev);
DP_STATS_CLR(vdev->pdev->soc);
DP_STATS_CLR(vdev);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer)
return;
DP_STATS_CLR(peer);
}
}
/**
* dp_print_rx_rates(): Print Rx rate stats
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_print_rx_rates(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
uint8_t i, pkt_type;
uint8_t index = 0;
char rx_mcs[DOT11_MAX][DP_MCS_LENGTH];
char nss[DP_NSS_LENGTH];
DP_TRACE_STATS(FATAL, "Rx Rate Info:\n");
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (i = 0; i < MAX_MCS; i++) {
index += qdf_snprint(&rx_mcs[pkt_type][index],
DP_MCS_LENGTH - index,
" %d ",
pdev->stats.rx.pkt_type[pkt_type].
mcs_count[i]);
}
}
DP_TRACE_STATS(FATAL, "11A MCS(0-7) = %s",
rx_mcs[0]);
DP_TRACE_STATS(FATAL, "11A MCS Invalid = %d",
pdev->stats.rx.pkt_type[DOT11_A].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11B MCS(0-6) = %s",
rx_mcs[1]);
DP_TRACE_STATS(FATAL, "11B MCS Invalid = %d",
pdev->stats.rx.pkt_type[DOT11_B].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11N MCS(0-7) = %s",
rx_mcs[2]);
DP_TRACE_STATS(FATAL, "11N MCS Invalid = %d",
pdev->stats.rx.pkt_type[DOT11_N].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "Type 11AC MCS(0-9) = %s",
rx_mcs[3]);
DP_TRACE_STATS(FATAL, "11AC MCS Invalid = %d",
pdev->stats.rx.pkt_type[DOT11_AC].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11AX MCS(0-11) = %s",
rx_mcs[4]);
DP_TRACE_STATS(FATAL, "11AX MCS Invalid = %d",
pdev->stats.rx.pkt_type[DOT11_AX].mcs_count[MAX_MCS]);
index = 0;
for (i = 0; i < SS_COUNT; i++) {
index += qdf_snprint(&nss[index], DP_NSS_LENGTH - index,
" %d", pdev->stats.rx.nss[i]);
}
DP_TRACE_STATS(FATAL, "NSS(0-7) = %s",
nss);
DP_TRACE_STATS(FATAL, "SGI ="
" 0.8us %d,"
" 0.4us %d,"
" 1.6us %d,"
" 3.2us %d,",
pdev->stats.rx.sgi_count[0],
pdev->stats.rx.sgi_count[1],
pdev->stats.rx.sgi_count[2],
pdev->stats.rx.sgi_count[3]);
DP_TRACE_STATS(FATAL, "BW Counts = 20MHZ %d, 40MHZ %d, 80MHZ %d, 160MHZ %d",
pdev->stats.rx.bw[0], pdev->stats.rx.bw[1],
pdev->stats.rx.bw[2], pdev->stats.rx.bw[3]);
DP_TRACE_STATS(FATAL, "Reception Type ="
" SU: %d,"
" MU_MIMO:%d,"
" MU_OFDMA:%d,"
" MU_OFDMA_MIMO:%d\n",
pdev->stats.rx.reception_type[0],
pdev->stats.rx.reception_type[1],
pdev->stats.rx.reception_type[2],
pdev->stats.rx.reception_type[3]);
DP_TRACE_STATS(FATAL, "Aggregation:\n");
DP_TRACE_STATS(FATAL, "Number of Msdu's Part of Ampdus = %d",
pdev->stats.rx.ampdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's With No Mpdu Level Aggregation : %d",
pdev->stats.rx.non_ampdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's Part of Amsdu: %d",
pdev->stats.rx.amsdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's With No Msdu Level Aggregation: %d",
pdev->stats.rx.non_amsdu_cnt);
}
/**
* dp_print_tx_rates(): Print tx rates
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_print_tx_rates(struct dp_vdev *vdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
uint8_t i, pkt_type;
char mcs[DOT11_MAX][DP_MCS_LENGTH];
uint32_t index;
DP_TRACE_STATS(FATAL, "Tx Rate Info:\n");
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (i = 0; i < MAX_MCS; i++) {
index += qdf_snprint(&mcs[pkt_type][index],
DP_MCS_LENGTH - index,
" %d ",
pdev->stats.tx.pkt_type[pkt_type].
mcs_count[i]);
}
}
DP_TRACE_STATS(FATAL, "11A MCS(0-7) = %s",
mcs[0]);
DP_TRACE_STATS(FATAL, "11A MCS Invalid = %d",
pdev->stats.tx.pkt_type[DOT11_A].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11B MCS(0-6) = %s",
mcs[1]);
DP_TRACE_STATS(FATAL, "11B MCS Invalid = %d",
pdev->stats.tx.pkt_type[DOT11_B].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11N MCS(0-7) = %s",
mcs[2]);
DP_TRACE_STATS(FATAL, "11N MCS Invalid = %d",
pdev->stats.tx.pkt_type[DOT11_N].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "Type 11AC MCS(0-9) = %s",
mcs[3]);
DP_TRACE_STATS(FATAL, "11AC MCS Invalid = %d",
pdev->stats.tx.pkt_type[DOT11_AC].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11AX MCS(0-11) = %s",
mcs[4]);
DP_TRACE_STATS(FATAL, "11AX MCS Invalid = %d",
pdev->stats.tx.pkt_type[DOT11_AX].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "SGI ="
" 0.8us %d"
" 0.4us %d"
" 1.6us %d"
" 3.2us %d",
pdev->stats.tx.sgi_count[0],
pdev->stats.tx.sgi_count[1],
pdev->stats.tx.sgi_count[2],
pdev->stats.tx.sgi_count[3]);
DP_TRACE_STATS(FATAL, "BW Counts = 20MHZ %d, 40MHZ %d, 80MHZ %d, 160MHZ %d",
pdev->stats.tx.bw[0], pdev->stats.tx.bw[1],
pdev->stats.tx.bw[2], pdev->stats.tx.bw[3]);
DP_TRACE_STATS(FATAL, "OFDMA = %d", pdev->stats.tx.ofdma);
DP_TRACE_STATS(FATAL, "STBC = %d", pdev->stats.tx.stbc);
DP_TRACE_STATS(FATAL, "LDPC = %d", pdev->stats.tx.ldpc);
DP_TRACE_STATS(FATAL, "Retries = %d", pdev->stats.tx.retries);
DP_TRACE_STATS(FATAL, "Last ack rssi = %d\n", pdev->stats.tx.last_ack_rssi);
DP_TRACE_STATS(FATAL, "Aggregation:\n");
DP_TRACE_STATS(FATAL, "Number of Msdu's Part of Amsdu = %d",
pdev->stats.tx.amsdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's With No Msdu Level Aggregation = %d",
pdev->stats.tx.non_amsdu_cnt);
}
/**
* dp_print_peer_stats():print peer stats
* @peer: DP_PEER handle
*
* return void
*/
static inline void dp_print_peer_stats(struct dp_peer *peer)
{
uint8_t i, pkt_type;
char tx_mcs[DOT11_MAX][DP_MCS_LENGTH];
char rx_mcs[DOT11_MAX][DP_MCS_LENGTH];
uint32_t index;
char nss[DP_NSS_LENGTH];
DP_TRACE_STATS(FATAL, "Node Tx Stats:\n");
DP_TRACE_STATS(FATAL, "Total Packet Completions = %d",
peer->stats.tx.comp_pkt.num);
DP_TRACE_STATS(FATAL, "Total Bytes Completions = %d",
peer->stats.tx.comp_pkt.bytes);
DP_TRACE_STATS(FATAL, "Success Packets = %d",
peer->stats.tx.tx_success.num);
DP_TRACE_STATS(FATAL, "Success Bytes = %d",
peer->stats.tx.tx_success.bytes);
DP_TRACE_STATS(FATAL, "Packets Failed = %d",
peer->stats.tx.tx_failed);
DP_TRACE_STATS(FATAL, "Packets In OFDMA = %d",
peer->stats.tx.ofdma);
DP_TRACE_STATS(FATAL, "Packets In STBC = %d",
peer->stats.tx.stbc);
DP_TRACE_STATS(FATAL, "Packets In LDPC = %d",
peer->stats.tx.ldpc);
DP_TRACE_STATS(FATAL, "Packet Retries = %d",
peer->stats.tx.retries);
DP_TRACE_STATS(FATAL, "Msdu's Not Part of Ampdu = %d",
peer->stats.tx.non_amsdu_cnt);
DP_TRACE_STATS(FATAL, "Mpdu's Part of Ampdu = %d",
peer->stats.tx.amsdu_cnt);
DP_TRACE_STATS(FATAL, "Last Packet RSSI = %d",
peer->stats.tx.last_ack_rssi);
DP_TRACE_STATS(FATAL, "Dropped At FW: FW Discard = %d",
peer->stats.tx.dropped.fw_discard);
DP_TRACE_STATS(FATAL, "Dropped At FW: FW Discard Retired = %d",
peer->stats.tx.dropped.fw_discard_retired);
DP_TRACE_STATS(FATAL, "Dropped At FW: FW Discard Untransmitted = %d",
peer->stats.tx.dropped.fw_discard_untransmitted);
DP_TRACE_STATS(FATAL, "Dropped : Mpdu Age Out = %d",
peer->stats.tx.dropped.mpdu_age_out);
DP_TRACE_STATS(FATAL, "Dropped : FW Discard Reason1 = %d",
peer->stats.tx.dropped.fw_discard_reason1);
DP_TRACE_STATS(FATAL, "Dropped : FW Discard Reason2 = %d",
peer->stats.tx.dropped.fw_discard_reason2);
DP_TRACE_STATS(FATAL, "Dropped : FW Discard Reason3 = %d",
peer->stats.tx.dropped.fw_discard_reason3);
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (i = 0; i < MAX_MCS; i++) {
index += qdf_snprint(&tx_mcs[pkt_type][index],
DP_MCS_LENGTH - index,
" %d ",
peer->stats.tx.pkt_type[pkt_type].
mcs_count[i]);
}
}
DP_TRACE_STATS(FATAL, "11A MCS(0-7) = %s",
tx_mcs[0]);
DP_TRACE_STATS(FATAL, "11A MCS Invalid = %d",
peer->stats.tx.pkt_type[DOT11_A].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11B MCS(0-6) = %s",
tx_mcs[1]);
DP_TRACE_STATS(FATAL, "11B MCS Invalid = %d",
peer->stats.tx.pkt_type[DOT11_B].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11N MCS(0-7) = %s",
tx_mcs[2]);
DP_TRACE_STATS(FATAL, "11N MCS Invalid = %d",
peer->stats.tx.pkt_type[DOT11_N].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11AC MCS(0-9) = %s",
tx_mcs[3]);
DP_TRACE_STATS(FATAL, "11AC MCS Invalid = %d",
peer->stats.tx.pkt_type[DOT11_AC].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11AX MCS(0-11) = %s",
tx_mcs[4]);
DP_TRACE_STATS(FATAL, "11AX MCS Invalid = %d",
peer->stats.tx.pkt_type[DOT11_AX].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "SGI = "
" 0.8us %d"
" 0.4us %d"
" 1.6us %d"
" 3.2us %d",
peer->stats.tx.sgi_count[0],
peer->stats.tx.sgi_count[1],
peer->stats.tx.sgi_count[2],
peer->stats.tx.sgi_count[3]);
DP_TRACE_STATS(FATAL, "BW Counts = 20MHZ %d 40MHZ %d 80MHZ %d 160MHZ %d\n",
peer->stats.tx.bw[0], peer->stats.tx.bw[1],
peer->stats.tx.bw[2], peer->stats.tx.bw[3]);
DP_TRACE_STATS(FATAL, "Aggregation:\n");
DP_TRACE_STATS(FATAL, "Number of Msdu's Part of Amsdu = %d",
peer->stats.tx.amsdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's With No Msdu Level Aggregation = %d\n",
peer->stats.tx.non_amsdu_cnt);
DP_TRACE_STATS(FATAL, "Node Rx Stats:\n");
DP_TRACE_STATS(FATAL, "Packets Sent To Stack = %d",
peer->stats.rx.to_stack.num);
DP_TRACE_STATS(FATAL, "Bytes Sent To Stack = %d",
peer->stats.rx.to_stack.bytes);
for (i = 0; i < CDP_MAX_RX_RINGS; i++) {
DP_TRACE_STATS(FATAL, "Packets Received = %d",
peer->stats.rx.rcvd_reo[i].num);
DP_TRACE_STATS(FATAL, "Bytes Received = %d",
peer->stats.rx.rcvd_reo[i].bytes);
}
DP_TRACE_STATS(FATAL, "Multicast Packets Received = %d",
peer->stats.rx.multicast.num);
DP_TRACE_STATS(FATAL, "Multicast Bytes Received = %d",
peer->stats.rx.multicast.bytes);
DP_TRACE_STATS(FATAL, "WDS Packets Received = %d",
peer->stats.rx.wds.num);
DP_TRACE_STATS(FATAL, "WDS Bytes Received = %d",
peer->stats.rx.wds.bytes);
DP_TRACE_STATS(FATAL, "Intra BSS Packets Received = %d",
peer->stats.rx.intra_bss.pkts.num);
DP_TRACE_STATS(FATAL, "Intra BSS Bytes Received = %d",
peer->stats.rx.intra_bss.pkts.bytes);
DP_TRACE_STATS(FATAL, "Raw Packets Received = %d",
peer->stats.rx.raw.num);
DP_TRACE_STATS(FATAL, "Raw Bytes Received = %d",
peer->stats.rx.raw.bytes);
DP_TRACE_STATS(FATAL, "Errors: MIC Errors = %d",
peer->stats.rx.err.mic_err);
DP_TRACE_STATS(FATAL, "Erros: Decryption Errors = %d",
peer->stats.rx.err.decrypt_err);
DP_TRACE_STATS(FATAL, "Msdu's Received As Part of Ampdu = %d",
peer->stats.rx.non_ampdu_cnt);
DP_TRACE_STATS(FATAL, "Msdu's Recived As Ampdu = %d",
peer->stats.rx.ampdu_cnt);
DP_TRACE_STATS(FATAL, "Msdu's Received Not Part of Amsdu's = %d",
peer->stats.rx.non_amsdu_cnt);
DP_TRACE_STATS(FATAL, "MSDUs Received As Part of Amsdu = %d",
peer->stats.rx.amsdu_cnt);
DP_TRACE_STATS(FATAL, "SGI ="
" 0.8us %d"
" 0.4us %d"
" 1.6us %d"
" 3.2us %d",
peer->stats.rx.sgi_count[0],
peer->stats.rx.sgi_count[1],
peer->stats.rx.sgi_count[2],
peer->stats.rx.sgi_count[3]);
DP_TRACE_STATS(FATAL, "BW Counts = 20MHZ %d 40MHZ %d 80MHZ %d 160MHZ %d",
peer->stats.rx.bw[0], peer->stats.rx.bw[1],
peer->stats.rx.bw[2], peer->stats.rx.bw[3]);
DP_TRACE_STATS(FATAL, "Reception Type ="
" SU %d,"
" MU_MIMO %d,"
" MU_OFDMA %d,"
" MU_OFDMA_MIMO %d",
peer->stats.rx.reception_type[0],
peer->stats.rx.reception_type[1],
peer->stats.rx.reception_type[2],
peer->stats.rx.reception_type[3]);
for (pkt_type = 0; pkt_type < DOT11_MAX; pkt_type++) {
index = 0;
for (i = 0; i < MAX_MCS; i++) {
index += qdf_snprint(&rx_mcs[pkt_type][index],
DP_MCS_LENGTH - index,
" %d ",
peer->stats.rx.pkt_type[pkt_type].
mcs_count[i]);
}
}
DP_TRACE_STATS(FATAL, "11A MCS(0-7) = %s",
rx_mcs[0]);
DP_TRACE_STATS(FATAL, "11A MCS Invalid = %d",
peer->stats.rx.pkt_type[DOT11_A].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11B MCS(0-6) = %s",
rx_mcs[1]);
DP_TRACE_STATS(FATAL, "11B MCS Invalid = %d",
peer->stats.rx.pkt_type[DOT11_B].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11N MCS(0-7) = %s",
rx_mcs[2]);
DP_TRACE_STATS(FATAL, "11N MCS Invalid = %d",
peer->stats.rx.pkt_type[DOT11_N].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11AC MCS(0-9) = %s",
rx_mcs[3]);
DP_TRACE_STATS(FATAL, "11AC MCS Invalid = %d",
peer->stats.rx.pkt_type[DOT11_AC].mcs_count[MAX_MCS]);
DP_TRACE_STATS(FATAL, "11AX MCS(0-11) = %s",
rx_mcs[4]);
DP_TRACE_STATS(FATAL, "11AX MCS Invalid = %d",
peer->stats.rx.pkt_type[DOT11_AX].mcs_count[MAX_MCS]);
index = 0;
for (i = 0; i < SS_COUNT; i++) {
index += qdf_snprint(&nss[index], DP_NSS_LENGTH - index,
" %d", peer->stats.rx.nss[i]);
}
DP_TRACE_STATS(FATAL, "NSS(0-7) = %s\n",
nss);
DP_TRACE_STATS(FATAL, "Aggregation:\n");
DP_TRACE_STATS(FATAL, "Number of Msdu's Part of Ampdu = %d",
peer->stats.rx.ampdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's With No Mpdu Level Aggregation = %d",
peer->stats.rx.non_ampdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's Part of Amsdu = %d",
peer->stats.rx.amsdu_cnt);
DP_TRACE_STATS(FATAL, "Number of Msdu's With No Msdu Level Aggregation = %d",
peer->stats.rx.non_amsdu_cnt);
}
/**
* dp_print_host_stats()- Function to print the stats aggregated at host
* @vdev_handle: DP_VDEV handle
* @type: host stats type
*
* Available Stat types
* TXRX_CLEAR_STATS : Clear the stats
* TXRX_RX_RATE_STATS: Print Rx Rate Info
* TXRX_TX_RATE_STATS: Print Tx Rate Info
* TXRX_TX_HOST_STATS: Print Tx Stats
* TXRX_RX_HOST_STATS: Print Rx Stats
*
* Return: 0 on success, print error message in case of failure
*/
static int
dp_print_host_stats(struct cdp_vdev *vdev_handle, enum cdp_host_txrx_stats type)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
dp_aggregate_pdev_stats(pdev);
switch (type) {
case TXRX_CLEAR_STATS:
dp_txrx_host_stats_clr(vdev);
break;
case TXRX_RX_RATE_STATS:
dp_print_rx_rates(vdev);
break;
case TXRX_TX_RATE_STATS:
dp_print_tx_rates(vdev);
break;
case TXRX_TX_HOST_STATS:
dp_print_pdev_tx_stats(pdev);
dp_print_soc_tx_stats(pdev->soc);
break;
case TXRX_RX_HOST_STATS:
dp_print_pdev_rx_stats(pdev);
dp_print_soc_rx_stats(pdev->soc);
break;
default:
DP_TRACE(FATAL, "Wrong Input For TxRx Host Stats");
break;
}
return 0;
}
/*
* dp_get_host_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
*
* Return: void
*/
static void
dp_get_host_peer_stats(struct cdp_pdev *pdev_handle, char *mac_addr)
{
struct dp_peer *peer;
uint8_t local_id;
peer = (struct dp_peer *)dp_find_peer_by_addr(pdev_handle, mac_addr,
&local_id);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid peer\n", __func__);
return;
}
dp_print_peer_stats(peer);
dp_peer_rxtid_stats(peer);
return;
}
/*
* dp_enable_enhanced_stats()- API to enable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_enable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->enhanced_stats_en = 1;
}
/*
* dp_disable_enhanced_stats()- API to disable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_disable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->enhanced_stats_en = 0;
}
/*
* dp_get_fw_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
* @cap: Type of htt stats requested
*
* Currently Supporting only MAC ID based requests Only
* 1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
* 2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
* 3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
*
* Return: void
*/
static void
dp_get_fw_peer_stats(struct cdp_pdev *pdev_handle, uint8_t *mac_addr,
uint32_t cap)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
uint32_t config_param0 = 0;
uint32_t config_param1 = 0;
uint32_t config_param2 = 0;
uint32_t config_param3 = 0;
HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
config_param0 |= (1 << (cap + 1));
config_param1 = 0x8f;
config_param2 |= (mac_addr[0] & 0x000000ff);
config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
config_param3 |= (mac_addr[4] & 0x000000ff);
config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1, config_param2,
config_param3);
}
/*
* dp_set_vdev_param: function to set parameters in vdev
* @param: parameter type to be set
* @val: value of parameter to be set
*
* return: void
*/
static void dp_set_vdev_param(struct cdp_vdev *vdev_handle,
enum cdp_vdev_param_type param, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
switch (param) {
case CDP_ENABLE_WDS:
vdev->wds_enabled = val;
break;
case CDP_ENABLE_NAWDS:
vdev->nawds_enabled = val;
break;
case CDP_ENABLE_MCAST_EN:
vdev->mcast_enhancement_en = val;
break;
case CDP_ENABLE_PROXYSTA:
vdev->proxysta_vdev = val;
break;
case CDP_UPDATE_TDLS_FLAGS:
vdev->tdls_link_connected = val;
break;
case CDP_CFG_WDS_AGING_TIMER:
if (val == 0)
qdf_timer_stop(&vdev->pdev->soc->wds_aging_timer);
else if (val != vdev->wds_aging_timer_val)
qdf_timer_mod(&vdev->pdev->soc->wds_aging_timer, val);
vdev->wds_aging_timer_val = val;
break;
default:
break;
}
dp_tx_vdev_update_search_flags(vdev);
}
/**
* dp_peer_set_nawds: set nawds bit in peer
* @peer_handle: pointer to peer
* @value: enable/disable nawds
*
* return: void
*/
static void dp_peer_set_nawds(struct cdp_peer *peer_handle, uint8_t value)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->nawds_enabled = value;
}
/*
* dp_set_vdev_dscp_tid_map_wifi3(): Update Map ID selected for particular vdev
* @vdev_handle: DP_VDEV handle
* @map_id:ID of map that needs to be updated
*
* Return: void
*/
static void dp_set_vdev_dscp_tid_map_wifi3(struct cdp_vdev *vdev_handle,
uint8_t map_id)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->dscp_tid_map_id = map_id;
return;
}
/**
* dp_set_pdev_dscp_tid_map_wifi3(): update dscp tid map in pdev
* @pdev: DP_PDEV handle
* @map_id: ID of map that needs to be updated
* @tos: index value in map
* @tid: tid value passed by the user
*
* Return: void
*/
static void dp_set_pdev_dscp_tid_map_wifi3(struct cdp_pdev *pdev_handle,
uint8_t map_id, uint8_t tos, uint8_t tid)
{
uint8_t dscp;
struct dp_pdev *pdev = (struct dp_pdev *) pdev_handle;
dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
pdev->dscp_tid_map[map_id][dscp] = tid;
hal_tx_update_dscp_tid(pdev->soc->hal_soc, tid,
map_id, dscp);
return;
}
/**
* dp_fw_stats_process(): Process TxRX FW stats request
* @vdev_handle: DP VDEV handle
* @val: value passed by user
*
* return: int
*/
static int dp_fw_stats_process(struct cdp_vdev *vdev_handle, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = NULL;
if (!vdev) {
DP_TRACE(NONE, "VDEV not found");
return 1;
}
pdev = vdev->pdev;
return dp_h2t_ext_stats_msg_send(pdev, val, 0, 0, 0, 0);
}
/*
* dp_txrx_stats() - function to map to firmware and host stats
* @vdev: virtual handle
* @stats: type of statistics requested
*
* Return: integer
*/
static int dp_txrx_stats(struct cdp_vdev *vdev, enum cdp_stats stats)
{
int host_stats;
int fw_stats;
if (stats >= CDP_TXRX_MAX_STATS)
return 0;
/*
* DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
* has to be updated if new FW HTT stats added
*/
if (stats > CDP_TXRX_STATS_HTT_MAX)
stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
fw_stats = dp_stats_mapping_table[stats][STATS_FW];
host_stats = dp_stats_mapping_table[stats][STATS_HOST];
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"stats: %u fw_stats_type: %d host_stats_type: %d",
stats, fw_stats, host_stats);
if (fw_stats != TXRX_FW_STATS_INVALID)
return dp_fw_stats_process(vdev, fw_stats);
if ((host_stats != TXRX_HOST_STATS_INVALID) &&
(host_stats <= TXRX_HOST_STATS_MAX))
return dp_print_host_stats(vdev, host_stats);
else
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"Wrong Input for TxRx Stats");
return 0;
}
/*
* dp_print_napi_stats(): NAPI stats
* @soc - soc handle
*/
static void dp_print_napi_stats(struct dp_soc *soc)
{
hif_print_napi_stats(soc->hif_handle);
}
/*
* dp_print_per_ring_stats(): Packet count per ring
* @soc - soc handle
*/
static void dp_print_per_ring_stats(struct dp_soc *soc)
{
uint8_t core, ring;
uint64_t total_packets;
DP_TRACE(FATAL, "Reo packets per ring:");
for (ring = 0; ring < MAX_REO_DEST_RINGS; ring++) {
total_packets = 0;
DP_TRACE(FATAL, "Packets on ring %u:", ring);
for (core = 0; core < NR_CPUS; core++) {
DP_TRACE(FATAL, "Packets arriving on core %u: %llu",
core, soc->stats.rx.ring_packets[core][ring]);
total_packets += soc->stats.rx.ring_packets[core][ring];
}
DP_TRACE(FATAL, "Total packets on ring %u: %llu",
ring, total_packets);
}
}
/*
* dp_txrx_path_stats() - Function to display dump stats
* @soc - soc handle
*
* return: none
*/
static void dp_txrx_path_stats(struct dp_soc *soc)
{
uint8_t error_code;
uint8_t loop_pdev;
struct dp_pdev *pdev;
uint8_t i;
for (loop_pdev = 0; loop_pdev < soc->pdev_count; loop_pdev++) {
pdev = soc->pdev_list[loop_pdev];
dp_aggregate_pdev_stats(pdev);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Tx path Statistics:");
DP_TRACE(FATAL, "from stack: %u msdus (%u bytes)",
pdev->stats.tx_i.rcvd.num,
pdev->stats.tx_i.rcvd.bytes);
DP_TRACE(FATAL, "processed from host: %u msdus (%u bytes)",
pdev->stats.tx_i.processed.num,
pdev->stats.tx_i.processed.bytes);
DP_TRACE(FATAL, "successfully transmitted: %u msdus (%u bytes)",
pdev->stats.tx.tx_success.num,
pdev->stats.tx.tx_success.bytes);
DP_TRACE(FATAL, "Dropped in host:");
DP_TRACE(FATAL, "Total packets dropped: %u,",
pdev->stats.tx_i.dropped.dropped_pkt.num);
DP_TRACE(FATAL, "Descriptor not available: %u",
pdev->stats.tx_i.dropped.desc_na);
DP_TRACE(FATAL, "Ring full: %u",
pdev->stats.tx_i.dropped.ring_full);
DP_TRACE(FATAL, "Enqueue fail: %u",
pdev->stats.tx_i.dropped.enqueue_fail);
DP_TRACE(FATAL, "DMA Error: %u",
pdev->stats.tx_i.dropped.dma_error);
DP_TRACE(FATAL, "Dropped in hardware:");
DP_TRACE(FATAL, "total packets dropped: %u",
pdev->stats.tx.tx_failed);
DP_TRACE(FATAL, "mpdu age out: %u",
pdev->stats.tx.dropped.mpdu_age_out);
DP_TRACE(FATAL, "firmware discard reason1: %u",
pdev->stats.tx.dropped.fw_discard_reason1);
DP_TRACE(FATAL, "firmware discard reason2: %u",
pdev->stats.tx.dropped.fw_discard_reason2);
DP_TRACE(FATAL, "firmware discard reason3: %u",
pdev->stats.tx.dropped.fw_discard_reason3);
DP_TRACE(FATAL, "peer_invalid: %u",
pdev->soc->stats.tx.tx_invalid_peer.num);
DP_TRACE(FATAL, "Tx packets sent per interrupt:");
DP_TRACE(FATAL, "Single Packet: %u",
pdev->stats.tx_comp_histogram.pkts_1);
DP_TRACE(FATAL, "2-20 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_2_20);
DP_TRACE(FATAL, "21-40 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_21_40);
DP_TRACE(FATAL, "41-60 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_41_60);
DP_TRACE(FATAL, "61-80 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_61_80);
DP_TRACE(FATAL, "81-100 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_81_100);
DP_TRACE(FATAL, "101-200 Packets: %u",
pdev->stats.tx_comp_histogram.pkts_101_200);
DP_TRACE(FATAL, " 201+ Packets: %u",
pdev->stats.tx_comp_histogram.pkts_201_plus);
DP_TRACE(FATAL, "Rx path statistics");
DP_TRACE(FATAL, "delivered %u msdus ( %u bytes),",
pdev->stats.rx.to_stack.num,
pdev->stats.rx.to_stack.bytes);
for (i = 0; i < CDP_MAX_RX_RINGS; i++)
DP_TRACE(FATAL, "received on reo[%d] %u msdus ( %u bytes),",
i, pdev->stats.rx.rcvd_reo[i].num,
pdev->stats.rx.rcvd_reo[i].bytes);
DP_TRACE(FATAL, "intra-bss packets %u msdus ( %u bytes),",
pdev->stats.rx.intra_bss.pkts.num,
pdev->stats.rx.intra_bss.pkts.bytes);
DP_TRACE(FATAL, "raw packets %u msdus ( %u bytes),",
pdev->stats.rx.raw.num,
pdev->stats.rx.raw.bytes);
DP_TRACE(FATAL, "dropped: error %u msdus",
pdev->stats.rx.err.mic_err);
DP_TRACE(FATAL, "peer invalid %u",
pdev->soc->stats.rx.err.rx_invalid_peer.num);
DP_TRACE(FATAL, "Reo Statistics");
DP_TRACE(FATAL, "rbm error: %u msdus",
pdev->soc->stats.rx.err.invalid_rbm);
DP_TRACE(FATAL, "hal ring access fail: %u msdus",
pdev->soc->stats.rx.err.hal_ring_access_fail);
DP_TRACE(FATAL, "Reo errors");
for (error_code = 0; error_code < REO_ERROR_TYPE_MAX;
error_code++) {
DP_TRACE(FATAL, "Reo error number (%u): %u msdus",
error_code,
pdev->soc->stats.rx.err.reo_error[error_code]);
}
for (error_code = 0; error_code < MAX_RXDMA_ERRORS;
error_code++) {
DP_TRACE(FATAL, "Rxdma error number (%u): %u msdus",
error_code,
pdev->soc->stats.rx.err
.rxdma_error[error_code]);
}
DP_TRACE(FATAL, "Rx packets reaped per interrupt:");
DP_TRACE(FATAL, "Single Packet: %u",
pdev->stats.rx_ind_histogram.pkts_1);
DP_TRACE(FATAL, "2-20 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_2_20);
DP_TRACE(FATAL, "21-40 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_21_40);
DP_TRACE(FATAL, "41-60 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_41_60);
DP_TRACE(FATAL, "61-80 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_61_80);
DP_TRACE(FATAL, "81-100 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_81_100);
DP_TRACE(FATAL, "101-200 Packets: %u",
pdev->stats.rx_ind_histogram.pkts_101_200);
DP_TRACE(FATAL, " 201+ Packets: %u",
pdev->stats.rx_ind_histogram.pkts_201_plus);
}
}
/*
* dp_txrx_dump_stats() - Dump statistics
* @value - Statistics option
*/
static QDF_STATUS dp_txrx_dump_stats(void *psoc, uint16_t value)
{
struct dp_soc *soc =
(struct dp_soc *)psoc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: soc is NULL", __func__);
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_PATH_STATS:
dp_txrx_path_stats(soc);
break;
case CDP_RX_RING_STATS:
dp_print_per_ring_stats(soc);
break;
case CDP_TXRX_TSO_STATS:
/* TODO: NOT IMPLEMENTED */
break;
case CDP_DUMP_TX_FLOW_POOL_INFO:
cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
break;
case CDP_DP_NAPI_STATS:
dp_print_napi_stats(soc);
break;
case CDP_TXRX_DESC_STATS:
/* TODO: NOT IMPLEMENTED */
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
static struct cdp_wds_ops dp_ops_wds = {
.vdev_set_wds = dp_vdev_set_wds,
};
/*
* dp_peer_delete_ast_entries(): Delete all AST entries for a peer
* @soc - datapath soc handle
* @peer - datapath peer handle
*
* Delete the AST entries belonging to a peer
*/
#ifdef FEATURE_WDS
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
struct dp_ast_entry *ast_entry;
qdf_spin_lock_bh(&soc->ast_lock);
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry) {
if (ast_entry->next_hop) {
soc->cdp_soc.ol_ops->peer_del_wds_entry(
soc->osif_soc,
ast_entry->mac_addr.raw);
}
dp_peer_del_ast(soc, ast_entry);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
#else
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
}
#endif
#ifdef CONFIG_WIN
static void dp_peer_teardown_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_vdev *vdev = (struct dp_vdev *) vdev_hdl;
struct dp_peer *peer = (struct dp_peer *) peer_hdl;
struct dp_soc *soc = (struct dp_soc *) vdev->pdev->soc;
dp_peer_delete_ast_entries(soc, peer);
}
#endif
static struct cdp_cmn_ops dp_ops_cmn = {
.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
.txrx_vdev_attach = dp_vdev_attach_wifi3,
.txrx_vdev_detach = dp_vdev_detach_wifi3,
.txrx_pdev_attach = dp_pdev_attach_wifi3,
.txrx_pdev_detach = dp_pdev_detach_wifi3,
.txrx_peer_create = dp_peer_create_wifi3,
.txrx_peer_setup = dp_peer_setup_wifi3,
#ifdef CONFIG_WIN
.txrx_peer_teardown = dp_peer_teardown_wifi3,
#else
.txrx_peer_teardown = NULL,
#endif
.txrx_peer_delete = dp_peer_delete_wifi3,
.txrx_vdev_register = dp_vdev_register_wifi3,
.txrx_soc_detach = dp_soc_detach_wifi3,
.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
.txrx_get_vdev_from_vdev_id = dp_get_vdev_from_vdev_id_wifi3,
.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
.addba_requestprocess = dp_addba_requestprocess_wifi3,
.addba_responsesetup = dp_addba_responsesetup_wifi3,
.delba_process = dp_delba_process_wifi3,
.get_peer_mac_addr_frm_id = dp_get_peer_mac_addr_frm_id,
.flush_cache_rx_queue = NULL,
/* TODO: get API's for dscp-tid need to be added*/
.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
.txrx_stats = dp_txrx_stats,
.txrx_set_monitor_mode = dp_vdev_set_monitor_mode,
.display_stats = dp_txrx_dump_stats,
.txrx_soc_set_nss_cfg = dp_soc_set_nss_cfg_wifi3,
.txrx_soc_get_nss_cfg = dp_soc_get_nss_cfg_wifi3,
#ifdef DP_INTR_POLL_BASED
.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
#else
.txrx_intr_attach = dp_soc_interrupt_attach,
#endif
.txrx_intr_detach = dp_soc_interrupt_detach,
.set_pn_check = dp_set_pn_check_wifi3,
/* TODO: Add other functions */
};
static struct cdp_ctrl_ops dp_ops_ctrl = {
.txrx_peer_authorize = dp_peer_authorize,
.txrx_set_vdev_rx_decap_type = dp_set_vdev_rx_decap_type,
.txrx_set_tx_encap_type = dp_set_vdev_tx_encap_type,
#ifdef MESH_MODE_SUPPORT
.txrx_set_mesh_mode = dp_peer_set_mesh_mode,
.txrx_set_mesh_rx_filter = dp_peer_set_mesh_rx_filter,
#endif
.txrx_set_vdev_param = dp_set_vdev_param,
.txrx_peer_set_nawds = dp_peer_set_nawds,
.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
.txrx_set_filter_neighbour_peers = dp_set_filter_neighbour_peers,
.txrx_update_filter_neighbour_peers =
dp_update_filter_neighbour_peers,
/* TODO: Add other functions */
.txrx_wdi_event_sub = dp_wdi_event_sub,
.txrx_wdi_event_unsub = dp_wdi_event_unsub,
};
static struct cdp_me_ops dp_ops_me = {
#ifdef ATH_SUPPORT_IQUE
.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
.tx_me_free_descriptor = dp_tx_me_free_descriptor,
.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
#endif
};
static struct cdp_mon_ops dp_ops_mon = {
.txrx_monitor_set_filter_ucast_data = NULL,
.txrx_monitor_set_filter_mcast_data = NULL,
.txrx_monitor_set_filter_non_data = NULL,
.txrx_monitor_get_filter_ucast_data = NULL,
.txrx_monitor_get_filter_mcast_data = NULL,
.txrx_monitor_get_filter_non_data = NULL,
.txrx_reset_monitor_mode = NULL,
};
static struct cdp_host_stats_ops dp_ops_host_stats = {
.txrx_per_peer_stats = dp_get_host_peer_stats,
.get_fw_peer_stats = dp_get_fw_peer_stats,
.txrx_enable_enhanced_stats = dp_enable_enhanced_stats,
.txrx_disable_enhanced_stats = dp_disable_enhanced_stats,
/* TODO */
};
static struct cdp_raw_ops dp_ops_raw = {
/* TODO */
};
#ifdef CONFIG_WIN
static struct cdp_pflow_ops dp_ops_pflow = {
/* TODO */
};
#endif /* CONFIG_WIN */
static QDF_STATUS dp_bus_suspend(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_bus_resume(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
return QDF_STATUS_SUCCESS;
}
#ifndef CONFIG_WIN
static struct cdp_misc_ops dp_ops_misc = {
.get_opmode = dp_get_opmode,
#ifdef FEATURE_RUNTIME_PM
.runtime_suspend = dp_bus_suspend,
.runtime_resume = dp_bus_resume,
#endif
};
static struct cdp_flowctl_ops dp_ops_flowctl = {
/* WIFI 3.0 DP implement as required. */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
.register_pause_cb = dp_txrx_register_pause_cb,
.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
#endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
};
static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#ifdef IPA_OFFLOAD
static struct cdp_ipa_ops dp_ops_ipa = {
.ipa_get_resource = dp_ipa_get_resource,
.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
.ipa_op_response = dp_ipa_op_response,
.ipa_register_op_cb = dp_ipa_register_op_cb,
.ipa_get_stat = dp_ipa_get_stat,
.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
.ipa_enable_autonomy = dp_ipa_enable_autonomy,
.ipa_disable_autonomy = dp_ipa_disable_autonomy,
.ipa_setup = dp_ipa_setup,
.ipa_cleanup = dp_ipa_cleanup,
.ipa_setup_iface = dp_ipa_setup_iface,
.ipa_cleanup_iface = dp_ipa_cleanup_iface,
.ipa_enable_pipes = dp_ipa_enable_pipes,
.ipa_disable_pipes = dp_ipa_disable_pipes,
.ipa_set_perf_level = dp_ipa_set_perf_level
};
#endif
static struct cdp_bus_ops dp_ops_bus = {
.bus_suspend = dp_bus_suspend,
.bus_resume = dp_bus_resume
};
static struct cdp_ocb_ops dp_ops_ocb = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_throttle_ops dp_ops_throttle = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_mob_stats_ops dp_ops_mob_stats = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_cfg_ops dp_ops_cfg = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_peer_ops dp_ops_peer = {
.register_peer = dp_register_peer,
.clear_peer = dp_clear_peer,
.find_peer_by_addr = dp_find_peer_by_addr,
.find_peer_by_addr_and_vdev = dp_find_peer_by_addr_and_vdev,
.local_peer_id = dp_local_peer_id,
.peer_find_by_local_id = dp_peer_find_by_local_id,
.peer_state_update = dp_peer_state_update,
.get_vdevid = dp_get_vdevid,
.get_vdev_by_sta_id = dp_get_vdev_by_sta_id,
.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
.get_vdev_for_peer = dp_get_vdev_for_peer,
.get_peer_state = dp_get_peer_state,
.last_assoc_received = dp_get_last_assoc_received,
.last_disassoc_received = dp_get_last_disassoc_received,
.last_deauth_received = dp_get_last_deauth_received,
};
#endif
static struct cdp_ops dp_txrx_ops = {
.cmn_drv_ops = &dp_ops_cmn,
.ctrl_ops = &dp_ops_ctrl,
.me_ops = &dp_ops_me,
.mon_ops = &dp_ops_mon,
.host_stats_ops = &dp_ops_host_stats,
.wds_ops = &dp_ops_wds,
.raw_ops = &dp_ops_raw,
#ifdef CONFIG_WIN
.pflow_ops = &dp_ops_pflow,
#endif /* CONFIG_WIN */
#ifndef CONFIG_WIN
.misc_ops = &dp_ops_misc,
.cfg_ops = &dp_ops_cfg,
.flowctl_ops = &dp_ops_flowctl,
.l_flowctl_ops = &dp_ops_l_flowctl,
#ifdef IPA_OFFLOAD
.ipa_ops = &dp_ops_ipa,
#endif
.bus_ops = &dp_ops_bus,
.ocb_ops = &dp_ops_ocb,
.peer_ops = &dp_ops_peer,
.throttle_ops = &dp_ops_throttle,
.mob_stats_ops = &dp_ops_mob_stats,
#endif
};
/*
* dp_soc_set_txrx_ring_map()
* @dp_soc: DP handler for soc
*
* Return: Void
*/
static void dp_soc_set_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_DEFAULT_MAP][i];
}
}
/*
* dp_soc_attach_wifi3() - Attach txrx SOC
* @osif_soc: Opaque SOC handle from OSIF/HDD
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
*
* Return: DP SOC handle on success, NULL on failure
*/
/*
* Local prototype added to temporarily address warning caused by
* -Wmissing-prototypes. A more correct solution, namely to expose
* a prototype in an appropriate header file, will come later.
*/
void *dp_soc_attach_wifi3(void *osif_soc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, struct wlan_objmgr_psoc *psoc);
void *dp_soc_attach_wifi3(void *osif_soc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, struct wlan_objmgr_psoc *psoc)
{
struct dp_soc *soc = qdf_mem_malloc(sizeof(*soc));
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP SOC memory allocation failed"));
goto fail0;
}
soc->cdp_soc.ops = &dp_txrx_ops;
soc->cdp_soc.ol_ops = ol_ops;
soc->osif_soc = osif_soc;
soc->osdev = qdf_osdev;
soc->hif_handle = hif_handle;
soc->psoc = psoc;
soc->hal_soc = hif_get_hal_handle(hif_handle);
soc->htt_handle = htt_soc_attach(soc, osif_soc, htc_handle,
soc->hal_soc, qdf_osdev);
if (!soc->htt_handle) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("HTT attach failed"));
goto fail1;
}
soc->wlan_cfg_ctx = wlan_cfg_soc_attach();
if (!soc->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("wlan_cfg_soc_attach failed"));
goto fail2;
}
if (soc->cdp_soc.ol_ops->get_dp_cfg_param) {
int ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc,
CDP_CFG_MAX_PEER_ID);
if (ret != -EINVAL) {
wlan_cfg_set_max_peer_id(soc->wlan_cfg_ctx, ret);
}
}
qdf_spinlock_create(&soc->peer_ref_mutex);
qdf_spinlock_create(&soc->reo_desc_freelist_lock);
qdf_list_create(&soc->reo_desc_freelist, REO_DESC_FREELIST_SIZE);
/* fill the tx/rx cpu ring map*/
dp_soc_set_txrx_ring_map(soc);
return (void *)soc;
fail2:
htt_soc_detach(soc->htt_handle);
fail1:
qdf_mem_free(soc);
fail0:
return NULL;
}
#if defined(CONFIG_WIN) && WDI_EVENT_ENABLE
/*
* dp_set_pktlog_wifi3() - attach txrx vdev
* @pdev: Datapath PDEV handle
* @event: which event's notifications are being subscribed to
* @enable: WDI event subscribe or not. (True or False)
*
* Return: Success, NULL on failure
*/
int dp_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
bool enable)
{
struct dp_soc *soc = pdev->soc;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
if (enable) {
switch (event) {
case WDI_EVENT_RX_DESC:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_FULL) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_FULL;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_h2t_rx_ring_cfg(soc->htt_handle,
pdev->pdev_id,
pdev->rxdma_mon_status_ring.hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE,
&htt_tlv_filter);
}
break;
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_LITE) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_LITE;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_h2t_rx_ring_cfg(soc->htt_handle,
pdev->pdev_id,
pdev->rxdma_mon_status_ring.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE_PKTLOG_LITE,
&htt_tlv_filter);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
/* To enable HTT_H2T_MSG_TYPE_PPDU_STATS_CFG in FW
* passing value 0xffff. Once these macros will define in htt
* header file will use proper macros
*/
dp_h2t_cfg_stats_msg_send(pdev, 0xffff);
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
} else {
switch (event) {
case WDI_EVENT_RX_DESC:
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED;
/* htt_tlv_filter is initialized to 0 */
htt_h2t_rx_ring_cfg(soc->htt_handle,
pdev->pdev_id,
pdev->rxdma_mon_status_ring.hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE,
&htt_tlv_filter);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
/* To disable HTT_H2T_MSG_TYPE_PPDU_STATS_CFG in FW
* passing value 0. Once these macros will define in htt
* header file will use proper macros
*/
dp_h2t_cfg_stats_msg_send(pdev, 0);
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
}
return 0;
}
#endif