blob: d57bf6ca943560c3b87a04262fc92722b67833cc [file] [log] [blame]
/*
* Copyright (c) 2013-2020 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/* Suppress -Waddress-of-packed-member for new toolchain update.
* Bug: http://b/33566695
*/
#if __clang_major__ >= 4
#pragma clang diagnostic ignored "-Waddress-of-packed-member"
#endif
#include "targcfg.h"
#include "qdf_lock.h"
#include "qdf_status.h"
#include "qdf_status.h"
#include <qdf_atomic.h> /* qdf_atomic_read */
#include <targaddrs.h>
#include "hif_io32.h"
#include <hif.h>
#include <target_type.h>
#include "regtable.h"
#define ATH_MODULE_NAME hif
#include <a_debug.h>
#include "hif_main.h"
#include "ce_api.h"
#include "qdf_trace.h"
#include "pld_common.h"
#include "hif_debug.h"
#include "ce_internal.h"
#include "ce_reg.h"
#include "ce_assignment.h"
#include "ce_tasklet.h"
#include "qdf_module.h"
#define CE_POLL_TIMEOUT 10 /* ms */
#define AGC_DUMP 1
#define CHANINFO_DUMP 2
#define BB_WATCHDOG_DUMP 3
#ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
#define PCIE_ACCESS_DUMP 4
#endif
#include "mp_dev.h"
#ifdef HIF_CE_LOG_INFO
#include "qdf_hang_event_notifier.h"
#endif
#if (defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6290) || \
defined(QCA_WIFI_QCA6018)) && !defined(QCA_WIFI_SUPPORT_SRNG)
#define QCA_WIFI_SUPPORT_SRNG
#endif
#ifdef QCA_WIFI_SUPPORT_SRNG
#include <hal_api.h>
#endif
/* Forward references */
QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info);
/*
* Fix EV118783, poll to check whether a BMI response comes
* other than waiting for the interruption which may be lost.
*/
/* #define BMI_RSP_POLLING */
#define BMI_RSP_TO_MILLISEC 1000
#ifdef CONFIG_BYPASS_QMI
#define BYPASS_QMI 1
#else
#define BYPASS_QMI 0
#endif
#ifdef ENABLE_10_4_FW_HDR
#if (ENABLE_10_4_FW_HDR == 1)
#define WDI_IPA_SERVICE_GROUP 5
#define WDI_IPA_TX_SVC MAKE_SERVICE_ID(WDI_IPA_SERVICE_GROUP, 0)
#define HTT_DATA2_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 1)
#define HTT_DATA3_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 2)
#endif /* ENABLE_10_4_FW_HDR == 1 */
#endif /* ENABLE_10_4_FW_HDR */
QDF_STATUS hif_post_recv_buffers(struct hif_softc *scn);
static void hif_config_rri_on_ddr(struct hif_softc *scn);
/**
* hif_target_access_log_dump() - dump access log
*
* dump access log
*
* Return: n/a
*/
#ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
static void hif_target_access_log_dump(void)
{
hif_target_dump_access_log();
}
#endif
void hif_trigger_dump(struct hif_opaque_softc *hif_ctx,
uint8_t cmd_id, bool start)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
switch (cmd_id) {
case AGC_DUMP:
if (start)
priv_start_agc(scn);
else
priv_dump_agc(scn);
break;
case CHANINFO_DUMP:
if (start)
priv_start_cap_chaninfo(scn);
else
priv_dump_chaninfo(scn);
break;
case BB_WATCHDOG_DUMP:
priv_dump_bbwatchdog(scn);
break;
#ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
case PCIE_ACCESS_DUMP:
hif_target_access_log_dump();
break;
#endif
default:
HIF_ERROR("%s: Invalid htc dump command", __func__);
break;
}
}
static void ce_poll_timeout(void *arg)
{
struct CE_state *CE_state = (struct CE_state *)arg;
if (CE_state->timer_inited) {
ce_per_engine_service(CE_state->scn, CE_state->id);
qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT);
}
}
static unsigned int roundup_pwr2(unsigned int n)
{
int i;
unsigned int test_pwr2;
if (!(n & (n - 1)))
return n; /* already a power of 2 */
test_pwr2 = 4;
for (i = 0; i < 29; i++) {
if (test_pwr2 > n)
return test_pwr2;
test_pwr2 = test_pwr2 << 1;
}
QDF_ASSERT(0); /* n too large */
return 0;
}
#define ADRASTEA_SRC_WR_INDEX_OFFSET 0x3C
#define ADRASTEA_DST_WR_INDEX_OFFSET 0x40
static struct shadow_reg_cfg target_shadow_reg_cfg_map[] = {
{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
#ifdef QCA_WIFI_3_0_ADRASTEA
{ 9, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 10, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 11, ADRASTEA_DST_WR_INDEX_OFFSET},
#endif
};
#ifdef QCN7605_SUPPORT
static struct shadow_reg_cfg target_shadow_reg_cfg_map_qcn7605[] = {
{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 3, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
};
#endif
#ifdef WLAN_FEATURE_EPPING
static struct shadow_reg_cfg target_shadow_reg_cfg_epping[] = {
{ 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
{ 1, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 2, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 5, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 7, ADRASTEA_DST_WR_INDEX_OFFSET},
{ 8, ADRASTEA_DST_WR_INDEX_OFFSET},
};
#endif
/* CE_PCI TABLE */
/*
* NOTE: the table below is out of date, though still a useful reference.
* Refer to target_service_to_ce_map and hif_map_service_to_pipe for the actual
* mapping of HTC services to HIF pipes.
*/
/*
* This authoritative table defines Copy Engine configuration and the mapping
* of services/endpoints to CEs. A subset of this information is passed to
* the Target during startup as a prerequisite to entering BMI phase.
* See:
* target_service_to_ce_map - Target-side mapping
* hif_map_service_to_pipe - Host-side mapping
* target_ce_config - Target-side configuration
* host_ce_config - Host-side configuration
============================================================================
Purpose | Service / Endpoint | CE | Dire | Xfer | Xfer
| | | ctio | Size | Frequency
| | | n | |
============================================================================
tx | HTT_DATA (downlink) | CE 0 | h->t | medium - | very frequent
descriptor | | | | O(100B) | and regular
download | | | | |
----------------------------------------------------------------------------
rx | HTT_DATA (uplink) | CE 1 | t->h | small - | frequent and
indication | | | | O(10B) | regular
upload | | | | |
----------------------------------------------------------------------------
MSDU | DATA_BK (uplink) | CE 2 | t->h | large - | rare
upload | | | | O(1000B) | (frequent
e.g. noise | | | | | during IP1.0
packets | | | | | testing)
----------------------------------------------------------------------------
MSDU | DATA_BK (downlink) | CE 3 | h->t | large - | very rare
download | | | | O(1000B) | (frequent
e.g. | | | | | during IP1.0
misdirecte | | | | | testing)
d EAPOL | | | | |
packets | | | | |
----------------------------------------------------------------------------
n/a | DATA_BE, DATA_VI | CE 2 | t->h | | never(?)
| DATA_VO (uplink) | | | |
----------------------------------------------------------------------------
n/a | DATA_BE, DATA_VI | CE 3 | h->t | | never(?)
| DATA_VO (downlink) | | | |
----------------------------------------------------------------------------
WMI events | WMI_CONTROL (uplink) | CE 4 | t->h | medium - | infrequent
| | | | O(100B) |
----------------------------------------------------------------------------
WMI | WMI_CONTROL | CE 5 | h->t | medium - | infrequent
messages | (downlink) | | | O(100B) |
| | | | |
----------------------------------------------------------------------------
n/a | HTC_CTRL_RSVD, | CE 1 | t->h | | never(?)
| HTC_RAW_STREAMS | | | |
| (uplink) | | | |
----------------------------------------------------------------------------
n/a | HTC_CTRL_RSVD, | CE 0 | h->t | | never(?)
| HTC_RAW_STREAMS | | | |
| (downlink) | | | |
----------------------------------------------------------------------------
diag | none (raw CE) | CE 7 | t<>h | 4 | Diag Window
| | | | | infrequent
============================================================================
*/
/*
* Map from service/endpoint to Copy Engine.
* This table is derived from the CE_PCI TABLE, above.
* It is passed to the Target at startup for use by firmware.
*/
static struct service_to_pipe target_service_to_ce_map_wlan[] = {
{
WMI_DATA_VO_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_VO_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_DATA_BK_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_BK_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_DATA_BE_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_BE_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_DATA_VI_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_VI_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_CONTROL_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_CONTROL_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
HTC_CTRL_RSVD_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
0, /* could be moved to 3 (share with WMI) */
},
{
HTC_CTRL_RSVD_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
HTC_RAW_STREAMS_SVC, /* not currently used */
PIPEDIR_OUT, /* out = UL = host -> target */
0,
},
{
HTC_RAW_STREAMS_SVC, /* not currently used */
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
HTT_DATA_MSG_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
4,
},
{
HTT_DATA_MSG_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
1,
},
{
WDI_IPA_TX_SVC,
PIPEDIR_OUT, /* in = DL = target -> host */
5,
},
#if defined(QCA_WIFI_3_0_ADRASTEA)
{
HTT_DATA2_MSG_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
9,
},
{
HTT_DATA3_MSG_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
10,
},
{
PACKET_LOG_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
11,
},
#endif
/* (Additions here) */
{ /* Must be last */
0,
0,
0,
},
};
/* PIPEDIR_OUT = HOST to Target */
/* PIPEDIR_IN = TARGET to HOST */
#if (defined(QCA_WIFI_QCA8074))
static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#else
static struct service_to_pipe target_service_to_ce_map_qca8074[] = {
};
#endif
#if (defined(QCA_WIFI_QCA8074V2))
static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_OUT, 9},
{ WMI_CONTROL_SVC_WMAC2, PIPEDIR_IN, 2},
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#else
static struct service_to_pipe target_service_to_ce_map_qca8074_v2[] = {
};
#endif
#if (defined(QCA_WIFI_QCA6018))
static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#else
static struct service_to_pipe target_service_to_ce_map_qca6018[] = {
};
#endif
#if (defined(QCA_WIFI_QCN9000))
static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 1, },
{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0},
{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 1 },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#else
static struct service_to_pipe target_service_to_ce_map_qcn9000[] = {
};
#endif
/* PIPEDIR_OUT = HOST to Target */
/* PIPEDIR_IN = TARGET to HOST */
#ifdef QCN7605_SUPPORT
static struct service_to_pipe target_service_to_ce_map_qcn7605[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 0, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 0, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 0, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 0, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 0, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
{ HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0, },
{ HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2, },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ HTT_DATA2_MSG_SVC, PIPEDIR_IN, 3, },
#ifdef IPA_OFFLOAD
{ WDI_IPA_TX_SVC, PIPEDIR_OUT, 5, },
#else
{ HTT_DATA3_MSG_SVC, PIPEDIR_IN, 8, },
#endif
{ PACKET_LOG_SVC, PIPEDIR_IN, 7, },
/* (Additions here) */
{ 0, 0, 0, },
};
#endif
#if (defined(QCA_WIFI_QCA6290))
#ifdef QCA_6290_AP_MODE
static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN , 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN , 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN , 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN , 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN , 2, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN , 2, },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN , 1, },
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_OUT, 7},
{ WMI_CONTROL_SVC_WMAC1, PIPEDIR_IN, 2},
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#else
static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
/* (Additions here) */
{ 0, 0, 0, },
};
#endif
#else
static struct service_to_pipe target_service_to_ce_map_qca6290[] = {
};
#endif
#if (defined(QCA_WIFI_QCA6390))
static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#else
static struct service_to_pipe target_service_to_ce_map_qca6390[] = {
};
#endif
static struct service_to_pipe target_service_to_ce_map_qca6490[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#if (defined(QCA_WIFI_QCA6750))
static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
{ WMI_DATA_VO_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VO_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BK_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BK_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_BE_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_BE_SVC, PIPEDIR_IN, 2, },
{ WMI_DATA_VI_SVC, PIPEDIR_OUT, 3, },
{ WMI_DATA_VI_SVC, PIPEDIR_IN, 2, },
{ WMI_CONTROL_SVC, PIPEDIR_OUT, 3, },
{ WMI_CONTROL_SVC, PIPEDIR_IN, 2, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0, },
{ HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2, },
{ HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4, },
{ HTT_DATA_MSG_SVC, PIPEDIR_IN, 1, },
{ PACKET_LOG_SVC, PIPEDIR_IN, 5, },
/* (Additions here) */
{ 0, 0, 0, },
};
#else
static struct service_to_pipe target_service_to_ce_map_qca6750[] = {
};
#endif
static struct service_to_pipe target_service_to_ce_map_ar900b[] = {
{
WMI_DATA_VO_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_VO_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_DATA_BK_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_BK_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_DATA_BE_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_BE_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_DATA_VI_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_DATA_VI_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
WMI_CONTROL_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
3,
},
{
WMI_CONTROL_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
2,
},
{
HTC_CTRL_RSVD_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
0, /* could be moved to 3 (share with WMI) */
},
{
HTC_CTRL_RSVD_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
1,
},
{
HTC_RAW_STREAMS_SVC, /* not currently used */
PIPEDIR_OUT, /* out = UL = host -> target */
0,
},
{
HTC_RAW_STREAMS_SVC, /* not currently used */
PIPEDIR_IN, /* in = DL = target -> host */
1,
},
{
HTT_DATA_MSG_SVC,
PIPEDIR_OUT, /* out = UL = host -> target */
4,
},
#ifdef WLAN_FEATURE_FASTPATH
{
HTT_DATA_MSG_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
5,
},
#else /* WLAN_FEATURE_FASTPATH */
{
HTT_DATA_MSG_SVC,
PIPEDIR_IN, /* in = DL = target -> host */
1,
},
#endif /* WLAN_FEATURE_FASTPATH */
/* (Additions here) */
{ /* Must be last */
0,
0,
0,
},
};
static struct shadow_reg_cfg *target_shadow_reg_cfg = target_shadow_reg_cfg_map;
static int shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map);
#ifdef WLAN_FEATURE_EPPING
static struct service_to_pipe target_service_to_ce_map_wlan_epping[] = {
{WMI_DATA_VO_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
{WMI_DATA_VO_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
{WMI_DATA_BK_SVC, PIPEDIR_OUT, 4,}, /* out = UL = host -> target */
{WMI_DATA_BK_SVC, PIPEDIR_IN, 1,}, /* in = DL = target -> host */
{WMI_DATA_BE_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
{WMI_DATA_BE_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
{WMI_DATA_VI_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
{WMI_DATA_VI_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
{WMI_CONTROL_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
{WMI_CONTROL_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
{HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
{HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
{HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
{HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
{HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4,}, /* out = UL = host -> target */
{HTT_DATA_MSG_SVC, PIPEDIR_IN, 1,}, /* in = DL = target -> host */
{0, 0, 0,}, /* Must be last */
};
void hif_select_epping_service_to_pipe_map(struct service_to_pipe
**tgt_svc_map_to_use,
uint32_t *sz_tgt_svc_map_to_use)
{
*tgt_svc_map_to_use = target_service_to_ce_map_wlan_epping;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_wlan_epping);
}
#endif
#ifdef QCN7605_SUPPORT
static inline
void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
uint32_t *sz_tgt_svc_map_to_use)
{
*tgt_svc_map_to_use = target_service_to_ce_map_qcn7605;
*sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_qcn7605);
}
#else
static inline
void hif_select_ce_map_qcn7605(struct service_to_pipe **tgt_svc_map_to_use,
uint32_t *sz_tgt_svc_map_to_use)
{
HIF_ERROR("%s: QCN7605 not supported", __func__);
}
#endif
static void hif_select_service_to_pipe_map(struct hif_softc *scn,
struct service_to_pipe **tgt_svc_map_to_use,
uint32_t *sz_tgt_svc_map_to_use)
{
uint32_t mode = hif_get_conparam(scn);
struct hif_target_info *tgt_info = &scn->target_info;
if (QDF_IS_EPPING_ENABLED(mode)) {
hif_select_epping_service_to_pipe_map(tgt_svc_map_to_use,
sz_tgt_svc_map_to_use);
} else {
switch (tgt_info->target_type) {
default:
*tgt_svc_map_to_use = target_service_to_ce_map_wlan;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_wlan);
break;
case TARGET_TYPE_QCN7605:
hif_select_ce_map_qcn7605(tgt_svc_map_to_use,
sz_tgt_svc_map_to_use);
break;
case TARGET_TYPE_AR900B:
case TARGET_TYPE_QCA9984:
case TARGET_TYPE_IPQ4019:
case TARGET_TYPE_QCA9888:
case TARGET_TYPE_AR9888:
case TARGET_TYPE_AR9888V2:
*tgt_svc_map_to_use = target_service_to_ce_map_ar900b;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_ar900b);
break;
case TARGET_TYPE_QCA6290:
*tgt_svc_map_to_use = target_service_to_ce_map_qca6290;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qca6290);
break;
case TARGET_TYPE_QCA6390:
*tgt_svc_map_to_use = target_service_to_ce_map_qca6390;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qca6390);
break;
case TARGET_TYPE_QCA6490:
*tgt_svc_map_to_use = target_service_to_ce_map_qca6490;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qca6490);
break;
case TARGET_TYPE_QCA6750:
*tgt_svc_map_to_use = target_service_to_ce_map_qca6750;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qca6750);
break;
case TARGET_TYPE_QCA8074:
*tgt_svc_map_to_use = target_service_to_ce_map_qca8074;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qca8074);
break;
case TARGET_TYPE_QCA8074V2:
*tgt_svc_map_to_use =
target_service_to_ce_map_qca8074_v2;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qca8074_v2);
break;
case TARGET_TYPE_QCA6018:
*tgt_svc_map_to_use =
target_service_to_ce_map_qca6018;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qca6018);
break;
case TARGET_TYPE_QCN9000:
*tgt_svc_map_to_use =
target_service_to_ce_map_qcn9000;
*sz_tgt_svc_map_to_use =
sizeof(target_service_to_ce_map_qcn9000);
break;
}
}
}
/**
* ce_mark_datapath() - marks the ce_state->htt_rx_data accordingly
* @ce_state : pointer to the state context of the CE
*
* Description:
* Sets htt_rx_data attribute of the state structure if the
* CE serves one of the HTT DATA services.
*
* Return:
* false (attribute set to false)
* true (attribute set to true);
*/
static bool ce_mark_datapath(struct CE_state *ce_state)
{
struct service_to_pipe *svc_map;
uint32_t map_sz, map_len;
int i;
bool rc = false;
if (ce_state) {
hif_select_service_to_pipe_map(ce_state->scn, &svc_map,
&map_sz);
map_len = map_sz / sizeof(struct service_to_pipe);
for (i = 0; i < map_len; i++) {
if ((svc_map[i].pipenum == ce_state->id) &&
((svc_map[i].service_id == HTT_DATA_MSG_SVC) ||
(svc_map[i].service_id == HTT_DATA2_MSG_SVC) ||
(svc_map[i].service_id == HTT_DATA3_MSG_SVC))) {
/* HTT CEs are unidirectional */
if (svc_map[i].pipedir == PIPEDIR_IN)
ce_state->htt_rx_data = true;
else
ce_state->htt_tx_data = true;
rc = true;
}
}
}
return rc;
}
/**
* ce_ring_test_initial_indexes() - tests the initial ce ring indexes
* @ce_id: ce in question
* @ring: ring state being examined
* @type: "src_ring" or "dest_ring" string for identifying the ring
*
* Warns on non-zero index values.
* Causes a kernel panic if the ring is not empty durring initialization.
*/
static void ce_ring_test_initial_indexes(int ce_id, struct CE_ring_state *ring,
char *type)
{
if (ring->write_index != 0 || ring->sw_index != 0)
HIF_ERROR("ce %d, %s, initial sw_index = %d, initial write_index =%d",
ce_id, type, ring->sw_index, ring->write_index);
if (ring->write_index != ring->sw_index)
QDF_BUG(0);
}
#ifdef IPA_OFFLOAD
/**
* ce_alloc_desc_ring() - Allocate copyengine descriptor ring
* @scn: softc instance
* @ce_id: ce in question
* @base_addr: pointer to copyengine ring base address
* @ce_ring: copyengine instance
* @nentries: number of entries should be allocated
* @desc_size: ce desc size
*
* Return: QDF_STATUS_SUCCESS - for success
*/
static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
qdf_dma_addr_t *base_addr,
struct CE_ring_state *ce_ring,
unsigned int nentries, uint32_t desc_size)
{
if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
!ce_srng_based(scn)) {
if (!scn->ipa_ce_ring) {
scn->ipa_ce_ring = qdf_mem_shared_mem_alloc(
scn->qdf_dev,
nentries * desc_size + CE_DESC_RING_ALIGN);
if (!scn->ipa_ce_ring) {
HIF_ERROR(
"%s: Failed to allocate memory for IPA ce ring",
__func__);
return QDF_STATUS_E_NOMEM;
}
}
*base_addr = qdf_mem_get_dma_addr(scn->qdf_dev,
&scn->ipa_ce_ring->mem_info);
ce_ring->base_addr_owner_space_unaligned =
scn->ipa_ce_ring->vaddr;
} else {
ce_ring->base_addr_owner_space_unaligned =
hif_mem_alloc_consistent_unaligned
(scn,
(nentries * desc_size +
CE_DESC_RING_ALIGN),
base_addr,
ce_ring->hal_ring_type,
&ce_ring->is_ring_prealloc);
if (!ce_ring->base_addr_owner_space_unaligned) {
HIF_ERROR("%s: Failed to allocate DMA memory for ce ring id : %u",
__func__, CE_id);
return QDF_STATUS_E_NOMEM;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* ce_free_desc_ring() - Frees copyengine descriptor ring
* @scn: softc instance
* @ce_id: ce in question
* @ce_ring: copyengine instance
* @desc_size: ce desc size
*
* Return: None
*/
static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
struct CE_ring_state *ce_ring, uint32_t desc_size)
{
if ((CE_id == HIF_PCI_IPA_UC_ASSIGNED_CE) &&
!ce_srng_based(scn)) {
if (scn->ipa_ce_ring) {
qdf_mem_shared_mem_free(scn->qdf_dev,
scn->ipa_ce_ring);
scn->ipa_ce_ring = NULL;
}
ce_ring->base_addr_owner_space_unaligned = NULL;
} else {
hif_mem_free_consistent_unaligned
(scn,
ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
ce_ring->base_addr_owner_space_unaligned,
ce_ring->base_addr_CE_space, 0,
ce_ring->is_ring_prealloc);
ce_ring->base_addr_owner_space_unaligned = NULL;
}
}
#else
static QDF_STATUS ce_alloc_desc_ring(struct hif_softc *scn, unsigned int CE_id,
qdf_dma_addr_t *base_addr,
struct CE_ring_state *ce_ring,
unsigned int nentries, uint32_t desc_size)
{
ce_ring->base_addr_owner_space_unaligned =
hif_mem_alloc_consistent_unaligned
(scn,
(nentries * desc_size +
CE_DESC_RING_ALIGN),
base_addr,
ce_ring->hal_ring_type,
&ce_ring->is_ring_prealloc);
if (!ce_ring->base_addr_owner_space_unaligned) {
HIF_ERROR("%s: Failed to allocate DMA memory for ce ring id : %u",
__func__, CE_id);
return QDF_STATUS_E_NOMEM;
}
return QDF_STATUS_SUCCESS;
}
static void ce_free_desc_ring(struct hif_softc *scn, unsigned int CE_id,
struct CE_ring_state *ce_ring, uint32_t desc_size)
{
hif_mem_free_consistent_unaligned
(scn,
ce_ring->nentries * desc_size + CE_DESC_RING_ALIGN,
ce_ring->base_addr_owner_space_unaligned,
ce_ring->base_addr_CE_space, 0,
ce_ring->is_ring_prealloc);
ce_ring->base_addr_owner_space_unaligned = NULL;
}
#endif /* IPA_OFFLOAD */
/*
* TODO: Need to explore the possibility of having this as part of a
* target context instead of a global array.
*/
static struct ce_ops* (*ce_attach_register[CE_MAX_TARGET_TYPE])(void);
void ce_service_register_module(enum ce_target_type target_type,
struct ce_ops* (*ce_attach)(void))
{
if (target_type < CE_MAX_TARGET_TYPE)
ce_attach_register[target_type] = ce_attach;
}
qdf_export_symbol(ce_service_register_module);
/**
* ce_srng_based() - Does this target use srng
* @ce_state : pointer to the state context of the CE
*
* Description:
* returns true if the target is SRNG based
*
* Return:
* false (attribute set to false)
* true (attribute set to true);
*/
bool ce_srng_based(struct hif_softc *scn)
{
struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
switch (tgt_info->target_type) {
case TARGET_TYPE_QCA8074:
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6290:
case TARGET_TYPE_QCA6390:
case TARGET_TYPE_QCA6490:
case TARGET_TYPE_QCA6750:
case TARGET_TYPE_QCA6018:
case TARGET_TYPE_QCN9000:
return true;
default:
return false;
}
return false;
}
qdf_export_symbol(ce_srng_based);
#ifdef QCA_WIFI_SUPPORT_SRNG
static struct ce_ops *ce_services_attach(struct hif_softc *scn)
{
struct ce_ops *ops = NULL;
if (ce_srng_based(scn)) {
if (ce_attach_register[CE_SVC_SRNG])
ops = ce_attach_register[CE_SVC_SRNG]();
} else if (ce_attach_register[CE_SVC_LEGACY]) {
ops = ce_attach_register[CE_SVC_LEGACY]();
}
return ops;
}
#else /* QCA_LITHIUM */
static struct ce_ops *ce_services_attach(struct hif_softc *scn)
{
if (ce_attach_register[CE_SVC_LEGACY])
return ce_attach_register[CE_SVC_LEGACY]();
return NULL;
}
#endif /* QCA_LITHIUM */
static void hif_prepare_hal_shadow_register_cfg(struct hif_softc *scn,
struct pld_shadow_reg_v2_cfg **shadow_config,
int *num_shadow_registers_configured) {
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
return hif_state->ce_services->ce_prepare_shadow_register_v2_cfg(
scn, shadow_config, num_shadow_registers_configured);
}
static inline uint32_t ce_get_desc_size(struct hif_softc *scn,
uint8_t ring_type)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
return hif_state->ce_services->ce_get_desc_size(ring_type);
}
#ifdef QCA_WIFI_SUPPORT_SRNG
static inline int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
{
switch (ce_ring_type) {
case CE_RING_SRC:
return CE_SRC;
case CE_RING_DEST:
return CE_DST;
case CE_RING_STATUS:
return CE_DST_STATUS;
default:
return -EINVAL;
}
}
#else
static int32_t ce_ring_type_to_hal_ring_type(uint32_t ce_ring_type)
{
return 0;
}
#endif
static struct CE_ring_state *ce_alloc_ring_state(struct CE_state *CE_state,
uint8_t ring_type, uint32_t nentries)
{
uint32_t ce_nbytes;
char *ptr;
qdf_dma_addr_t base_addr;
struct CE_ring_state *ce_ring;
uint32_t desc_size;
struct hif_softc *scn = CE_state->scn;
ce_nbytes = sizeof(struct CE_ring_state)
+ (nentries * sizeof(void *));
ptr = qdf_mem_malloc(ce_nbytes);
if (!ptr)
return NULL;
ce_ring = (struct CE_ring_state *)ptr;
ptr += sizeof(struct CE_ring_state);
ce_ring->nentries = nentries;
ce_ring->nentries_mask = nentries - 1;
ce_ring->low_water_mark_nentries = 0;
ce_ring->high_water_mark_nentries = nentries;
ce_ring->per_transfer_context = (void **)ptr;
ce_ring->hal_ring_type = ce_ring_type_to_hal_ring_type(ring_type);
desc_size = ce_get_desc_size(scn, ring_type);
/* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
if (ce_alloc_desc_ring(scn, CE_state->id, &base_addr,
ce_ring, nentries,
desc_size) !=
QDF_STATUS_SUCCESS) {
HIF_ERROR("%s: ring has no DMA mem",
__func__);
qdf_mem_free(ce_ring);
return NULL;
}
ce_ring->base_addr_CE_space_unaligned = base_addr;
/* Correctly initialize memory to 0 to
* prevent garbage data crashing system
* when download firmware
*/
qdf_mem_zero(ce_ring->base_addr_owner_space_unaligned,
nentries * desc_size +
CE_DESC_RING_ALIGN);
if (ce_ring->base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN - 1)) {
ce_ring->base_addr_CE_space =
(ce_ring->base_addr_CE_space_unaligned +
CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1);
ce_ring->base_addr_owner_space = (void *)
(((size_t) ce_ring->base_addr_owner_space_unaligned +
CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1));
} else {
ce_ring->base_addr_CE_space =
ce_ring->base_addr_CE_space_unaligned;
ce_ring->base_addr_owner_space =
ce_ring->base_addr_owner_space_unaligned;
}
return ce_ring;
}
static int ce_ring_setup(struct hif_softc *scn, uint8_t ring_type,
uint32_t ce_id, struct CE_ring_state *ring,
struct CE_attr *attr)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
return hif_state->ce_services->ce_ring_setup(scn, ring_type, ce_id,
ring, attr);
}
int hif_ce_bus_early_suspend(struct hif_softc *scn)
{
uint8_t ul_pipe, dl_pipe;
int ce_id, status, ul_is_polled, dl_is_polled;
struct CE_state *ce_state;
status = hif_map_service_to_pipe(&scn->osc, WMI_CONTROL_SVC,
&ul_pipe, &dl_pipe,
&ul_is_polled, &dl_is_polled);
if (status) {
HIF_ERROR("%s: pipe_mapping failure", __func__);
return status;
}
for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
if (ce_id == ul_pipe)
continue;
if (ce_id == dl_pipe)
continue;
ce_state = scn->ce_id_to_state[ce_id];
qdf_spin_lock_bh(&ce_state->ce_index_lock);
if (ce_state->state == CE_RUNNING)
ce_state->state = CE_PAUSED;
qdf_spin_unlock_bh(&ce_state->ce_index_lock);
}
return status;
}
int hif_ce_bus_late_resume(struct hif_softc *scn)
{
int ce_id;
struct CE_state *ce_state;
int write_index = 0;
bool index_updated;
for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
ce_state = scn->ce_id_to_state[ce_id];
qdf_spin_lock_bh(&ce_state->ce_index_lock);
if (ce_state->state == CE_PENDING) {
write_index = ce_state->src_ring->write_index;
CE_SRC_RING_WRITE_IDX_SET(scn, ce_state->ctrl_addr,
write_index);
ce_state->state = CE_RUNNING;
index_updated = true;
} else {
index_updated = false;
}
if (ce_state->state == CE_PAUSED)
ce_state->state = CE_RUNNING;
qdf_spin_unlock_bh(&ce_state->ce_index_lock);
if (index_updated)
hif_record_ce_desc_event(scn, ce_id,
RESUME_WRITE_INDEX_UPDATE,
NULL, NULL, write_index, 0);
}
return 0;
}
/**
* ce_oom_recovery() - try to recover rx ce from oom condition
* @context: CE_state of the CE with oom rx ring
*
* the executing work Will continue to be rescheduled until
* at least 1 descriptor is successfully posted to the rx ring.
*
* return: none
*/
static void ce_oom_recovery(void *context)
{
struct CE_state *ce_state = context;
struct hif_softc *scn = ce_state->scn;
struct HIF_CE_state *ce_softc = HIF_GET_CE_STATE(scn);
struct HIF_CE_pipe_info *pipe_info =
&ce_softc->pipe_info[ce_state->id];
hif_post_recv_buffers_for_pipe(pipe_info);
}
#ifdef HIF_CE_DEBUG_DATA_BUF
/**
* alloc_mem_ce_debug_hist_data() - Allocate mem for the data pointed by
* the CE descriptors.
* Allocate HIF_CE_HISTORY_MAX records by CE_DEBUG_MAX_DATA_BUF_SIZE
* @scn: hif scn handle
* ce_id: Copy Engine Id
*
* Return: QDF_STATUS
*/
QDF_STATUS alloc_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
{
struct hif_ce_desc_event *event = NULL;
struct hif_ce_desc_event *hist_ev = NULL;
uint32_t index = 0;
hist_ev =
(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
if (!hist_ev)
return QDF_STATUS_E_NOMEM;
scn->hif_ce_desc_hist.data_enable[ce_id] = true;
for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
event = &hist_ev[index];
event->data =
(uint8_t *)qdf_mem_malloc(CE_DEBUG_MAX_DATA_BUF_SIZE);
if (!event->data) {
hif_err_rl("ce debug data alloc failed");
return QDF_STATUS_E_NOMEM;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* free_mem_ce_debug_hist_data() - Free mem of the data pointed by
* the CE descriptors.
* @scn: hif scn handle
* ce_id: Copy Engine Id
*
* Return:
*/
void free_mem_ce_debug_hist_data(struct hif_softc *scn, uint32_t ce_id)
{
struct hif_ce_desc_event *event = NULL;
struct hif_ce_desc_event *hist_ev = NULL;
uint32_t index = 0;
hist_ev =
(struct hif_ce_desc_event *)scn->hif_ce_desc_hist.hist_ev[ce_id];
if (!hist_ev)
return;
for (index = 0; index < HIF_CE_HISTORY_MAX; index++) {
event = &hist_ev[index];
if (event->data)
qdf_mem_free(event->data);
event->data = NULL;
event = NULL;
}
}
#endif /* HIF_CE_DEBUG_DATA_BUF */
#ifndef HIF_CE_DEBUG_DATA_DYNAMIC_BUF
#if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
struct hif_ce_desc_event hif_ce_desc_history[CE_COUNT_MAX][HIF_CE_HISTORY_MAX];
/**
* alloc_mem_ce_debug_history() - Allocate CE descriptor history
* @scn: hif scn handle
* @ce_id: Copy Engine Id
* @src_nentries: source ce ring entries
* Return: QDF_STATUS
*/
static QDF_STATUS
alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id,
uint32_t src_nentries)
{
struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
ce_hist->hist_ev[ce_id] = hif_ce_desc_history[ce_id];
ce_hist->enable[ce_id] = 1;
if (src_nentries)
alloc_mem_ce_debug_hist_data(scn, ce_id);
else
ce_hist->data_enable[ce_id] = false;
return QDF_STATUS_SUCCESS;
}
/**
* free_mem_ce_debug_history() - Free CE descriptor history
* @scn: hif scn handle
* @ce_id: Copy Engine Id
*
* Return: None
*/
static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int ce_id)
{
struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
ce_hist->enable[ce_id] = 0;
if (ce_hist->data_enable[ce_id]) {
ce_hist->data_enable[ce_id] = false;
free_mem_ce_debug_hist_data(scn, ce_id);
}
ce_hist->hist_ev[ce_id] = NULL;
}
#else
static inline QDF_STATUS
alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
uint32_t src_nentries)
{
return QDF_STATUS_SUCCESS;
}
static inline void
free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
#endif /* (HIF_CONFIG_SLUB_DEBUG_ON) || (HIF_CE_DEBUG_DATA_BUF) */
#else
#if defined(HIF_CE_DEBUG_DATA_BUF)
static QDF_STATUS
alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
uint32_t src_nentries)
{
scn->hif_ce_desc_hist.hist_ev[CE_id] = (struct hif_ce_desc_event *)
qdf_mem_malloc(HIF_CE_HISTORY_MAX * sizeof(struct hif_ce_desc_event));
if (!scn->hif_ce_desc_hist.hist_ev[CE_id]) {
scn->hif_ce_desc_hist.enable[CE_id] = 0;
return QDF_STATUS_E_NOMEM;
} else {
scn->hif_ce_desc_hist.enable[CE_id] = 1;
return QDF_STATUS_SUCCESS;
}
}
static void free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id)
{
struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
struct hif_ce_desc_event *hist_ev = ce_hist->hist_ev[CE_id];
if (!hist_ev)
return;
if (ce_hist->data_enable[CE_id]) {
ce_hist->data_enable[CE_id] = false;
free_mem_ce_debug_hist_data(scn, CE_id);
}
ce_hist->enable[CE_id] = 0;
qdf_mem_free(ce_hist->hist_ev[CE_id]);
ce_hist->hist_ev[CE_id] = NULL;
}
#else
static inline QDF_STATUS
alloc_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id,
uint32_t src_nentries)
{
return QDF_STATUS_SUCCESS;
}
static inline void
free_mem_ce_debug_history(struct hif_softc *scn, unsigned int CE_id) { }
#endif /* HIF_CE_DEBUG_DATA_BUF */
#endif /* HIF_CE_DEBUG_DATA_DYNAMIC_BUF */
#if defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF)
/**
* reset_ce_debug_history() - reset the index and ce id used for dumping the
* CE records on the console using sysfs.
* @scn: hif scn handle
*
* Return:
*/
static inline void reset_ce_debug_history(struct hif_softc *scn)
{
struct ce_desc_hist *ce_hist = &scn->hif_ce_desc_hist;
/* Initialise the CE debug history sysfs interface inputs ce_id and
* index. Disable data storing
*/
ce_hist->hist_index = 0;
ce_hist->hist_id = 0;
}
#else /* defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
static inline void reset_ce_debug_history(struct hif_softc *scn) { }
#endif /*defined(HIF_CONFIG_SLUB_DEBUG_ON) || defined(HIF_CE_DEBUG_DATA_BUF) */
void ce_enable_polling(void *cestate)
{
struct CE_state *CE_state = (struct CE_state *)cestate;
if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
CE_state->timer_inited = true;
}
void ce_disable_polling(void *cestate)
{
struct CE_state *CE_state = (struct CE_state *)cestate;
if (CE_state && CE_state->attr_flags & CE_ATTR_ENABLE_POLL)
CE_state->timer_inited = false;
}
/*
* Initialize a Copy Engine based on caller-supplied attributes.
* This may be called once to initialize both source and destination
* rings or it may be called twice for separate source and destination
* initialization. It may be that only one side or the other is
* initialized by software/firmware.
*
* This should be called durring the initialization sequence before
* interupts are enabled, so we don't have to worry about thread safety.
*/
struct CE_handle *ce_init(struct hif_softc *scn,
unsigned int CE_id, struct CE_attr *attr)
{
struct CE_state *CE_state;
uint32_t ctrl_addr;
unsigned int nentries;
bool malloc_CE_state = false;
bool malloc_src_ring = false;
int status;
QDF_ASSERT(CE_id < scn->ce_count);
ctrl_addr = CE_BASE_ADDRESS(CE_id);
CE_state = scn->ce_id_to_state[CE_id];
if (!CE_state) {
CE_state =
(struct CE_state *)qdf_mem_malloc(sizeof(*CE_state));
if (!CE_state)
return NULL;
malloc_CE_state = true;
qdf_spinlock_create(&CE_state->ce_index_lock);
CE_state->id = CE_id;
CE_state->ctrl_addr = ctrl_addr;
CE_state->state = CE_RUNNING;
CE_state->attr_flags = attr->flags;
}
CE_state->scn = scn;
CE_state->service = ce_engine_service_reg;
qdf_atomic_init(&CE_state->rx_pending);
if (!attr) {
/* Already initialized; caller wants the handle */
return (struct CE_handle *)CE_state;
}
if (CE_state->src_sz_max)
QDF_ASSERT(CE_state->src_sz_max == attr->src_sz_max);
else
CE_state->src_sz_max = attr->src_sz_max;
ce_init_ce_desc_event_log(scn, CE_id,
attr->src_nentries + attr->dest_nentries);
/* source ring setup */
nentries = attr->src_nentries;
if (nentries) {
struct CE_ring_state *src_ring;
nentries = roundup_pwr2(nentries);
if (CE_state->src_ring) {
QDF_ASSERT(CE_state->src_ring->nentries == nentries);
} else {
src_ring = CE_state->src_ring =
ce_alloc_ring_state(CE_state,
CE_RING_SRC,
nentries);
if (!src_ring) {
/* cannot allocate src ring. If the
* CE_state is allocated locally free
* CE_State and return error.
*/
HIF_ERROR("%s: src ring has no mem", __func__);
if (malloc_CE_state) {
/* allocated CE_state locally */
qdf_mem_free(CE_state);
malloc_CE_state = false;
}
return NULL;
}
/* we can allocate src ring. Mark that the src ring is
* allocated locally
*/
malloc_src_ring = true;
/*
* Also allocate a shadow src ring in
* regular mem to use for faster access.
*/
src_ring->shadow_base_unaligned =
qdf_mem_malloc(nentries *
sizeof(struct CE_src_desc) +
CE_DESC_RING_ALIGN);
if (!src_ring->shadow_base_unaligned)
goto error_no_dma_mem;
src_ring->shadow_base = (struct CE_src_desc *)
(((size_t) src_ring->shadow_base_unaligned +
CE_DESC_RING_ALIGN - 1) &
~(CE_DESC_RING_ALIGN - 1));
status = ce_ring_setup(scn, CE_RING_SRC, CE_id,
src_ring, attr);
if (status < 0)
goto error_target_access;
ce_ring_test_initial_indexes(CE_id, src_ring,
"src_ring");
}
}
/* destination ring setup */
nentries = attr->dest_nentries;
if (nentries) {
struct CE_ring_state *dest_ring;
nentries = roundup_pwr2(nentries);
if (CE_state->dest_ring) {
QDF_ASSERT(CE_state->dest_ring->nentries == nentries);
} else {
dest_ring = CE_state->dest_ring =
ce_alloc_ring_state(CE_state,
CE_RING_DEST,
nentries);
if (!dest_ring) {
/* cannot allocate dst ring. If the CE_state
* or src ring is allocated locally free
* CE_State and src ring and return error.
*/
HIF_ERROR("%s: dest ring has no mem",
__func__);
goto error_no_dma_mem;
}
status = ce_ring_setup(scn, CE_RING_DEST, CE_id,
dest_ring, attr);
if (status < 0)
goto error_target_access;
ce_ring_test_initial_indexes(CE_id, dest_ring,
"dest_ring");
/* For srng based target, init status ring here */
if (ce_srng_based(CE_state->scn)) {
CE_state->status_ring =
ce_alloc_ring_state(CE_state,
CE_RING_STATUS,
nentries);
if (!CE_state->status_ring) {
/*Allocation failed. Cleanup*/
qdf_mem_free(CE_state->dest_ring);
if (malloc_src_ring) {
qdf_mem_free
(CE_state->src_ring);
CE_state->src_ring = NULL;
malloc_src_ring = false;
}
if (malloc_CE_state) {
/* allocated CE_state locally */
scn->ce_id_to_state[CE_id] =
NULL;
qdf_mem_free(CE_state);
malloc_CE_state = false;
}
return NULL;
}
status = ce_ring_setup(scn, CE_RING_STATUS,
CE_id, CE_state->status_ring,
attr);
if (status < 0)
goto error_target_access;
}
/* epping */
/* poll timer */
if (CE_state->attr_flags & CE_ATTR_ENABLE_POLL) {
qdf_timer_init(scn->qdf_dev,
&CE_state->poll_timer,
ce_poll_timeout,
CE_state,
QDF_TIMER_TYPE_WAKE_APPS);
ce_enable_polling(CE_state);
qdf_timer_mod(&CE_state->poll_timer,
CE_POLL_TIMEOUT);
}
}
}
if (!ce_srng_based(scn)) {
/* Enable CE error interrupts */
if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
goto error_target_access;
CE_ERROR_INTR_ENABLE(scn, ctrl_addr);
if (Q_TARGET_ACCESS_END(scn) < 0)
goto error_target_access;
}
qdf_create_work(scn->qdf_dev, &CE_state->oom_allocation_work,
ce_oom_recovery, CE_state);
/* update the htt_data attribute */
ce_mark_datapath(CE_state);
scn->ce_id_to_state[CE_id] = CE_state;
alloc_mem_ce_debug_history(scn, CE_id, attr->src_nentries);
return (struct CE_handle *)CE_state;
error_target_access:
error_no_dma_mem:
ce_fini((struct CE_handle *)CE_state);
return NULL;
}
/**
* hif_is_polled_mode_enabled - API to query if polling is enabled on all CEs
* @hif_ctx: HIF Context
*
* API to check if polling is enabled on all CEs. Returns true when polling
* is enabled on all CEs.
*
* Return: bool
*/
bool hif_is_polled_mode_enabled(struct hif_opaque_softc *hif_ctx)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
struct CE_attr *attr;
int id;
for (id = 0; id < scn->ce_count; id++) {
attr = &hif_state->host_ce_config[id];
if (attr && (attr->dest_nentries) &&
!(attr->flags & CE_ATTR_ENABLE_POLL))
return false;
}
return true;
}
qdf_export_symbol(hif_is_polled_mode_enabled);
#ifdef WLAN_FEATURE_FASTPATH
/**
* hif_enable_fastpath() Update that we have enabled fastpath mode
* @hif_ctx: HIF context
*
* For use in data path
*
* Retrun: void
*/
void hif_enable_fastpath(struct hif_opaque_softc *hif_ctx)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
if (ce_srng_based(scn)) {
HIF_INFO("%s, srng rings do not support fastpath", __func__);
return;
}
HIF_DBG("%s, Enabling fastpath mode", __func__);
scn->fastpath_mode_on = true;
}
/**
* hif_is_fastpath_mode_enabled - API to query if fasthpath mode is enabled
* @hif_ctx: HIF Context
*
* For use in data path to skip HTC
*
* Return: bool
*/
bool hif_is_fastpath_mode_enabled(struct hif_opaque_softc *hif_ctx)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
return scn->fastpath_mode_on;
}
/**
* hif_get_ce_handle - API to get CE handle for FastPath mode
* @hif_ctx: HIF Context
* @id: CopyEngine Id
*
* API to return CE handle for fastpath mode
*
* Return: void
*/
void *hif_get_ce_handle(struct hif_opaque_softc *hif_ctx, int id)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
return scn->ce_id_to_state[id];
}
qdf_export_symbol(hif_get_ce_handle);
/**
* ce_h2t_tx_ce_cleanup() Place holder function for H2T CE cleanup.
* No processing is required inside this function.
* @ce_hdl: Cope engine handle
* Using an assert, this function makes sure that,
* the TX CE has been processed completely.
*
* This is called while dismantling CE structures. No other thread
* should be using these structures while dismantling is occurring
* therfore no locking is needed.
*
* Return: none
*/
void ce_h2t_tx_ce_cleanup(struct CE_handle *ce_hdl)
{
struct CE_state *ce_state = (struct CE_state *)ce_hdl;
struct CE_ring_state *src_ring = ce_state->src_ring;
struct hif_softc *sc = ce_state->scn;
uint32_t sw_index, write_index;
if (hif_is_nss_wifi_enabled(sc))
return;
if (sc->fastpath_mode_on && ce_state->htt_tx_data) {
HIF_DBG("%s %d Fastpath mode ON, Cleaning up HTT Tx CE",
__func__, __LINE__);
sw_index = src_ring->sw_index;
write_index = src_ring->sw_index;
/* At this point Tx CE should be clean */
qdf_assert_always(sw_index == write_index);
}
}
/**
* ce_t2h_msg_ce_cleanup() - Cleanup buffers on the t2h datapath msg queue.
* @ce_hdl: Handle to CE
*
* These buffers are never allocated on the fly, but
* are allocated only once during HIF start and freed
* only once during HIF stop.
* NOTE:
* The assumption here is there is no in-flight DMA in progress
* currently, so that buffers can be freed up safely.
*
* Return: NONE
*/
void ce_t2h_msg_ce_cleanup(struct CE_handle *ce_hdl)
{
struct CE_state *ce_state = (struct CE_state *)ce_hdl;
struct CE_ring_state *dst_ring = ce_state->dest_ring;
qdf_nbuf_t nbuf;
int i;
if (ce_state->scn->fastpath_mode_on == false)
return;
if (!ce_state->htt_rx_data)
return;
/*
* when fastpath_mode is on and for datapath CEs. Unlike other CE's,
* this CE is completely full: does not leave one blank space, to
* distinguish between empty queue & full queue. So free all the
* entries.
*/
for (i = 0; i < dst_ring->nentries; i++) {
nbuf = dst_ring->per_transfer_context[i];
/*
* The reasons for doing this check are:
* 1) Protect against calling cleanup before allocating buffers
* 2) In a corner case, FASTPATH_mode_on may be set, but we
* could have a partially filled ring, because of a memory
* allocation failure in the middle of allocating ring.
* This check accounts for that case, checking
* fastpath_mode_on flag or started flag would not have
* covered that case. This is not in performance path,
* so OK to do this.
*/
if (nbuf) {
qdf_nbuf_unmap_single(ce_state->scn->qdf_dev, nbuf,
QDF_DMA_FROM_DEVICE);
qdf_nbuf_free(nbuf);
}
}
}
/**
* hif_update_fastpath_recv_bufs_cnt() - Increments the Rx buf count by 1
* @scn: HIF handle
*
* Datapath Rx CEs are special case, where we reuse all the message buffers.
* Hence we have to post all the entries in the pipe, even, in the beginning
* unlike for other CE pipes where one less than dest_nentries are filled in
* the beginning.
*
* Return: None
*/
static void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
{
int pipe_num;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
if (scn->fastpath_mode_on == false)
return;
for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
struct HIF_CE_pipe_info *pipe_info =
&hif_state->pipe_info[pipe_num];
struct CE_state *ce_state =
scn->ce_id_to_state[pipe_info->pipe_num];
if (ce_state->htt_rx_data)
atomic_inc(&pipe_info->recv_bufs_needed);
}
}
#else
static inline void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
{
}
static inline bool ce_is_fastpath_enabled(struct hif_softc *scn)
{
return false;
}
#endif /* WLAN_FEATURE_FASTPATH */
void ce_fini(struct CE_handle *copyeng)
{
struct CE_state *CE_state = (struct CE_state *)copyeng;
unsigned int CE_id = CE_state->id;
struct hif_softc *scn = CE_state->scn;
uint32_t desc_size;
bool inited = CE_state->timer_inited;
CE_state->state = CE_UNUSED;
scn->ce_id_to_state[CE_id] = NULL;
/* Set the flag to false first to stop processing in ce_poll_timeout */
ce_disable_polling(CE_state);
qdf_lro_deinit(CE_state->lro_data);
if (CE_state->src_ring) {
/* Cleanup the datapath Tx ring */
ce_h2t_tx_ce_cleanup(copyeng);
desc_size = ce_get_desc_size(scn, CE_RING_SRC);
if (CE_state->src_ring->shadow_base_unaligned)
qdf_mem_free(CE_state->src_ring->shadow_base_unaligned);
if (CE_state->src_ring->base_addr_owner_space_unaligned)
ce_free_desc_ring(scn, CE_state->id,
CE_state->src_ring,
desc_size);
qdf_mem_free(CE_state->src_ring);
}
if (CE_state->dest_ring) {
/* Cleanup the datapath Rx ring */
ce_t2h_msg_ce_cleanup(copyeng);
desc_size = ce_get_desc_size(scn, CE_RING_DEST);
if (CE_state->dest_ring->base_addr_owner_space_unaligned)
ce_free_desc_ring(scn, CE_state->id,
CE_state->dest_ring,
desc_size);
qdf_mem_free(CE_state->dest_ring);
/* epping */
if (inited) {
qdf_timer_free(&CE_state->poll_timer);
}
}
if ((ce_srng_based(CE_state->scn)) && (CE_state->status_ring)) {
/* Cleanup the datapath Tx ring */
ce_h2t_tx_ce_cleanup(copyeng);
if (CE_state->status_ring->shadow_base_unaligned)
qdf_mem_free(
CE_state->status_ring->shadow_base_unaligned);
desc_size = ce_get_desc_size(scn, CE_RING_STATUS);
if (CE_state->status_ring->base_addr_owner_space_unaligned)
ce_free_desc_ring(scn, CE_state->id,
CE_state->status_ring,
desc_size);
qdf_mem_free(CE_state->status_ring);
}
free_mem_ce_debug_history(scn, CE_id);
reset_ce_debug_history(scn);
ce_deinit_ce_desc_event_log(scn, CE_id);
qdf_spinlock_destroy(&CE_state->ce_index_lock);
qdf_mem_free(CE_state);
}
void hif_detach_htc(struct hif_opaque_softc *hif_ctx)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
qdf_mem_zero(&hif_state->msg_callbacks_pending,
sizeof(hif_state->msg_callbacks_pending));
qdf_mem_zero(&hif_state->msg_callbacks_current,
sizeof(hif_state->msg_callbacks_current));
}
/* Send the first nbytes bytes of the buffer */
QDF_STATUS
hif_send_head(struct hif_opaque_softc *hif_ctx,
uint8_t pipe, unsigned int transfer_id, unsigned int nbytes,
qdf_nbuf_t nbuf, unsigned int data_attr)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
struct CE_handle *ce_hdl = pipe_info->ce_hdl;
int bytes = nbytes, nfrags = 0;
struct ce_sendlist sendlist;
int status, i = 0;
unsigned int mux_id = 0;
if (nbytes > qdf_nbuf_len(nbuf)) {
HIF_ERROR("%s: nbytes:%d nbuf_len:%d", __func__, nbytes,
(uint32_t)qdf_nbuf_len(nbuf));
QDF_ASSERT(0);
}
transfer_id =
(mux_id & MUX_ID_MASK) |
(transfer_id & TRANSACTION_ID_MASK);
data_attr &= DESC_DATA_FLAG_MASK;
/*
* The common case involves sending multiple fragments within a
* single download (the tx descriptor and the tx frame header).
* So, optimize for the case of multiple fragments by not even
* checking whether it's necessary to use a sendlist.
* The overhead of using a sendlist for a single buffer download
* is not a big deal, since it happens rarely (for WMI messages).
*/
ce_sendlist_init(&sendlist);
do {
qdf_dma_addr_t frag_paddr;
int frag_bytes;
frag_paddr = qdf_nbuf_get_frag_paddr(nbuf, nfrags);
frag_bytes = qdf_nbuf_get_frag_len(nbuf, nfrags);
/*
* Clear the packet offset for all but the first CE desc.
*/
if (i++ > 0)
data_attr &= ~QDF_CE_TX_PKT_OFFSET_BIT_M;
status = ce_sendlist_buf_add(&sendlist, frag_paddr,
frag_bytes >
bytes ? bytes : frag_bytes,
qdf_nbuf_get_frag_is_wordstream
(nbuf,
nfrags) ? 0 :
CE_SEND_FLAG_SWAP_DISABLE,
data_attr);
if (status != QDF_STATUS_SUCCESS) {
HIF_ERROR("%s: error, frag_num %d larger than limit",
__func__, nfrags);
return status;
}
bytes -= frag_bytes;
nfrags++;
} while (bytes > 0);
/* Make sure we have resources to handle this request */
qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
if (pipe_info->num_sends_allowed < nfrags) {
qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
ce_pkt_error_count_incr(hif_state, HIF_PIPE_NO_RESOURCE);
return QDF_STATUS_E_RESOURCES;
}
pipe_info->num_sends_allowed -= nfrags;
qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
if (qdf_unlikely(!ce_hdl)) {
HIF_ERROR("%s: error CE handle is null", __func__);
return A_ERROR;
}
QDF_NBUF_UPDATE_TX_PKT_COUNT(nbuf, QDF_NBUF_TX_PKT_HIF);
DPTRACE(qdf_dp_trace(nbuf, QDF_DP_TRACE_HIF_PACKET_PTR_RECORD,
QDF_TRACE_DEFAULT_PDEV_ID, qdf_nbuf_data_addr(nbuf),
sizeof(qdf_nbuf_data(nbuf)), QDF_TX));
status = ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
QDF_ASSERT(status == QDF_STATUS_SUCCESS);
return status;
}
void hif_send_complete_check(struct hif_opaque_softc *hif_ctx, uint8_t pipe,
int force)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
if (!force) {
int resources;
/*
* Decide whether to actually poll for completions, or just
* wait for a later chance. If there seem to be plenty of
* resources left, then just wait, since checking involves
* reading a CE register, which is a relatively expensive
* operation.
*/
resources = hif_get_free_queue_number(hif_ctx, pipe);
/*
* If at least 50% of the total resources are still available,
* don't bother checking again yet.
*/
if (resources > (hif_state->host_ce_config[pipe].src_nentries >>
1))
return;
}
#if ATH_11AC_TXCOMPACT
ce_per_engine_servicereap(scn, pipe);
#else
ce_per_engine_service(scn, pipe);
#endif
}
uint16_t
hif_get_free_queue_number(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
uint16_t rv;
qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
rv = pipe_info->num_sends_allowed;
qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
return rv;
}
/* Called by lower (CE) layer when a send to Target completes. */
static void
hif_pci_ce_send_done(struct CE_handle *copyeng, void *ce_context,
void *transfer_context, qdf_dma_addr_t CE_data,
unsigned int nbytes, unsigned int transfer_id,
unsigned int sw_index, unsigned int hw_index,
unsigned int toeplitz_hash_result)
{
struct HIF_CE_pipe_info *pipe_info =
(struct HIF_CE_pipe_info *)ce_context;
unsigned int sw_idx = sw_index, hw_idx = hw_index;
struct hif_msg_callbacks *msg_callbacks =
&pipe_info->pipe_callbacks;
do {
/*
* The upper layer callback will be triggered
* when last fragment is complteted.
*/
if (transfer_context != CE_SENDLIST_ITEM_CTXT)
msg_callbacks->txCompletionHandler(
msg_callbacks->Context,
transfer_context, transfer_id,
toeplitz_hash_result);
qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
pipe_info->num_sends_allowed++;
qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
} while (ce_completed_send_next(copyeng,
&ce_context, &transfer_context,
&CE_data, &nbytes, &transfer_id,
&sw_idx, &hw_idx,
&toeplitz_hash_result) == QDF_STATUS_SUCCESS);
}
/**
* hif_ce_do_recv(): send message from copy engine to upper layers
* @msg_callbacks: structure containing callback and callback context
* @netbuff: skb containing message
* @nbytes: number of bytes in the message
* @pipe_info: used for the pipe_number info
*
* Checks the packet length, configures the length in the netbuff,
* and calls the upper layer callback.
*
* return: None
*/
static inline void hif_ce_do_recv(struct hif_msg_callbacks *msg_callbacks,
qdf_nbuf_t netbuf, int nbytes,
struct HIF_CE_pipe_info *pipe_info) {
if (nbytes <= pipe_info->buf_sz) {
qdf_nbuf_set_pktlen(netbuf, nbytes);
msg_callbacks->
rxCompletionHandler(msg_callbacks->Context,
netbuf, pipe_info->pipe_num);
} else {
HIF_ERROR("%s: Invalid Rx msg buf:%pK nbytes:%d",
__func__, netbuf, nbytes);
qdf_nbuf_free(netbuf);
}
}
/* Called by lower (CE) layer when data is received from the Target. */
static void
hif_pci_ce_recv_data(struct CE_handle *copyeng, void *ce_context,
void *transfer_context, qdf_dma_addr_t CE_data,
unsigned int nbytes, unsigned int transfer_id,
unsigned int flags)
{
struct HIF_CE_pipe_info *pipe_info =
(struct HIF_CE_pipe_info *)ce_context;
struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
struct CE_state *ce_state = (struct CE_state *) copyeng;
struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
struct hif_opaque_softc *hif_ctx = GET_HIF_OPAQUE_HDL(scn);
struct hif_msg_callbacks *msg_callbacks =
&pipe_info->pipe_callbacks;
do {
hif_pm_runtime_mark_last_busy(hif_ctx);
qdf_nbuf_unmap_single(scn->qdf_dev,
(qdf_nbuf_t) transfer_context,
QDF_DMA_FROM_DEVICE);
atomic_inc(&pipe_info->recv_bufs_needed);
hif_post_recv_buffers_for_pipe(pipe_info);
if (scn->target_status == TARGET_STATUS_RESET)
qdf_nbuf_free(transfer_context);
else
hif_ce_do_recv(msg_callbacks, transfer_context,
nbytes, pipe_info);
/* Set up force_break flag if num of receices reaches
* MAX_NUM_OF_RECEIVES
*/
ce_state->receive_count++;
if (qdf_unlikely(hif_ce_service_should_yield(scn, ce_state))) {
ce_state->force_break = 1;
break;
}
} while (ce_completed_recv_next(copyeng, &ce_context, &transfer_context,
&CE_data, &nbytes, &transfer_id,
&flags) == QDF_STATUS_SUCCESS);
}
/* TBDXXX: Set CE High Watermark; invoke txResourceAvailHandler in response */
void
hif_post_init(struct hif_opaque_softc *hif_ctx, void *unused,
struct hif_msg_callbacks *callbacks)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
#ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
spin_lock_init(&pcie_access_log_lock);
#endif
/* Save callbacks for later installation */
qdf_mem_copy(&hif_state->msg_callbacks_pending, callbacks,
sizeof(hif_state->msg_callbacks_pending));
}
static int hif_completion_thread_startup(struct HIF_CE_state *hif_state)
{
struct CE_handle *ce_diag = hif_state->ce_diag;
int pipe_num;
struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
struct hif_msg_callbacks *hif_msg_callbacks =
&hif_state->msg_callbacks_current;
/* daemonize("hif_compl_thread"); */
if (scn->ce_count == 0) {
HIF_ERROR("%s: Invalid ce_count", __func__);
return -EINVAL;
}
if (!hif_msg_callbacks ||
!hif_msg_callbacks->rxCompletionHandler ||
!hif_msg_callbacks->txCompletionHandler) {
HIF_ERROR("%s: no completion handler registered", __func__);
return -EFAULT;
}
A_TARGET_ACCESS_LIKELY(scn);
for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
struct CE_attr attr;
struct HIF_CE_pipe_info *pipe_info;
pipe_info = &hif_state->pipe_info[pipe_num];
if (pipe_info->ce_hdl == ce_diag)
continue; /* Handle Diagnostic CE specially */
attr = hif_state->host_ce_config[pipe_num];
if (attr.src_nentries) {
/* pipe used to send to target */
HIF_DBG("%s: pipe_num:%d pipe_info:0x%pK",
__func__, pipe_num, pipe_info);
ce_send_cb_register(pipe_info->ce_hdl,
hif_pci_ce_send_done, pipe_info,
attr.flags & CE_ATTR_DISABLE_INTR);
pipe_info->num_sends_allowed = attr.src_nentries - 1;
}
if (attr.dest_nentries) {
/* pipe used to receive from target */
ce_recv_cb_register(pipe_info->ce_hdl,
hif_pci_ce_recv_data, pipe_info,
attr.flags & CE_ATTR_DISABLE_INTR);
}
if (attr.src_nentries)
qdf_spinlock_create(&pipe_info->completion_freeq_lock);
qdf_mem_copy(&pipe_info->pipe_callbacks, hif_msg_callbacks,
sizeof(pipe_info->pipe_callbacks));
}
A_TARGET_ACCESS_UNLIKELY(scn);
return 0;
}
/*
* Install pending msg callbacks.
*
* TBDXXX: This hack is needed because upper layers install msg callbacks
* for use with HTC before BMI is done; yet this HIF implementation
* needs to continue to use BMI msg callbacks. Really, upper layers
* should not register HTC callbacks until AFTER BMI phase.
*/
static void hif_msg_callbacks_install(struct hif_softc *scn)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
qdf_mem_copy(&hif_state->msg_callbacks_current,
&hif_state->msg_callbacks_pending,
sizeof(hif_state->msg_callbacks_pending));
}
void hif_get_default_pipe(struct hif_opaque_softc *hif_hdl, uint8_t *ULPipe,
uint8_t *DLPipe)
{
int ul_is_polled, dl_is_polled;
(void)hif_map_service_to_pipe(hif_hdl, HTC_CTRL_RSVD_SVC,
ULPipe, DLPipe, &ul_is_polled, &dl_is_polled);
}
/**
* hif_dump_pipe_debug_count() - Log error count
* @scn: hif_softc pointer.
*
* Output the pipe error counts of each pipe to log file
*
* Return: N/A
*/
void hif_dump_pipe_debug_count(struct hif_softc *scn)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
int pipe_num;
if (!hif_state) {
HIF_ERROR("%s hif_state is NULL", __func__);
return;
}
for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
struct HIF_CE_pipe_info *pipe_info;
pipe_info = &hif_state->pipe_info[pipe_num];
if (pipe_info->nbuf_alloc_err_count > 0 ||
pipe_info->nbuf_dma_err_count > 0 ||
pipe_info->nbuf_ce_enqueue_err_count)
HIF_ERROR(
"%s: pipe_id = %d, recv_bufs_needed = %d, nbuf_alloc_err_count = %u, nbuf_dma_err_count = %u, nbuf_ce_enqueue_err_count = %u",
__func__, pipe_info->pipe_num,
atomic_read(&pipe_info->recv_bufs_needed),
pipe_info->nbuf_alloc_err_count,
pipe_info->nbuf_dma_err_count,
pipe_info->nbuf_ce_enqueue_err_count);
}
}
static void hif_post_recv_buffers_failure(struct HIF_CE_pipe_info *pipe_info,
void *nbuf, uint32_t *error_cnt,
enum hif_ce_event_type failure_type,
const char *failure_type_string)
{
int bufs_needed_tmp = atomic_inc_return(&pipe_info->recv_bufs_needed);
struct CE_state *CE_state = (struct CE_state *)pipe_info->ce_hdl;
struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
int ce_id = CE_state->id;
uint32_t error_cnt_tmp;
qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
error_cnt_tmp = ++(*error_cnt);
qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
HIF_DBG("%s: pipe_num %d, needed %d, err_cnt = %u, fail_type = %s",
__func__, pipe_info->pipe_num, bufs_needed_tmp, error_cnt_tmp,
failure_type_string);
hif_record_ce_desc_event(scn, ce_id, failure_type,
NULL, nbuf, bufs_needed_tmp, 0);
/* if we fail to allocate the last buffer for an rx pipe,
* there is no trigger to refill the ce and we will
* eventually crash
*/
if (bufs_needed_tmp == CE_state->dest_ring->nentries - 1 ||
(ce_srng_based(scn) &&
bufs_needed_tmp == CE_state->dest_ring->nentries - 2))
qdf_sched_work(scn->qdf_dev, &CE_state->oom_allocation_work);
}
QDF_STATUS hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info)
{
struct CE_handle *ce_hdl;
qdf_size_t buf_sz;
struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
QDF_STATUS status;
uint32_t bufs_posted = 0;
unsigned int ce_id;
buf_sz = pipe_info->buf_sz;
if (buf_sz == 0) {
/* Unused Copy Engine */
return QDF_STATUS_SUCCESS;
}
ce_hdl = pipe_info->ce_hdl;
ce_id = ((struct CE_state *)ce_hdl)->id;
qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
while (atomic_read(&pipe_info->recv_bufs_needed) > 0) {
qdf_dma_addr_t CE_data; /* CE space buffer address */
qdf_nbuf_t nbuf;
atomic_dec(&pipe_info->recv_bufs_needed);
qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
hif_record_ce_desc_event(scn, ce_id,
HIF_RX_DESC_PRE_NBUF_ALLOC, NULL, NULL,
0, 0);
nbuf = qdf_nbuf_alloc(scn->qdf_dev, buf_sz, 0, 4, false);
if (!nbuf) {
hif_post_recv_buffers_failure(pipe_info, nbuf,
&pipe_info->nbuf_alloc_err_count,
HIF_RX_NBUF_ALLOC_FAILURE,
"HIF_RX_NBUF_ALLOC_FAILURE");
return QDF_STATUS_E_NOMEM;
}
hif_record_ce_desc_event(scn, ce_id,
HIF_RX_DESC_PRE_NBUF_MAP, NULL, nbuf,
0, 0);
/*
* qdf_nbuf_peek_header(nbuf, &data, &unused);
* CE_data = dma_map_single(dev, data, buf_sz, );
* DMA_FROM_DEVICE);
*/
status = qdf_nbuf_map_single(scn->qdf_dev, nbuf,
QDF_DMA_FROM_DEVICE);
if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
hif_post_recv_buffers_failure(pipe_info, nbuf,
&pipe_info->nbuf_dma_err_count,
HIF_RX_NBUF_MAP_FAILURE,
"HIF_RX_NBUF_MAP_FAILURE");
qdf_nbuf_free(nbuf);
return status;
}
CE_data = qdf_nbuf_get_frag_paddr(nbuf, 0);
hif_record_ce_desc_event(scn, ce_id,
HIF_RX_DESC_POST_NBUF_MAP, NULL, nbuf,
0, 0);
qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data,
buf_sz, DMA_FROM_DEVICE);
status = ce_recv_buf_enqueue(ce_hdl, (void *)nbuf, CE_data);
if (qdf_unlikely(status != QDF_STATUS_SUCCESS)) {
hif_post_recv_buffers_failure(pipe_info, nbuf,
&pipe_info->nbuf_ce_enqueue_err_count,
HIF_RX_NBUF_ENQUEUE_FAILURE,
"HIF_RX_NBUF_ENQUEUE_FAILURE");
qdf_nbuf_unmap_single(scn->qdf_dev, nbuf,
QDF_DMA_FROM_DEVICE);
qdf_nbuf_free(nbuf);
return status;
}
qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
bufs_posted++;
}
pipe_info->nbuf_alloc_err_count =
(pipe_info->nbuf_alloc_err_count > bufs_posted) ?
pipe_info->nbuf_alloc_err_count - bufs_posted : 0;
pipe_info->nbuf_dma_err_count =
(pipe_info->nbuf_dma_err_count > bufs_posted) ?
pipe_info->nbuf_dma_err_count - bufs_posted : 0;
pipe_info->nbuf_ce_enqueue_err_count =
(pipe_info->nbuf_ce_enqueue_err_count > bufs_posted) ?
pipe_info->nbuf_ce_enqueue_err_count - bufs_posted : 0;
qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
return QDF_STATUS_SUCCESS;
}
/*
* Try to post all desired receive buffers for all pipes.
* Returns 0 for non fastpath rx copy engine as
* oom_allocation_work will be scheduled to recover any
* failures, non-zero if unable to completely replenish
* receive buffers for fastpath rx Copy engine.
*/
QDF_STATUS hif_post_recv_buffers(struct hif_softc *scn)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
int pipe_num;
struct CE_state *ce_state = NULL;
QDF_STATUS qdf_status;
A_TARGET_ACCESS_LIKELY(scn);
for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
struct HIF_CE_pipe_info *pipe_info;
ce_state = scn->ce_id_to_state[pipe_num];
pipe_info = &hif_state->pipe_info[pipe_num];
if (hif_is_nss_wifi_enabled(scn) &&
ce_state && (ce_state->htt_rx_data))
continue;
qdf_status = hif_post_recv_buffers_for_pipe(pipe_info);
if (!QDF_IS_STATUS_SUCCESS(qdf_status) && ce_state &&
ce_state->htt_rx_data &&
scn->fastpath_mode_on) {
A_TARGET_ACCESS_UNLIKELY(scn);
return qdf_status;
}
}
A_TARGET_ACCESS_UNLIKELY(scn);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS hif_start(struct hif_opaque_softc *hif_ctx)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
QDF_STATUS qdf_status = QDF_STATUS_SUCCESS;
hif_update_fastpath_recv_bufs_cnt(scn);
hif_msg_callbacks_install(scn);
if (hif_completion_thread_startup(hif_state))
return QDF_STATUS_E_FAILURE;
/* enable buffer cleanup */
hif_state->started = true;
/* Post buffers once to start things off. */
qdf_status = hif_post_recv_buffers(scn);
if (!QDF_IS_STATUS_SUCCESS(qdf_status)) {
/* cleanup is done in hif_ce_disable */
HIF_ERROR("%s:failed to post buffers", __func__);
return qdf_status;
}
return qdf_status;
}
static void hif_recv_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
{
struct hif_softc *scn;
struct CE_handle *ce_hdl;
uint32_t buf_sz;
struct HIF_CE_state *hif_state;
qdf_nbuf_t netbuf;
qdf_dma_addr_t CE_data;
void *per_CE_context;
buf_sz = pipe_info->buf_sz;
/* Unused Copy Engine */
if (buf_sz == 0)
return;
hif_state = pipe_info->HIF_CE_state;
if (!hif_state->started)
return;
scn = HIF_GET_SOFTC(hif_state);
ce_hdl = pipe_info->ce_hdl;
if (!scn->qdf_dev)
return;
while (ce_revoke_recv_next
(ce_hdl, &per_CE_context, (void **)&netbuf,
&CE_data) == QDF_STATUS_SUCCESS) {
if (netbuf) {
qdf_nbuf_unmap_single(scn->qdf_dev, netbuf,
QDF_DMA_FROM_DEVICE);
qdf_nbuf_free(netbuf);
}
}
}
static void hif_send_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
{
struct CE_handle *ce_hdl;
struct HIF_CE_state *hif_state;
struct hif_softc *scn;
qdf_nbuf_t netbuf;
void *per_CE_context;
qdf_dma_addr_t CE_data;
unsigned int nbytes;
unsigned int id;
uint32_t buf_sz;
uint32_t toeplitz_hash_result;
buf_sz = pipe_info->buf_sz;
if (buf_sz == 0) {
/* Unused Copy Engine */
return;
}
hif_state = pipe_info->HIF_CE_state;
if (!hif_state->started) {
return;
}
scn = HIF_GET_SOFTC(hif_state);
ce_hdl = pipe_info->ce_hdl;
while (ce_cancel_send_next
(ce_hdl, &per_CE_context,
(void **)&netbuf, &CE_data, &nbytes,
&id, &toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
if (netbuf != CE_SENDLIST_ITEM_CTXT) {
/*
* Packets enqueued by htt_h2t_ver_req_msg() and
* htt_h2t_rx_ring_cfg_msg_ll() have already been
* freed in htt_htc_misc_pkt_pool_free() in
* wlantl_close(), so do not free them here again
* by checking whether it's the endpoint
* which they are queued in.
*/
if (id == scn->htc_htt_tx_endpoint)
return;
/* Indicate the completion to higher
* layer to free the buffer
*/
if (pipe_info->pipe_callbacks.txCompletionHandler)
pipe_info->pipe_callbacks.
txCompletionHandler(pipe_info->
pipe_callbacks.Context,
netbuf, id, toeplitz_hash_result);
}
}
}
/*
* Cleanup residual buffers for device shutdown:
* buffers that were enqueued for receive
* buffers that were to be sent
* Note: Buffers that had completed but which were
* not yet processed are on a completion queue. They
* are handled when the completion thread shuts down.
*/
static void hif_buffer_cleanup(struct HIF_CE_state *hif_state)
{
int pipe_num;
struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
struct CE_state *ce_state;
for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
struct HIF_CE_pipe_info *pipe_info;
ce_state = scn->ce_id_to_state[pipe_num];
if (hif_is_nss_wifi_enabled(scn) && ce_state &&
((ce_state->htt_tx_data) ||
(ce_state->htt_rx_data))) {
continue;
}
pipe_info = &hif_state->pipe_info[pipe_num];
hif_recv_buffer_cleanup_on_pipe(pipe_info);
hif_send_buffer_cleanup_on_pipe(pipe_info);
}
}
void hif_flush_surprise_remove(struct hif_opaque_softc *hif_ctx)
{
struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
hif_buffer_cleanup(hif_state);
}
static void hif_destroy_oom_work(struct hif_softc *scn)
{
struct CE_state *ce_state;
int ce_id;
for (ce_id = 0; ce_id < scn->ce_count; ce_id++) {
ce_state = scn->ce_id_to_state[ce_id];
if (ce_state)
qdf_destroy_work(scn->qdf_dev,
&ce_state->oom_allocation_work);
}
}
void hif_ce_stop(struct hif_softc *scn)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
int pipe_num;
/*
* before cleaning up any memory, ensure irq &
* bottom half contexts will not be re-entered
*/
hif_disable_isr(&scn->osc);
hif_destroy_oom_work(scn);
scn->hif_init_done = false;
/*
* At this point, asynchronous threads are stopped,
* The Target should not DMA nor interrupt, Host code may
* not initiate anything more. So we just need to clean
* up Host-side state.
*/
if (scn->athdiag_procfs_inited) {
athdiag_procfs_remove();
scn->athdiag_procfs_inited = false;
}
hif_buffer_cleanup(hif_state);
for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
struct HIF_CE_pipe_info *pipe_info;
struct CE_attr attr;
struct CE_handle *ce_diag = hif_state->ce_diag;
pipe_info = &hif_state->pipe_info[pipe_num];
if (pipe_info->ce_hdl) {
if (pipe_info->ce_hdl != ce_diag &&
hif_state->started) {
attr = hif_state->host_ce_config[pipe_num];
if (attr.src_nentries)
qdf_spinlock_destroy(&pipe_info->
completion_freeq_lock);
}
ce_fini(pipe_info->ce_hdl);
pipe_info->ce_hdl = NULL;
pipe_info->buf_sz = 0;
qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
}
}
if (hif_state->sleep_timer_init) {
qdf_timer_stop(&hif_state->sleep_timer);
qdf_timer_free(&hif_state->sleep_timer);
hif_state->sleep_timer_init = false;
}
hif_state->started = false;
}
static void hif_get_shadow_reg_cfg(struct hif_softc *scn,
struct shadow_reg_cfg
**target_shadow_reg_cfg_ret,
uint32_t *shadow_cfg_sz_ret)
{
if (target_shadow_reg_cfg_ret)
*target_shadow_reg_cfg_ret = target_shadow_reg_cfg;
if (shadow_cfg_sz_ret)
*shadow_cfg_sz_ret = shadow_cfg_sz;
}
/**
* hif_get_target_ce_config() - get copy engine configuration
* @target_ce_config_ret: basic copy engine configuration
* @target_ce_config_sz_ret: size of the basic configuration in bytes
* @target_service_to_ce_map_ret: service mapping for the copy engines
* @target_service_to_ce_map_sz_ret: size of the mapping in bytes
* @target_shadow_reg_cfg_ret: shadow register configuration
* @shadow_cfg_sz_ret: size of the shadow register configuration in bytes
*
* providing accessor to these values outside of this file.
* currently these are stored in static pointers to const sections.
* there are multiple configurations that are selected from at compile time.
* Runtime selection would need to consider mode, target type and bus type.
*
* Return: return by parameter.
*/
void hif_get_target_ce_config(struct hif_softc *scn,
struct CE_pipe_config **target_ce_config_ret,
uint32_t *target_ce_config_sz_ret,
struct service_to_pipe **target_service_to_ce_map_ret,
uint32_t *target_service_to_ce_map_sz_ret,
struct shadow_reg_cfg **target_shadow_reg_cfg_ret,
uint32_t *shadow_cfg_sz_ret)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
*target_ce_config_ret = hif_state->target_ce_config;
*target_ce_config_sz_ret = hif_state->target_ce_config_sz;
hif_select_service_to_pipe_map(scn, target_service_to_ce_map_ret,
target_service_to_ce_map_sz_ret);
hif_get_shadow_reg_cfg(scn, target_shadow_reg_cfg_ret,
shadow_cfg_sz_ret);
}
#ifdef CONFIG_SHADOW_V2
static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
{
int i;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: num_config %d", __func__, cfg->num_shadow_reg_v2_cfg);
for (i = 0; i < cfg->num_shadow_reg_v2_cfg; i++) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
"%s: i %d, val %x", __func__, i,
cfg->shadow_reg_v2_cfg[i].addr);
}
}
#else
static void hif_print_hal_shadow_register_cfg(struct pld_wlan_enable_cfg *cfg)
{
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: CONFIG_SHADOW_V2 not defined", __func__);
}
#endif
#ifdef ADRASTEA_RRI_ON_DDR
/**
* hif_get_src_ring_read_index(): Called to get the SRRI
*
* @scn: hif_softc pointer
* @CE_ctrl_addr: base address of the CE whose RRI is to be read
*
* This function returns the SRRI to the caller. For CEs that
* dont have interrupts enabled, we look at the DDR based SRRI
*
* Return: SRRI
*/
inline unsigned int hif_get_src_ring_read_index(struct hif_softc *scn,
uint32_t CE_ctrl_addr)
{
struct CE_attr attr;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
if (attr.flags & CE_ATTR_DISABLE_INTR) {
return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
} else {
if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
return A_TARGET_READ(scn,
(CE_ctrl_addr) + CURRENT_SRRI_ADDRESS);
else
return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn,
CE_ctrl_addr);
}
}
/**
* hif_get_dst_ring_read_index(): Called to get the DRRI
*
* @scn: hif_softc pointer
* @CE_ctrl_addr: base address of the CE whose RRI is to be read
*
* This function returns the DRRI to the caller. For CEs that
* dont have interrupts enabled, we look at the DDR based DRRI
*
* Return: DRRI
*/
inline unsigned int hif_get_dst_ring_read_index(struct hif_softc *scn,
uint32_t CE_ctrl_addr)
{
struct CE_attr attr;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
if (attr.flags & CE_ATTR_DISABLE_INTR) {
return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
} else {
if (TARGET_REGISTER_ACCESS_ALLOWED(scn))
return A_TARGET_READ(scn,
(CE_ctrl_addr) + CURRENT_DRRI_ADDRESS);
else
return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn,
CE_ctrl_addr);
}
}
/**
* hif_alloc_rri_on_ddr() - Allocate memory for rri on ddr
* @scn: hif_softc pointer
*
* Return: qdf status
*/
static inline QDF_STATUS hif_alloc_rri_on_ddr(struct hif_softc *scn)
{
qdf_dma_addr_t paddr_rri_on_ddr = 0;
scn->vaddr_rri_on_ddr =
(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
scn->qdf_dev->dev, (CE_COUNT * sizeof(uint32_t)),
&paddr_rri_on_ddr);
if (!scn->vaddr_rri_on_ddr) {
hif_err("dmaable page alloc fail");
return QDF_STATUS_E_NOMEM;
}
scn->paddr_rri_on_ddr = paddr_rri_on_ddr;
qdf_mem_zero(scn->vaddr_rri_on_ddr, CE_COUNT * sizeof(uint32_t));
return QDF_STATUS_SUCCESS;
}
#endif
#if (!defined(QCN7605_SUPPORT)) && defined(ADRASTEA_RRI_ON_DDR)
/**
* hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
*
* @scn: hif_softc pointer
*
* This function allocates non cached memory on ddr and sends
* the physical address of this memory to the CE hardware. The
* hardware updates the RRI on this particular location.
*
* Return: None
*/
static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
{
unsigned int i;
uint32_t high_paddr, low_paddr;
if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
return;
low_paddr = BITS0_TO_31(scn->paddr_rri_on_ddr);
high_paddr = BITS32_TO_35(scn->paddr_rri_on_ddr);
HIF_DBG("%s using srri and drri from DDR", __func__);
WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr);
WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr);
for (i = 0; i < CE_COUNT; i++)
CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i));
}
#else
/**
* hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
*
* @scn: hif_softc pointer
*
* This is a dummy implementation for platforms that don't
* support this functionality.
*
* Return: None
*/
static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
{
}
#endif
/**
* hif_update_rri_over_ddr_config() - update rri_over_ddr config for
* QMI command
* @scn: hif context
* @cfg: wlan enable config
*
* In case of Genoa, rri_over_ddr memory configuration is passed
* to firmware through QMI configure command.
*/
#if defined(QCN7605_SUPPORT) && defined(ADRASTEA_RRI_ON_DDR)
static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
struct pld_wlan_enable_cfg *cfg)
{
if (hif_alloc_rri_on_ddr(scn) != QDF_STATUS_SUCCESS)
return;
cfg->rri_over_ddr_cfg_valid = true;
cfg->rri_over_ddr_cfg.base_addr_low =
BITS0_TO_31(scn->paddr_rri_on_ddr);
cfg->rri_over_ddr_cfg.base_addr_high =
BITS32_TO_35(scn->paddr_rri_on_ddr);
}
#else
static void hif_update_rri_over_ddr_config(struct hif_softc *scn,
struct pld_wlan_enable_cfg *cfg)
{
}
#endif
/**
* hif_wlan_enable(): call the platform driver to enable wlan
* @scn: HIF Context
*
* This function passes the con_mode and CE configuration to
* platform driver to enable wlan.
*
* Return: linux error code
*/
int hif_wlan_enable(struct hif_softc *scn)
{
struct pld_wlan_enable_cfg cfg;
enum pld_driver_mode mode;
uint32_t con_mode = hif_get_conparam(scn);
hif_get_target_ce_config(scn,
(struct CE_pipe_config **)&cfg.ce_tgt_cfg,
&cfg.num_ce_tgt_cfg,
(struct service_to_pipe **)&cfg.ce_svc_cfg,
&cfg.num_ce_svc_pipe_cfg,
(struct shadow_reg_cfg **)&cfg.shadow_reg_cfg,
&cfg.num_shadow_reg_cfg);
/* translate from structure size to array size */
cfg.num_ce_tgt_cfg /= sizeof(struct CE_pipe_config);
cfg.num_ce_svc_pipe_cfg /= sizeof(struct service_to_pipe);
cfg.num_shadow_reg_cfg /= sizeof(struct shadow_reg_cfg);
hif_prepare_hal_shadow_register_cfg(scn, &cfg.shadow_reg_v2_cfg,
&cfg.num_shadow_reg_v2_cfg);
hif_print_hal_shadow_register_cfg(&cfg);
hif_update_rri_over_ddr_config(scn, &cfg);
if (QDF_GLOBAL_FTM_MODE == con_mode)
mode = PLD_FTM;
else if (QDF_GLOBAL_COLDBOOT_CALIB_MODE == con_mode)
mode = PLD_COLDBOOT_CALIBRATION;
else if (QDF_GLOBAL_FTM_COLDBOOT_CALIB_MODE == con_mode)
mode = PLD_FTM_COLDBOOT_CALIBRATION;
else if (QDF_IS_EPPING_ENABLED(con_mode))
mode = PLD_EPPING;
else
mode = PLD_MISSION;
if (BYPASS_QMI)
return 0;
else
return pld_wlan_enable(scn->qdf_dev->dev, &cfg, mode);
}
#ifdef WLAN_FEATURE_EPPING
#define CE_EPPING_USES_IRQ true
void hif_ce_prepare_epping_config(struct HIF_CE_state *hif_state)
{
if (CE_EPPING_USES_IRQ)
hif_state->host_ce_config = host_ce_config_wlan_epping_irq;
else
hif_state->host_ce_config = host_ce_config_wlan_epping_poll;
hif_state->target_ce_config = target_ce_config_wlan_epping;
hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_epping);
target_shadow_reg_cfg = target_shadow_reg_cfg_epping;
shadow_cfg_sz = sizeof(target_shadow_reg_cfg_epping);
}
#endif
#ifdef QCN7605_SUPPORT
static inline
void hif_set_ce_config_qcn7605(struct hif_softc *scn,
struct HIF_CE_state *hif_state)
{
hif_state->host_ce_config = host_ce_config_wlan_qcn7605;
hif_state->target_ce_config = target_ce_config_wlan_qcn7605;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qcn7605);
target_shadow_reg_cfg = target_shadow_reg_cfg_map_qcn7605;
shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map_qcn7605);
scn->ce_count = QCN7605_CE_COUNT;
}
#else
static inline
void hif_set_ce_config_qcn7605(struct hif_softc *scn,
struct HIF_CE_state *hif_state)
{
HIF_ERROR("QCN7605 not supported");
}
#endif
#ifdef CE_SVC_CMN_INIT
#ifdef QCA_WIFI_SUPPORT_SRNG
static inline void hif_ce_service_init(void)
{
ce_service_srng_init();
}
#else
static inline void hif_ce_service_init(void)
{
ce_service_legacy_init();
}
#endif
#else
static inline void hif_ce_service_init(void)
{
}
#endif
/**
* hif_ce_prepare_config() - load the correct static tables.
* @scn: hif context
*
* Epping uses different static attribute tables than mission mode.
*/
void hif_ce_prepare_config(struct hif_softc *scn)
{
uint32_t mode = hif_get_conparam(scn);
struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
hif_ce_service_init();
hif_state->ce_services = ce_services_attach(scn);
scn->ce_count = HOST_CE_COUNT;
/* if epping is enabled we need to use the epping configuration. */
if (QDF_IS_EPPING_ENABLED(mode)) {
hif_ce_prepare_epping_config(hif_state);
return;
}
switch (tgt_info->target_type) {
default:
hif_state->host_ce_config = host_ce_config_wlan;
hif_state->target_ce_config = target_ce_config_wlan;
hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan);
break;
case TARGET_TYPE_QCN7605:
hif_set_ce_config_qcn7605(scn, hif_state);
break;
case TARGET_TYPE_AR900B:
case TARGET_TYPE_QCA9984:
case TARGET_TYPE_IPQ4019:
case TARGET_TYPE_QCA9888:
if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
hif_state->host_ce_config =
host_lowdesc_ce_cfg_wlan_ar900b_nopktlog;
} else if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
hif_state->host_ce_config =
host_lowdesc_ce_cfg_wlan_ar900b;
} else {
hif_state->host_ce_config = host_ce_config_wlan_ar900b;
}
hif_state->target_ce_config = target_ce_config_wlan_ar900b;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_ar900b);
break;
case TARGET_TYPE_AR9888:
case TARGET_TYPE_AR9888V2:
if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_CFG)) {
hif_state->host_ce_config = host_lowdesc_ce_cfg_wlan_ar9888;
} else {
hif_state->host_ce_config = host_ce_config_wlan_ar9888;
}
hif_state->target_ce_config = target_ce_config_wlan_ar9888;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_ar9888);
break;
case TARGET_TYPE_QCA8074:
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6018:
if (scn->bus_type == QDF_BUS_TYPE_PCI) {
hif_state->host_ce_config =
host_ce_config_wlan_qca8074_pci;
hif_state->target_ce_config =
target_ce_config_wlan_qca8074_pci;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qca8074_pci);
} else {
hif_state->host_ce_config = host_ce_config_wlan_qca8074;
hif_state->target_ce_config =
target_ce_config_wlan_qca8074;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qca8074);
}
break;
case TARGET_TYPE_QCA6290:
hif_state->host_ce_config = host_ce_config_wlan_qca6290;
hif_state->target_ce_config = target_ce_config_wlan_qca6290;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qca6290);
scn->ce_count = QCA_6290_CE_COUNT;
break;
case TARGET_TYPE_QCN9000:
hif_state->host_ce_config = host_ce_config_wlan_qcn9000;
hif_state->target_ce_config = target_ce_config_wlan_qcn9000;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qcn9000);
scn->ce_count = QCN_9000_CE_COUNT;
scn->disable_wake_irq = 1;
break;
case TARGET_TYPE_QCA6390:
hif_state->host_ce_config = host_ce_config_wlan_qca6390;
hif_state->target_ce_config = target_ce_config_wlan_qca6390;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qca6390);
scn->ce_count = QCA_6390_CE_COUNT;
break;
case TARGET_TYPE_QCA6490:
hif_state->host_ce_config = host_ce_config_wlan_qca6490;
hif_state->target_ce_config = target_ce_config_wlan_qca6490;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qca6490);
scn->ce_count = QCA_6490_CE_COUNT;
break;
case TARGET_TYPE_QCA6750:
hif_state->host_ce_config = host_ce_config_wlan_qca6750;
hif_state->target_ce_config = target_ce_config_wlan_qca6750;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_qca6750);
scn->ce_count = QCA_6750_CE_COUNT;
break;
case TARGET_TYPE_ADRASTEA:
if (hif_is_attribute_set(scn, HIF_LOWDESC_CE_NO_PKTLOG_CFG)) {
hif_state->host_ce_config =
host_lowdesc_ce_config_wlan_adrastea_nopktlog;
hif_state->target_ce_config =
target_lowdesc_ce_config_wlan_adrastea_nopktlog;
hif_state->target_ce_config_sz =
sizeof(target_lowdesc_ce_config_wlan_adrastea_nopktlog);
} else {
hif_state->host_ce_config =
host_ce_config_wlan_adrastea;
hif_state->target_ce_config =
target_ce_config_wlan_adrastea;
hif_state->target_ce_config_sz =
sizeof(target_ce_config_wlan_adrastea);
}
break;
}
QDF_BUG(scn->ce_count <= CE_COUNT_MAX);
}
/**
* hif_ce_open() - do ce specific allocations
* @hif_sc: pointer to hif context
*
* return: 0 for success or QDF_STATUS_E_NOMEM
*/
QDF_STATUS hif_ce_open(struct hif_softc *hif_sc)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
qdf_spinlock_create(&hif_state->irq_reg_lock);
qdf_spinlock_create(&hif_state->keep_awake_lock);
return QDF_STATUS_SUCCESS;
}
/**
* hif_ce_close() - do ce specific free
* @hif_sc: pointer to hif context
*/
void hif_ce_close(struct hif_softc *hif_sc)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
qdf_spinlock_destroy(&hif_state->irq_reg_lock);
qdf_spinlock_destroy(&hif_state->keep_awake_lock);
}
/**
* hif_unconfig_ce() - ensure resources from hif_config_ce are freed
* @hif_sc: hif context
*
* uses state variables to support cleaning up when hif_config_ce fails.
*/
void hif_unconfig_ce(struct hif_softc *hif_sc)
{
int pipe_num;
struct HIF_CE_pipe_info *pipe_info;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(hif_sc);
for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
pipe_info = &hif_state->pipe_info[pipe_num];
if (pipe_info->ce_hdl) {
ce_unregister_irq(hif_state, (1 << pipe_num));
}
}
deinit_tasklet_workers(hif_hdl);
for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
pipe_info = &hif_state->pipe_info[pipe_num];
if (pipe_info->ce_hdl) {
ce_fini(pipe_info->ce_hdl);
pipe_info->ce_hdl = NULL;
pipe_info->buf_sz = 0;
qdf_spinlock_destroy(&pipe_info->recv_bufs_needed_lock);
}
}
if (hif_sc->athdiag_procfs_inited) {
athdiag_procfs_remove();
hif_sc->athdiag_procfs_inited = false;
}
}
#ifdef CONFIG_BYPASS_QMI
#ifdef QCN7605_SUPPORT
/**
* hif_post_static_buf_to_target() - post static buffer to WLAN FW
* @scn: pointer to HIF structure
*
* WLAN FW needs 2MB memory from DDR when QMI is disabled.
*
* Return: void
*/
static void hif_post_static_buf_to_target(struct hif_softc *scn)
{
phys_addr_t target_pa;
struct ce_info *ce_info_ptr;
uint32_t msi_data_start;
uint32_t msi_data_count;
uint32_t msi_irq_start;
uint32_t i = 0;
int ret;
scn->vaddr_qmi_bypass =
(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
scn->qdf_dev->dev,
FW_SHARED_MEM,
&target_pa);
if (!scn->vaddr_qmi_bypass) {
hif_err("Memory allocation failed could not post target buf");
return;
}
scn->paddr_qmi_bypass = target_pa;
ce_info_ptr = (struct ce_info *)scn->vaddr_qmi_bypass;
if (scn->vaddr_rri_on_ddr) {
ce_info_ptr->rri_over_ddr_low_paddr =
BITS0_TO_31(scn->paddr_rri_on_ddr);
ce_info_ptr->rri_over_ddr_high_paddr =
BITS32_TO_35(scn->paddr_rri_on_ddr);
}
ret = pld_get_user_msi_assignment(scn->qdf_dev->dev, "CE",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret) {
hif_err("Failed to get CE msi config");
return;
}
for (i = 0; i < CE_COUNT_MAX; i++) {
ce_info_ptr->cfg[i].ce_id = i;
ce_info_ptr->cfg[i].msi_vector =
(i % msi_data_count) + msi_irq_start;
}
hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
hif_info("target va %pK target pa %pa", scn->vaddr_qmi_bypass,
&target_pa);
}
/**
* hif_cleanup_static_buf_to_target() - clean up static buffer to WLAN FW
* @scn: pointer to HIF structure
*
*
* Return: void
*/
void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
{
void *target_va = scn->vaddr_qmi_bypass;
phys_addr_t target_pa = scn->paddr_qmi_bypass;
qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
FW_SHARED_MEM, target_va,
target_pa, 0);
hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
}
#else
/**
* hif_post_static_buf_to_target() - post static buffer to WLAN FW
* @scn: pointer to HIF structure
*
* WLAN FW needs 2MB memory from DDR when QMI is disabled.
*
* Return: void
*/
static void hif_post_static_buf_to_target(struct hif_softc *scn)
{
qdf_dma_addr_t target_pa;
scn->vaddr_qmi_bypass =
(uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
scn->qdf_dev->dev,
FW_SHARED_MEM,
&target_pa);
if (!scn->vaddr_qmi_bypass) {
hif_err("Memory allocation failed could not post target buf");
return;
}
scn->paddr_qmi_bypass = target_pa;
hif_write32_mb(scn, scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
}
/**
* hif_cleanup_static_buf_to_target() - clean up static buffer to WLAN FW
* @scn: pointer to HIF structure
*
*
* Return: void
*/
void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
{
void *target_va = scn->vaddr_qmi_bypass;
phys_addr_t target_pa = scn->paddr_qmi_bypass;
qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
FW_SHARED_MEM, target_va,
target_pa, 0);
hif_write32_mb(snc, scn->mem + BYPASS_QMI_TEMP_REGISTER, 0);
}
#endif
#else
static inline void hif_post_static_buf_to_target(struct hif_softc *scn)
{
}
void hif_cleanup_static_buf_to_target(struct hif_softc *scn)
{
}
#endif
static int hif_srng_sleep_state_adjust(struct hif_softc *scn, bool sleep_ok,
bool wait_for_it)
{
/* todo */
return 0;
}
/**
* hif_config_ce() - configure copy engines
* @scn: hif context
*
* Prepares fw, copy engine hardware and host sw according
* to the attributes selected by hif_ce_prepare_config.
*
* also calls athdiag_procfs_init
*
* return: 0 for success nonzero for failure.
*/
int hif_config_ce(struct hif_softc *scn)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
struct HIF_CE_pipe_info *pipe_info;
int pipe_num;
struct CE_state *ce_state = NULL;
#ifdef ADRASTEA_SHADOW_REGISTERS
int i;
#endif
QDF_STATUS rv = QDF_STATUS_SUCCESS;
scn->notice_send = true;
scn->ce_service_max_rx_ind_flush = MSG_FLUSH_NUM;
hif_post_static_buf_to_target(scn);
hif_state->fw_indicator_address = FW_INDICATOR_ADDRESS;
hif_config_rri_on_ddr(scn);
if (ce_srng_based(scn))
scn->bus_ops.hif_target_sleep_state_adjust =
&hif_srng_sleep_state_adjust;
/* Initialise the CE debug history sysfs interface inputs ce_id and
* index. Disable data storing
*/
reset_ce_debug_history(scn);
for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
struct CE_attr *attr;
pipe_info = &hif_state->pipe_info[pipe_num];
pipe_info->pipe_num = pipe_num;
pipe_info->HIF_CE_state = hif_state;
attr = &hif_state->host_ce_config[pipe_num];
pipe_info->ce_hdl = ce_init(scn, pipe_num, attr);
ce_state = scn->ce_id_to_state[pipe_num];
if (!ce_state) {
A_TARGET_ACCESS_UNLIKELY(scn);
goto err;
}
qdf_spinlock_create(&pipe_info->recv_bufs_needed_lock);
QDF_ASSERT(pipe_info->ce_hdl);
if (!pipe_info->ce_hdl) {
rv = QDF_STATUS_E_FAILURE;
A_TARGET_ACCESS_UNLIKELY(scn);
goto err;
}
ce_state->lro_data = qdf_lro_init();
if (attr->flags & CE_ATTR_DIAG) {
/* Reserve the ultimate CE for
* Diagnostic Window support
*/
hif_state->ce_diag = pipe_info->ce_hdl;
continue;
}
if (hif_is_nss_wifi_enabled(scn) && ce_state &&
(ce_state->htt_rx_data))
continue;
pipe_info->buf_sz = (qdf_size_t) (attr->src_sz_max);
if (attr->dest_nentries > 0) {
atomic_set(&pipe_info->recv_bufs_needed,
init_buffer_count(attr->dest_nentries - 1));
/*SRNG based CE has one entry less */
if (ce_srng_based(scn))
atomic_dec(&pipe_info->recv_bufs_needed);
} else {
atomic_set(&pipe_info->recv_bufs_needed, 0);
}
ce_tasklet_init(hif_state, (1 << pipe_num));
ce_register_irq(hif_state, (1 << pipe_num));
}
if (athdiag_procfs_init(scn) != 0) {
A_TARGET_ACCESS_UNLIKELY(scn);
goto err;
}
scn->athdiag_procfs_inited = true;
HIF_DBG("%s: ce_init done", __func__);
init_tasklet_workers(hif_hdl);
HIF_DBG("%s: X, ret = %d", __func__, rv);
#ifdef ADRASTEA_SHADOW_REGISTERS
HIF_DBG("%s, Using Shadow Registers instead of CE Registers", __func__);
for (i = 0; i < NUM_SHADOW_REGISTERS; i++) {
HIF_DBG("%s Shadow Register%d is mapped to address %x",
__func__, i,
(A_TARGET_READ(scn, (SHADOW_ADDRESS(i))) << 2));
}
#endif
return rv != QDF_STATUS_SUCCESS;
err:
/* Failure, so clean up */
hif_unconfig_ce(scn);
HIF_TRACE("%s: X, ret = %d", __func__, rv);
return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
}
#ifdef IPA_OFFLOAD
/**
* hif_ce_ipa_get_ce_resource() - get uc resource on hif
* @scn: bus context
* @ce_sr_base_paddr: copyengine source ring base physical address
* @ce_sr_ring_size: copyengine source ring size
* @ce_reg_paddr: copyengine register physical address
*
* IPA micro controller data path offload feature enabled,
* HIF should release copy engine related resource information to IPA UC
* IPA UC will access hardware resource with released information
*
* Return: None
*/
void hif_ce_ipa_get_ce_resource(struct hif_softc *scn,
qdf_shared_mem_t **ce_sr,
uint32_t *ce_sr_ring_size,
qdf_dma_addr_t *ce_reg_paddr)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
struct HIF_CE_pipe_info *pipe_info =
&(hif_state->pipe_info[HIF_PCI_IPA_UC_ASSIGNED_CE]);
struct CE_handle *ce_hdl = pipe_info->ce_hdl;
ce_ipa_get_resource(ce_hdl, ce_sr, ce_sr_ring_size,
ce_reg_paddr);
}
#endif /* IPA_OFFLOAD */
#ifdef ADRASTEA_SHADOW_REGISTERS
/*
* Current shadow register config
*
* -----------------------------------------------------------
* Shadow Register | CE | src/dst write index
* -----------------------------------------------------------
* 0 | 0 | src
* 1 No Config - Doesn't point to anything
* 2 No Config - Doesn't point to anything
* 3 | 3 | src
* 4 | 4 | src
* 5 | 5 | src
* 6 No Config - Doesn't point to anything
* 7 | 7 | src
* 8 No Config - Doesn't point to anything
* 9 No Config - Doesn't point to anything
* 10 No Config - Doesn't point to anything
* 11 No Config - Doesn't point to anything
* -----------------------------------------------------------
* 12 No Config - Doesn't point to anything
* 13 | 1 | dst
* 14 | 2 | dst
* 15 No Config - Doesn't point to anything
* 16 No Config - Doesn't point to anything
* 17 No Config - Doesn't point to anything
* 18 No Config - Doesn't point to anything
* 19 | 7 | dst
* 20 | 8 | dst
* 21 No Config - Doesn't point to anything
* 22 No Config - Doesn't point to anything
* 23 No Config - Doesn't point to anything
* -----------------------------------------------------------
*
*
* ToDo - Move shadow register config to following in the future
* This helps free up a block of shadow registers towards the end.
* Can be used for other purposes
*
* -----------------------------------------------------------
* Shadow Register | CE | src/dst write index
* -----------------------------------------------------------
* 0 | 0 | src
* 1 | 3 | src
* 2 | 4 | src
* 3 | 5 | src
* 4 | 7 | src
* -----------------------------------------------------------
* 5 | 1 | dst
* 6 | 2 | dst
* 7 | 7 | dst
* 8 | 8 | dst
* -----------------------------------------------------------
* 9 No Config - Doesn't point to anything
* 12 No Config - Doesn't point to anything
* 13 No Config - Doesn't point to anything
* 14 No Config - Doesn't point to anything
* 15 No Config - Doesn't point to anything
* 16 No Config - Doesn't point to anything
* 17 No Config - Doesn't point to anything
* 18 No Config - Doesn't point to anything
* 19 No Config - Doesn't point to anything
* 20 No Config - Doesn't point to anything
* 21 No Config - Doesn't point to anything
* 22 No Config - Doesn't point to anything
* 23 No Config - Doesn't point to anything
* -----------------------------------------------------------
*/
#ifndef QCN7605_SUPPORT
u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
{
u32 addr = 0;
u32 ce = COPY_ENGINE_ID(ctrl_addr);
switch (ce) {
case 0:
addr = SHADOW_VALUE0;
break;
case 3:
addr = SHADOW_VALUE3;
break;
case 4:
addr = SHADOW_VALUE4;
break;
case 5:
addr = SHADOW_VALUE5;
break;
case 7:
addr = SHADOW_VALUE7;
break;
default:
HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
QDF_ASSERT(0);
}
return addr;
}
u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
{
u32 addr = 0;
u32 ce = COPY_ENGINE_ID(ctrl_addr);
switch (ce) {
case 1:
addr = SHADOW_VALUE13;
break;
case 2:
addr = SHADOW_VALUE14;
break;
case 5:
addr = SHADOW_VALUE17;
break;
case 7:
addr = SHADOW_VALUE19;
break;
case 8:
addr = SHADOW_VALUE20;
break;
case 9:
addr = SHADOW_VALUE21;
break;
case 10:
addr = SHADOW_VALUE22;
break;
case 11:
addr = SHADOW_VALUE23;
break;
default:
HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
QDF_ASSERT(0);
}
return addr;
}
#else
u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
{
u32 addr = 0;
u32 ce = COPY_ENGINE_ID(ctrl_addr);
switch (ce) {
case 0:
addr = SHADOW_VALUE0;
break;
case 4:
addr = SHADOW_VALUE4;
break;
case 5:
addr = SHADOW_VALUE5;
break;
default:
HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
QDF_ASSERT(0);
}
return addr;
}
u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
{
u32 addr = 0;
u32 ce = COPY_ENGINE_ID(ctrl_addr);
switch (ce) {
case 1:
addr = SHADOW_VALUE13;
break;
case 2:
addr = SHADOW_VALUE14;
break;
case 3:
addr = SHADOW_VALUE15;
break;
case 5:
addr = SHADOW_VALUE17;
break;
case 7:
addr = SHADOW_VALUE19;
break;
case 8:
addr = SHADOW_VALUE20;
break;
case 9:
addr = SHADOW_VALUE21;
break;
case 10:
addr = SHADOW_VALUE22;
break;
case 11:
addr = SHADOW_VALUE23;
break;
default:
HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
QDF_ASSERT(0);
}
return addr;
}
#endif
#endif
#if defined(FEATURE_LRO)
void *hif_ce_get_lro_ctx(struct hif_opaque_softc *hif_hdl, int ctx_id)
{
struct CE_state *ce_state;
struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
ce_state = scn->ce_id_to_state[ctx_id];
return ce_state->lro_data;
}
#endif
/**
* hif_map_service_to_pipe() - returns the ce ids pertaining to
* this service
* @scn: hif_softc pointer.
* @svc_id: Service ID for which the mapping is needed.
* @ul_pipe: address of the container in which ul pipe is returned.
* @dl_pipe: address of the container in which dl pipe is returned.
* @ul_is_polled: address of the container in which a bool
* indicating if the UL CE for this service
* is polled is returned.
* @dl_is_polled: address of the container in which a bool
* indicating if the DL CE for this service
* is polled is returned.
*
* Return: Indicates whether the service has been found in the table.
* Upon return, ul_is_polled is updated only if ul_pipe is updated.
* There will be warning logs if either leg has not been updated
* because it missed the entry in the table (but this is not an err).
*/
int hif_map_service_to_pipe(struct hif_opaque_softc *hif_hdl, uint16_t svc_id,
uint8_t *ul_pipe, uint8_t *dl_pipe, int *ul_is_polled,
int *dl_is_polled)
{
int status = QDF_STATUS_E_INVAL;
unsigned int i;
struct service_to_pipe element;
struct service_to_pipe *tgt_svc_map_to_use;
uint32_t sz_tgt_svc_map_to_use;
struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
bool dl_updated = false;
bool ul_updated = false;
hif_select_service_to_pipe_map(scn, &tgt_svc_map_to_use,
&sz_tgt_svc_map_to_use);
*dl_is_polled = 0; /* polling for received messages not supported */
for (i = 0; i < (sz_tgt_svc_map_to_use/sizeof(element)); i++) {
memcpy(&element, &tgt_svc_map_to_use[i], sizeof(element));
if (element.service_id == svc_id) {
if (element.pipedir == PIPEDIR_OUT) {
*ul_pipe = element.pipenum;
*ul_is_polled =
(hif_state->host_ce_config[*ul_pipe].flags &
CE_ATTR_DISABLE_INTR) != 0;
ul_updated = true;
} else if (element.pipedir == PIPEDIR_IN) {
*dl_pipe = element.pipenum;
dl_updated = true;
}
status = QDF_STATUS_SUCCESS;
}
}
if (ul_updated == false)
HIF_DBG("ul pipe is NOT updated for service %d", svc_id);
if (dl_updated == false)
HIF_DBG("dl pipe is NOT updated for service %d", svc_id);
return status;
}
#ifdef SHADOW_REG_DEBUG
inline uint32_t DEBUG_CE_SRC_RING_READ_IDX_GET(struct hif_softc *scn,
uint32_t CE_ctrl_addr)
{
uint32_t read_from_hw, srri_from_ddr = 0;
read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_SRRI_ADDRESS);
srri_from_ddr = SRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
if (read_from_hw != srri_from_ddr) {
HIF_ERROR("%s: error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
__func__, srri_from_ddr, read_from_hw,
CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
QDF_ASSERT(0);
}
return srri_from_ddr;
}
inline uint32_t DEBUG_CE_DEST_RING_READ_IDX_GET(struct hif_softc *scn,
uint32_t CE_ctrl_addr)
{
uint32_t read_from_hw, drri_from_ddr = 0;
read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_DRRI_ADDRESS);
drri_from_ddr = DRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
if (read_from_hw != drri_from_ddr) {
HIF_ERROR("error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
drri_from_ddr, read_from_hw,
CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
QDF_ASSERT(0);
}
return drri_from_ddr;
}
#endif
/**
* hif_dump_ce_registers() - dump ce registers
* @scn: hif_opaque_softc pointer.
*
* Output the copy engine registers
*
* Return: 0 for success or error code
*/
int hif_dump_ce_registers(struct hif_softc *scn)
{
struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
uint32_t ce_reg_address = CE0_BASE_ADDRESS;
uint32_t ce_reg_values[CE_USEFUL_SIZE >> 2];
uint32_t ce_reg_word_size = CE_USEFUL_SIZE >> 2;
uint16_t i;
QDF_STATUS status;
for (i = 0; i < scn->ce_count; i++, ce_reg_address += CE_OFFSET) {
if (!scn->ce_id_to_state[i]) {
HIF_DBG("CE%d not used.", i);
continue;
}
status = hif_diag_read_mem(hif_hdl, ce_reg_address,
(uint8_t *) &ce_reg_values[0],
ce_reg_word_size * sizeof(uint32_t));
if (status != QDF_STATUS_SUCCESS) {
HIF_ERROR("Dumping CE register failed!");
return -EACCES;
}
HIF_ERROR("CE%d=>\n", i);
qdf_trace_hex_dump(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_DEBUG,
(uint8_t *) &ce_reg_values[0],
ce_reg_word_size * sizeof(uint32_t));
qdf_print("ADDR:[0x%08X], SR_WR_INDEX:%d", (ce_reg_address
+ SR_WR_INDEX_ADDRESS),
ce_reg_values[SR_WR_INDEX_ADDRESS/4]);
qdf_print("ADDR:[0x%08X], CURRENT_SRRI:%d", (ce_reg_address
+ CURRENT_SRRI_ADDRESS),
ce_reg_values[CURRENT_SRRI_ADDRESS/4]);
qdf_print("ADDR:[0x%08X], DST_WR_INDEX:%d", (ce_reg_address
+ DST_WR_INDEX_ADDRESS),
ce_reg_values[DST_WR_INDEX_ADDRESS/4]);
qdf_print("ADDR:[0x%08X], CURRENT_DRRI:%d", (ce_reg_address
+ CURRENT_DRRI_ADDRESS),
ce_reg_values[CURRENT_DRRI_ADDRESS/4]);
qdf_print("---");
}
return 0;
}
qdf_export_symbol(hif_dump_ce_registers);
#ifdef QCA_NSS_WIFI_OFFLOAD_SUPPORT
struct hif_pipe_addl_info *hif_get_addl_pipe_info(struct hif_opaque_softc *osc,
struct hif_pipe_addl_info *hif_info, uint32_t pipe)
{
struct hif_softc *scn = HIF_GET_SOFTC(osc);
struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(osc);
struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
struct CE_handle *ce_hdl = pipe_info->ce_hdl;
struct CE_state *ce_state = (struct CE_state *)ce_hdl;
struct CE_ring_state *src_ring = ce_state->src_ring;
struct CE_ring_state *dest_ring = ce_state->dest_ring;
if (src_ring) {
hif_info->ul_pipe.nentries = src_ring->nentries;
hif_info->ul_pipe.nentries_mask = src_ring->nentries_mask;
hif_info->ul_pipe.sw_index = src_ring->sw_index;
hif_info->ul_pipe.write_index = src_ring->write_index;
hif_info->ul_pipe.hw_index = src_ring->hw_index;
hif_info->ul_pipe.base_addr_CE_space =
src_ring->base_addr_CE_space;
hif_info->ul_pipe.base_addr_owner_space =
src_ring->base_addr_owner_space;
}
if (dest_ring) {
hif_info->dl_pipe.nentries = dest_ring->nentries;
hif_info->dl_pipe.nentries_mask = dest_ring->nentries_mask;
hif_info->dl_pipe.sw_index = dest_ring->sw_index;
hif_info->dl_pipe.write_index = dest_ring->write_index;
hif_info->dl_pipe.hw_index = dest_ring->hw_index;
hif_info->dl_pipe.base_addr_CE_space =
dest_ring->base_addr_CE_space;
hif_info->dl_pipe.base_addr_owner_space =
dest_ring->base_addr_owner_space;
}
hif_info->pci_mem = pci_resource_start(sc->pdev, 0);
hif_info->ctrl_addr = ce_state->ctrl_addr;
return hif_info;
}
qdf_export_symbol(hif_get_addl_pipe_info);
uint32_t hif_set_nss_wifiol_mode(struct hif_opaque_softc *osc, uint32_t mode)
{
struct hif_softc *scn = HIF_GET_SOFTC(osc);
scn->nss_wifi_ol_mode = mode;
return 0;
}
qdf_export_symbol(hif_set_nss_wifiol_mode);
#endif
void hif_set_attribute(struct hif_opaque_softc *osc, uint8_t hif_attrib)
{
struct hif_softc *scn = HIF_GET_SOFTC(osc);
scn->hif_attribute = hif_attrib;
}
/* disable interrupts (only applicable for legacy copy engine currently */
void hif_disable_interrupt(struct hif_opaque_softc *osc, uint32_t pipe_num)
{
struct hif_softc *scn = HIF_GET_SOFTC(osc);
struct CE_state *CE_state = scn->ce_id_to_state[pipe_num];
uint32_t ctrl_addr = CE_state->ctrl_addr;
Q_TARGET_ACCESS_BEGIN(scn);
CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr);
Q_TARGET_ACCESS_END(scn);
}
qdf_export_symbol(hif_disable_interrupt);
/**
* hif_fw_event_handler() - hif fw event handler
* @hif_state: pointer to hif ce state structure
*
* Process fw events and raise HTC callback to process fw events.
*
* Return: none
*/
static inline void hif_fw_event_handler(struct HIF_CE_state *hif_state)
{
struct hif_msg_callbacks *msg_callbacks =
&hif_state->msg_callbacks_current;
if (!msg_callbacks->fwEventHandler)
return;
msg_callbacks->fwEventHandler(msg_callbacks->Context,
QDF_STATUS_E_FAILURE);
}
#ifndef QCA_WIFI_3_0
/**
* hif_fw_interrupt_handler() - FW interrupt handler
* @irq: irq number
* @arg: the user pointer
*
* Called from the PCI interrupt handler when a
* firmware-generated interrupt to the Host.
*
* only registered for legacy ce devices
*
* Return: status of handled irq
*/
irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
{
struct hif_softc *scn = arg;
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
uint32_t fw_indicator_address, fw_indicator;
if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
return ATH_ISR_NOSCHED;
fw_indicator_address = hif_state->fw_indicator_address;
/* For sudden unplug this will return ~0 */
fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) {
/* ACK: clear Target-side pending event */
A_TARGET_WRITE(scn, fw_indicator_address,
fw_indicator & ~FW_IND_EVENT_PENDING);
if (Q_TARGET_ACCESS_END(scn) < 0)
return ATH_ISR_SCHED;
if (hif_state->started) {
hif_fw_event_handler(hif_state);
} else {
/*
* Probable Target failure before we're prepared
* to handle it. Generally unexpected.
* fw_indicator used as bitmap, and defined as below:
* FW_IND_EVENT_PENDING 0x1
* FW_IND_INITIALIZED 0x2
* FW_IND_NEEDRECOVER 0x4
*/
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
("%s: Early firmware event indicated 0x%x\n",
__func__, fw_indicator));
}
} else {
if (Q_TARGET_ACCESS_END(scn) < 0)
return ATH_ISR_SCHED;
}
return ATH_ISR_SCHED;
}
#else
irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
{
return ATH_ISR_SCHED;
}
#endif /* #ifdef QCA_WIFI_3_0 */
/**
* hif_wlan_disable(): call the platform driver to disable wlan
* @scn: HIF Context
*
* This function passes the con_mode to platform driver to disable
* wlan.
*
* Return: void
*/
void hif_wlan_disable(struct hif_softc *scn)
{
enum pld_driver_mode mode;
uint32_t con_mode = hif_get_conparam(scn);
if (scn->target_status == TARGET_STATUS_RESET)
return;
if (QDF_GLOBAL_FTM_MODE == con_mode)
mode = PLD_FTM;
else if (QDF_IS_EPPING_ENABLED(con_mode))
mode = PLD_EPPING;
else
mode = PLD_MISSION;
pld_wlan_disable(scn->qdf_dev->dev, mode);
}
int hif_get_wake_ce_id(struct hif_softc *scn, uint8_t *ce_id)
{
QDF_STATUS status;
uint8_t ul_pipe, dl_pipe;
int ul_is_polled, dl_is_polled;
/* DL pipe for HTC_CTRL_RSVD_SVC should map to the wake CE */
status = hif_map_service_to_pipe(GET_HIF_OPAQUE_HDL(scn),
HTC_CTRL_RSVD_SVC,
&ul_pipe, &dl_pipe,
&ul_is_polled, &dl_is_polled);
if (status) {
HIF_ERROR("%s: failed to map pipe: %d", __func__, status);
return qdf_status_to_os_return(status);
}
*ce_id = dl_pipe;
return 0;
}
#ifdef HIF_CE_LOG_INFO
/**
* ce_get_index_info(): Get CE index info
* @scn: HIF Context
* @ce_state: CE opaque handle
* @info: CE info
*
* Return: 0 for success and non zero for failure
*/
static
int ce_get_index_info(struct hif_softc *scn, void *ce_state,
struct ce_index *info)
{
struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
return hif_state->ce_services->ce_get_index_info(scn, ce_state, info);
}
void hif_log_ce_info(struct hif_softc *scn, uint8_t *data,
unsigned int *offset)
{
struct hang_event_info info = {0};
static uint32_t tracked_ce = BIT(CE_ID_1) | BIT(CE_ID_2) |
BIT(CE_ID_3) | BIT(CE_ID_4) | BIT(CE_ID_9) | BIT(CE_ID_10);
uint8_t curr_index = 0;
uint8_t i;
uint16_t size;
info.active_tasklet_count = qdf_atomic_read(&scn->active_tasklet_cnt);
info.active_grp_tasklet_cnt =
qdf_atomic_read(&scn->active_grp_tasklet_cnt);
for (i = 0; i < scn->ce_count; i++) {
if (!(tracked_ce & BIT(i)) || !scn->ce_id_to_state[i])
continue;
if (ce_get_index_info(scn, scn->ce_id_to_state[i],
&info.ce_info[curr_index]))
continue;
curr_index++;
}
info.ce_count = curr_index;
size = sizeof(info) -
(CE_COUNT_MAX - info.ce_count) * sizeof(struct ce_index);
if (*offset + size > QDF_WLAN_HANG_FW_OFFSET)
return;
QDF_HANG_EVT_SET_HDR(&info.tlv_header, HANG_EVT_TAG_CE_INFO,
size - QDF_HANG_EVENT_TLV_HDR_SIZE);
qdf_mem_copy(data + *offset, &info, size);
*offset = *offset + size;
}
#endif