blob: 19455feb08605c96abafa64b9fe21f960ed6018a [file] [log] [blame]
/*
* Copyright (c) 2014-2019 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: qdf_mem
* This file provides OS dependent memory management APIs
*/
#include "qdf_debugfs.h"
#include "qdf_mem.h"
#include "qdf_nbuf.h"
#include "qdf_lock.h"
#include "qdf_mc_timer.h"
#include "qdf_module.h"
#include <qdf_trace.h>
#include "qdf_atomic.h"
#include "qdf_str.h"
#include "qdf_talloc.h"
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#if defined(CONFIG_CNSS)
#include <net/cnss.h>
#endif
#ifdef CONFIG_WCNSS_MEM_PRE_ALLOC
#include <net/cnss_prealloc.h>
#endif
#ifdef MEMORY_DEBUG
#include "qdf_debug_domain.h"
#include <qdf_list.h>
/* Preprocessor Definitions and Constants */
#define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
#define QDF_MEM_WARN_THRESHOLD 300 /* ms */
#define QDF_DEBUG_STRING_SIZE 512
static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
static qdf_spinlock_t qdf_mem_list_lock;
static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
static qdf_spinlock_t qdf_mem_dma_list_lock;
static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
{
return &qdf_mem_domains[domain];
}
static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
{
return &qdf_mem_dma_domains[domain];
}
/**
* struct qdf_mem_header - memory object to dubug
* @node: node to the list
* @domain: the active memory domain at time of allocation
* @freed: flag set during free, used to detect double frees
* Use uint8_t so we can detect corruption
* @func: name of the function the allocation was made from
* @line: line number of the file the allocation was made from
* @size: size of the allocation in bytes
* @caller: Caller of the function for which memory is allocated
* @header: a known value, used to detect out-of-bounds access
* @time: timestamp at which allocation was made
*/
struct qdf_mem_header {
qdf_list_node_t node;
enum qdf_debug_domain domain;
uint8_t freed;
char func[QDF_MEM_FUNC_NAME_SIZE];
uint32_t line;
uint32_t size;
void *caller;
uint64_t header;
uint64_t time;
};
static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
{
return (struct qdf_mem_header *)ptr - 1;
}
static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
qdf_size_t size)
{
return (struct qdf_mem_header *) ((uint8_t *) ptr + size);
}
static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
{
return (uint64_t *)((void *)(header + 1) + header->size);
}
static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
{
return (void *)(header + 1);
}
/* number of bytes needed for the qdf memory debug information */
#define QDF_MEM_DEBUG_SIZE \
(sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
/* number of bytes needed for the qdf dma memory debug information */
#define QDF_DMA_MEM_DEBUG_SIZE \
(sizeof(struct qdf_mem_header))
static void qdf_mem_trailer_init(struct qdf_mem_header *header)
{
QDF_BUG(header);
if (!header)
return;
*qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
}
static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
const char *func, uint32_t line, void *caller)
{
QDF_BUG(header);
if (!header)
return;
header->domain = qdf_debug_domain_get();
header->freed = false;
qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
header->line = line;
header->size = size;
header->caller = caller;
header->header = WLAN_MEM_HEADER;
header->time = qdf_get_log_timestamp();
}
enum qdf_mem_validation_bitmap {
QDF_MEM_BAD_HEADER = 1 << 0,
QDF_MEM_BAD_TRAILER = 1 << 1,
QDF_MEM_BAD_SIZE = 1 << 2,
QDF_MEM_DOUBLE_FREE = 1 << 3,
QDF_MEM_BAD_FREED = 1 << 4,
QDF_MEM_BAD_NODE = 1 << 5,
QDF_MEM_BAD_DOMAIN = 1 << 6,
QDF_MEM_WRONG_DOMAIN = 1 << 7,
};
static enum qdf_mem_validation_bitmap
qdf_mem_trailer_validate(struct qdf_mem_header *header)
{
enum qdf_mem_validation_bitmap error_bitmap = 0;
if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
error_bitmap |= QDF_MEM_BAD_TRAILER;
return error_bitmap;
}
static enum qdf_mem_validation_bitmap
qdf_mem_header_validate(struct qdf_mem_header *header,
enum qdf_debug_domain domain)
{
enum qdf_mem_validation_bitmap error_bitmap = 0;
if (header->header != WLAN_MEM_HEADER)
error_bitmap |= QDF_MEM_BAD_HEADER;
if (header->size > QDF_MEM_MAX_MALLOC)
error_bitmap |= QDF_MEM_BAD_SIZE;
if (header->freed == true)
error_bitmap |= QDF_MEM_DOUBLE_FREE;
else if (header->freed)
error_bitmap |= QDF_MEM_BAD_FREED;
if (!qdf_list_node_in_any_list(&header->node))
error_bitmap |= QDF_MEM_BAD_NODE;
if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
header->domain >= QDF_DEBUG_DOMAIN_COUNT)
error_bitmap |= QDF_MEM_BAD_DOMAIN;
else if (header->domain != domain)
error_bitmap |= QDF_MEM_WRONG_DOMAIN;
return error_bitmap;
}
static void
qdf_mem_header_assert_valid(struct qdf_mem_header *header,
enum qdf_debug_domain current_domain,
enum qdf_mem_validation_bitmap error_bitmap,
const char *func,
uint32_t line)
{
if (!error_bitmap)
return;
if (error_bitmap & QDF_MEM_BAD_HEADER)
qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
header->header, WLAN_MEM_HEADER);
if (error_bitmap & QDF_MEM_BAD_SIZE)
qdf_err("Corrupted memory size %u (expected < %d)",
header->size, QDF_MEM_MAX_MALLOC);
if (error_bitmap & QDF_MEM_BAD_TRAILER)
qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
*qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
if (error_bitmap & QDF_MEM_DOUBLE_FREE)
qdf_err("Memory has previously been freed");
if (error_bitmap & QDF_MEM_BAD_FREED)
qdf_err("Corrupted memory freed flag 0x%x", header->freed);
if (error_bitmap & QDF_MEM_BAD_NODE)
qdf_err("Corrupted memory header node or double free");
if (error_bitmap & QDF_MEM_BAD_DOMAIN)
qdf_err("Corrupted memory domain 0x%x", header->domain);
if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
qdf_debug_domain_name(header->domain), header->domain,
qdf_debug_domain_name(current_domain), current_domain);
QDF_DEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
}
#endif /* MEMORY_DEBUG */
u_int8_t prealloc_disabled = 1;
qdf_declare_param(prealloc_disabled, byte);
qdf_export_symbol(prealloc_disabled);
#if defined WLAN_DEBUGFS
/* Debugfs root directory for qdf_mem */
static struct dentry *qdf_mem_debugfs_root;
/**
* struct __qdf_mem_stat - qdf memory statistics
* @kmalloc: total kmalloc allocations
* @dma: total dma allocations
* @skb: total skb allocations
*/
static struct __qdf_mem_stat {
qdf_atomic_t kmalloc;
qdf_atomic_t dma;
qdf_atomic_t skb;
} qdf_mem_stat;
void qdf_mem_kmalloc_inc(qdf_size_t size)
{
qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
}
static void qdf_mem_dma_inc(qdf_size_t size)
{
qdf_atomic_add(size, &qdf_mem_stat.dma);
}
void qdf_mem_skb_inc(qdf_size_t size)
{
qdf_atomic_add(size, &qdf_mem_stat.skb);
}
void qdf_mem_kmalloc_dec(qdf_size_t size)
{
qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
}
static inline void qdf_mem_dma_dec(qdf_size_t size)
{
qdf_atomic_sub(size, &qdf_mem_stat.dma);
}
void qdf_mem_skb_dec(qdf_size_t size)
{
qdf_atomic_sub(size, &qdf_mem_stat.skb);
}
#ifdef MEMORY_DEBUG
static int qdf_err_printer(void *priv, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
va_end(args);
return 0;
}
static int seq_printf_printer(void *priv, const char *fmt, ...)
{
struct seq_file *file = priv;
va_list args;
va_start(args, fmt);
seq_vprintf(file, fmt, args);
seq_puts(file, "\n");
va_end(args);
return 0;
}
/**
* struct __qdf_mem_info - memory statistics
* @func: the function which allocated memory
* @line: the line at which allocation happened
* @size: the size of allocation
* @caller: Address of the caller function
* @count: how many allocations of same type
* @time: timestamp at which allocation happened
*/
struct __qdf_mem_info {
char func[QDF_MEM_FUNC_NAME_SIZE];
uint32_t line;
uint32_t size;
void *caller;
uint32_t count;
uint64_t time;
};
/*
* The table depth defines the de-duplication proximity scope.
* A deeper table takes more time, so choose any optimum value.
*/
#define QDF_MEM_STAT_TABLE_SIZE 8
/**
* qdf_mem_domain_print_header() - memory domain header print logic
* @print: the print adapter function
* @print_priv: the private data to be consumed by @print
*
* Return: None
*/
static void qdf_mem_domain_print_header(qdf_abstract_print print,
void *print_priv)
{
print(print_priv,
"--------------------------------------------------------------");
print(print_priv,
" count size total filename caller timestamp");
print(print_priv,
"--------------------------------------------------------------");
}
/**
* qdf_mem_meta_table_print() - memory metadata table print logic
* @table: the memory metadata table to print
* @print: the print adapter function
* @print_priv: the private data to be consumed by @print
*
* Return: None
*/
static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
qdf_abstract_print print,
void *print_priv)
{
int i;
char debug_str[QDF_DEBUG_STRING_SIZE];
size_t len = 0;
char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
"%s", debug_prefix);
for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
if (!table[i].count)
break;
print(print_priv,
"%6u x %5u = %7uB @ %s:%u %pS %llu",
table[i].count,
table[i].size,
table[i].count * table[i].size,
table[i].func,
table[i].line, table[i].caller,
table[i].time);
len += qdf_scnprintf(debug_str + len,
sizeof(debug_str) - len,
" @ %s:%u %pS",
table[i].func,
table[i].line,
table[i].caller);
}
print(print_priv, "%s", debug_str);
}
/**
* qdf_mem_meta_table_insert() - insert memory metadata into the given table
* @table: the memory metadata table to insert into
* @meta: the memory metadata to insert
*
* Return: true if the table is full after inserting, false otherwise
*/
static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
struct qdf_mem_header *meta)
{
int i;
for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
if (!table[i].count) {
qdf_str_lcopy(table[i].func, meta->func,
QDF_MEM_FUNC_NAME_SIZE);
table[i].line = meta->line;
table[i].size = meta->size;
table[i].count = 1;
table[i].caller = meta->caller;
table[i].time = meta->time;
break;
}
if (qdf_str_eq(table[i].func, meta->func) &&
table[i].line == meta->line &&
table[i].size == meta->size &&
table[i].caller == meta->caller) {
table[i].count++;
break;
}
}
/* return true if the table is now full */
return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
}
/**
* qdf_mem_domain_print() - output agnostic memory domain print logic
* @domain: the memory domain to print
* @print: the print adapter function
* @print_priv: the private data to be consumed by @print
*
* Return: None
*/
static void qdf_mem_domain_print(qdf_list_t *domain,
qdf_abstract_print print,
void *print_priv)
{
QDF_STATUS status;
struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
qdf_list_node_t *node;
qdf_mem_zero(table, sizeof(table));
qdf_mem_domain_print_header(print, print_priv);
/* hold lock while inserting to avoid use-after free of the metadata */
qdf_spin_lock(&qdf_mem_list_lock);
status = qdf_list_peek_front(domain, &node);
while (QDF_IS_STATUS_SUCCESS(status)) {
struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
bool is_full = qdf_mem_meta_table_insert(table, meta);
qdf_spin_unlock(&qdf_mem_list_lock);
if (is_full) {
qdf_mem_meta_table_print(table, print, print_priv);
qdf_mem_zero(table, sizeof(table));
}
qdf_spin_lock(&qdf_mem_list_lock);
status = qdf_list_peek_next(domain, node, &node);
}
qdf_spin_unlock(&qdf_mem_list_lock);
qdf_mem_meta_table_print(table, print, print_priv);
}
/**
* qdf_mem_seq_start() - sequential callback to start
* @seq: seq_file handle
* @pos: The start position of the sequence
*
* Return: iterator pointer, or NULL if iteration is complete
*/
static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
{
enum qdf_debug_domain domain = *pos;
if (!qdf_debug_domain_valid(domain))
return NULL;
/* just use the current position as our iterator */
return pos;
}
/**
* qdf_mem_seq_next() - next sequential callback
* @seq: seq_file handle
* @v: the current iterator
* @pos: the current position
*
* Get the next node and release previous node.
*
* Return: iterator pointer, or NULL if iteration is complete
*/
static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
++*pos;
return qdf_mem_seq_start(seq, pos);
}
/**
* qdf_mem_seq_stop() - stop sequential callback
* @seq: seq_file handle
* @v: current iterator
*
* Return: None
*/
static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
/**
* qdf_mem_seq_show() - print sequential callback
* @seq: seq_file handle
* @v: current iterator
*
* Return: 0 - success
*/
static int qdf_mem_seq_show(struct seq_file *seq, void *v)
{
enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
qdf_debug_domain_name(domain_id), domain_id);
qdf_mem_domain_print(qdf_mem_list_get(domain_id),
seq_printf_printer, seq);
return 0;
}
/* sequential file operation table */
static const struct seq_operations qdf_mem_seq_ops = {
.start = qdf_mem_seq_start,
.next = qdf_mem_seq_next,
.stop = qdf_mem_seq_stop,
.show = qdf_mem_seq_show,
};
static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
{
return seq_open(file, &qdf_mem_seq_ops);
}
/* debugfs file operation table */
static const struct file_operations fops_qdf_mem_debugfs = {
.owner = THIS_MODULE,
.open = qdf_mem_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static QDF_STATUS qdf_mem_debug_debugfs_init(void)
{
if (!qdf_mem_debugfs_root)
return QDF_STATUS_E_FAILURE;
debugfs_create_file("list",
S_IRUSR,
qdf_mem_debugfs_root,
NULL,
&fops_qdf_mem_debugfs);
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
{
return QDF_STATUS_SUCCESS;
}
#else /* MEMORY_DEBUG */
static QDF_STATUS qdf_mem_debug_debugfs_init(void)
{
return QDF_STATUS_E_NOSUPPORT;
}
static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
{
return QDF_STATUS_E_NOSUPPORT;
}
#endif /* MEMORY_DEBUG */
static void qdf_mem_debugfs_exit(void)
{
debugfs_remove_recursive(qdf_mem_debugfs_root);
qdf_mem_debugfs_root = NULL;
}
static QDF_STATUS qdf_mem_debugfs_init(void)
{
struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
if (!qdf_debugfs_root)
return QDF_STATUS_E_FAILURE;
qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
if (!qdf_mem_debugfs_root)
return QDF_STATUS_E_FAILURE;
debugfs_create_atomic_t("kmalloc",
S_IRUSR,
qdf_mem_debugfs_root,
&qdf_mem_stat.kmalloc);
debugfs_create_atomic_t("dma",
S_IRUSR,
qdf_mem_debugfs_root,
&qdf_mem_stat.dma);
debugfs_create_atomic_t("skb",
S_IRUSR,
qdf_mem_debugfs_root,
&qdf_mem_stat.skb);
return QDF_STATUS_SUCCESS;
}
#else /* WLAN_DEBUGFS */
static inline void qdf_mem_dma_inc(qdf_size_t size) {}
static inline void qdf_mem_dma_dec(qdf_size_t size) {}
static QDF_STATUS qdf_mem_debugfs_init(void)
{
return QDF_STATUS_E_NOSUPPORT;
}
static void qdf_mem_debugfs_exit(void) {}
static QDF_STATUS qdf_mem_debug_debugfs_init(void)
{
return QDF_STATUS_E_NOSUPPORT;
}
static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
{
return QDF_STATUS_E_NOSUPPORT;
}
#endif /* WLAN_DEBUGFS */
/**
* __qdf_mempool_init() - Create and initialize memory pool
*
* @osdev: platform device object
* @pool_addr: address of the pool created
* @elem_cnt: no. of elements in pool
* @elem_size: size of each pool element in bytes
* @flags: flags
*
* return: Handle to memory pool or NULL if allocation failed
*/
int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
int elem_cnt, size_t elem_size, u_int32_t flags)
{
__qdf_mempool_ctxt_t *new_pool = NULL;
u_int32_t align = L1_CACHE_BYTES;
unsigned long aligned_pool_mem;
int pool_id;
int i;
if (prealloc_disabled) {
/* TBD: We can maintain a list of pools in qdf_device_t
* to help debugging
* when pre-allocation is not enabled
*/
new_pool = (__qdf_mempool_ctxt_t *)
kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
if (!new_pool)
return QDF_STATUS_E_NOMEM;
memset(new_pool, 0, sizeof(*new_pool));
/* TBD: define flags for zeroing buffers etc */
new_pool->flags = flags;
new_pool->elem_size = elem_size;
new_pool->max_elem = elem_cnt;
*pool_addr = new_pool;
return 0;
}
for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
if (!osdev->mem_pool[pool_id])
break;
}
if (pool_id == MAX_MEM_POOLS)
return -ENOMEM;
new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
if (!new_pool)
return -ENOMEM;
memset(new_pool, 0, sizeof(*new_pool));
/* TBD: define flags for zeroing buffers etc */
new_pool->flags = flags;
new_pool->pool_id = pool_id;
/* Round up the element size to cacheline */
new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
new_pool->mem_size = elem_cnt * new_pool->elem_size +
((align)?(align - 1):0);
new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
if (!new_pool->pool_mem) {
/* TBD: Check if we need get_free_pages above */
kfree(new_pool);
osdev->mem_pool[pool_id] = NULL;
return -ENOMEM;
}
spin_lock_init(&new_pool->lock);
/* Initialize free list */
aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
STAILQ_INIT(&new_pool->free_list);
for (i = 0; i < elem_cnt; i++)
STAILQ_INSERT_TAIL(&(new_pool->free_list),
(mempool_elem_t *)(aligned_pool_mem +
(new_pool->elem_size * i)), mempool_entry);
new_pool->free_cnt = elem_cnt;
*pool_addr = new_pool;
return 0;
}
qdf_export_symbol(__qdf_mempool_init);
/**
* __qdf_mempool_destroy() - Destroy memory pool
* @osdev: platform device object
* @Handle: to memory pool
*
* Returns: none
*/
void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
{
int pool_id = 0;
if (!pool)
return;
if (prealloc_disabled) {
kfree(pool);
return;
}
pool_id = pool->pool_id;
/* TBD: Check if free count matches elem_cnt if debug is enabled */
kfree(pool->pool_mem);
kfree(pool);
osdev->mem_pool[pool_id] = NULL;
}
qdf_export_symbol(__qdf_mempool_destroy);
/**
* __qdf_mempool_alloc() - Allocate an element memory pool
*
* @osdev: platform device object
* @Handle: to memory pool
*
* Return: Pointer to the allocated element or NULL if the pool is empty
*/
void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
{
void *buf = NULL;
if (!pool)
return NULL;
if (prealloc_disabled)
return qdf_mem_malloc(pool->elem_size);
spin_lock_bh(&pool->lock);
buf = STAILQ_FIRST(&pool->free_list);
if (buf) {
STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
pool->free_cnt--;
}
/* TBD: Update free count if debug is enabled */
spin_unlock_bh(&pool->lock);
return buf;
}
qdf_export_symbol(__qdf_mempool_alloc);
/**
* __qdf_mempool_free() - Free a memory pool element
* @osdev: Platform device object
* @pool: Handle to memory pool
* @buf: Element to be freed
*
* Returns: none
*/
void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
{
if (!pool)
return;
if (prealloc_disabled)
return qdf_mem_free(buf);
spin_lock_bh(&pool->lock);
pool->free_cnt++;
STAILQ_INSERT_TAIL
(&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
spin_unlock_bh(&pool->lock);
}
qdf_export_symbol(__qdf_mempool_free);
#ifdef CONFIG_WCNSS_MEM_PRE_ALLOC
/**
* qdf_mem_prealloc_get() - conditionally pre-allocate memory
* @size: the number of bytes to allocate
*
* If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
* a chunk of pre-allocated memory. If size if less than or equal to
* WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
*
* Return: NULL on failure, non-NULL on success
*/
static void *qdf_mem_prealloc_get(size_t size)
{
void *ptr;
if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
return NULL;
ptr = wcnss_prealloc_get(size);
if (!ptr)
return NULL;
memset(ptr, 0, size);
return ptr;
}
static inline bool qdf_mem_prealloc_put(void *ptr)
{
return wcnss_prealloc_put(ptr);
}
#else
static inline void *qdf_mem_prealloc_get(size_t size)
{
return NULL;
}
static inline bool qdf_mem_prealloc_put(void *ptr)
{
return false;
}
#endif /* CONFIG_WCNSS_MEM_PRE_ALLOC */
static int qdf_mem_malloc_flags(void)
{
if (in_interrupt() || irqs_disabled() || in_atomic())
return GFP_ATOMIC;
return GFP_KERNEL;
}
/* External Function implementation */
#ifdef MEMORY_DEBUG
/**
* qdf_mem_debug_init() - initialize qdf memory debug functionality
*
* Return: none
*/
static void qdf_mem_debug_init(void)
{
int i;
/* Initalizing the list with maximum size of 60000 */
for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
qdf_list_create(&qdf_mem_domains[i], 60000);
qdf_spinlock_create(&qdf_mem_list_lock);
/* dma */
for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
qdf_list_create(&qdf_mem_dma_domains[i], 0);
qdf_spinlock_create(&qdf_mem_dma_list_lock);
}
static uint32_t
qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
qdf_list_t *mem_list)
{
if (qdf_list_empty(mem_list))
return 0;
qdf_err("Memory leaks detected in %s domain!",
qdf_debug_domain_name(domain));
qdf_mem_domain_print(mem_list, qdf_err_printer, NULL);
return mem_list->count;
}
static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
{
uint32_t leak_count = 0;
int i;
/* detect and print leaks */
for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
if (leak_count)
panic("%u fatal memory leaks detected!", leak_count);
}
/**
* qdf_mem_debug_exit() - exit qdf memory debug functionality
*
* Return: none
*/
static void qdf_mem_debug_exit(void)
{
int i;
/* mem */
qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
qdf_list_destroy(qdf_mem_list_get(i));
qdf_spinlock_destroy(&qdf_mem_list_lock);
/* dma */
qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
qdf_list_destroy(&qdf_mem_dma_domains[i]);
qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
}
void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
void *caller, uint32_t flag)
{
QDF_STATUS status;
enum qdf_debug_domain current_domain = qdf_debug_domain_get();
qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
struct qdf_mem_header *header;
void *ptr;
unsigned long start, duration;
if (!size || size > QDF_MEM_MAX_MALLOC) {
qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
return NULL;
}
ptr = qdf_mem_prealloc_get(size);
if (ptr)
return ptr;
if (!flag)
flag = qdf_mem_malloc_flags();
start = qdf_mc_timer_get_system_time();
header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
duration = qdf_mc_timer_get_system_time() - start;
if (duration > QDF_MEM_WARN_THRESHOLD)
qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
duration, size, func, line);
if (!header) {
qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
return NULL;
}
qdf_mem_header_init(header, size, func, line, caller);
qdf_mem_trailer_init(header);
ptr = qdf_mem_get_ptr(header);
qdf_spin_lock_irqsave(&qdf_mem_list_lock);
status = qdf_list_insert_front(mem_list, &header->node);
qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
if (QDF_IS_STATUS_ERROR(status))
qdf_err("Failed to insert memory header; status %d", status);
qdf_mem_kmalloc_inc(ksize(header));
return ptr;
}
qdf_export_symbol(qdf_mem_malloc_debug);
void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
{
enum qdf_debug_domain current_domain = qdf_debug_domain_get();
struct qdf_mem_header *header;
enum qdf_mem_validation_bitmap error_bitmap;
/* freeing a null pointer is valid */
if (qdf_unlikely(!ptr))
return;
if (qdf_mem_prealloc_put(ptr))
return;
if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
panic("Failed to free invalid memory location %pK", ptr);
qdf_talloc_assert_no_children_fl(ptr, func, line);
qdf_spin_lock_irqsave(&qdf_mem_list_lock);
header = qdf_mem_get_header(ptr);
error_bitmap = qdf_mem_header_validate(header, current_domain);
error_bitmap |= qdf_mem_trailer_validate(header);
if (!error_bitmap) {
header->freed = true;
qdf_list_remove_node(qdf_mem_list_get(header->domain),
&header->node);
}
qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
func, line);
qdf_mem_kmalloc_dec(ksize(header));
kfree(header);
}
qdf_export_symbol(qdf_mem_free_debug);
void qdf_mem_check_for_leaks(void)
{
enum qdf_debug_domain current_domain = qdf_debug_domain_get();
qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
uint32_t leaks_count = 0;
leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
if (leaks_count)
panic("%u fatal memory leaks detected!", leaks_count);
}
/**
* qdf_mem_multi_pages_alloc_debug() - Debug version of
* qdf_mem_multi_pages_alloc
* @osdev: OS device handle pointer
* @pages: Multi page information storage
* @element_size: Each element size
* @element_num: Total number of elements should be allocated
* @memctxt: Memory context
* @cacheable: Coherent memory or cacheable memory
* @func: Caller of this allocator
* @line: Line number of the caller
* @caller: Return address of the caller
*
* This function will allocate large size of memory over multiple pages.
* Large size of contiguous memory allocation will fail frequently, then
* instead of allocate large memory by one shot, allocate through multiple, non
* contiguous memory and combine pages when actual usage
*
* Return: None
*/
void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
size_t element_size, uint16_t element_num,
qdf_dma_context_t memctxt, bool cacheable,
const char *func, uint32_t line,
void *caller)
{
uint16_t page_idx;
struct qdf_mem_dma_page_t *dma_pages;
void **cacheable_pages = NULL;
uint16_t i;
pages->num_element_per_page = PAGE_SIZE / element_size;
if (!pages->num_element_per_page) {
qdf_print("Invalid page %d or element size %d",
(int)PAGE_SIZE, (int)element_size);
goto out_fail;
}
pages->num_pages = element_num / pages->num_element_per_page;
if (element_num % pages->num_element_per_page)
pages->num_pages++;
if (cacheable) {
/* Pages information storage */
pages->cacheable_pages = qdf_mem_malloc_debug(
pages->num_pages * sizeof(pages->cacheable_pages),
func, line, caller, 0);
if (!pages->cacheable_pages)
goto out_fail;
cacheable_pages = pages->cacheable_pages;
for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
cacheable_pages[page_idx] = qdf_mem_malloc_debug(
PAGE_SIZE, func, line, caller, 0);
if (!cacheable_pages[page_idx])
goto page_alloc_fail;
}
pages->dma_pages = NULL;
} else {
pages->dma_pages = qdf_mem_malloc_debug(
pages->num_pages * sizeof(struct qdf_mem_dma_page_t),
func, line, caller, 0);
if (!pages->dma_pages)
goto out_fail;
dma_pages = pages->dma_pages;
for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
dma_pages->page_v_addr_start =
qdf_mem_alloc_consistent_debug(
osdev, osdev->dev, PAGE_SIZE,
&dma_pages->page_p_addr,
func, line, caller);
if (!dma_pages->page_v_addr_start) {
qdf_print("dmaable page alloc fail pi %d",
page_idx);
goto page_alloc_fail;
}
dma_pages->page_v_addr_end =
dma_pages->page_v_addr_start + PAGE_SIZE;
dma_pages++;
}
pages->cacheable_pages = NULL;
}
return;
page_alloc_fail:
if (cacheable) {
for (i = 0; i < page_idx; i++)
qdf_mem_free_debug(pages->cacheable_pages[i],
func, line);
qdf_mem_free_debug(pages->cacheable_pages, func, line);
} else {
dma_pages = pages->dma_pages;
for (i = 0; i < page_idx; i++) {
qdf_mem_free_consistent_debug(
osdev, osdev->dev,
PAGE_SIZE, dma_pages->page_v_addr_start,
dma_pages->page_p_addr, memctxt, func, line);
dma_pages++;
}
qdf_mem_free_debug(pages->dma_pages, func, line);
}
out_fail:
pages->cacheable_pages = NULL;
pages->dma_pages = NULL;
pages->num_pages = 0;
}
qdf_export_symbol(qdf_mem_multi_pages_alloc_debug);
/**
* qdf_mem_multi_pages_free_debug() - Debug version of qdf_mem_multi_pages_free
* @osdev: OS device handle pointer
* @pages: Multi page information storage
* @memctxt: Memory context
* @cacheable: Coherent memory or cacheable memory
* @func: Caller of this allocator
* @line: Line number of the caller
*
* This function will free large size of memory over multiple pages.
*
* Return: None
*/
void qdf_mem_multi_pages_free_debug(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
qdf_dma_context_t memctxt, bool cacheable,
const char *func, uint32_t line)
{
unsigned int page_idx;
struct qdf_mem_dma_page_t *dma_pages;
if (cacheable) {
for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
qdf_mem_free_debug(pages->cacheable_pages[page_idx],
func, line);
qdf_mem_free_debug(pages->cacheable_pages, func, line);
} else {
dma_pages = pages->dma_pages;
for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
qdf_mem_free_consistent_debug(
osdev, osdev->dev, PAGE_SIZE,
dma_pages->page_v_addr_start,
dma_pages->page_p_addr, memctxt, func, line);
dma_pages++;
}
qdf_mem_free_debug(pages->dma_pages, func, line);
}
pages->cacheable_pages = NULL;
pages->dma_pages = NULL;
pages->num_pages = 0;
}
qdf_export_symbol(qdf_mem_multi_pages_free_debug);
#else
static void qdf_mem_debug_init(void) {}
static void qdf_mem_debug_exit(void) {}
void *qdf_mem_malloc_fl(size_t size, const char *func, uint32_t line)
{
void *ptr;
ptr = qdf_mem_prealloc_get(size);
if (ptr)
return ptr;
ptr = kzalloc(size, qdf_mem_malloc_flags());
if (!ptr) {
qdf_nofl_err("Failed to malloc %zuB @ %s:%d",
size, func, line);
return NULL;
}
qdf_mem_kmalloc_inc(ksize(ptr));
return ptr;
}
qdf_export_symbol(qdf_mem_malloc_fl);
void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
{
void *ptr;
ptr = qdf_mem_prealloc_get(size);
if (ptr)
return ptr;
ptr = kzalloc(size, GFP_ATOMIC);
if (!ptr) {
qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
size, func, line);
return NULL;
}
qdf_mem_kmalloc_inc(ksize(ptr));
return ptr;
}
qdf_export_symbol(qdf_mem_malloc_atomic_fl);
/**
* qdf_mem_free() - free QDF memory
* @ptr: Pointer to the starting address of the memory to be free'd.
*
* This function will free the memory pointed to by 'ptr'.
*
* Return: None
*/
void qdf_mem_free(void *ptr)
{
if (!ptr)
return;
if (qdf_mem_prealloc_put(ptr))
return;
qdf_mem_kmalloc_dec(ksize(ptr));
kfree(ptr);
}
qdf_export_symbol(qdf_mem_free);
/**
* qdf_mem_multi_pages_alloc() - allocate large size of kernel memory
* @osdev: OS device handle pointer
* @pages: Multi page information storage
* @element_size: Each element size
* @element_num: Total number of elements should be allocated
* @memctxt: Memory context
* @cacheable: Coherent memory or cacheable memory
*
* This function will allocate large size of memory over multiple pages.
* Large size of contiguous memory allocation will fail frequently, then
* instead of allocate large memory by one shot, allocate through multiple, non
* contiguous memory and combine pages when actual usage
*
* Return: None
*/
void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
size_t element_size, uint16_t element_num,
qdf_dma_context_t memctxt, bool cacheable)
{
uint16_t page_idx;
struct qdf_mem_dma_page_t *dma_pages;
void **cacheable_pages = NULL;
uint16_t i;
pages->num_element_per_page = PAGE_SIZE / element_size;
if (!pages->num_element_per_page) {
qdf_print("Invalid page %d or element size %d",
(int)PAGE_SIZE, (int)element_size);
goto out_fail;
}
pages->num_pages = element_num / pages->num_element_per_page;
if (element_num % pages->num_element_per_page)
pages->num_pages++;
if (cacheable) {
/* Pages information storage */
pages->cacheable_pages = qdf_mem_malloc(
pages->num_pages * sizeof(pages->cacheable_pages));
if (!pages->cacheable_pages)
goto out_fail;
cacheable_pages = pages->cacheable_pages;
for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
cacheable_pages[page_idx] = qdf_mem_malloc(PAGE_SIZE);
if (!cacheable_pages[page_idx])
goto page_alloc_fail;
}
pages->dma_pages = NULL;
} else {
pages->dma_pages = qdf_mem_malloc(
pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
if (!pages->dma_pages)
goto out_fail;
dma_pages = pages->dma_pages;
for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
dma_pages->page_v_addr_start =
qdf_mem_alloc_consistent(osdev, osdev->dev,
PAGE_SIZE,
&dma_pages->page_p_addr);
if (!dma_pages->page_v_addr_start) {
qdf_print("dmaable page alloc fail pi %d",
page_idx);
goto page_alloc_fail;
}
dma_pages->page_v_addr_end =
dma_pages->page_v_addr_start + PAGE_SIZE;
dma_pages++;
}
pages->cacheable_pages = NULL;
}
return;
page_alloc_fail:
if (cacheable) {
for (i = 0; i < page_idx; i++)
qdf_mem_free(pages->cacheable_pages[i]);
qdf_mem_free(pages->cacheable_pages);
} else {
dma_pages = pages->dma_pages;
for (i = 0; i < page_idx; i++) {
qdf_mem_free_consistent(osdev, osdev->dev, PAGE_SIZE,
dma_pages->page_v_addr_start,
dma_pages->page_p_addr, memctxt);
dma_pages++;
}
qdf_mem_free(pages->dma_pages);
}
out_fail:
pages->cacheable_pages = NULL;
pages->dma_pages = NULL;
pages->num_pages = 0;
return;
}
qdf_export_symbol(qdf_mem_multi_pages_alloc);
/**
* qdf_mem_multi_pages_free() - free large size of kernel memory
* @osdev: OS device handle pointer
* @pages: Multi page information storage
* @memctxt: Memory context
* @cacheable: Coherent memory or cacheable memory
*
* This function will free large size of memory over multiple pages.
*
* Return: None
*/
void qdf_mem_multi_pages_free(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
qdf_dma_context_t memctxt, bool cacheable)
{
unsigned int page_idx;
struct qdf_mem_dma_page_t *dma_pages;
if (cacheable) {
for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
qdf_mem_free(pages->cacheable_pages[page_idx]);
qdf_mem_free(pages->cacheable_pages);
} else {
dma_pages = pages->dma_pages;
for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
qdf_mem_free_consistent(osdev, osdev->dev, PAGE_SIZE,
dma_pages->page_v_addr_start,
dma_pages->page_p_addr, memctxt);
dma_pages++;
}
qdf_mem_free(pages->dma_pages);
}
pages->cacheable_pages = NULL;
pages->dma_pages = NULL;
pages->num_pages = 0;
return;
}
qdf_export_symbol(qdf_mem_multi_pages_free);
#endif
void *qdf_aligned_malloc_fl(qdf_size_t size, uint32_t ring_base_align,
void **vaddr_unaligned,
const char *func, uint32_t line)
{
void *vaddr_aligned;
*vaddr_unaligned = qdf_mem_malloc_fl(size, func, line);
if (!*vaddr_unaligned) {
qdf_warn("Failed to alloc %zuB @ %s:%d", size, func, line);
return NULL;
}
if ((unsigned long)(*vaddr_unaligned) % ring_base_align) {
qdf_mem_free(*vaddr_unaligned);
*vaddr_unaligned = qdf_mem_malloc_fl(size + ring_base_align - 1,
func, line);
if (!*vaddr_unaligned) {
qdf_warn("Failed to alloc %zuB @ %s:%d",
size, func, line);
return NULL;
}
}
vaddr_aligned = (*vaddr_unaligned) +
((unsigned long)(*vaddr_unaligned) % ring_base_align);
return vaddr_aligned;
}
qdf_export_symbol(qdf_aligned_malloc_fl);
/**
* qdf_mem_multi_page_link() - Make links for multi page elements
* @osdev: OS device handle pointer
* @pages: Multi page information storage
* @elem_size: Single element size
* @elem_count: elements count should be linked
* @cacheable: Coherent memory or cacheable memory
*
* This function will make links for multi page allocated structure
*
* Return: 0 success
*/
int qdf_mem_multi_page_link(qdf_device_t osdev,
struct qdf_mem_multi_page_t *pages,
uint32_t elem_size, uint32_t elem_count, uint8_t cacheable)
{
uint16_t i, i_int;
void *page_info;
void **c_elem = NULL;
uint32_t num_link = 0;
for (i = 0; i < pages->num_pages; i++) {
if (cacheable)
page_info = pages->cacheable_pages[i];
else
page_info = pages->dma_pages[i].page_v_addr_start;
if (!page_info)
return -ENOMEM;
c_elem = (void **)page_info;
for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
if (i_int == (pages->num_element_per_page - 1)) {
if (cacheable)
*c_elem = pages->
cacheable_pages[i + 1];
else
*c_elem = pages->
dma_pages[i + 1].
page_v_addr_start;
num_link++;
break;
} else {
*c_elem =
(void *)(((char *)c_elem) + elem_size);
}
num_link++;
c_elem = (void **)*c_elem;
/* Last link established exit */
if (num_link == (elem_count - 1))
break;
}
}
if (c_elem)
*c_elem = NULL;
return 0;
}
qdf_export_symbol(qdf_mem_multi_page_link);
void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
{
/* special case where dst_addr or src_addr can be NULL */
if (!num_bytes)
return;
QDF_BUG(dst_addr);
QDF_BUG(src_addr);
if (!dst_addr || !src_addr)
return;
memcpy(dst_addr, src_addr, num_bytes);
}
qdf_export_symbol(qdf_mem_copy);
qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
{
qdf_shared_mem_t *shared_mem;
qdf_dma_addr_t dma_addr, paddr;
int ret;
shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
if (!shared_mem)
return NULL;
shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
size, qdf_mem_get_dma_addr_ptr(osdev,
&shared_mem->mem_info));
if (!shared_mem->vaddr) {
qdf_err("Unable to allocate DMA memory for shared resource");
qdf_mem_free(shared_mem);
return NULL;
}
qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
qdf_mem_zero(shared_mem->vaddr, size);
dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
shared_mem->vaddr, dma_addr, size);
if (ret) {
qdf_err("Unable to get DMA sgtable");
qdf_mem_free_consistent(osdev, osdev->dev,
shared_mem->mem_info.size,
shared_mem->vaddr,
dma_addr,
qdf_get_dma_mem_context(shared_mem,
memctx));
qdf_mem_free(shared_mem);
return NULL;
}
qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
return shared_mem;
}
qdf_export_symbol(qdf_mem_shared_mem_alloc);
/**
* qdf_mem_copy_toio() - copy memory
* @dst_addr: Pointer to destination memory location (to copy to)
* @src_addr: Pointer to source memory location (to copy from)
* @num_bytes: Number of bytes to copy.
*
* Return: none
*/
void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
{
if (0 == num_bytes) {
/* special case where dst_addr or src_addr can be NULL */
return;
}
if ((!dst_addr) || (!src_addr)) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
"%s called with NULL parameter, source:%pK destination:%pK",
__func__, src_addr, dst_addr);
QDF_ASSERT(0);
return;
}
memcpy_toio(dst_addr, src_addr, num_bytes);
}
qdf_export_symbol(qdf_mem_copy_toio);
/**
* qdf_mem_set_io() - set (fill) memory with a specified byte value.
* @ptr: Pointer to memory that will be set
* @value: Byte set in memory
* @num_bytes: Number of bytes to be set
*
* Return: None
*/
void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
{
if (!ptr) {
qdf_print("%s called with NULL parameter ptr", __func__);
return;
}
memset_io(ptr, value, num_bytes);
}
qdf_export_symbol(qdf_mem_set_io);
void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
{
QDF_BUG(ptr);
if (!ptr)
return;
memset(ptr, value, num_bytes);
}
qdf_export_symbol(qdf_mem_set);
void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
{
/* special case where dst_addr or src_addr can be NULL */
if (!num_bytes)
return;
QDF_BUG(dst_addr);
QDF_BUG(src_addr);
if (!dst_addr || !src_addr)
return;
memmove(dst_addr, src_addr, num_bytes);
}
qdf_export_symbol(qdf_mem_move);
int qdf_mem_cmp(const void *left, const void *right, size_t size)
{
QDF_BUG(left);
QDF_BUG(right);
return memcmp(left, right, size);
}
qdf_export_symbol(qdf_mem_cmp);
#if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
/**
* qdf_mem_dma_alloc() - allocates memory for dma
* @osdev: OS device handle
* @dev: Pointer to device handle
* @size: Size to be allocated
* @phy_addr: Physical address
*
* Return: pointer of allocated memory or null if memory alloc fails
*/
static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
qdf_size_t size,
qdf_dma_addr_t *phy_addr)
{
void *vaddr;
vaddr = qdf_mem_malloc(size);
*phy_addr = ((uintptr_t) vaddr);
/* using this type conversion to suppress "cast from pointer to integer
* of different size" warning on some platforms
*/
BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
return vaddr;
}
#elif defined(QCA_WIFI_QCA8074_VP) && defined(BUILD_X86) && \
!defined(QCA_WIFI_QCN9000)
#define QCA8074_RAM_BASE 0x50000000
#define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
qdf_dma_addr_t *phy_addr)
{
void *vaddr = NULL;
int i;
*phy_addr = 0;
for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
vaddr = dma_alloc_coherent(dev, size, phy_addr,
qdf_mem_malloc_flags());
if (!vaddr) {
qdf_err("%s failed , size: %zu!", __func__, size);
return NULL;
}
if (*phy_addr >= QCA8074_RAM_BASE)
return vaddr;
dma_free_coherent(dev, size, vaddr, *phy_addr);
}
return NULL;
}
#else
static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
qdf_size_t size, qdf_dma_addr_t *paddr)
{
return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
}
#endif
#if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
static inline void
qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
{
qdf_mem_free(vaddr);
}
#else
static inline void
qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
{
dma_free_coherent(dev, size, vaddr, paddr);
}
#endif
#ifdef MEMORY_DEBUG
void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
qdf_size_t size, qdf_dma_addr_t *paddr,
const char *func, uint32_t line,
void *caller)
{
QDF_STATUS status;
enum qdf_debug_domain current_domain = qdf_debug_domain_get();
qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
struct qdf_mem_header *header;
void *vaddr;
if (!size || size > QDF_MEM_MAX_MALLOC) {
qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
return NULL;
}
vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
paddr);
if (!vaddr) {
qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
return NULL;
}
header = qdf_mem_dma_get_header(vaddr, size);
/* For DMA buffers we only add trailers, this function will init
* the header structure at the tail
* Prefix the header into DMA buffer causes SMMU faults, so
* do not prefix header into the DMA buffers
*/
qdf_mem_header_init(header, size, func, line, caller);
qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
status = qdf_list_insert_front(mem_list, &header->node);
qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
if (QDF_IS_STATUS_ERROR(status))
qdf_err("Failed to insert memory header; status %d", status);
qdf_mem_dma_inc(size);
return vaddr;
}
qdf_export_symbol(qdf_mem_alloc_consistent_debug);
void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
qdf_size_t size, void *vaddr,
qdf_dma_addr_t paddr,
qdf_dma_context_t memctx,
const char *func, uint32_t line)
{
enum qdf_debug_domain domain = qdf_debug_domain_get();
struct qdf_mem_header *header;
enum qdf_mem_validation_bitmap error_bitmap;
/* freeing a null pointer is valid */
if (qdf_unlikely(!vaddr))
return;
qdf_talloc_assert_no_children_fl(vaddr, func, line);
qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
/* For DMA buffers we only add trailers, this function will retrieve
* the header structure at the tail
* Prefix the header into DMA buffer causes SMMU faults, so
* do not prefix header into the DMA buffers
*/
header = qdf_mem_dma_get_header(vaddr, size);
error_bitmap = qdf_mem_header_validate(header, domain);
if (!error_bitmap) {
header->freed = true;
qdf_list_remove_node(qdf_mem_dma_list(header->domain),
&header->node);
}
qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
qdf_mem_dma_dec(header->size);
qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
}
qdf_export_symbol(qdf_mem_free_consistent_debug);
#else
void *qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
qdf_size_t size, qdf_dma_addr_t *paddr)
{
void *vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
if (vaddr)
qdf_mem_dma_inc(size);
return vaddr;
}
qdf_export_symbol(qdf_mem_alloc_consistent);
void qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
qdf_size_t size, void *vaddr,
qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
{
qdf_mem_dma_dec(size);
qdf_mem_dma_free(dev, size, vaddr, paddr);
}
qdf_export_symbol(qdf_mem_free_consistent);
#endif /* MEMORY_DEBUG */
void *qdf_aligned_mem_alloc_consistent_fl(
qdf_device_t osdev, void *dev, qdf_size_t size,
void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
qdf_dma_addr_t *paddr_aligned, uint32_t ring_base_align,
const char *func, uint32_t line)
{
void *vaddr_aligned;
*vaddr_unaligned = qdf_mem_alloc_consistent(osdev, dev, size,
paddr_unaligned);
if (!*vaddr_unaligned) {
qdf_warn("Failed to alloc %zuB @ %s:%d", size, func, line);
return NULL;
}
if ((unsigned long)(*vaddr_unaligned) % ring_base_align) {
qdf_mem_free_consistent(osdev, dev, size, *vaddr_unaligned,
*paddr_unaligned, 0);
*vaddr_unaligned = qdf_mem_alloc_consistent(osdev, dev,
size + ring_base_align - 1, paddr_unaligned);
if (!*vaddr_unaligned) {
qdf_warn("Failed to alloc %zuB @ %s:%d",
size, func, line);
return NULL;
}
}
vaddr_aligned = *vaddr_unaligned +
((unsigned long)(*vaddr_unaligned) % ring_base_align);
*paddr_aligned = *paddr_unaligned + ((unsigned long)(vaddr_aligned) -
(unsigned long)(*vaddr_unaligned));
return vaddr_aligned;
}
qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
/**
* qdf_mem_dma_sync_single_for_device() - assign memory to device
* @osdev: OS device handle
* @bus_addr: dma address to give to the device
* @size: Size of the memory block
* @direction: direction data will be DMAed
*
* Assign memory to the remote device.
* The cache lines are flushed to ram or invalidated as needed.
*
* Return: none
*/
void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
qdf_dma_addr_t bus_addr,
qdf_size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_device(osdev->dev, bus_addr, size, direction);
}
qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
/**
* qdf_mem_dma_sync_single_for_cpu() - assign memory to CPU
* @osdev: OS device handle
* @bus_addr: dma address to give to the cpu
* @size: Size of the memory block
* @direction: direction data will be DMAed
*
* Assign memory to the CPU.
*
* Return: none
*/
void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
qdf_dma_addr_t bus_addr,
qdf_size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_cpu(osdev->dev, bus_addr, size, direction);
}
qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
void qdf_mem_init(void)
{
qdf_mem_debug_init();
qdf_net_buf_debug_init();
qdf_mem_debugfs_init();
qdf_mem_debug_debugfs_init();
}
qdf_export_symbol(qdf_mem_init);
void qdf_mem_exit(void)
{
qdf_mem_debug_debugfs_exit();
qdf_mem_debugfs_exit();
qdf_net_buf_debug_exit();
qdf_mem_debug_exit();
}
qdf_export_symbol(qdf_mem_exit);
/**
* qdf_ether_addr_copy() - copy an Ethernet address
*
* @dst_addr: A six-byte array Ethernet address destination
* @src_addr: A six-byte array Ethernet address source
*
* Please note: dst & src must both be aligned to u16.
*
* Return: none
*/
void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
{
if ((!dst_addr) || (!src_addr)) {
QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
"%s called with NULL parameter, source:%pK destination:%pK",
__func__, src_addr, dst_addr);
QDF_ASSERT(0);
return;
}
ether_addr_copy(dst_addr, src_addr);
}
qdf_export_symbol(qdf_ether_addr_copy);