blob: 42b8877d61ad58c59632f3d8b8d11cd7f32ec1d5 [file] [log] [blame]
/*
* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include "dp_types.h"
#include "dp_rx.h"
#include "dp_peer.h"
#include "hal_rx.h"
#include "hal_api.h"
#include "qdf_nbuf.h"
#include <ieee80211.h>
#ifdef MESH_MODE_SUPPORT
#include "if_meta_hdr.h"
#endif
#include "dp_internal.h"
#include "dp_rx_mon.h"
#ifdef RX_DESC_DEBUG_CHECK
static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
{
rx_desc->magic = DP_RX_DESC_MAGIC;
rx_desc->nbuf = nbuf;
}
#else
static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
{
rx_desc->nbuf = nbuf;
}
#endif
/*
* dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
* called during dp rx initialization
* and at the end of dp_rx_process.
*
* @soc: core txrx main context
* @mac_id: mac_id which is one of 3 mac_ids
* @dp_rxdma_srng: dp rxdma circular ring
* @rx_desc_pool: Poiter to free Rx descriptor pool
* @num_req_buffers: number of buffer to be replenished
* @desc_list: list of descs if called from dp_rx_process
* or NULL during dp rx initialization or out of buffer
* interrupt.
* @tail: tail of descs list
* @owner: who owns the nbuf (host, NSS etc...)
* Return: return success or failure
*/
QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
struct dp_srng *dp_rxdma_srng,
struct rx_desc_pool *rx_desc_pool,
uint32_t num_req_buffers,
union dp_rx_desc_list_elem_t **desc_list,
union dp_rx_desc_list_elem_t **tail,
uint8_t owner)
{
uint32_t num_alloc_desc;
uint16_t num_desc_to_free = 0;
struct dp_pdev *dp_pdev = dp_soc->pdev_list[mac_id];
uint32_t num_entries_avail;
uint32_t count;
int sync_hw_ptr = 1;
qdf_dma_addr_t paddr;
qdf_nbuf_t rx_netbuf;
void *rxdma_ring_entry;
union dp_rx_desc_list_elem_t *next;
QDF_STATUS ret;
void *rxdma_srng;
rxdma_srng = dp_rxdma_srng->hal_srng;
if (!rxdma_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"rxdma srng not initialized");
DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
return QDF_STATUS_E_FAILURE;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"requested %d buffers for replenish", num_req_buffers);
/*
* if desc_list is NULL, allocate the descs from freelist
*/
if (!(*desc_list)) {
num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
rx_desc_pool,
num_req_buffers,
desc_list,
tail);
if (!num_alloc_desc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"no free rx_descs in freelist");
DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
num_req_buffers);
return QDF_STATUS_E_NOMEM;
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%d rx desc allocated", num_alloc_desc);
num_req_buffers = num_alloc_desc;
}
hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
rxdma_srng,
sync_hw_ptr);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"no of availble entries in rxdma ring: %d",
num_entries_avail);
if (num_entries_avail < num_req_buffers) {
num_desc_to_free = num_req_buffers - num_entries_avail;
num_req_buffers = num_entries_avail;
}
count = 0;
while (count < num_req_buffers) {
rx_netbuf = qdf_nbuf_alloc(dp_pdev->osif_pdev,
RX_BUFFER_SIZE,
RX_BUFFER_RESERVATION,
RX_BUFFER_ALIGNMENT,
FALSE);
if (rx_netbuf == NULL) {
DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
continue;
}
ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
QDF_DMA_BIDIRECTIONAL);
if (ret == QDF_STATUS_E_FAILURE) {
DP_STATS_INC(dp_pdev, replenish.map_err, 1);
continue;
}
paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
/*
* check if the physical address of nbuf->data is
* less then 0x50000000 then free the nbuf and try
* allocating new nbuf. We can try for 100 times.
* this is a temp WAR till we fix it properly.
*/
ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
if (ret == QDF_STATUS_E_FAILURE) {
DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
break;
}
count++;
rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
rxdma_srng);
next = (*desc_list)->next;
dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
(*desc_list)->rx_desc.in_use = 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"rx_netbuf=%p, buf=%p, paddr=0x%llx, cookie=%d\n",
rx_netbuf, qdf_nbuf_data(rx_netbuf),
(unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
(*desc_list)->rx_desc.cookie,
owner);
*desc_list = next;
}
hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"successfully replenished %d buffers", num_req_buffers);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%d rx desc added back to free list", num_desc_to_free);
DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
(RX_BUFFER_SIZE * num_req_buffers));
/*
* add any available free desc back to the free list
*/
if (*desc_list)
dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
mac_id, rx_desc_pool);
return QDF_STATUS_SUCCESS;
}
/*
* dp_rx_deliver_raw() - process RAW mode pkts and hand over the
* pkts to RAW mode simulation to
* decapsulate the pkt.
*
* @vdev: vdev on which RAW mode is enabled
* @nbuf_list: list of RAW pkts to process
* @peer: peer object from which the pkt is rx
*
* Return: void
*/
void
dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
struct dp_peer *peer)
{
qdf_nbuf_t deliver_list_head = NULL;
qdf_nbuf_t deliver_list_tail = NULL;
qdf_nbuf_t nbuf;
nbuf = nbuf_list;
while (nbuf) {
qdf_nbuf_t next = qdf_nbuf_next(nbuf);
DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
/*
* reset the chfrag_start and chfrag_end bits in nbuf cb
* as this is a non-amsdu pkt and RAW mode simulation expects
* these bit s to be 0 for non-amsdu pkt.
*/
if (qdf_nbuf_is_chfrag_start(nbuf) &&
qdf_nbuf_is_chfrag_end(nbuf)) {
qdf_nbuf_set_chfrag_start(nbuf, 0);
qdf_nbuf_set_chfrag_end(nbuf, 0);
}
nbuf = next;
}
vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
&deliver_list_tail, (struct cdp_peer*) peer);
vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
}
#ifdef DP_LFR
/*
* In case of LFR, data of a new peer might be sent up
* even before peer is added.
*/
static inline struct dp_vdev *
dp_get_vdev_from_peer(struct dp_soc *soc,
uint16_t peer_id,
struct dp_peer *peer,
struct hal_rx_mpdu_desc_info mpdu_desc_info)
{
struct dp_vdev *vdev;
uint8_t vdev_id;
if (unlikely(!peer)) {
if (peer_id != HTT_INVALID_PEER) {
vdev_id = DP_PEER_METADATA_ID_GET(
mpdu_desc_info.peer_meta_data);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("PeerID %d not found use vdevID %d"),
peer_id, vdev_id);
vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
vdev_id);
} else {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Invalid PeerID %d"),
peer_id);
return NULL;
}
} else {
vdev = peer->vdev;
}
return vdev;
}
#else
static inline struct dp_vdev *
dp_get_vdev_from_peer(struct dp_soc *soc,
uint16_t peer_id,
struct dp_peer *peer,
struct hal_rx_mpdu_desc_info mpdu_desc_info)
{
if (unlikely(!peer)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Peer not found for peerID %d"),
peer_id);
return NULL;
} else {
return peer->vdev;
}
}
#endif
/**
* dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
*
* @soc: core txrx main context
* @sa_peer : source peer entry
* @rx_tlv_hdr : start address of rx tlvs
* @nbuf : nbuf that has to be intrabss forwarded
*
* Return: bool: true if it is forwarded else false
*/
static bool
dp_rx_intrabss_fwd(struct dp_soc *soc,
struct dp_peer *sa_peer,
uint8_t *rx_tlv_hdr,
qdf_nbuf_t nbuf)
{
uint16_t da_idx;
uint16_t len;
struct dp_peer *da_peer;
struct dp_ast_entry *ast_entry;
qdf_nbuf_t nbuf_copy;
/* check if the destination peer is available in peer table
* and also check if the source peer and destination peer
* belong to the same vap and destination peer is not bss peer.
*/
if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
!hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
ast_entry = soc->ast_table[da_idx];
if (!ast_entry)
return false;
da_peer = ast_entry->peer;
if (!da_peer)
return false;
if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
len = qdf_nbuf_len(nbuf);
qdf_nbuf_set_ftype(nbuf, CB_FTYPE_INTRABSS_FWD);
if (!dp_tx_send(sa_peer->vdev, nbuf)) {
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
1, len);
return true;
} else {
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
len);
return false;
}
}
}
/* if it is a broadcast pkt (eg: ARP) and it is not its own
* source, then clone the pkt and send the cloned pkt for
* intra BSS forwarding and original pkt up the network stack
* Note: how do we handle multicast pkts. do we forward
* all multicast pkts as is or let a higher layer module
* like igmpsnoop decide whether to forward or not with
* Mcast enhancement.
*/
else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
!sa_peer->bss_peer))) {
nbuf_copy = qdf_nbuf_copy(nbuf);
if (!nbuf_copy)
return false;
memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
len = qdf_nbuf_len(nbuf_copy);
qdf_nbuf_set_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
qdf_nbuf_free(nbuf_copy);
} else
DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
}
/* return false as we have to still send the original pkt
* up the stack
*/
return false;
}
#ifdef MESH_MODE_SUPPORT
/**
* dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
*
* This function allocated memory for mesh receive stats and fill the
* required stats. Stores the memory address in skb cb.
*
* Return: void
*/
static
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
struct mesh_recv_hdr_s *rx_info = NULL;
uint32_t pkt_type;
uint32_t nss;
uint32_t rate_mcs;
/* fill recv mesh stats */
rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
/* upper layers are resposible to free this memory */
if (rx_info == NULL) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Memory allocation failed for mesh rx stats");
DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
return;
}
if (qdf_nbuf_is_chfrag_start(nbuf))
rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
if (qdf_nbuf_is_chfrag_end(nbuf))
rx_info->rs_flags |= MESH_RX_LAST_MSDU;
if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
rx_info->rs_flags |= MESH_RX_DECRYPTED;
rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
rx_info->rs_flags |= MESH_KEY_NOTFILLED;
}
rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
rx_info->rs_ratephy1 = rate_mcs | (nss << 0x4) | (pkt_type << 6);
qdf_nbuf_set_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
rx_info->rs_flags,
rx_info->rs_rssi,
rx_info->rs_channel,
rx_info->rs_ratephy1,
rx_info->rs_keyix);
}
/**
* dp_rx_fill_mesh_stats() - Filters mesh unwanted packets
*
* @vdev: DP Virtual device handle
* @nbuf: Buffer pointer
* @rx_tlv_hdr: start of rx tlv header
*
* This checks if the received packet is matching any filter out
* catogery and and drop the packet if it matches.
*
* Return: status(0 indicates drop, 1 indicate to no drop)
*/
static inline
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
union dp_align_mac_addr mac_addr;
if (qdf_unlikely(vdev->mesh_rx_filter)) {
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
&& !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
return QDF_STATUS_SUCCESS;
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
DP_MAC_ADDR_LEN))
return QDF_STATUS_SUCCESS;
}
if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
&mac_addr.raw[0]))
return QDF_STATUS_E_FAILURE;
if (!qdf_mem_cmp(&mac_addr.raw[0],
&vdev->mac_addr.raw[0],
DP_MAC_ADDR_LEN))
return QDF_STATUS_SUCCESS;
}
}
return QDF_STATUS_E_FAILURE;
}
#else
static
void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
}
static inline
QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
uint8_t *rx_tlv_hdr)
{
return QDF_STATUS_E_FAILURE;
}
#endif
#ifdef CONFIG_WIN
/**
* dp_rx_nac_filter(): Function to perform filtering of non-associated
* clients
* @pdev: DP pdev handle
* @rx_pkt_hdr: Rx packet Header
*
* return: dp_vdev*
*/
static
struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
uint8_t *rx_pkt_hdr)
{
struct ieee80211_frame *wh;
struct dp_neighbour_peer *peer = NULL;
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
return NULL;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
QDF_TRACE(
QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
peer->neighbour_peers_macaddr.raw[0],
peer->neighbour_peers_macaddr.raw[1],
peer->neighbour_peers_macaddr.raw[2],
peer->neighbour_peers_macaddr.raw[3],
peer->neighbour_peers_macaddr.raw[4],
peer->neighbour_peers_macaddr.raw[5]);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return pdev->monitor_vdev;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return NULL;
}
/**
* dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
* @soc: DP SOC handle
* @mpdu: mpdu for which peer is invalid
*
* return: integer type
*/
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
{
struct dp_invalid_peer_msg msg;
struct dp_vdev *vdev = NULL;
struct dp_pdev *pdev = NULL;
struct ieee80211_frame *wh;
uint8_t i;
uint8_t *rx_pkt_hdr;
rx_pkt_hdr = hal_rx_pkt_hdr_get(qdf_nbuf_data(mpdu));
wh = (struct ieee80211_frame *)rx_pkt_hdr;
if (!DP_FRAME_IS_DATA(wh)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"NAWDS valid only for data frames");
return 1;
}
if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid nbuf length");
return 1;
}
for (i = 0; i < MAX_PDEV_CNT; i++) {
pdev = soc->pdev_list[i];
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"PDEV not found");
continue;
}
if (pdev->filter_neighbour_peers) {
/* Next Hop scenario not yet handle */
vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
if (vdev) {
dp_rx_mon_deliver(soc, i,
soc->invalid_peer_head_msdu,
soc->invalid_peer_tail_msdu);
return 0;
}
}
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
DP_MAC_ADDR_LEN) == 0) {
goto out;
}
}
}
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"VDEV not found");
return 1;
}
out:
msg.wh = wh;
qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
msg.nbuf = mpdu;
msg.vdev_id = vdev->vdev_id;
if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
return pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
pdev->osif_pdev, &msg);
return 0;
}
#else
uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
{
return 0;
}
#endif
#if defined(FEATURE_LRO)
static void dp_rx_print_lro_info(uint8_t *rx_tlv)
{
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("----------------------RX DESC LRO----------------------\n"));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("---------------------------------------------------------\n"));
}
/**
* dp_rx_lro() - LRO related processing
* @rx_tlv: TLV data extracted from the rx packet
* @peer: destination peer of the msdu
* @msdu: network buffer
* @ctx: LRO context
*
* This function performs the LRO related processing of the msdu
*
* Return: true: LRO enabled false: LRO is not enabled
*/
static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
{
if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("no peer, no vdev or LRO disabled"));
QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
return;
}
qdf_assert(rx_tlv);
dp_rx_print_lro_info(rx_tlv);
QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
QDF_NBUF_CB_RX_TCP_WIN(msdu) =
HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
HAL_RX_TLV_GET_IPV6(rx_tlv);
QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
QDF_NBUF_CB_RX_FLOW_ID_TOEPLITZ(msdu) =
HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
}
#else
static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
{
}
#endif
static inline void dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
{
if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN))
qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
else
qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
*mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
}
/**
* dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
* multiple nbufs.
* @nbuf: nbuf which can may be part of frag_list.
* @rx_tlv_hdr: pointer to the start of RX TLV headers.
* @mpdu_len: mpdu length.
* @is_first_frag: is this the first nbuf in the fragmented MSDU.
* @frag_list_len: length of all the fragments combined.
* @head_frag_nbuf: parent nbuf
* @frag_list_head: pointer to the first nbuf in the frag_list.
* @frag_list_tail: pointer to the last nbuf in the frag_list.
*
* This function implements the creation of RX frag_list for cases
* where an MSDU is spread across multiple nbufs.
*
*/
void dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr,
uint16_t *mpdu_len, bool *is_first_frag,
uint16_t *frag_list_len, qdf_nbuf_t *head_frag_nbuf,
qdf_nbuf_t *frag_list_head, qdf_nbuf_t *frag_list_tail)
{
if (qdf_unlikely(qdf_nbuf_is_chfrag_cont(nbuf))) {
if (!(*is_first_frag)) {
*is_first_frag = 1;
qdf_nbuf_set_chfrag_start(nbuf, 1);
*mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
*head_frag_nbuf = nbuf;
} else {
dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
*frag_list_len += qdf_nbuf_len(nbuf);
DP_RX_LIST_APPEND(*frag_list_head,
*frag_list_tail,
nbuf);
}
} else {
if (qdf_unlikely(*is_first_frag)) {
qdf_nbuf_set_chfrag_start(nbuf, 0);
dp_rx_adjust_nbuf_len(nbuf, mpdu_len);
qdf_nbuf_pull_head(nbuf,
RX_PKT_TLVS_LEN);
*frag_list_len += qdf_nbuf_len(nbuf);
DP_RX_LIST_APPEND(*frag_list_head,
*frag_list_tail,
nbuf);
qdf_nbuf_append_ext_list(*head_frag_nbuf,
*frag_list_head,
*frag_list_len);
*is_first_frag = 0;
return;
}
*head_frag_nbuf = nbuf;
}
}
/**
* dp_rx_process() - Brain of the Rx processing functionality
* Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
* @soc: core txrx main context
* @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
* @quota: No. of units (packets) that can be serviced in one shot.
*
* This function implements the core of Rx functionality. This is
* expected to handle only non-error frames.
*
* Return: uint32_t: No. of elements processed
*/
uint32_t
dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
{
void *hal_soc;
void *ring_desc;
struct dp_rx_desc *rx_desc = NULL;
qdf_nbuf_t nbuf;
union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset;
uint16_t msdu_len;
uint16_t peer_id;
struct dp_peer *peer = NULL;
struct dp_vdev *vdev = NULL;
struct dp_vdev *vdev_list[WLAN_UMAC_PSOC_MAX_VDEVS] = { NULL };
uint32_t pkt_len;
struct hal_rx_mpdu_desc_info mpdu_desc_info;
struct hal_rx_msdu_desc_info msdu_desc_info;
enum hal_reo_error_status error;
static uint32_t peer_mdata;
uint8_t *rx_tlv_hdr;
uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
uint64_t vdev_map = 0;
uint8_t mac_id;
uint16_t i, vdev_cnt = 0;
uint32_t ampdu_flag, amsdu_flag;
struct ether_header *eh;
struct dp_pdev *pdev;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
struct dp_soc *soc = int_ctx->soc;
uint8_t ring_id;
uint8_t core_id;
bool is_first_frag = 0;
uint16_t mpdu_len = 0;
qdf_nbuf_t head_frag_nbuf = NULL;
qdf_nbuf_t frag_list_head = NULL;
qdf_nbuf_t frag_list_tail = NULL;
uint16_t frag_list_len = 0;
DP_HIST_INIT();
/* Debug -- Remove later */
qdf_assert(soc && hal_ring);
hal_soc = soc->hal_soc;
/* Debug -- Remove later */
qdf_assert(hal_soc);
if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
/*
* Need API to convert from hal_ring pointer to
* Ring Type / Ring Id combo
*/
DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("HAL RING Access Failed -- %p"), hal_ring);
hal_srng_access_end(hal_soc, hal_ring);
goto done;
}
/*
* start reaping the buffers from reo ring and queue
* them in per vdev queue.
* Process the received pkts in a different per vdev loop.
*/
while (qdf_likely((ring_desc =
hal_srng_dst_get_next(hal_soc, hal_ring))
&& quota)) {
error = HAL_RX_ERROR_STATUS_GET(ring_desc);
ring_id = hal_srng_ring_id_get(hal_ring);
if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("HAL RING 0x%p:error %d"), hal_ring, error);
DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
/* Don't know how to deal with this -- assert */
qdf_assert(0);
}
rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
qdf_assert(rx_desc);
rx_bufs_reaped[rx_desc->pool_id]++;
/* TODO */
/*
* Need a separate API for unmapping based on
* phyiscal address
*/
qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
QDF_DMA_BIDIRECTIONAL);
core_id = smp_processor_id();
DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
/* Get MPDU DESC info */
hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
peer_id = DP_PEER_METADATA_PEER_ID_GET(
mpdu_desc_info.peer_meta_data);
peer = dp_peer_find_by_id(soc, peer_id);
vdev = dp_get_vdev_from_peer(soc, peer_id, peer,
mpdu_desc_info);
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("vdev is NULL"));
DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
qdf_nbuf_free(rx_desc->nbuf);
goto fail;
}
if (!((vdev_map >> vdev->vdev_id) & 1)) {
vdev_map |= 1 << vdev->vdev_id;
vdev_list[vdev_cnt] = vdev;
vdev_cnt++;
}
/* Get MSDU DESC info */
hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
/*
* save msdu flags first, last and continuation msdu in
* nbuf->cb
*/
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
qdf_nbuf_set_chfrag_start(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
qdf_nbuf_set_chfrag_cont(rx_desc->nbuf, 1);
if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
qdf_nbuf_set_chfrag_end(rx_desc->nbuf, 1);
DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1,
qdf_nbuf_len(rx_desc->nbuf));
ampdu_flag = (mpdu_desc_info.mpdu_flags &
HAL_MPDU_F_AMPDU_FLAG);
DP_STATS_INCC(peer, rx.ampdu_cnt, 1, ampdu_flag);
DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(ampdu_flag));
hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
amsdu_flag = ((msdu_desc_info.msdu_flags &
HAL_MSDU_F_FIRST_MSDU_IN_MPDU) &&
(msdu_desc_info.msdu_flags &
HAL_MSDU_F_LAST_MSDU_IN_MPDU));
DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1,
amsdu_flag);
DP_STATS_INCC(peer, rx.amsdu_cnt, 1,
!(amsdu_flag));
DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
qdf_nbuf_queue_add(&vdev->rxq, rx_desc->nbuf);
fail:
/*
* if continuation bit is set then we have MSDU spread
* across multiple buffers, let us not decrement quota
* till we reap all buffers of that MSDU.
*/
if (qdf_likely(!qdf_nbuf_is_chfrag_cont(rx_desc->nbuf)))
quota -= 1;
dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
&tail[rx_desc->pool_id],
rx_desc);
}
done:
hal_srng_access_end(hal_soc, hal_ring);
/* Update histogram statistics by looping through pdev's */
DP_RX_HIST_STATS_PER_PDEV();
for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
/*
* continue with next mac_id if no pkts were reaped
* from that pool
*/
if (!rx_bufs_reaped[mac_id])
continue;
pdev = soc->pdev_list[mac_id];
dp_rxdma_srng = &pdev->rx_refill_buf_ring;
rx_desc_pool = &soc->rx_desc_buf[mac_id];
dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
rx_desc_pool, rx_bufs_reaped[mac_id],
&head[mac_id], &tail[mac_id],
HAL_RX_BUF_RBM_SW3_BM);
}
for (i = 0; i < vdev_cnt; i++) {
qdf_nbuf_t deliver_list_head = NULL;
qdf_nbuf_t deliver_list_tail = NULL;
vdev = vdev_list[i];
while ((nbuf = qdf_nbuf_queue_remove(&vdev->rxq))) {
rx_tlv_hdr = qdf_nbuf_data(nbuf);
eh = (struct ether_header *)qdf_nbuf_data(nbuf);
/*
* Check if DMA completed -- msdu_done is the last bit
* to be written
*/
if (!hal_rx_attn_msdu_done_get(rx_tlv_hdr)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("MSDU DONE failure"));
DP_STATS_INC(vdev->pdev, dropped.msdu_not_done,
1);
hal_rx_dump_pkt_tlvs(rx_tlv_hdr,
QDF_TRACE_LEVEL_INFO);
qdf_assert(0);
}
/*
* The below condition happens when an MSDU is spread
* across multiple buffers. This can happen in two cases
* 1. The nbuf size is smaller then the received msdu.
* ex: we have set the nbuf size to 2048 during
* nbuf_alloc. but we received an msdu which is
* 2304 bytes in size then this msdu is spread
* across 2 nbufs.
*
* 2. AMSDUs when RAW mode is enabled.
* ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
* across 1st nbuf and 2nd nbuf and last MSDU is
* spread across 2nd nbuf and 3rd nbuf.
*
* for these scenarios let us create a skb frag_list and
* append these buffers till the last MSDU of the AMSDU
*/
if (qdf_unlikely(vdev->rx_decap_type ==
htt_cmn_pkt_type_raw)) {
dp_rx_sg_create(nbuf, rx_tlv_hdr, &mpdu_len,
&is_first_frag, &frag_list_len,
&head_frag_nbuf,
&frag_list_head,
&frag_list_tail);
if (is_first_frag)
continue;
else {
nbuf = head_frag_nbuf;
rx_tlv_hdr = qdf_nbuf_data(nbuf);
}
}
if (qdf_nbuf_is_chfrag_start(nbuf)) {
peer_mdata = hal_rx_mpdu_peer_meta_data_get
(rx_tlv_hdr);
}
peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
peer = dp_peer_find_by_id(soc, peer_id);
/* TODO */
/*
* In case of roaming peer object may not be
* immediately available -- need to handle this
* Cannot drop these packets right away.
*/
/* Peer lookup failed */
if (!peer && !vdev) {
dp_rx_process_invalid_peer(soc, nbuf);
DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
qdf_nbuf_len(nbuf));
/* Drop & free packet */
qdf_nbuf_free(nbuf);
/* Statistics */
continue;
}
if (peer && qdf_unlikely(peer->bss_peer)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
FL("received pkt with same src MAC"));
DP_STATS_INC(vdev->pdev, dropped.mec, 1);
/* Drop & free packet */
qdf_nbuf_free(nbuf);
/* Statistics */
continue;
}
pdev = vdev->pdev;
sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: %d, SGI: %d, tid: %d",
__func__, __LINE__, sgi, tid);
bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
reception_type = hal_rx_msdu_start_reception_type_get(
rx_tlv_hdr);
nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
DP_STATS_INC(vdev->pdev, rx.bw[bw], 1);
DP_STATS_INC(vdev->pdev,
rx.reception_type[reception_type], 1);
DP_STATS_INCC(vdev->pdev, rx.nss[nss], 1,
((reception_type == REPT_MU_MIMO) ||
(reception_type == REPT_MU_OFDMA_MIMO))
);
DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
DP_STATS_INCC(peer, rx.err.mic_err, 1,
hal_rx_mpdu_end_mic_err_get(
rx_tlv_hdr));
DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
hal_rx_mpdu_end_decrypt_err_get(
rx_tlv_hdr));
DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)],
1);
DP_STATS_INC(peer, rx.bw[bw], 1);
DP_STATS_INC(peer, rx.reception_type[reception_type],
1);
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11A) && (pkt_type
== DOT11_A)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A) && (pkt_type
== DOT11_A)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11B)
&& (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[mcs], 1,
((mcs <= MAX_MCS_11B)
&& (pkt_type == DOT11_B)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11A)
&& (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[mcs], 1,
((mcs <= MAX_MCS_11A)
&& (pkt_type == DOT11_N)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS_11AC)
&& (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[mcs], 1,
((mcs <= MAX_MCS_11AC)
&& (pkt_type == DOT11_AC)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[MAX_MCS], 1,
((mcs >= MAX_MCS)
&& (pkt_type == DOT11_AX)));
DP_STATS_INCC(peer, rx.pkt_type[pkt_type].
mcs_count[mcs], 1,
((mcs <= MAX_MCS)
&& (pkt_type == DOT11_AX)));
/*
* HW structures call this L3 header padding --
* even though this is actually the offset from
* the buffer beginning where the L2 header
* begins.
*/
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("rxhash: flow id toeplitz: 0x%x\n"),
hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
l2_hdr_offset =
hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
if (unlikely(qdf_nbuf_get_ext_list(nbuf)))
qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
else {
qdf_nbuf_set_pktlen(nbuf, pkt_len);
qdf_nbuf_pull_head(nbuf,
RX_PKT_TLVS_LEN +
l2_hdr_offset);
}
if (qdf_unlikely(vdev->mesh_vdev)) {
if (dp_rx_filter_mesh_packets(vdev, nbuf,
rx_tlv_hdr)
== QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO_MED,
FL("mesh pkt filtered"));
DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
1);
qdf_nbuf_free(nbuf);
continue;
}
dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr);
}
#ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"p_id %d msdu_len %d hdr_off %d",
peer_id, msdu_len, l2_hdr_offset);
print_hex_dump(KERN_ERR,
"\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
qdf_nbuf_data(nbuf), 128, false);
#endif /* NAPIER_EMULATION */
if (qdf_likely(vdev->rx_decap_type ==
htt_cmn_pkt_type_ethernet)) {
/* WDS Source Port Learning */
if (qdf_likely(vdev->wds_enabled))
dp_rx_wds_srcport_learn(soc,
rx_tlv_hdr,
peer,
nbuf);
/* Intrabss-fwd */
if ((vdev->opmode != wlan_op_mode_sta) &&
!vdev->nawds_enabled)
if (dp_rx_intrabss_fwd(soc,
peer,
rx_tlv_hdr,
nbuf))
continue; /* Get next desc */
}
rx_bufs_used++;
dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
DP_RX_LIST_APPEND(deliver_list_head,
deliver_list_tail,
nbuf);
DP_STATS_INCC_PKT(peer, rx.multicast, 1, pkt_len,
hal_rx_msdu_end_da_is_mcbc_get(
rx_tlv_hdr));
DP_STATS_INC_PKT(peer, rx.to_stack, 1,
pkt_len);
if ((pdev->enhanced_stats_en) &&
hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
if (soc->cdp_soc.ol_ops->update_dp_stats) {
soc->cdp_soc.ol_ops->update_dp_stats(
vdev->pdev->osif_pdev,
&peer->stats,
peer_id,
UPDATE_PEER_STATS);
dp_aggregate_vdev_stats(peer->vdev);
soc->cdp_soc.ol_ops->update_dp_stats(
vdev->pdev->osif_pdev,
&peer->vdev->stats,
peer->vdev->vdev_id,
UPDATE_VDEV_STATS);
}
}
}
if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
(vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi))
dp_rx_deliver_raw(vdev, deliver_list_head, peer);
else if (qdf_likely(vdev->osif_rx) && deliver_list_head)
vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
}
return rx_bufs_used; /* Assume no scale factor for now */
}
/**
* dp_rx_detach() - detach dp rx
* @pdev: core txrx pdev context
*
* This function will detach DP RX into main device context
* will free DP Rx resources.
*
* Return: void
*/
void
dp_rx_pdev_detach(struct dp_pdev *pdev)
{
uint8_t pdev_id = pdev->pdev_id;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
rx_desc_pool = &soc->rx_desc_buf[pdev_id];
dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
qdf_spinlock_destroy(&soc->rx_desc_mutex[pdev_id]);
return;
}
/**
* dp_rx_attach() - attach DP RX
* @pdev: core txrx pdev context
*
* This function will attach a DP RX instance into the main
* device (SOC) context. Will allocate dp rx resource and
* initialize resources.
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
QDF_STATUS
dp_rx_pdev_attach(struct dp_pdev *pdev)
{
uint8_t pdev_id = pdev->pdev_id;
struct dp_soc *soc = pdev->soc;
struct dp_srng rxdma_srng;
uint32_t rxdma_entries;
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
struct dp_srng *dp_rxdma_srng;
struct rx_desc_pool *rx_desc_pool;
if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"nss-wifi<4> skip Rx refil %d", pdev_id);
return QDF_STATUS_SUCCESS;
}
qdf_spinlock_create(&soc->rx_desc_mutex[pdev_id]);
pdev = soc->pdev_list[pdev_id];
rxdma_srng = pdev->rx_refill_buf_ring;
rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
soc->hal_soc, RXDMA_BUF);
rx_desc_pool = &soc->rx_desc_buf[pdev_id];
dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
/* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
dp_rxdma_srng = &pdev->rx_refill_buf_ring;
dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
rxdma_entries, &desc_list, &tail, HAL_RX_BUF_RBM_SW3_BM);
return QDF_STATUS_SUCCESS;
}