blob: ec990c505c692bd46d130448bdb64af84e814f0b [file] [log] [blame]
/*
* Copyright (c) 2014-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: qdf_util.h
* This file defines utility functions.
*/
#ifndef _QDF_UTIL_H
#define _QDF_UTIL_H
#include <i_qdf_util.h>
#ifdef QCA_CONFIG_SMP
#define QDF_MAX_AVAILABLE_CPU 8
#else
#define QDF_MAX_AVAILABLE_CPU 1
#endif
typedef __qdf_wait_queue_head_t qdf_wait_queue_head_t;
/**
* qdf_unlikely - Compiler-dependent macro denoting code likely to execute
* @_expr: expression to be checked
*/
#define qdf_unlikely(_expr) __qdf_unlikely(_expr)
/**
* qdf_likely - Compiler-dependent macro denoting code unlikely to execute
* @_expr: expression to be checked
*/
#define qdf_likely(_expr) __qdf_likely(_expr)
/**
* qdf_mb - read + write memory barrier.
*/
#define qdf_mb() __qdf_mb()
/**
* qdf_ioread32 - read a register
* @offset: register address
*/
#define qdf_ioread32(offset) __qdf_ioread32(offset)
/**
* qdf_iowrite32 - write a register
* @offset: register address
* @value: value to write (32bit value)
*/
#define qdf_iowrite32(offset, value) __qdf_iowrite32(offset, value)
/**
* qdf_assert - assert "expr" evaluates to false.
*/
#ifdef QDF_DEBUG
#define qdf_assert(expr) __qdf_assert(expr)
#else
#define qdf_assert(expr)
#endif /* QDF_DEBUG */
/**
* qdf_assert_always - alway assert "expr" evaluates to false.
*/
#define qdf_assert_always(expr) __qdf_assert(expr)
/**
* qdf_target_assert_always - alway target assert "expr" evaluates to false.
*/
#define qdf_target_assert_always(expr) __qdf_target_assert(expr)
/**
* QDF_MAX - get maximum of two values
* @_x: 1st argument
* @_y: 2nd argument
*/
#define QDF_MAX(_x, _y) (((_x) > (_y)) ? (_x) : (_y))
/**
* QDF_MIN - get minimum of two values
* @_x: 1st argument
* @_y: 2nd argument
*/
#define QDF_MIN(_x, _y) (((_x) < (_y)) ? (_x) : (_y))
/**
* QDF_IS_ADDR_BROADCAST - is mac address broadcast mac address
* @_a: pointer to mac address
*/
#define QDF_IS_ADDR_BROADCAST(_a) \
((_a)[0] == 0xff && \
(_a)[1] == 0xff && \
(_a)[2] == 0xff && \
(_a)[3] == 0xff && \
(_a)[4] == 0xff && \
(_a)[5] == 0xff)
#define QDF_DECLARE_EWMA(name, factor, weight) \
__QDF_DECLARE_EWMA(name, factor, weight)
#define qdf_ewma_tx_lag __qdf_ewma_tx_lag
#define qdf_ewma_tx_lag_init(tx_lag) \
__qdf_ewma_tx_lag_init(tx_lag)
#define qdf_ewma_tx_lag_add(tx_lag, value) \
__qdf_ewma_tx_lag_add(tx_lag, value)
#define qdf_ewma_tx_lag_read(tx_lag) \
__qdf_ewma_tx_lag_read(tx_lag)
#define qdf_ewma_rx_rssi __qdf_ewma_rx_rssi
#define qdf_ewma_rx_rssi_init(rx_rssi) \
__qdf_ewma_rx_rssi_init(rx_rssi)
#define qdf_ewma_rx_rssi_add(rx_rssi, value) \
__qdf_ewma_rx_rssi_add(rx_rssi, value)
#define qdf_ewma_rx_rssi_read(rx_rssi) \
__qdf_ewma_rx_rssi_read(rx_rssi)
/**
* qdf_set_bit() - set bit in address
* @nr: bit number to be set
* @addr: address buffer pointer
*
* Return: none
*/
#define qdf_set_bit(nr, addr) __qdf_set_bit(nr, addr)
/**
* qdf_clear_bit() - clear bit in address
* @nr: bit number to be clear
* @addr: address buffer pointer
*
* Return: none
*/
#define qdf_clear_bit(nr, addr) __qdf_clear_bit(nr, addr)
/**
* qdf_test_bit() - test bit position in address
* @nr: bit number to be tested
* @addr: address buffer pointer
*
* Return: none
*/
#define qdf_test_bit(nr, addr) __qdf_test_bit(nr, addr)
/**
* qdf_test_and_clear_bit() - test and clear bit position in address
* @nr: bit number to be tested
* @addr: address buffer pointer
*
* Return: none
*/
#define qdf_test_and_clear_bit(nr, addr) __qdf_test_and_clear_bit(nr, addr)
/**
* qdf_find_first_bit() - find first bit position in address
* @addr: address buffer pointer
* @nbits: number of bits
*
* Return: position first set bit in addr
*/
#define qdf_find_first_bit(addr, nbits) __qdf_find_first_bit(addr, nbits)
#define qdf_wait_queue_interruptible(wait_queue, condition) \
__qdf_wait_queue_interruptible(wait_queue, condition)
/**
* qdf_wait_queue_timeout() - wait for specified time on given condition
* @wait_queue: wait queue to wait on
* @condition: condition to wait on
* @timeout: timeout value in jiffies
*
* Return: 0 if condition becomes false after timeout
* 1 or remaining jiffies, if condition becomes true during timeout
*/
#define qdf_wait_queue_timeout(wait_queue, condition, timeout) \
__qdf_wait_queue_timeout(wait_queue, \
condition, timeout)
#define qdf_init_waitqueue_head(_q) __qdf_init_waitqueue_head(_q)
#define qdf_wake_up_interruptible(_q) __qdf_wake_up_interruptible(_q)
/**
* qdf_wake_up() - wakes up sleeping waitqueue
* @wait_queue: wait queue, which needs wake up
*
* Return: none
*/
#define qdf_wake_up(_q) __qdf_wake_up(_q)
#define qdf_wake_up_completion(_q) __qdf_wake_up_completion(_q)
/**
* qdf_container_of - cast a member of a structure out to the containing
* structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*/
#define qdf_container_of(ptr, type, member) \
__qdf_container_of(ptr, type, member)
/**
* qdf_is_pwr2 - test input value is power of 2 integer
* @value: input integer
*/
#define QDF_IS_PWR2(value) (((value) ^ ((value)-1)) == ((value) << 1) - 1)
/**
* qdf_roundup() - roundup the input value
* @x: value to roundup
* @y: input value rounded to multiple of this
*
* Return: rounded value
*/
#define qdf_roundup(x, y) __qdf_roundup(x, y)
/**
* qdf_is_macaddr_equal() - compare two QDF MacAddress
* @mac_addr1: Pointer to one qdf MacAddress to compare
* @mac_addr2: Pointer to the other qdf MacAddress to compare
*
* This function returns a bool that tells if a two QDF MacAddress'
* are equivalent.
*
* Return: true if the MacAddress's are equal
* not true if the MacAddress's are not equal
*/
static inline bool qdf_is_macaddr_equal(struct qdf_mac_addr *mac_addr1,
struct qdf_mac_addr *mac_addr2)
{
return __qdf_is_macaddr_equal(mac_addr1, mac_addr2);
}
/**
* qdf_is_macaddr_zero() - check for a MacAddress of all zeros.
* @mac_addr: pointer to the struct qdf_mac_addr to check.
*
* This function returns a bool that tells if a MacAddress is made up of
* all zeros.
*
* Return: true if the MacAddress is all Zeros
* false if the MacAddress is not all Zeros.
*/
static inline bool qdf_is_macaddr_zero(struct qdf_mac_addr *mac_addr)
{
struct qdf_mac_addr zero_mac_addr = QDF_MAC_ADDR_ZERO_INIT;
return qdf_is_macaddr_equal(mac_addr, &zero_mac_addr);
}
/**
* qdf_zero_macaddr() - zero out a MacAddress
* @mac_addr: pointer to the struct qdf_mac_addr to zero.
*
* This function zeros out a QDF MacAddress type.
*
* Return: none
*/
static inline void qdf_zero_macaddr(struct qdf_mac_addr *mac_addr)
{
__qdf_zero_macaddr(mac_addr);
}
/**
* qdf_is_macaddr_group() - check for a MacAddress is a 'group' address
* @mac_addr1: pointer to the qdf MacAddress to check
*
* This function returns a bool that tells if a the input QDF MacAddress
* is a "group" address. Group addresses have the 'group address bit' turned
* on in the MacAddress. Group addresses are made up of Broadcast and
* Multicast addresses.
*
* Return: true if the input MacAddress is a Group address
* false if the input MacAddress is not a Group address
*/
static inline bool qdf_is_macaddr_group(struct qdf_mac_addr *mac_addr)
{
return mac_addr->bytes[0] & 0x01;
}
/**
* qdf_is_macaddr_broadcast() - check for a MacAddress is a broadcast address
* @mac_addr: Pointer to the qdf MacAddress to check
*
* This function returns a bool that tells if a the input QDF MacAddress
* is a "broadcast" address.
*
* Return: true if the input MacAddress is a broadcast address
* flase if the input MacAddress is not a broadcast address
*/
static inline bool qdf_is_macaddr_broadcast(struct qdf_mac_addr *mac_addr)
{
struct qdf_mac_addr broadcast_mac_addr = QDF_MAC_ADDR_BCAST_INIT;
return qdf_is_macaddr_equal(mac_addr, &broadcast_mac_addr);
}
/**
* qdf_copy_macaddr() - copy a QDF MacAddress
* @dst_addr: pointer to the qdf MacAddress to copy TO (the destination)
* @src_addr: pointer to the qdf MacAddress to copy FROM (the source)
*
* This function copies a QDF MacAddress into another QDF MacAddress.
*
* Return: none
*/
static inline void qdf_copy_macaddr(struct qdf_mac_addr *dst_addr,
struct qdf_mac_addr *src_addr)
{
*dst_addr = *src_addr;
}
/**
* qdf_set_macaddr_broadcast() - set a QDF MacAddress to the 'broadcast'
* @mac_addr: pointer to the qdf MacAddress to set to broadcast
*
* This function sets a QDF MacAddress to the 'broadcast' MacAddress. Broadcast
* MacAddress contains all 0xFF bytes.
*
* Return: none
*/
static inline void qdf_set_macaddr_broadcast(struct qdf_mac_addr *mac_addr)
{
__qdf_set_macaddr_broadcast(mac_addr);
}
/**
* qdf_set_u16() - Assign 16-bit unsigned value to a byte array base on CPU's
* endianness.
* @ptr: Starting address of a byte array
* @value: The value to assign to the byte array
*
* Caller must validate the byte array has enough space to hold the vlaue
*
* Return: The address to the byte after the assignment. This may or may not
* be valid. Caller to verify.
*/
static inline uint8_t *qdf_set_u16(uint8_t *ptr, uint16_t value)
{
#if defined(ANI_BIG_BYTE_ENDIAN)
*(ptr) = (uint8_t) (value >> 8);
*(ptr + 1) = (uint8_t) (value);
#else
*(ptr + 1) = (uint8_t) (value >> 8);
*(ptr) = (uint8_t) (value);
#endif
return ptr + 2;
}
/**
* qdf_get_u16() - Retrieve a 16-bit unsigned value from a byte array base on
* CPU's endianness.
* @ptr: Starting address of a byte array
* @value: Pointer to a caller allocated buffer for 16 bit value. Value is to
* assign to this location.
*
* Caller must validate the byte array has enough space to hold the vlaue
*
* Return: The address to the byte after the assignment. This may or may not
* be valid. Caller to verify.
*/
static inline uint8_t *qdf_get_u16(uint8_t *ptr, uint16_t *value)
{
#if defined(ANI_BIG_BYTE_ENDIAN)
*value = (((uint16_t) (*ptr << 8)) | ((uint16_t) (*(ptr + 1))));
#else
*value = (((uint16_t) (*(ptr + 1) << 8)) | ((uint16_t) (*ptr)));
#endif
return ptr + 2;
}
/**
* qdf_get_u32() - retrieve a 32-bit unsigned value from a byte array base on
* CPU's endianness.
* @ptr: Starting address of a byte array
* @value: Pointer to a caller allocated buffer for 32 bit value. Value is to
* assign to this location.
*
* Caller must validate the byte array has enough space to hold the vlaue
*
* Return: The address to the byte after the assignment. This may or may not
* be valid. Caller to verify.
*/
static inline uint8_t *qdf_get_u32(uint8_t *ptr, uint32_t *value)
{
#if defined(ANI_BIG_BYTE_ENDIAN)
*value = ((uint32_t) (*(ptr) << 24) |
(uint32_t) (*(ptr + 1) << 16) |
(uint32_t) (*(ptr + 2) << 8) | (uint32_t) (*(ptr + 3)));
#else
*value = ((uint32_t) (*(ptr + 3) << 24) |
(uint32_t) (*(ptr + 2) << 16) |
(uint32_t) (*(ptr + 1) << 8) | (uint32_t) (*(ptr)));
#endif
return ptr + 4;
}
/**
* qdf_ntohs - Convert a 16-bit value from network byte order to host byte order
*/
#define qdf_ntohs(x) __qdf_ntohs(x)
/**
* qdf_ntohl - Convert a 32-bit value from network byte order to host byte order
*/
#define qdf_ntohl(x) __qdf_ntohl(x)
/**
* qdf_htons - Convert a 16-bit value from host byte order to network byte order
*/
#define qdf_htons(x) __qdf_htons(x)
/**
* qdf_htonl - Convert a 32-bit value from host byte order to network byte order
*/
#define qdf_htonl(x) __qdf_htonl(x)
/**
* qdf_cpu_to_le16 - Convert a 16-bit value from CPU byte order to
* little-endian byte order
*
* @x: value to be converted
*/
#define qdf_cpu_to_le16(x) __qdf_cpu_to_le16(x)
/**
* qdf_cpu_to_le32 - Convert a 32-bit value from CPU byte order to
* little-endian byte order
*
* @x: value to be converted
*/
#define qdf_cpu_to_le32(x) __qdf_cpu_to_le32(x)
/**
* qdf_cpu_to_le64 - Convert a 64-bit value from CPU byte order to
* little-endian byte order
*
* @x: value to be converted
*/
#define qdf_cpu_to_le64(x) __qdf_cpu_to_le64(x)
/**
* qdf_le16_to_cpu - Convert a 16-bit value from little-endian byte order
* to CPU byte order
*
* @x: value to be converted
*/
#define qdf_le16_to_cpu(x) __qdf_le16_to_cpu(x)
/**
* qdf_le32_to_cpu - Convert a 32-bit value from little-endian byte
* order to CPU byte order
*
* @x: value to be converted
*/
#define qdf_le32_to_cpu(x) __qdf_le32_to_cpu(x)
/**
* qdf_le64_to_cpu - Convert a 64-bit value from little-endian byte
* order to CPU byte order
*
* @x: value to be converted
*/
#define qdf_le64_to_cpu(x) __qdf_le64_to_cpu(x)
/**
* qdf_cpu_to_be16 - Convert a 16-bit value from CPU byte order to
* big-endian byte order
*
* @x: value to be converted
*/
#define qdf_cpu_to_be16(x) __qdf_cpu_to_be16(x)
/**
* qdf_cpu_to_be32 - Convert a 32-bit value from CPU byte order to
* big-endian byte order
*
* @x: value to be converted
*/
#define qdf_cpu_to_be32(x) __qdf_cpu_to_be32(x)
/**
* qdf_cpu_to_be64 - Convert a 64-bit value from CPU byte order to
* big-endian byte order
*
* @x: value to be converted
*/
#define qdf_cpu_to_be64(x) __qdf_cpu_to_be64(x)
/**
* qdf_be16_to_cpu - Convert a 16-bit value from big-endian byte order
* to CPU byte order
*
* @x: value to be converted
*/
#define qdf_be16_to_cpu(x) __qdf_be16_to_cpu(x)
/**
* qdf_be32_to_cpu - Convert a 32-bit value from big-endian byte order
* to CPU byte order
*
* @x: value to be converted
*/
#define qdf_be32_to_cpu(x) __qdf_be32_to_cpu(x)
/**
* qdf_be64_to_cpu - Convert a 64-bit value from big-endian byte order
* to CPU byte order
*
* @x: value to be converted
*/
#define qdf_be64_to_cpu(x) __qdf_be64_to_cpu(x)
/**
* qdf_function - replace with the name of the current function
*/
#define qdf_function __qdf_function
/**
* qdf_min - minimum of two numbers
*/
#define qdf_min(a, b) __qdf_min(a, b)
/**
* qdf_ffz() - find first (least significant) zero bit
* @mask: the bitmask to check
*
* Return: The zero-based index of the first zero bit, or -1 if none are found
*/
#define qdf_ffz(mask) __qdf_ffz(mask)
/**
* qdf_prefetch - prefetches the cacheline for read
*
* @x: address to be prefetched
*/
#define qdf_prefetch(x) __qdf_prefetch(x)
/**
* qdf_get_pwr2() - get next power of 2 integer from input value
* @value: input value to find next power of 2 integer
*
* Get next power of 2 integer from input value
*
* Return: Power of 2 integer
*/
static inline int qdf_get_pwr2(int value)
{
int log2;
if (QDF_IS_PWR2(value))
return value;
log2 = 0;
while (value) {
value >>= 1;
log2++;
}
return 1 << log2;
}
static inline
int qdf_get_cpu(void)
{
return __qdf_get_cpu();
}
/**
* qdf_get_hweight8() - count num of 1's in bitmap
* @value: input bitmap
*
* Count num of 1's set in the bitmap
*
* Return: num of 1's
*/
static inline
unsigned int qdf_get_hweight8(unsigned int w)
{
unsigned int res = w - ((w >> 1) & 0x55);
res = (res & 0x33) + ((res >> 2) & 0x33);
return (res + (res >> 4)) & 0x0F;
}
/**
* qdf_device_init_wakeup() - allow a device to wake up the aps system
* @qdf_dev: the qdf device context
* @enable: enable/disable the device as a wakup source
*
* Return: 0 or errno
*/
static inline int qdf_device_init_wakeup(qdf_device_t qdf_dev, bool enable)
{
return __qdf_device_init_wakeup(qdf_dev, enable);
}
static inline
uint64_t qdf_get_totalramsize(void)
{
return __qdf_get_totalramsize();
}
/**
* qdf_get_lower_32_bits() - get lower 32 bits from an address.
* @addr: address
*
* This api returns the lower 32 bits of an address.
*
* Return: lower 32 bits.
*/
static inline
uint32_t qdf_get_lower_32_bits(qdf_dma_addr_t addr)
{
return __qdf_get_lower_32_bits(addr);
}
/**
* qdf_get_upper_32_bits() - get upper 32 bits from an address.
* @addr: address
*
* This api returns the upper 32 bits of an address.
*
* Return: upper 32 bits.
*/
static inline
uint32_t qdf_get_upper_32_bits(qdf_dma_addr_t addr)
{
return __qdf_get_upper_32_bits(addr);
}
/**
* qdf_rounddown_pow_of_two() - Round down to nearest power of two
* @n: number to be tested
*
* Test if the input number is power of two, and return the nearest power of two
*
* Return: number rounded down to the nearest power of two
*/
static inline
unsigned long qdf_rounddown_pow_of_two(unsigned long n)
{
return __qdf_rounddown_pow_of_two(n);
}
/**
* qdf_set_dma_coherent_mask() - set max number of bits allowed in dma addr
* @dev: device pointer
* @addr_bits: max number of bits allowed in dma address
*
* This API sets the maximum allowed number of bits in the dma address.
*
* Return: 0 - success, non zero - failure
*/
static inline
int qdf_set_dma_coherent_mask(struct device *dev, uint8_t addr_bits)
{
return __qdf_set_dma_coherent_mask(dev, addr_bits);
}
/**
* qdf_do_div() - wrapper function for kernel macro(do_div).
* @dividend: Dividend value
* @divisor : Divisor value
*
* Return: Quotient
*/
static inline
uint64_t qdf_do_div(uint64_t dividend, uint32_t divisor)
{
return __qdf_do_div(dividend, divisor);
}
/**
* qdf_do_div_rem() - wrapper function for kernel macro(do_div)
* to get remainder.
* @dividend: Dividend value
* @divisor : Divisor value
*
* Return: remainder
*/
static inline
uint64_t qdf_do_div_rem(uint64_t dividend, uint32_t divisor)
{
return __qdf_do_div_rem(dividend, divisor);
}
/**
* qdf_get_random_bytes() - returns nbytes bytes of random
* data
*
* Return: random bytes of data
*/
static inline
void qdf_get_random_bytes(void *buf, int nbytes)
{
return __qdf_get_random_bytes(buf, nbytes);
}
/**
* qdf_hex_to_bin() - QDF API to Convert hexa decimal ASCII character to
* unsigned integer value.
* @ch: hexa decimal ASCII character
*
* Return: For hexa decimal ASCII char return actual decimal value
* else -1 for bad input.
*/
static inline
int qdf_hex_to_bin(char ch)
{
return __qdf_hex_to_bin(ch);
}
/**
* qdf_hex_str_to_binary() - QDF API to Convert string of hexa decimal
* ASCII characters to array of unsigned integers.
* @dst: output array to hold converted values
* @src: input string of hexa decimal ASCII characters
* @count: size of dst string
*
* This function is used to convert string of hexa decimal characters to
* array of unsigned integers and caller should ensure:
* a) @dst, @src are not NULL,
* b) size of @dst should be (size of src / 2)
*
* Example 1:
* src = 11aa, means, src[0] = '1', src[1] = '2', src[2] = 'a', src[3] = 'a'
* count = (size of src / 2) = 2
* after conversion, dst[0] = 0x11, dst[1] = oxAA and return (0).
*
* Example 2:
* src = 11az, means, src[0] = '1', src[1] = '2', src[2] = 'a', src[3] = 'z'
* src[3] is not ASCII hexa decimal character, return negative value (-1).
*
* Return: For a string of hexa decimal ASCII characters return 0
* else -1 for bad input.
*/
static inline
int qdf_hex_str_to_binary(u8 *dst, const char *src, size_t count)
{
return __qdf_hex_str_to_binary(dst, src, count);
}
#endif /*_QDF_UTIL_H*/